Prof. Helga Baum Institut für Mathematik Rudower Chaussee 25 Haus 1 Raum 307

Übungsblatt 2

Differentialgeometrie I WS 2018/2019

Besprechung in der Übung am 29.10./5.11.

Aufgabe 5

Begründen Sie, dass die topologischen Räume \mathbb{R}^n , S^n , T^n , $\mathbb{R}P^n$, $\mathbb{C}P^n$, das Möbiusband und die Kleinsche Flasche eine abzählbare Basis besitzen und T_2 -Räume sind.

Aufgabe 6 Homöomorphismen

a) Zeigen Sie, dass die stereographische Projektion aus dem Nordpol $N=(0,\ldots,0,1)\in S^n,$ d.h. die Abbildung

$$\begin{array}{cccc} \varphi_N: & S^n \setminus \{N\} & \longrightarrow & \mathbb{R}^n \\ & x & \longmapsto & \text{Schnittpunkt der Geraden durch } N \text{ und } x \\ & & \text{mit der Hyperebene } \mathbb{R}^n = \{x \in \mathbb{R}^{n+1} \mid x_{n+1} = 0\} \end{array}$$

ein Homöomorphismus ist.

- b) Zeigen Sie, dass der reell-projektive Raum $\mathbb{R}P^n$ homöomorph zum Raum $\mathcal{G}_{\mathbb{R}}$ aller reellen Geraden durch den Ursprung im \mathbb{R}^{n+1} (mit der in der Vorlesung festgelegten Topologie) ist.
 - Zeigen Sie, dass der komplex-projektive Raum $\mathbb{C}P^n$ homöomorph zum Raum $\mathcal{G}_{\mathbb{C}}$ aller komplexen Geraden durch den Ursprung im \mathbb{C}^{n+1} (mit der in der Vorlesung festgelegten Topologie) ist.
- c) Wir betrachten den Torus $T^n = S^1 \times \ldots \times S^1$, den Rotationstorus $\hat{T}^2 := \{((2 + \cos(v)) \cdot \cos(u), (2 + \cos(v)) \cdot \sin(u), \sin(v)) \mid u, v \in \mathbb{R}\}$ und den Faktorraum $\mathbb{R}^n/\mathbb{Z}^n$. Zeigen Sie:
 - Die topologischen Räume T^n und $\mathbb{R}^n/\mathbb{Z}^n$ sind homöomorph.
 - Die topologischen Räume T^2 und \hat{T}^2 sind homöomorph.

Aufgabe 7 Hausdorff-Eigenschaft

Sei X ein topologischer Raum. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- a) X ist ein T_2 -Raum.
- b) Die Diagonale $\Delta:=\{(x,x)\subset X\times X\mid x\in X\}$ ist abgeschlossen im Produktraum $X\times X.$

c) Für jedes
$$x \in X$$
 gilt: $\{x\} = \bigcap_{U(x) \ Umg. \ von \ x} cl(U(x)).$

Aufgabe 8

Zeigen Sie, dass jeder kompakte metrisierbare topologische Raum eine abzählbare Basis besitzt.