

Übungsblatt 8

Vorlesung Analysis 2 (Lehramtsstudiengänge)

Sommersemester 2018 Abgabe am 11.06.2018

Aufgabe 22 (ohne Abgabe)

In Kapitel 7 der Vorlesung haben wir einige Sätze angegeben, deren Beweise analog wie die Beweise für die entsprechenden Sätze aus Kapitel 3 und 4 geführt werden. Wiederholen Sie beim Nacharbeiten der Vorlesung die entsprechenden Beweise aus Kapitel 3 und 4 und schreiben Sie diese für den Fall metrischer Räume nochmal auf (Sätze 7.2, 7.3, 7.15, 7.16, 7.19, 7.22).

Aufgabe 23

a) Sei (X, d) ein metrischer Raum. Zeigen Sie die Vierecksungleichung

$$|d(p,q) - d(x,y)| \le d(p,x) + d(q,y) \qquad \forall p,q,x,y \in X$$

und schlußfolgern Sie daraus, dass die Abstandsfunktion $d: X \times X \to \mathbb{R}$ stetig ist. (Dabei ist $X \times X$ mit der Produktmetrik versehen).

b) Wir versehen den Vektorraum der reellen $n \times n$ -Matrizen $M(n,\mathbb{R})$ mit der Euklidischen Norm:

$$||M|| := \sqrt{\sum_{i,j=1}^n M_{ij}^2}$$
 für $M = (M_{ij}) \in M(n,\mathbb{R})$.

- Zeigen Sie, dass die Abbildung det : $M(n,\mathbb{R}) \to \mathbb{R}$, die jeder Matrix ihre Determinante zuordnet, stetig ist.
- Gilt dies auch, wenn man $M(n,\mathbb{R})$ mit einer anderen Norm versieht? (Begründung).
- Sei $GL(n,\mathbb{R})$ die Menge der invertierbaren Matrizen und $SL(n,\mathbb{R})$ die Menge der Matrizen mit Determinante 1. Schlussfolgern Sie aus der Stetigkeit von det, dass $GL(n,\mathbb{R})$ eine offene Teilmenge von $M(n,\mathbb{R})$ und $SL(n,\mathbb{R})$ eine abgeschlossene Teilmenge von $M(n,\mathbb{R})$ ist.
- c) Sei \mathbb{R}^2 der Euklidische Vektorraum und die Abbildung $f:\mathbb{R}^2\to\mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{falls } (x,y) \neq (0,0), \\ 0, & \text{falls } (x,y) = (0,0). \end{cases}$$

Untersuchen Sie, in welchen Punkten $(x,y) \in \mathbb{R}^2$ die Abbildung f stetig ist (mit Begründung).

12 P

Aufgabe 24

Wir betrachten die Euklidischen Vektorräume \mathbb{R}^k , \mathbb{R}^m und \mathbb{R}^l und bezeichnen die Euklidischen Normen darauf jeweils mit $\|\cdot\|$. Sei $L(\mathbb{R}^k,\mathbb{R}^m)$ der Vektorraum aller linearen Abbildungen von \mathbb{R}^k nach \mathbb{R}^m . Für eine lineare Abbildung $A \in L(\mathbb{R}^k,\mathbb{R}^m)$ definieren wir die Operatornorm

$$||A|| := \max\{ ||Ax|| \mid ||x|| = 1 \}.$$

Zeigen Sie:

- a) ||A|| ist korrekt definiert (d.h. das Maximum existiert).
- b) $\|\cdot\|$ ist eine Norm auf $L(\mathbb{R}^k, \mathbb{R}^m)$.
- c) Der normierte Vektorraum $(L(\mathbb{R}^k, \mathbb{R}^m), \|\cdot\|)$ ist vollständig.
- d) Für alle linearen Abbildungen $A\in L(\mathbb{R}^k,\mathbb{R}^m)$ und $B\in L(\mathbb{R}^m,\mathbb{R}^l)$ gilt:
 - (i) $||Ax|| \le ||A|| \cdot ||x||$ $\forall x \in \mathbb{R}^k$.
 - (ii) $||B \circ A|| \le ||B|| \cdot ||A||$.
- e) Jede lineare Abbildung $A: \mathbb{R}^k \to \mathbb{R}^m$ ist lipschitzstetig mit der Lipschitzkonstanten $\|A\|$.

12 P

Insgesamt: 24 P