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The uniformization of the moduli space
of principally polarized abelian 6-folds

By Valery Alexeev at Athens, GA, Ron Donagi at Philadelphia, Gavril Farkas at Berlin,
Elham Izadi at La Jolla and Angela Ortega at Berlin

Abstract. Starting from a beautiful idea of Kanev, we construct a uniformization of
the moduli space A6 of principally polarized abelian 6-folds in terms of curves and mono-
dromy data. We show that the general principally polarized abelian variety of dimension 6
is a Prym–Tyurin variety corresponding to a degree 27 cover of the projective line having
monodromy the Weyl group of the E6 lattice. Along the way, we establish numerous facts
concerning the geometry of the Hurwitz space of such E6-covers, including: (1) a proof that
the canonical class of the Hurwitz space is big, (2) a concrete geometric description of the
Hodge–Hurwitz eigenbundles with respect to the Kanev correspondence and (3) a description
of the ramification divisor of the Prym–Tyurin map from the Hurwitz space to A6 in the terms
of syzygies of the Abel–Prym–Tyurin curve.
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Introduction

It is a classical idea that general principally polarized abelian varieties (ppavs) and their
moduli spaces are hard to understand, and that one can use algebraic curves to study some
special classes, such as Jacobians and Prym varieties. This works particularly well in small
dimension, where in this way one reduces the study of all abelian varieties to the rich and con-
crete theory of curves. For g � 3, a general ppav is a Jacobian, and the Torelli map Mg ! Ag

between the moduli spaces of curves and ppavs, respectively, is birational. For g � 5, a general
ppav is a Prym variety by a classical result of Wirtinger [48]. In particular, for g D 5, this gives
a uniformization of A5 by curves, as follows. We denote by Rg the Prym moduli space of pairs
ŒC; �� consisting of a smooth curve C of genus g and a non-trivial 2-torsion point � 2 Pic0.C /.
By Donagi–Smith [16], the Prym map P W R6 ! A5 is generically of degree 27, with fibers
corresponding to the configuration of the 27 lines on a cubic surface.

The uniformization of Ag for g � 5 via the Prym map P W RgC1 ! Ag has been used
for many problems concerning ppav of small dimension. Important applications of the Prym
uniformization include the proof of Clemens and Griffiths [12] respectively Mumford [42] of
the irrationality of smooth cubic threefolds, which rely on the distinctions between Pryms and
Jacobians, the proofs of the general Hodge conjecture for the theta divisors of general ppav,
see [31] and [30], or the detailed study of the cohomology and stratification of A5 in terms of
singularities of theta divisors, see for instance [11] or [22]. The Prym map P W R6 ! A5 has
been also used to determine the birational type of A5. It has been proven in [14] that R6 (and
hence A5) is unirational. Other proofs followed in [40] and [47].

The purpose of this paper is to prove a similar uniformization result for the moduli space
A6 of principally polarized abelian varieties of dimension 6. The idea of this construction is due
to Kanev [34] and it uses the geometry of the 27 lines on a cubic surface. Suppose � W C ! P1

is a cover of degree 27 whose monodromy group equals the Weyl group W.E6/ � S27 of the
E6 lattice. In particular, each smooth fiber of � can be identified with the set of 27 lines on
an abstract cubic surface and, by monodromy, this identification carries over from one fiber
to another. Assume furthermore that � is branched over 24 points and that over each of them
the local monodromy of � is given by a reflection in W.E6/. A prominent example of such
a covering � W C ! P1 is given by the curve of lines in the cubic surfaces of a Lefschetz pencil
of hyperplane sections of a cubic threefoldX � P4, see [33], as well as Section 1 of this paper.
Since deg.X_/ D 24, such a pencil contains precisely 24 singular cubic surfaces, each having
exactly one node.

By the Hurwitz formula, we find that each such an E6-cover C has genus 46. Fur-
thermore, C is endowed with a symmetric correspondence eD of degree 10, compatible with
the covering � and defined using the intersection form on a cubic surface. Precisely, a pair
.x; y/ 2 C � C with x ¤ y and �.x/ D �.y/ belongs to eD if and only if the lines cor-
responding to the points x and y are incident. The correspondence eD is disjoint from the
diagonal of C � C . The associated endomorphism D W JC ! JC of the Jacobian satisfies
the quadratic relation .D � 1/.D C 5/ D 0. Using this, Kanev [32] showed that the associated
Prym–Tyurin–Kanev or PTK variety

