Prof. Helga Baum Institut für Mathematik Rudower Chaussee 25 Haus 1 Raum 307

Problem Sheet 1

Differential Geometry I

WS 2018/2019

Discussion in the Exercise class 22.10./29.10.

Problem 1

Let X be an uncountable set and τ_{abz} the set family

 $\tau_{abz} := \{\emptyset\} \cup \{X \setminus A \mid A \text{ countable}^*\}.$

Prove that (X, τ_{abz}) is a topological space and determine the interior int(M), the closure cl(M) and the boundary ∂M for a set $M \subset X$.

* In this lecture by a countable set we mean a set which is empty, finite or proper countable.

Problem 2

Show:

- a) Every second countable topological space is separable.
- b) Every separable metric space is second countable.

Problem 3

On the set $\mathbb R$ of real numbers (with standard topology) we consider the following equivalence relation:

$$x \sim y \iff x = y \text{ or } x, y \in \mathbb{Z}.$$

Show that the point [0] in the factor space $\mathbb{R}/_{\sim}$ does not admit a countable basis of neighbourhoods.

Problem 4 The Sorgenfrey line

We consider the set of real numbers \mathbb{R} and the following family τ_{sorg} of subsets of \mathbb{R} :

 $\begin{array}{ll} U \in \tau_{sorg} & : \Longleftrightarrow & U = \emptyset \text{ or } U \text{ is the union of arbitrary many intervalls} \\ & \text{ of the form } [a,b), \ -\infty < a < b < +\infty. \end{array}$

Show:

- a) $(\mathbb{R}, \tau_{sorg})$ is a topological space.
- b) $(\mathbb{R}, \tau_{sorg})$ is separable.
- c) $(\mathbb{R}, \tau_{sorg})$ is first countable.
- d) $(\mathbb{R}, \tau_{sorg})$ is not second countable.
- e) $(\mathbb{R}, \tau_{sorg})$ is not metrizable.