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For a K3 surface S, a smooth curve C' C S and a globally generated linear series
A € WI(C) with h(C, A) = r + 1, the Lazarsfeld-Mukai vector bundle E¢ 4 is defined
via the following elementary modification on S

(1) 0— B¢y — H(C,A)® Og — A — 0.

The bundles E¢ 4 have been introduced more or less simultaneously in the 80’s by
Lazarsfeld [L1] and Mukai [M1] and have acquired quite some prominence in algebraic
geometry. On one hand, they have been used to show that curves on general K3 sur-
faces verify the Brill-Noether theorem [L1], and this is still the only class of smooth
curves known to be general in the sense of Brill-Noether theory in every genus. When
p(g,r,d) = 0, the vector bundle E¢ 4 is rigid and plays a key role in the classification of
Fano varieties of coindex 3. For g = 7,8, 9, the corresponding Lazarsfeld-Mukai bundle
has been used to coordinatize the moduli space of curves of genus g, thus giving rise to
a new and more concrete model of M, see [M2], [M3], [M4]. Furthermore, Lazarsfeld-
Mukai bundles of rank two have led to a characterization of the locus in M, of curves
lying on K3 surfaces in terms of existence of linear series with unexpected syzygies [F],
[V]. For a recent survey on this circle of ideas, see [A].

Recently, Lazarsfeld-Mukai bundles have proven to be effective in shedding some
light on an interesting conjecture of Mercat in Brill-Noether theory, see [FO1], [FO2],
[LMN]. Recall that the Clifford index of a semistable vector bundle E € Uc(n,d) on a
smooth curve C of genus g is defined as

2
Y(E) = u(E) — EhO(C, E)+2>0.
Then the higher Clifford indices of the curve C are defined as the quantities
Cliff,,(C) := min{fy(E) . E € Uc(n,d), d<n(g—1), i°(C,E) > 2n}.

For any line bundle L on C such that h(C, L) > 2 for i = 0, 1, that is, contributing to
the Clifford index Cliff(C'), by computing the invariants of the strictly semistable vector
bundle E := L®", one finds Cliff,,(C') < Cliff(C). Mercat [Mel] predicted that for any
smooth curve C of genus g, the following equality

(M) : Cliff,,(C)) = CLff(C).

should hold. Counterexamples to (M>) have been found on curves lying on K3 surfaces
that are special in Noether-Lefschetz sense, see [FO1], [FO2] and [LN2]. However, (M2)

is expected to hold for a general curve of genus g, and in fact even for a curve C lying on
1
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a K3 surface S such that Pic(S) = Z-C. For instance, it is known that (1/3) holds on M,
outside a certain Koszul divisor (which also admits a Noether-Lefschetz realization),
see [FO2] Theorem 1.3. It is also known that (13) holds generically on M, for g < 16,
see [FOL1].

It has been proved in [LMN] that rank three restricted Lazarsfeld-Mukai bundles
invalidate statement (M3) in genus 9 and 11 respectively, that is, Mercat’s conjecture
in rank three fails generically on Mg and M respectively. This was then extended
in [FO2] Theorem 1.4, to show that on a K3 surface S with Pic(S) = Z - C, where
C? = 29— 2,if A € W2(C) is a linear system where d := | 242 ], the restriction to C
of the Lazarsfeld-Mukai bundle E¢ 4 is stable and has Clifford index strictly less than

L%J, in particular, statement (A/3) fails for the curve C. For further background on
this problem, we also refer to [Mel], [LN1] and [GMN].

The restricted Lazarsfeld-Mukai bundle E|¢ := Ec 4 ® O¢ sits in the following exact
sequence

) 0— Qs — Elc — Kc®AY — 0,
where Q4 = M is the dual of the kernel bundle defined by the sequence
0— My — H°(C,A)® Og — A — 0.

One then shows [V], [FO2] that the sequence (2) is exact on global sections, that is,

h(C,E|c) = h°(C, Ko @ AY) + h%(C,Qa) = g —d +2r + 1.
By choosing the degree d minimal such that W} (C') # 0, precisely d = r + Vgng:ll)J, it
becomes clear that for sufficiently high g, one has

v(E|c) < Clff(C),

thatis, F|c, when semistable, provides a counterexample to Mercat’s conjecture (M, 7).
We prove the following result, extending to rank 4 a picture studied in smaller ranks in
the papers [M1], [V], respectively [FOZ2].