PT.C;D/ WD Im.D � 1/ � JC

of this pair is a 6-dimensional ppav of exponent 6. Thus, if ‚C denotes the Riemann theta
divisor on JC , then ‚C jP.C;D/ � 6 �„, where „ is a principal polarization on P.C;D/.
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Since the map � has 24 branch points corresponding to choosing 24 roots in E6 spec-
ifying the local monodromy at each branch point, the Hurwitz scheme Hur parameterizing
degree 27 covers � W C ! P1 with W.E6/ monodromy as above is 21-dimensional (and also
irreducible, see [35]). The geometric construction described above induces the Prym–Tyurin
map

PT W Hur! A6

between two moduli spaces of the same dimension. The following theorem answers a conjec-
ture raised by Kanev, see also [39, Remark 5.5]:

Theorem 1. The Prym–Tyurin map PT W Hur! A6 is generically finite. It follows that
the general principally polarized abelian variety of dimension 6 is a Prym–Tyurin–Kanev
(PTK) variety of exponent 6 corresponding to a W.E6/-cover C ! P1.

This result, which is the main achievement of this paper, gives a structure theorem for
general abelian varieties of dimension 6 and offers a uniformization for A6 by curves with
additional discrete data. Just like the classical Prym map P W R6 ! A5, it is expected that the
Prym–Tyurin map PT will open the way towards a systematic study of abelian 6-folds and their
moduli space. What is essential is less the fact that a general 6-dimensional ppav is a PTK
variety, but rather the rich geometric structure that Theorem 1 provides, which is then of use
for other applications presented in Sections 5–11. An immediate consequence of Theorem 1 is
the following:

Corollary 2. For every ppav ŒA;‚� 2 A6, the class 6 � �5=5Š 2 H 10.A;Z/ is repre-
sented by an effective curve.

It is expected that for a general ŒA;‚� 2 A6, the minimal cohomology class �5=5Š is not
even algebraic. Coupled with Corollary 2, this would mean that ŒA;‚� should not admit any
Prym–Tyurin realization of exponent relatively prime to 6.

The main idea of the proof of Theorem 1 is to study degenerations of PTK varieties
as the branch locus .P1; p1 C � � � C p24/ of the cover � W C ! P1 approaches a maximally
degenerate point of M0;24. The map PT becomes toroidal and its essential properties can be
read off a map of fans. Then, to show that PT is dominant, it is sufficient to show that the
rays in the fan describing the image span a 21-dimensional vector space, i.e., that a certain
.21 � 21/-matrix has full rank. This can be done by an explicit computation, once the general
theory is in place. The theory of degenerations of Jacobians [3] and Prym varieties in [4] is
known. One of the main goals of the present paper is an extension of the theory to the case of
PTK varieties. For our purposes we do not require the answer to the more delicate problem of
understanding the indeterminacy locus of the period map.

The remainder of the present work focuses on several birational problems that are related
to the geometry of A6 by Theorem 1, and on several quite non-obvious parallels between
the Prym map and the Prym–Tyurin map PT. Consider the space H classifying E6-covers
Œ� W C ! P1; p1; : : : ; p24� together with a labeling of the set of their 24 branch points. In view
of the structure Theorem 1, it is of compelling interest to understand the birational geometry
of this space. It admits a compactification H which is the moduli space of twisted stable maps
from curves of genus zero into the classifying stack BW.E6/, that is, the normalization of the
stack of admissible covers with monodromy group W.E6/ having as source a nodal curve of
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genus 46 and as target a stable 24-pointed curve of genus 0 (see Section 5 for details). One has
a finite morphism

b W H !M0;24:

In Section 6, we show that the canonical class of H is big (Theorem 6.22). From the point of
view of A6, it is more interesting to study the global geometry of the quotient space

Hur WD H=S24;

compactifying the Hurwitz space Hur of E6-covers (without a labeling of the branch points).
The Prym–Tyurin map PT extends to a regular morphism PTSat W Hur! ASat

6 to the Satake
compactification ASat

6 of A6. Denoting by Ag WD A
perf
g the perfect cone (first Voronoi) com-

pactification of Ag , we establish the following result on the birational geometry of Hur, which
we regard as a compact master space for ppav of dimension 6:

Theorem 3. There exists a boundary divisor E of the space Hur that is contracted by
the Prym–Tyurin map PT W HurÜ A6, such that KHur CE is a big divisor class.

The proof of Theorem 3 is completed after numerous preliminaries at the end of
Section 9.

