

Übungsblatt 14

Analysis und Geometrie auf Mannigfaltigkeiten ${ m WS}\ 2013/2014$

Abgabe am 03.02.2013

Aufgabe 40

- a) Zeigen Sie, dass die semi-Riemannschen Mannigfaltigkeiten $(S_p^n(r), g)$ und $(H_p^n(r), h)$ aus Aufgabe 37 geodätisch vollständig sind.
- b) Skizzieren Sie die raumartigen, die zeitartigen sowie die isotropen Geodäten der 2-dimensionalen Lorentz-Mannigfaltigkeit $(H_1^2(r), h)$.

6 P

Aufgabe 41

Wir betrachten auf dem \mathbb{R}^2 die Metrik g, gegeben durch

$$g_{(x,y)} := (\cos^4(y) - 1)dx^2 - 2dxdy.$$

- a) Zeigen Sie, dass (\mathbb{R}^2, g) eine Lorentz-Mannigfaltigkeit ist.
- b) Zeigen Sie, dass (\mathbb{R}^2, g) nicht geodätisch vollständig ist. $\mathit{Hinweis}$: Zeigen Sie dazu, dass $\gamma:(0,\infty)\to\mathbb{R}^2$ mit $\gamma(t):=\left(\frac{1}{t}-t,\arctan(t)\right)$ eine Geodäte auf (\mathbb{R}^2,g) ist.

6 P

Aufgabe 42

Sei (M,g) eine semi-Riemannsche Mannigfaltigkeit und $\gamma:I\subset\mathbb{R}\to M$ eine glatte reguläre Kurve mit

$$\frac{\nabla^g \gamma'}{dt}(t) = \sigma(t) \cdot \gamma'(t) \qquad \forall t \in I,$$

wobei $\sigma: I \to \mathbb{R}$ eine glatte Funktion ist.

Zeigen Sie, dass γ eine Prägeodäte von (M, g) ist.

Hinweis: Um eine geeignete Umparametrisierung von γ zu finden, betrachten Sie die Stammfunktion G von σ , die Stammfunktion h von e^G und dann die Umkehrfunktion von h.

Insgesamt: 18 P