Theorem 0.1. Let S be a K3 surface with Pic(S) = Z - L, where L? = 2g — 2 and write
g=4i—4+pand d=3i+ p,

with p > 0 and i > 6. Then for a general curve C' € |L| and a globally generated linear series
A € W3(C) with h°(C, A) = 4, the restriction to C of the Lazarsfeld-Mukai bundle Ec 4 is
stable.

Note that in Theorem 0.1, dim W3(C) = p. The rank 3 version of this result was
proved in [FO2]. We record the following consequence of Theorem 0.1:

Corollary 0.2. For C C S with g > 20 and Pic(S) = Z - C, we set d := |*1| and
A € W3(C) with h°(C, A) = 4. Then E|c is a stable rank 4 bundle with (E|c) < L%J It
follows that the statement (My) fails for C.

The curves C appearing in Corollary 0.2 are Brill-Noether general, that is, they satisfy
Cliff(C) = L%J , see [L1]. We also show that under mild restrictions, on a very general
K3 surface, the extension (2) is non-trivial and the restricted Lazarsfeld-Mukai bundle

E|¢ is simple (see Theorem 1.3). We expect that the bundle E|c remains stable also for
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higher ranks r + 1 = h%(C, A), at least when Pic(S) = Z - C. However, our method of
proof based on the Bogomolov inequality, seem not to extend easily for r > 4.

The second topic we discuss in this paper concerns the connection between normal
bundles of canonical curves and Mercat’s conjecture. For a smooth canonically embed-
ded curve C c P97 of genus g, we consider the normal bundle N¢ := N, /P91, and

then we define the twist of the conormal bundle E := Ny, @ K&?. By direct calculation
det(E) = Kg(g_m and rk(F) =g — 2.

In particular, the vector bundle E contributes to Cliff, »(C) if and only if g < 8. Since
M (—1) = Qpg-1)¢, the bundle E sits in the following exact sequence

3) 0— E — My, @ K¢ =8 K& — 0,

where yx, : HY(C, Mg, ® Kc) — H°(C, K5?) is the Gaussian map of C, see [W]. The
map vk, vanishes on symmetric tensors, hence Ker(yx,. ) = Io(K¢) @ Ker(¢k,, ), where

2
Ve = VKol mocny) /\H(C,K¢) — H(C,K&?),

and Ir(K¢) = K;11(C, K¢) is the space of quadrics containing the canonical curve C.
The map 1k, has been studied intensely in the context of deformations in P of the
cone over the canonical curve C C P97}, see [W]. Itis in particular known [CHM], [V]
that ¢k, is surjective for a general curve C of genus g > 12.

We now specialize to the case g = 7, when E contributes to Cliff5(C). Thenrk(E) =5
and det(E) = K352, therefore u(E) = %. It is easy to show that the Gaussian map
Yk, is injective for every smooth curve C of genus 7 having maximal Clifford index
Cliff(C') = 3. In particular,

H°(C,E) = I,(K¢)
is a 10-dimensional space, and v(E) = 2 + 1 < Cliff(C'). We establish the following
result:

Theorem 0.3. The normal bundle N¢.,ps of every canonical curve C of genus 7 with maximal
Clifford index is stable. In particular, the Mercat conjecture (Ms) fails for a general curve of
genus 7.

The proof of Theorem 0.3 uses in an essential way Mukai’s realisation [M3] of a
canonical curve C of genus 7 with Cliff(C') = 3 as a linear section of the 10-dimensional
spinorial variety OG(5,10) C P'. In particular, the vector bundle E is the restriction
to C of the rank 5 spinorial bundle on OG(5, 10), which endows E with an extra struc-
ture that only exists in genus 7. Note that the normal bundle of every canonical curve
of genus at most 6 is unstable, and more generally, the normal bundle of a tetragonal
canonical curve of any genus is unstable (see also Section 3). In particular, we have the
following identification of cycles on Mz:

{[C] € M7 : N¢ is unstable} = M%A,

where the right hand side denotes the tetragonal divisor on M7. We make the following
conjecture:



4 M. APRODU, G. FARKAS, AND A. ORTEGA

Conjecture 0.4. The normal bundle N¢ of a general canonical curve C of genus g > 7 is stable.