In the course of proving Theorem 3, we establish numerous facts concerning the geome-
try of the space Hur. One of them is a surprising link between the splitting of the rank 46Hodge
bundle E on Hur into Hodge eigenbundles and the Brill–Noether theory of E6-covers, see
Theorem 9.3. For a point Œ� W C ! P1� 2 Hur, we denote by D W H 0.C; !C /! H 0.C; !C /

the map induced at the level of cotangent spaces by the Kanev endomorphism and by

H 0.C; !C / D H
0.C; !C /

.C1/
˚H 0.C; !C /

.�5/

the decomposition into the .C1/ and the .�5/-eigenspaces of holomorphic differentials,
respectively. Setting L WD ��.OP1.1// 2 W

1
27.C /, for a general point Œ� W C ! P1� 2 Hur,

we show that the following canonical identifications hold:

H 0.C; !C /
.C1/
D H 0.C;L/˝H 0.C; !C ˝ L

_/

and

H 0.C; !C /
.�5/
D

�
H 0.C;L˝2/

Sym2H 0.C;L/

�_
˝

^2
H 0.C;L/:

In particular, the .C1/-Hodge eigenbundle is fiberwise isomorphic to the image of the Petri
map �.L/ W H 0.C;L/˝H 0.C; !C ˝ L

_/! H 0.C; !C /, whenever the Petri map is injec-
tive (which happens generically along Hur, see Theorem 9.2). The identifications above are
instrumental in expressing in Section 9 the class of the .�5/-Hodge eigenbundle E.�5/ on
a partial compactification GE6 of Hur in terms of boundary divisors. The moduli space GE6
differs from Hur only along divisors that are contracted under the Prym–Tyurin map. Note that
the class �.�5/ D c1.E.�5// is equal to the pull-back PT�.�1/ of the Hodge class �1 on A6.
The explicit realization of the class �.�5/ is then used to establish positivity properties of the
canonical class KHur.

An obvious question is to what extent the geometry of Hur can be used to answer the
notorious problem on the Kodaira dimension of A6. Recalling that PT W HurÜ A6 denotes
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the extension of the Prym–Tyurin map outside a codimension 2 subvariety of Hur, the pull-back
divisor PT�.àA6/ contains a unique boundary divisorDE6 of Hur that is not contracted by PT.
The statement that A6 is of general type is then equivalent to the bigness of the divisor class
7�.�5/ � ŒDE6 � on Hur (see Corollary 6.3 for a more precise statement). Theorem 1 implies
that �.�5/ is a big class on Hur, which is a weaker result. Note that it has been established
in [24] that the boundary divisor àA6 of the perfect cone compactification A6 is unirational.

We are also able to describe the ramification divisor of the Prym–Tyurin map in terms
of the geometry of the Abel–Prym–Tyurin curve '.�5/ D 'H0.!C /.�5/

W C ! P5 given by the
linear system of .�5/-invariant holomorphic forms on C .

Theorem 4. AnE6-cover Œ� WC ! P1� 2 Hur such that the Petri map �.L/ is injective
lies in the ramification divisor of the map PT W Hur! A6 if and only if the Abel–Prym–Tyurin
curve '.�5/.C / � P5 lies on a quadric.

The conclusion of Theorem 4 can be equivalently formulated as saying that the map

Sym2H 0.C; !C /
.�5/
! H 0.C; !˝2C /

given by multiplication of sections is not injective. Note the striking similarity between this
description of the ramification divisor of the Prym–Tyurin map and that of the classical Prym
map P W RgC1 ! Ag , see [8]: A point ŒC; �� 2 RgC1 lies in the ramification divisor of P if
and only if the multiplication map for the Prym-canonical curve

Sym2H 0.C; !C ˝ �/! H 0.C; !˝2C /

is not injective. An important difference must however be noted. While the general Prym-
canonical map '!C˝� W C ! Pg�2 is an embedding when g � 5, the Abel–Prym–Tyurin
map '.�5/ W C ! P5 sends the ramification points lying over a branch point of the cover
� W C ! P1 to the same point of P5 (see Section 10).

It is natural to ask in what way the Prym–Tyurin–Kanev (PTK) varieties considered in
this paper generalize classical Prym varieties. It is classical [48] that the Prym variety of the
Wirtinger cover of a 1-nodal curve of genus g is the Jacobian of its normalization. Thus, if
�000 � RgC1 is the boundary divisor of such covers and P W RgC1Ü Ag is the extension
of the Prym map outside a codimension 2 subvariety of Rg , then P.�000/ contains the closure
of the Jacobian locus in Ag . In particular, Jacobians arise as limits of Prym varieties. We
generalize this situation and explain how ordinary Prym varieties appear as limits of PTK
varieties.

