Prof. Helga Baum Institut für Mathematik Rudower Chaussee 25 Haus 1 Raum 307

Übungsblatt 4

Differentialgeometrie I WS 2018/2019

Besprechung in der Übung am 12.11./17.11.

Aufgabe 13 lokal-Euklidische topologische Räume

- a) Ist jeder lokal-Euklidische topologische Raum ein T_2 -Raum? Besitzt er immer eine abzählbare Basis? (Begründen Sie Ihre Aussage)
- b) Zeigen Sie, dass jeder Punkt eines lokal-Euklidischen Raumes eine Karte besitzt, deren Bild der gesamte \mathbb{R}^n ist
- c) Zeigen Sie, dass jede Zusammenhangskomponente eines lokal-Euklidischen Raumes sowohl abgeschlossen als auch offen ist.

Aufgabe 14 Die Sphäre S^n als Untermannigfaltigkeit des \mathbb{R}^{n+1} .

- a) Zeigen Sie, dass der mittels der stereographischen Projektionen definierte Atlas $\mathcal{A} := \{(S^n \setminus \{N\}, \varphi_N), (S^n \setminus \{S\}, \varphi_S)\}$ von S^n (siehe Vorlesung) ein Untermannigfaltigkeitsatlas (oder ein "Bügelatlas") ist, d.h. S^n ist eine Untermannigfaltigkeit des \mathbb{R}^{n+1} .
- b) Wir betrachten auf der Sphäre S^2 die geographischen (oder sphärischen) Koordinaten, d.h. wir beschreiben jeden Punkt $P \in S^2$, der nicht in der Halbebene $E = \{(x,y,z) \in \mathbb{R}^3 \mid y=0, x\geq 0\}$ liegt, durch seine geographische Länge $u \in (0,2\pi)$ und seine geographische Breite $v \in (-\frac{\pi}{2}, \frac{\pi}{2})$:

$$P = h(u, v) := (\cos u \cos v, \sin u \cos(v), \sin(v)).$$

(Skizzieren Sie die Winkel u und v für den Punkt $P \in S^2 \setminus E$).

Zeigen Sie, dass $(S^2 \setminus E, h^{-1})$ eine zulässige Karte auf der glatten Mannigfaltigkeit $(S^2, [A])$ ist. Ist diese Karte auch eine "Bügelkarte"?

Aufgabe 15 Glatte Mannigfaltigkeiten

- a) Zeigen Sie, dass der komplex-projektive Raum \mathbb{CP}^n die Struktur einer 2n-dimensionalen glatten Mannigfaltigkeit trägt.
- b) Wir betrachten auf $S^{n-1} \times [-1,1]$ die Äquivalenzrelation

$$(x,t) \sim (y,s) \iff (x,t) = (y,s) \text{ oder } t = s = 1 \text{ oder } t = s = -1.$$

Zeigen Sie, dass der Faktorraum $M := (S^{n-1} \times [-1,1])/_{\sim}$ die Struktur einer n-dimensionalen glatten Mannigfaltigkeit trägt.

(Hinweis: Mit welcher bekannten Mannigfaltigkeit können Sie M identifizieren?).

Aufgabe 16 Glatte Abbildungen

Zeigen Sie, dass die folgenden Abbildungen glatte Abbildungen zwischen den angegebenen Mannigfaltigkeiten sind:

- a) Die Projektion $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$.
- b) Die Abbildung $f: \mathbb{RP}^n \to \operatorname{End}(\mathbb{R}^{n+1}) \simeq \mathbb{R}^{(n+1)^2}$:

$$f([x])(v) := \frac{\langle v, x \rangle}{\langle x, x \rangle} \cdot x$$
 für $[x] \in \mathbb{RP}^n$ und $v \in \mathbb{R}^{n+1}$.

Aufgabe 17 Glatte Abbildungen für Untermannigfaltigkeiten

Seien M und X eine glatte Mannigfaltigkeiten und $N\subset M$ eine Untermannigfaltigkeit von M. Zeigen Sie:

- a) Die Inklusionsabbildung $\iota:N\hookrightarrow M$ ist glatt.
- b) Sei $\Phi: X \to M$ eine Abbildung mit $\Phi(X) \subset N$. Dann gilt:

$$\Phi: X \to M \text{ ist } C^k \iff \Phi: X \to N \text{ ist } C^k.$$

c) Ist $\Psi:M\to X$ eine C^k -Abbildung, so ist die Einschränkung $\Psi_{|N}:N\to X$ ebenfalls eine C^k -Abbildung.