Note that the stability of the normal bundle N¢/pr of a curve of genus g is not
known even in the case of a non-special embedding C' — P" given by a line bundle
L € Pic(C) of large degree. This is in stark contrast with the case of the kernel bundle
My, = Qprc(1), whose stability easily follows by a filtration argument due to Lazars-
feld [L2]. For some very partial results in this direction, see [EL]. In general, one can
show by degenerating a canonical curve C' C P9~! to the transversal union of two ra-
tional normal curves in PY~! meeting in g + 1 points that N¢ is not too unstable. Due to
the fact that the slope ©(N¢) is not an integer, this simple minded technique does not
seem to lead to a full solution.
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1. SIMPLICITY OF RESTRICTED LAZARSFELD-MUKAI BUNDLES

We fix a K3 surface S, a smooth curve C' C S of genus g and a globally generated
linear series A € W7 (C), with h°(C, A) = r + 1. Using the evaluation sequence (1), we
form the vector bundle F' = F¢ 4; by dualizing, we obtain an exact sequence for the
dualbundle £ = Ec 4 := F¢ 4

4) 0— H°C,A)Y ®Og — Ec.a — Ko ® AV — 0.
It is well-known [M1], [L1] that ¢; (E) = [C] and c3(E) = d; moreover h°(S, F) = 0 and
h(S, E) = h}(S, F) = 0. Finally, one also has that

X(SaE ® F) =2- 2p(g77“7 d)a

in particular, if F is a simple bundle, then p(g,r,d) > 0. Assuming furthermore that
Pic(S) = Z - C, it is also well-known that both E and F' are C-stable bundles on S.

1.1. The rank 2 case. We begin by showing that in rank 2, irrespective of the structure
of Pic(S), a splitting of the restriction E|c can only be induced by an elliptic pencil on
the K3 surface.

Theorem 1.1. Let C C S be as above and a base point free pencil A € W}(C) of degree
2 <d< g—1with Ko ® AV globally generated. The following conditions are equivalent:
(i) Elo = A& (Kc® AY);
(ii) There exists an elliptic pencil N € Pic(S) such that N|c = A.
(iii) R°(S,E® F) < h°(C,E @ F|¢).

Corollary 1.2. With notation as above, if g < 2d — 2 and A is not induced by an elliptic pencil
on S, then E|c is simple if and only if E is simple.

Note that it is easy to see that if E|¢ is simple, then E is also simple. It is also known
that if E is simple, then automatically g < 2d — 2.
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Proof. (of Theorem 1.1) (ii)=-(i). Let N be an elliptic pencil with N|c = A. Consider the
exact sequence

0— NY — F— N(-C) —0.
Its restriction to C' gives a splitting of the dual of the sequence (2) characterizing E|¢.
Observe that since d < g — 1, there is no morphism from A" to K ® A.

(i)=(ii). Conversely, suppose that E|c = A® (K¢ ® AY). Applying Hom(Kc® AY, —)
to the sequence (1), we obtain an exact sequence
0 — Ext!(Kc® AV, F) — Ext!' (Ko ® AV, H*(C, A) ® Og) — Ext! (Ko @ AY, A).

Since the extension class [E] € Ext! (K¢ ® AV, H*(C, A) ® Og) maps to the trivial ex-
tension in Ext! (K¢ ® AV, A), it follows that there exists a rank 2 bundle G on S which
fits into a commutative diagram:

6) 0 0
0 F HY(A)® 05— A——=0
0 G E A 0
Ke®AY ——=Kc® AY
0 0

Using that HY(S, F) = H*(S, F) = 0, we obtain H°(S,G) = H°(C, K¢ ® AY). Since
hO(S, E) = h%(C, A) + h}(C, A) = h°(C, A) + h°(S, @), and h'(S, E) = 0, it follows that
H'(S,G) = 0. From the second row of (5), we find that H°(S, G(—C)) = 0.