Via the Riemann Existence Theorem, a general E6-cover � W C ! P1 is determined by
a branch divisor p1 C � � � C p24 2 Sym24.P1/ and discrete data involving a collection of roots
r1; : : : ; r24 2 E6 which describe the local monodromy of � at the points p1; : : : ; p24. Letting
two branch points, say p23 and p24, coalesce such that r23 D r24, whereas the reflections in the
remaining roots r1; : : : ; r22 span the Weyl group W.D5/ � W.E6/, gives rise to a boundary
divisor DD5 of Hur. We show in Section 8 that the general point of DD5 corresponds to the
following geometric data:

(i) A genus 7 Prym curve ŒY; �� 2 R7, together with a degree 5 pencil h W Y ! P1 branched
simply along the divisor p1 C � � � C p22; the unramified double cover F1 ! Y gives rise
to a degree 10 map �1 W F1 ! P1 from a curve of genus 13.
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(ii) A genus 29 curve F2 � F
.5/
1 , which is pentagonally related to F1, and is thus completely

determined by F1. Precisely, F2 is one of the two irreducible components of the locus®
x1 C � � � C x5 2 F

.5/
1 W �1.x1/ D � � � D �1.x5/

¯
inside the symmetric power F .5/1 of F1. One has a degree 16 cover �2 W F2! P1 induced
by �1.

(iii) A distinguished point q1 C � � � C q5 2 F2, which determines five further pairs of points

.qi ; q1 C � � � C �.qi /C � � � C q5/ 2 F1 � F2

for i D 1; : : : ; 5, which get identified. To F2 we attach a rational curve F0 at the point
q1 C � � � C q5. The resulting nodal curve C1 D F0 [ F1 [ F2 has genus 46 and admits
a map � W C1 ! P1 of degree 27 with �jFi D �i for i D 0; 1; 2, where �0 is an iso-
morphism. The map � can easily be turned into an E6-admissible cover having as source
a curve stably equivalent to C1. A general point of the divisorDD5 is realized in this way.

We show in Section 8 that PT.ŒC1; ��/ D P.ŒF1=Y �/ D P.ŒY; ��/ 2 A6; furthermore,
the general 6-dimensional Prym variety from P.R7/ � A6 appears in this way. We summarize
the above discussion, showing that the restriction PTDD5 of the Prym–Tyurin map factors via
the (generically injective) Prym map P W R7Ü A6 in the following way.

Theorem 5. If DD5 � Hur is the boundary divisor of W.D5/-covers defined above,
one has the following commutative diagram:

DD5
//

PTD5
��

Hur

PT
��

R7
P // A6.

The fiber PT�1D5.P ŒF1=Y �/ of the Prym–Tyurin map PTD5 WDD5ÜR7 over a general genus7
Prym curve ŒF1=Y � 2 R7 is the fibration over the curve W 1

5 .Y / of degree 5 pencils on Y with
fiber over a pencil A 2 W 1

5 .Y / the curve F2 obtained by applying the 5-gonal construction
to A.

We close the introduction by discussing the structure of the paper. In Section 1 we discuss
Kanev’s construction, whereas in Section 2 we collect basic facts about the E6 lattice and the
group W.E6/ that are used throughout the paper. After recalling the theory of degenerations
of Jacobians and ordinary Prym varieties in Section 3, we complete the proof of Theorem 1 in
Section 4, by describing the Prym–Tyurin map in the neighborhood of a maximally degenerate
point of the space Hur of E6-admissible covers. Sections 5 and 6 are devoted to the birational
geometry of this Hurwitz space. The most important result is Theorem 6.17 describing the
Hodge class � on Hur in terms of boundary divisors. In Section 7 we completely describe the
extended Prym–Tyurin map PT W HurÜ A6 to the perfect cone (first Voronoi) toroidal com-
pactification of A6 at the level of divisors and show that only three boundary divisors of Hur,
namely DE6 ;Dsyz and Dazy are not contracted by the map PT (Theorem 7.17). After proving
Theorem 5 in Section 8, we complete in Section 9 the proof of Theorem 3 after a detailed study
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of the divisors Dazy and Dsyz of azygetic and syzygetic E6-covers respectively on a partial
compactification GE6 of Hur. The ramification divisor of the Prym–Tyurin map is described in
Section 10. Finally, in Section 11, we prove by degeneration a Petri-type theorem on Hur.

Acknowledgement. We owe a great debt to the work of Vassil Kanev, who first con-
structed the Prym–Tyurin map PT and raised the possibility of uniformizing A6 in this way.

1. Kanev’s construction and Prym–Tyurin varieties of E6-type

Consider a cubic threefold X � P4 and a smooth hyperplane section S � X . The cubic
surface S contains a set of 27 linesƒ WD ¹`sº1�s�27 forming a famous classical configuration,
which we shall review below in Section 2. Consider the lattice Zƒ D Z27 with the standard
basis corresponding to the lines `s , and let deg W Zƒ ! Z be the degree homomorphism, so
that deg.`s/ D 1 for all s D 1; : : : ; 27.

1.1. By assigning to each line `s the sum
P
¹s0W `s �`s0D1º

`s0 of the ten lines on S inter-
secting `s , we define a homomorphism

D0ƒ W Z
27
! Z27

of degree 10. It is easy to check that D0ƒ satisfies the following quadratic equation:

.D0ƒ C 5/.D
0
ƒ � 1/ D 5

 
27X
sD1

`s

!
� deg :

The restriction Dƒ of D0ƒ to the subgroup Ker.deg/ satisfies the equation

.Dƒ C 5/.Dƒ � 1/ D 0:

Consider a generic pencil ¹Stºt2P1 of cubic hyperplane sections of X . This defines:

� a degree 27 smooth curve cover � W C ! P1; the points in the fiber ��1.t/ correspond
to the lines lying on St .

� a symmetric incidence correspondence eD � C � C . Let pi W eD ! C denote the two
projections. Then eD has degree deg.p1/ D deg.p2/ D 10-

� a homomorphism D0 D p2� ı p
�
1 W Pic.C /! Pic.C / satisfying the following quadratic

equation (see also [34]): .D0 C 5/.D0 � 1/ D 5��1.0/ � deg.

� the restriction D of D0 to JC D Pic0.C /, satisfying .D C 5/.D � 1/ D 0.

For a generic such pencil the map � W C ! P1 has 24 branch points on P1, correspond-
ing to singular cubic surfaces in the pencil, each with one node. Over each of the 24 points,
the fiber consists of six points of multiplicity two and fifteen single points. By the Riemann–
Hurwitz formula, we compute g.C / D 46.

1.2. We refer to [34, 39] for the following facts. The cover � W C ! P1 is not Galois.
The Galois group of its Galois closure is W.E6/, the reflection group of the E6 lattice. As
we shall review in Section 2, the lattice E6 appears as the lattice K?S � Pic.S/. The 27 lines
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can be identified with the W.E6/-orbit of the fundamental weight !6, and one has a natural
embedding W.E6/ � S27. The intermediate non-Galois cover C ! P1 is associated with the
stabilizer subgroup of !6 in W.E6/, that is, with the subgroup W.E6/ \ S26 Š W.D5/.

1.3. By Riemann’s existence theorem, a 27-sheeted cover C ! P1 ramified over 24
points is defined by a choice of 24 elements wi 2 S27 satisfying w1 � � �w24 D 1. For a cover
coming from a pencil of cubic surfaces, eachwi 2 W.E6/ is a reflection in a root of theE6. It is
a double-six, that is, viewed as an element of S27, it is a product of six disjoint transpositions.

Definition 1.4. Let Hur be the Hurwitz space parametrizing irreducible smooth Galois
W.E6/-covers �C ! P1 ramified in 24 points, such that the monodromy over each point is
a reflection in a root of the E6 lattice.

1.5. Points in the space Hur correspond to covers where we do not choose a labeling
of the branch points. The data for the cover �C consists of the branch divisor p1 C � � � C p24
on P1, and, for each of these points, the monodromy wi 2 W.E6/ given by a reflection in
a root, once a base point p0 2 P1 and a system of arcs i in �1.P1 n ¹p1; : : : ; p24º; p0/ with
1 � � � 24 D 1 has been chosen. The elements ¹wiº24iD1 generateW.E6/ and satisfy the relation
w1 � � �w24 D 1. The monodromy data being finite, the space Hur comes with a finite unramified
cover

br W Hur!M0;24=S24

to the moduli space of 24 unordered points on P1. Thus dim.Hur/ D 21. An important fact
about this space is the following result of Kanev [35]:

Theorem 1.6. For any irreducible root system R, the Hurwitz scheme parameterizing
GaloisW.R/-covers such that the monodromy around any branch point is a reflection inW.R/,
is irreducible.

1.7. In particular, the space Hur is irreducible. If Œe� W �C ! P1� 2 Hur, let � W C ! P1

be an intermediate non-Galois cover of degree 27, that is, the quotient of �C by a subgroup
W.E6/ \ S26 Š W.D5/ in S27. Since W.E6/ acts transitively on the set ¹1; : : : ; 27º, the 27
subgroups S26 � S27 are conjugate, and the corresponding curves C are isomorphic. Thus,
Hur is also a coarse moduli space for degree 27 non-Galois covers � W C ! P1, branched over
24 points such that the monodromy at each branch point is a reflection of W.E6/.