Furthermore, we compute c¢1(G) = 0 and c2(G) = 2d — 2g + 2. So c2(G) < 0 = 3(G),
that is, G violates Bogomolov’s inequality, and then it sits in an extension

(6) 0—M-—G— M'®Irs —0,

where T is a zero-dimensional subscheme of S, and M € Pic(S) is such that M? > 0
and M - H > 0 for any ample line bundle H on S. In particular, H°(S, M") = 0, and
hence H°(S, M) = H°(S,G) = H*(C, Kc ® AY) # 0. Moreover, since

hO(Sv MY ®IF/S) = hl(Sv G) =0,

it also follows that H'(S, M) = 0.
On the other hand H(S, F) = 0, which implies that the composed map

M—G—Kc® A

is non-zero; in fact, we claim that it is surjective, that is, M|c = K¢ ® A. Suppose that
M|c = K¢ ® AY(=D'), with D’ # 0 an effective divisor on C. Since h°(S,G(-C)) =0,
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we have h%(S, M (—C)) = 0, which implies h°(S, M) < h%(C, M|¢). Since we assumed
Kc ® AY to be globally generated, we have that

h0(57 M) < ho(ca Ke® Av(_D,)) < ho(cv Ke® Av) = hO(S7 M)7

a contradiction.
Setting N := MV (C), we have shown that N|c = A and there is an exact sequence

00— MY — N-—A—0.

Since (S, MV) = h'(S,M"V) = 0, it follows that H(S,N) = HY(C, A). To see that
N defines and elliptic pencil, we infer that the exact sequence above and the identity
RO(S, M) = h(C, A) imply h'(S, N) = h%(S, N) = 0 and hence N? = 0 from Riemann-
Roch.

(iii)=(i). From the sequence (1) twisted by E(—C) = F, we obtain that
HY(S,E® F(—C)) c H(C, A) @ H(S, E(-C)),

and, since F' has no sections, it follows that H%(S, E @ F(—C)) = 0. We have an exact
sequence

0— HS,E®F) — H°(S,E® F|¢) — HY(S,E® F(-C)).

The hypothesis implies that H!(S, E @ F(—C)) # 0. From (1) twisted by E(—C) = F,
we obtain the exact sequence in cohomology

0— HYC,Elc®K$®A) — H'(S,E® F(-C)) — H°(C,A)® H'(S, E(-C)) =0,
therefore h°(C, E|c ® K} ® A) # 0. The sequence (2) yields to an exact sequence
0=HC, K} ® A®?*) — H°(C,E|lc ® K4 ® A) — HY(C,00) — HY(C, K4 @ A%?).

Then H°(C, Elc® K ® A) — H°(C, O¢) is an isomorphism and under the coboundary
map

H°(C,00) 21— 0¢€ HY(C, K\ ® A®?),
that is, the sequence (2) is split.
Note that we also have h!'(S, E® F(—C)) = land h°(C, EQ F|¢) = h°(S,E® F) + 1.
(i)=(iii). From the hypothesis and from the sequence (2), we find
K(C,E|c ® AY) = h2(C, Ko @ A®(2)) 4+ 1.

Furthermore, h°(S, E ® F) = h%(C, E|c ® AV); twist (4) by F and use the vanishing of
hY(F) and that of h!(F).
On the other hand, since E|¢c = A & K¢ ® AV, we have

W(C,E® Flo) =2+ h%(C, Ko ® A7),
hence h°(C,E® F|c) = h°(S,E® F) + 1. O
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1.2. Lazarsfeld-Mukai bundles of higher rank. We study when the restriction E|c isa
simple vector bundle. Our main tool is a variant of the Bogomolov instability theorem.

Theorem 1.3. Let S be a K3 surface and C C S a smooth curve of genus g > 4 such that
Pic(S) = Z - C. We fix positive integers r and d such that

3r(g —1)
2r+2

Then for any linear series A € W7 (C') such that h°(C, A) = r + 1 and K¢ ® AV is globally
generated, the restricted Lazarsfeld-Mukai bundle E|c is simple.

plg,r,d) >0, g>2r+4andd <

Note that in the special case p(g, , d) = 0, the constraints from the previous statement
give rise to the bound g > 2r + 5.