1.8. Let � W C ! P1 be anE6-cover as above. Each fiber of � can be identified consis-
tently with the set of 27 lines on a cubic surface. The incidence of lines, in the same way as for
the correspondence Dƒ in Paragraph 1.1, induces a symmetric correspondence eD � C � C
of degree 10, which is disjoint from the diagonal � � C � C . In turn, eD induces a homo-
morphism D0 W Pic.C /! Pic.C /, whose restriction D W JC ! JC to the degree zero part
JC WD Pic0.C / satisfies the quadratic relation

(1.1) .D � 1/.D C 5/ D 0 2 End.JC /:

Definition 1.9. The Prym–Tyurin–Kanev (PTK) variety PT.C;D/ is defined as the con-
nected component of the identity PT.C;D/ WD .Ker.D C 5//0 D Im.D � 1/ � JC .
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1.10. Using [32], equation (1.1) implies that the restriction of the principal polarization
‚C of JC to PT.C;D/ is a multiple of a principal polarization. Precisely,‚C jPT.C;D/ D 6 �„,
where .PT.C;D/;„/ is a ppav. Since

0 D eD �� D 2 deg.eD/ � 2 tr¹D W H 0.C; !C /! H 0.C; !C /º;

we obtain that

(1.2) dim PT.C;D/ D
1

6
.g.C / � deg.eD// D 1

6
.46 � 10/ D 6;

see also [39, Proposition 5.3]. We have the morphism of moduli stacks

PT W Hur! A6; ŒC;D� 7! ŒPT.C;D/;„�:

Both stacks are irreducible and 21-dimensional. The main result of this paper (Theorem 1) is
that PT is a dominant, i.e., generically finite, map.

1.11. Our main concrete examples of E6-covers of the projective line P1 are the curves
of lines in Lefschetz pencils of cubic surfaces. The subvariety T � Hur corresponding to pen-
cils ¹Stºt2P1 of hyperplane sections of cubic 3-folds X � P4 has expected dimension 

7

3

!
� 1C dim Gr.2; 5/ � dim PGL5 D .35 � 1/C 6 � .25 � 1/ D 16:

1.12. We now describe the restriction of the map PT to the locus T � Hur parametriz-
ing such covers. Let V be a 5-dimensional vector space over C whose projectivization con-
tains X and let F 2 Sym3.V _/ be a defining equation for X . Denote by F WD F .X/ the
Fano variety of lines in X . Let JX WD H 2;1.X/_=H3.X;Z/ be the intermediate Jacobian of
X . It is well known [12] that the Abel–Jacobi map defines an isomorphism JX Š Alb F ,
where Alb F is the Albanese variety of F . Let ƒ be a Lefschetz pencil of hyperplane sections
of X and denote by E its base curve. The curve C classifying the lines lying on the surfaces
contained in ƒ lives naturally in F . The map sending a line to its point of intersection with
E induces a degree 6 cover C ! E. Furthermore, the choice of a base point of C defines
a map C ! JX . So we obtain a well-defined induced map JC ! E � JX . The transpose
E � Pic0.F / D E � JX ! JC of this map is given by pull-back on divisors on each of the
factors, using the map C ! E and the embedding C ,! F , respectively. On the locus T we
can explicitly determine the PTK variety:

Lemma 1.13. The map JC ! E � JX (or its transpose E � JX ! JC ) induces an
isomorphism of ppav

PT.C;D/
Š
! E � JX:

Proof. We first show that the correspondence D restricts to multiplication by .�5/ on
both factors E and JX . For ` 2 C , let eD.`/ be the sum of the lines incident to ` and E in-
side X . We denote by H` the hyperplane spanned by E and ` and put S` WD H` \X . The
lines incident to E and ` form five pairs .`1; `01/; : : : ; .`5; `

0
5/, with `C `i C `0i 2 j�KS` j

for i D 1; : : : ; 5.
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Consider first the intermediate Jacobian JX . We have

eD.`/ D 5X
iD1

.`i C `
0
i / � 5j�KS` j � 5`;

where � denotes linear equivalence in S`. Since j�KS` j is constant as ` varies, it follows that
D restricts to multiplication by .�5/ on JX .

Consider the elliptic curve E. Then eD.`/ in E is the sum of the intersection points of
`i ; `

0
i with E. Note that .`C `i C `0i /jE is also the intersection of the plane …i WD h`; `i ; `0i i

with E. Hence
P5
iD1.`C `i C `

0
i /jE is the intersection of the five planes…1; : : : ;…5 with E.

Projecting from `, we see that the union of these planes is the intersection of H` with the
inverse image Q of the plane quintic in P2 D P .V=`/ parametrizing singular conics (the dis-
criminant curve for the projection of X from `). Therefore

P5
iD1.`C `i C `

0
i /jE is contained

in the intersection Q \E and since the two divisors have the same degree, we obtain thatP5
iD1.`C `i C `

0
i /jE D Q \E is constant. This implies that D is multiplication by .�5/

on E as well.
So the PTK variety is isogenous to E � JX . To show that they are isomorphic, we show

that the pull-back of the polarization of JC to E � JX is 6 times a principal polarization.
This is immediate on the factor E, since the map C ! E has degree 6. To see it on the JX
factor as well, we again use the Abel–Jacobi embedding C ,! F ,! JX and recall the fact
[12] that one model of the theta divisor in JX is the image of the degree 6 difference map
 W F � F ! Alb F D JX , defined by  .`; `0/ D ` � `0.

We denote by IJ5 the closure in A5 of the moduli space of intermediate Jacobians of
cubic threefolds. We have the following result:

Corollary 1.14. We have the following equality of 11-dimensional irreducible cycles
in A6:

PT.T / D IJ5 �A1 � A5 �A1 � A6;

where the closure on the left hand side is taken inside A6.

2. The E6 lattice

In this section we recall basic facts about the E6 lattice. Our reference for these is
[13, Chapters 8–9].

2.1. Let I 1;6 be the standard Lorenzian lattice with the quadratic form x20 �
P6
iD1 x

2
i .

The negative definite E6 lattice is identified with k?, where k D .�3; 1; : : : ; 1/. Its dual E_6
is identified with I 1;6=Zk. Let us denote the standard basis of I 1;6 by f0; f1; : : : ; f6, to avoid
confusion with the edges ei in a graph.

The roots ofE6 are the vectors with square�2. There are
�
6
2

�
C
�
6
3

�
C1 D 36 pairs of roots

corresponding to ˛ij D fi � fj , ˛ijk D f0 � fi � fj � fk and ˛max D 2f0 � f1 � � � � � f6.
Obviously, if r 2 E6 is a root, then �r is a root as well. The simple roots, corresponding to the
E6 Dynkin diagram can be chosen to be r1 D ˛123, r2 D ˛12, r3 D ˛23, r4 D ˛34, r5 D ˛45
and r6 D ˛56.
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2.2. The Weyl groupW.E6/ is the group generated by the reflections in the roots. It has
51,840 elements. The fundamental weights !1; : : : ; !6 are the vectors in E_6 with

.ri ; !j / D ıij :

The exceptional vectors are the vectors in the W.E6/-orbit of !6. They can be identified
with vectors ` in I 1;6 satisfying `2 D k` D �1. There are 6C 6C 15 D 27 of them, namely:

ai D fi for i D 1; : : : ; 6;

bi D 2f0 � f1 � � � � � f6 C fi for i D 1; : : : ; 6;

cij D f0 � fi � fj for 1 � i < j � 6:

2.3. For each root r 2 E6, there are fifteen exceptional vectors that are orthogonal to it,
six exceptional vectors with r � ` D 1 and six vectors with r � ` D �1. The collections of the
six pairs of exceptional vectors non-orthogonal to a root vector are called double-sixes. The
elements in each pair are exchanged by the reflection wr 2 W.E6/ in the root r .

There are 36 double-sixes, one for each pair˙r of roots. For example, the double-six for
the root r D ˛max is ¹a1; a2; : : : ; a6º, ¹b1; b2; : : : ; b6º. The reflection group acts transitively
on the set of the exceptional vectors. This gives rise to an embedding W.E6/ � S27. Under
this embedding, each reflection corresponds to a product of six transpositions. For example,
the reflection in the root r D ˛max is the permutation .a1; b1/ � � � .a6; b6/ 2 S27.

Note that the choice of a root is equivalent to an ordering of a pair: when we write the
same element of W.E6/ as a product .b1; a1/ � � � .b6; a6/, it corresponds to the root �˛max.
The W.E6/-action by conjugation is transitive on the set of reflections, i.e., double sixes, so to
study their properties it is usually sufficient to make computations for one representative.

2.4. For a smooth cubic surface S , the above objects have the following incarnation:

� I 1;6 D Pic.S/ together with the intersection form,

� k D KS and E6 D K?S � Pic.S/,

� the exceptional vectors are identified with the lines `1; : : : ; `27 on S ,

� a sixer is a set of six mutually disjoint lines, a double-six is the set of two sixers corre-
sponding to the opposite roots.

The relationship between the W.E6/-action and the correspondence given by the line
incidence is as follows.

Definition 2.5. The correspondence on the set of exceptional vectors is defined by set-
ting

D.`/ WD
X

¹`0W `0�`D1º

`0:

Remark 2.6. For further use, we retain the following computation:

D.a1/ D b2 C � � � C b6 C c12 C � � � C c16;

D.b1/ D a2 C � � � C a6 C c12 C � � � C c16;

D.a1 � b1/ D .b2 � a2/C : : : .b6 � a6/:
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2.7. The group W.E6/ has 25 irreducible representations corresponding to its 25 con-
jugacy classes, which will appear several times in this paper. For conjugacy classes we use the
ATLAS or GAP notation 1a, 2a, 2b, 2c, . . . , 12a (command ‘CharacterTable("U4(2).2")’). The
number refers to the order of the elements in the conjugacy class. For instance, the reflections
in W.E6/ (products of six transpositions) belong to the conjugacy class 2c, the product of two
syzygetic reflections belongs to the class 2b, whereas the product of two azygetic reflections
belongs to the class 3b (see Section 5 for precise definitions).