Proof. Step 1. We first establish that the natural extension (2), that is,
0—Qa— Elc—Kc®A —0

is non-trivial. Assuming that (2) is trivial. Then there is an injective morphism from
K¢ ® AY to E|c and hence a surjective map F(C) — A. Then

G :=Ker{F(C) — A}
is a vector bundle of rank r 4+ 1 with Chern classes ¢, (G) = (r — 1)[C] and
c2(G) = ca(F(O)) —c1(F(C)) - C+deg(A) =2d+r(r —3)(g — 1).
We compute the discriminant of G
A(G) = 21k(G)ea(G) — (tk(G) — 1)} (G) = 4d(r +1) — 8r(g — 1) < 0,
hence G is unstable. Applying [HL] Theorem 7.3.4, there exists a subsheaf M C G with
A(G
&ra > —74(713_1))2,

where £y = c1 (M) /tk(M) — ¢1(G) /tk(G). Setting ¢ (M) = k- [C] and s := k(M ), the
previous inequality becomes

Eor—1\ 8r(g—1) —4d(r+1
s r+1 r(r+1)

Note that M destabilizes G, which coupled with the stability of F'(C) yields

r—1 < k r

< -< 9
r+1— s r+1
implying after manipulations 2d(r + 1) > 3(g — 1)r, thus contradicting the hypothesis.

Step 2. Assuming that F|¢ is non-simple, we deduce that the extension (2) splits. We
consider the exact sequence

H°S,E® F) — H°(C,E® F|c) — H(S,E ® F(-0C)).

and it suffices to show that H!(S, E ® F(—C)) = 0. Assuming this not to be the case,
twisting (1) by £(—C') induces the exact sequence

HY(C,A® E|c ® K}) — H'(S,E ® F(~C)) — H°(C, A) ® H'(S, E(—C)).
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Since H'(S, E(—C)) = 0, we obtain that H(C, A® E|c ® K) # 0. Furthermore, Q 4
is a stable bundle and since u(Q4 ® A ® KY) < 0, we find that

H(C,Qa® A® K) =0,
hence we also have the sequence induced from (2) after twisting with A ® K
0— HYC,E|lc @ K& ® A) — HY(C,0¢0) — HY(C, K\ ® A® Q4).
We conclude that the coboundary map H°(C,0¢) — HY(C,Qa ® A ® K) is trivial,
thatis, E|lc 2 Qa ® (K¢ ® AY), which completes the proof. O

2. STABILITY OF RESTRICTED LAZARSFELD-MUKAI BUNDLES

2.1. The rank 2 case. If C' C S is an ample curve, then with one exception (g = 10 and
C a smooth plane sextic), Cliff(C') is computed by a pencil, see [CP] Proposition 3.3. We
show that in rank 2 the semistability of the LM bundle is preserved under restriction.

Theorem 2.1. Let S be a K3 surface, C C S an ample curve of genus g > 4 and A € W}(C)
a pencil computing Cliff (C). If Ec 4 is C-semistable on S, then E|c is also semistable on C.
Moreover, if Ec 4 is C-stable on S, then E|¢ is stable on C.

Proof. The proof of the stability is similar, and hence we discuss the semistability part
only. We write A = O¢ (D), where D is an effective divisor on C. Suppose E|c is
unstable and consider an exact sequence

0— L — Elc — Kc® L) — 0,

with deg(L1) > g¢. Since L1 ¢ A, the composed map L; — E|¢c — K¢ ® AY must
be non-zero, that is, L1 = K¢(—D — D;), where D, is an effective divisor on C. Set
dy := deg(D1). Consider the elementary modification

(7) 0—V —FE— A(D;) —0
induced by the composition £ — E|c — A(D;). Then
c1(V)=0 and (V) =2d+dy —2g9+2 <0,
hence V' is unstable with respect to any polarization and fits in an exact sequence
(8) 0—M—V—M @I — 0,

where I' C S is a 0-dimensional subscheme and M is a divisor class that intersects
positively any ample class on S and with M? > 0. From (7) and (8) we find that
HO(S, M) = HY(S,V)and H°(S, M(—C)) = 0. Dualizing (7), we obtain the sequence

0—F—VY— Ko(—D— D) — 0,
from which, using that V = V'V, we obtain H°(S,V) = H°(C, Kc(—D — Dy)).

We claim that Cliff (A(D;)) = Cliff(C). Recall that h°(S, E) = h%(C, A) + h'(C, A),
and, from the sequence (7) we write

(S, B) < h°(C, A(Dy)) + h'(C, A(Dy)).
By assumption, the pencil A computes Cliff(C'), which implies
Cliff(C) = g+ 1 — h°(A) — h'(A) > g+ 1 — hY(A(D1)) — h*(A(D1)) = Cliff (A(Dy)).
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It follows that Cliff (A(D;)) = Cliff(C), in particular K¢ (—D—D;) is globally generated.

Clearly, M ¢ F, hence the composition ¢ : M — V — K¢ (—D — Dy) is non-zero
and one writes Im(¢) = K¢ (—D — Dy — D3), where D; is an effective divisor on C. If
D5 # 0, then one has the sequence of inequalities

hO(S, M) < h°(C,Kc(—D — Dy — Dy)) < h%(C, Kc(—D — Dy)) = h°(S, M),

a contradiction. Therefore M|c = Kc(—D — D), Viewing M as a subsheaf of E, we
find (M) = M - C = deg(L1) > p(E), thus bringing the proof to an end. O

Remark 2.2. If E¢ 4 is stable, then it is simple and hence d = LgTJ“SJ, see [L1]. Con-
versely, if C' C S is an ample curve of genus g and gonality | 23], then it was shown
in [LC] that the LM bundle E¢ 4 corresponding to a general curve C' € |Og(C’)| and a

pencil A € ng%rg | (C) is C-semistable (even stable when g is odd).

2.2. Stability of Lazarsfeld-Mukai bundles of rank four. We show that restrictions of
LM bundles of rank 4 on very general K3 surfaces of genus g > 20 are stable. Similar
results were established in [V] and [FO2] for rank 2 and 3 respectively. We fix integers
i > 6and p > 0 and write
g:=4i—4+p and d:=3i+ p,
so that p(g,3,d) = p. Let S be a K3 surface and C' C S a curve of genus g such that
Pic(S) = Z-C, and pick a globally generated linear series A € W3(C) with h°(C, A) = 4.
Proof of Theorem 0.1. Our previous results show that E|¢ is simple, hence indecompos-
able. Suppose E|¢ is not stable and fix a maximal destabilizing sequence
0— M — E|c — N —0.
Put dy := deg(N) and dps := deg(M) = 29 — 2 — dy. Since M is destabilizing,
dys g—1 dn g—1
> <
©) k(M) = 2 7 rk(N) — 2
The bundle N, being a quotient of E, is globally generated. Since H°(C, E|}) =

0, clearly N # Oc, therefore h°(C, N) > 2. From the inequalities (9) it follows that
rk(N) > 1, because C' has maximal gonality.

Step 1. We prove that M is a line bundle. Assume that, on the contrary,
rk(M) = rk(N) =2

and consider the elementary modification G := Ker{E — N}. Its Chern classes are
given as follows:

c(G) = =[C], e2(G) =d+dy —2(g = 1),
and its discriminant equals A(G) = —64i + 110 + 8dy — 14p < 0, because of (9). In
particular, there exists a saturated subsheaf /' C G which verifies the inequalities

(10) w(G) < p(F) < p(E), and

A(G)

11 2 o _8l&)
a1 tho = — 5



10 M. APRODU, G. FARKAS, AND A. ORTEGA

Write ¢;(F') = a - [C] and rk(F') = 8 < 3. The above inequality (11) becomes

<;+1>2@g—2ﬁ>—égn.

We apply (10) for u(F') = a(2g — 2)/8 and obtain
1 o 1

_ < <
1S3 0

hence o = 0, and the inequality (11) reads in this case dy > 5¢ — 10 + p. Recalling that

dy < g—1=4i— 5+ p, we obtain a contradiction whenever i > 6.

Step 2. We construct an elementary modification, in order to reach a contradiction.

From (9), we have dy; > 9771. The composite map M — E|c — K¢ ® AV is not zero,
for else M — Q4 and since u(Q4 ® M) < 0, one contradicts the semistability of Q 4.
We set A1 := Ko ®@ AY @ MY and obtain a surjection F'(C)|c — A ® A; inducing, as
before, an elementary modification

V:=Ker{F(C) - A® A1 }.
By direct computation we show that A(V') < 0. Indeed, we compute
c1(V)=2-[C], co(V)=d+2g—2—dy, hence

A(V) =8co(V) —=3c3 (V) =8(d —dpr —g+1) =8(5 —dpr —14) <O0.

We obtain a destabilizing sheaf P C V, with tk(P) = b < 3 and ¢;(P) := a - [C], such
that the following inequalities are both satisfied

a 1\ AV
(12 (5-3) Co-22 -5 and uv) < ulP) < uFC)
The second inequality gives § < ¢ < 2, which leaves two possibilities: either a = 1
and b = 2, when via (12) one finds that A(V') > 0, a contradiction, or else a = 2 and
b = 3, when inequalities (12) and (9) clash. O

3. NORMAL BUNDLE OF CANONICAL CURVES OF GENUS 7

The aim of this section is to prove Theorem 0.3 and we begin by recalling Mukai’s
results [M3] on canonical curves of genus 7. We choose a vector space U := C!° and a
non-degenerate quadratic form ¢ : U — C, defining a smooth 8-dimensional quadric
Q C P(U) =P°.

The algebraic group Spin(U) corresponding to the Dynkin diagram D5 admits two
16-dimensional half-spin representations S* and S, which correspond to maximal
weights a™ and o~ respectively. The homogeneous spaces V* := Spin(U)/P(a®)
are both 10-dimensional and can be realized as the two irreducible components of the
Grassmannian G(5, U) of projective 4-planes inside P(U) which are isotropic with re-
spect to the quadratic form ¢g. From now on, we set

Vi=VTcP@SH) =PV
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Note that Aut(V) = SO(10). If £ is the restriction to V' of the tautological bundle on
G(5,10), one has an exact sequence of vector bundles on V:

(13) 0—& —U®0y — & —0.

By the adjunction formula, smooth curvilinear sections of V' are canonical curves of
genus 7 and Mukai [M3] showed that each curve [C] € M7 with Cliff(C') = 3 appears
in this way. Precisely, there is a birational map
a:G(7,16)//SO(10) --+ Mz, a(A):=[ANV],
where A = PS. Given a curve [C] € My, the inverse a~*([C]) is constructed precisely
via the twist of the conormal bundle on C mentioned in the introduction.
Let C' C P% be a smooth canonical curve with Cliff(C') = 3, and set E := N g /P6(2).

One has an identification H°(C, E) = I2(K¢) and E is a globally generated bundle.
The tautological map

ép: C — G(5,H(C,E))
is easily shown to be injective and its image lies on V. In particular, the vector bundle
FE'is the restricted spinorial bundle, that is, F' = & and one has an exact sequence:

(14) 0—E — HYC,E)®C — E — 0.

Note that W} (C) = 0, while W2(C) is a curve. We are going to make essential use of
the following fact:

Lemma 3.1. Let C as above and A € W2 (C'). Then there are no surjections E — A.

Proof. We proceed by contradiction. Assume that there is such a pencil A € W2(0),
then use the base point free pencil trick to write the following diagram:

(15) 0——=E" —HC,E)® Oc —=F ——=0

L]

0—AY —H(C,A)®@Og — A—0

|

0
In particular, H(C, E® AY) # 0. Via the identification H°(C, E) = I,(K(), this implies
thatif L := K¢ ® AY € W2(C), then the multiplication map
Sym?HY(C, L) — H°(C, L®?)

is not injective. This is possible only if L is not birationally very ample, in particular, C
must be trigonal, which is not the case. O

We are now in a position to prove that E is a stable vector bundle.

Proof of Theorem 0.3. Suppose that 0 = F' — E — M — 0 is a destabilizing sequence for
the vector bundle F, thatis, with u(F) > u(E) = %. Since F is globally generated, so is
any of its quotient, in particular M too. We distinguish several possibilities, depending
on the ranks that appear:
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(i) rk(F) = 4 and M is line bundle. Then deg(F') > 20, hence deg(M) < 4. Since C is
not tetragonal, h°(C, M) < 1. Note that M # O¢, for H°(C, EV) = 0. It follows that M
is not globally generated, a contradiction.

(ii) rk(F) = 1 and we may assume that deg(F) = 5. Suppose first that h°(C, F) = 0,
therefore h°(C, K¢ ® F¥) = 1, and hence K¢ ® F is not globally generated. Since one
has a surjection EV(1) - K¢ ® FV, we reach a contradiction by observing that £Y(1)
is globally generated. Indeed, via Serre duality, this last statement is equivalent to the
equality h°(C, E(p)) = h°(C, E) = 10, for every point p € C. From the exact sequence

0 — E(p) — Mg, ® Ko(p) — K& (p) — 0,

we obtain that HO(C, E(p)) = Ker{HO(C, My, ® Kc(p)) — HO(C,KE3(p)) } The
conclusion follows, since H*(C, Mk, ® K¢) = H°(C, Mk, ® Kc(p)).

Suppose now that h°(C, F) > 1. The case h°(C, F) > 2 having been discarded in the
course of proving Lemma 3, we assume that h°(C, F) = 1, hence h°(C, K¢ ® FV) = 2.
We obtain that the map Sym? H%(C, Ko ® F¥) — H°(C, K&? ® F®(=?)) is not injective,
which contradicts the base point free pencil trick.

(iii) rk(F) = 3, and then deg(F) > 15, hence deg(M) < 9. This time we may assume
that F' is stable. If M is not stable, we choose a line subbundle A C M of maximal
degree, which we pull-back under the surjection £ — M, to obtain the exact sequence

0—G—FE— M/A—0.

We obtain that deg(M/A) < deg(M)/2 < 9/2, that is, deg(M/A) < 4. In particular,
M /A is not globally generated, which is again a contradiction, so we can assume that
both F and M are stable vector bundles. Since h°(C, M) + h°(C, F) > h°(C, E) = 10,
the strategy is to use the fact that the Mercat statements (M) and (M3) have been
established for curves C' of genus 7 with maximal Clifford index, that is,

Cliffy(C) = Cliffs(C) = 3,

see [LN3] Theorem 4.5. In particular, if both F' and M contribute to their respective
Clifford indices, that is, h°(C, F)) > 6 and h°(C, M) > 4 respectively, then we write

g +3< gfy(F) + (M) = é(deg(F) + deg(M)) —h(C,F) - h°(C, M) + 5,

that is, h°(C, F) + h°(C, M) < 2, a contradiction.

Assume now that one of the bundles F' or M does not contribute to its Clifford index.
Since M is globally generated, h%(C, M) > 2. We can have h°(C, M) = 2, only when
M = 0F?, which is impossible, for OF? is not a direct summand of E. If h%(C, M) = 3,
then deg(M) > 7, and one has equality if and only if M = @, where L € W2(C).
Assuming this to be the case, we choose two points p, ¢ € C that correspond to a node in
the plane model ¢, : C — P2, thatis, A := L(—p—¢q) € W2(C). Then there is a surjection
Qr — A, which by composition gives rise to a surjection £ — A. This contradicts
Lemma 3. Thus we may assume that deg()/) > 8, and accordingly, deg(F") < 16. Then
we compute

2 1 14
V() = p(F) — ghO(C, Fy+2< 56 - +2 < Cliff(C),
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which again contradicts the equality Cliff3(C) = 3.

(iv) rk(F') = 2, and then deg(F') > 10 and deg(M) < 14. We may assume this time that
M is stable. If F' is not stable, then it has a line subbundle A — F with deg(A) > 5,
and we are back to case (ii). Thus both M and F are stable bundles, and we proceed
precisely like in case (iii).

]

It is instructive to remark that the normal of a canonical curve of genus g < 7 is never
stable. More generally we have the following:

Proposition 3.2. The normal bundle of a tetragonal canonical curve of genus g is unstable.

Proof. More generally, we begin with a & : 1 covering f : C — P!, and consider the rank
(k — 1)-vector bundle FV := f.Oc/Op1 on the projective line. Then 7 : X = P(F) — P!
is a scroll of dimension k& — 1, which contains the canonical curve C' and which can be
embedded by the tautological bundle Ox(1) in P/"! as a variety of degree g — k + 1.
Denoting by H, R € Pic(X) the class of the hyperplane section and that of the ruling
respectively, we have
Ky=—(k—1)H+(g— k- 1R,

whereas obviously C'- H = 2g — 2 and C' - R = k. We compute the degree of the normal
bundle N¢,x and find:

deg(N¢x) = deg(Tx|c) + deg(K¢) = k(g +k —1).
We write the usual exact sequence relating normal bundles

0 — NC/X — NC/Pg—l — NX/Pg—l ® OC — O,
and compare the slopes
k(g+k—1)

k—2

We conclude that for k¥ = 4 and g > 6, the normal bundle N¢/x is a destabilizing
subbundle of N ps—1. For g at most 5, every canonical curve of genus g is a complete

209 -1)(g+1)

1(Noyx) = and p(Ngps-1) = g2

intersection which obviously produces a destabilizing line subbundle. 0
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