3. Degenerations of Jacobians and Prym varieties

3.1. By a theorem of Namikawa and Mumford, the classical Torelli map Mg ! Ag

sending a smooth curve to its Jacobian extends to a regular morphism Mg ! Avor
g from the

Deligne–Mumford compactification of Mg to the toroidal compactification of Ag for the sec-
ond Voronoi fan. See [5] for a transparent modern treatment of this result, and extension results
for other toroidal compactifications of Ag . The result applies equally to the stacks and to
their coarse moduli spaces. Here, we will work with stacks, so that we have universal families
over them.

3.2. At the heart of the result of Namikawa and Mumford lies the Picard–Lefschetz
formula for the monodromy of Jacobians in a family of curves, see, e.g., [44, Proposition 5].
The map of fans for the toroidal morphism Mg ! Avor

g is described as follows. Fix a stable
curve ŒC � 2Mg , and let � be its dual graph, with a chosen orientation. Degenerations of
Jacobians are described in terms of the groups

C0.�;Z/ D
M

vertices v

Zv;

C1.�;Z/ D
M

edges e

Ze;

H1.�;Z/ D Ker¹à W C1.�;Z/! C0.�;Z/º:

The Jacobian JC D Pic0.C / is a semiabelian group variety, that is, an extension

1! H 1.�;C�/! Pic0.C /! Pic0.eC/! 0;

where eC is the normalization of C . In particular, Pic0.C / is a multiplicative torus if and only
if eC is a union of smooth rational curves or, equivalently, if b1 D h1.�/ D g.

The monodromy of a degenerating family of Jacobians is described as follows. Fix a lat-
tice ƒ ' Zg and a surjection ƒ� H1.�;Z/. The rational polyhedral cone for a neighbor-
hood of ŒC � 2Mg lives in the space ƒ_ ˝R with the lattice ƒ_. It is a simplicial cone of
dimension b1 D h1.�/ with the rays e�i corresponding to the edges of � . Here, e�i is the linear
function on H1.�;Z/ � C1.�;Z/ taking the value ıij on the edge ej 2 C1.�;Z/.

The rational polyhedral cone corresponding to a neighborhood of ŒJC � 2 Avor
g lives in

the space �2.ƒ_/˝R D .Sym2.ƒ/˝R/_, where the lattice �2.ƒ_/ is the second divided
power of ƒ_. It is a simplicial cone with the rays .e�i /

2 for all e�i ¤ 0, which means that ei
is not a bridge of the graph � . We explain what this means in down to earth terms. In an open
analytic neighborhood U of ŒC �, one can choose local analytic coordinates z1; : : : ; z3g�3 so
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that the first N coordinates correspond to smoothing the nodes of C , labeled by the edges ei of
the graph � . Thus, we have a family of smooth curves over the open subset

V D U �

N[
iD1

¹zi D 0º:

Then a complex-analytic map V ! Hg to the Siegel upper half-plane is given by a for-
mula (see [44, Theorem 2] or [45, Section 18.7])

.zi / 7!

NX
iD1

Mi �
1

2�
p
�1

log zi C (a bounded holomorphic function);

whereMi are the g � g matrices with integral coefficients corresponding to the quadratic func-
tions .e�i /

2 on ƒ� H1.�;Z/. After applying the coordinatewise exponential map

C
g.gC1/
2 ! .C�/

g.gC1/
2 ; uij 7! exp

�
2�
p
�1 uij

�
;

the matrices Mi �
log zi
2�
p
�1

become Laurent monomials in zi . This monomial map describes
a complex-analytic map from a small complex-analytic neighborhood U of ŒC � �Mg to an
appropriate étale neighborhood of Ag . For the arguments below the above two formulas suffice.
In particular, we do not need to know the indeterminacy locus of the extended maps. Thus, we
will not need explicit coordinates near a boundary of Avor

g .

3.3. The following weak form of Torelli’s theorem is a sample of our degeneration
technique. This is far from being the easiest way to prove the Torelli theorem, but it gives
a good illustration of our method which we later apply to PTK varieties.

Lemma 3.4. The image of the Torelli map Mg ! Ag has full dimension 3g � 3.

Proof. For every g, there exists a 3-edge connected trivalent graph � of genus g (exer-
cise in graph theory). By Euler’s formula, it has 3g � 3 edges. Recall that a connected graph is
2-edge connected if it has no bridges, i.e., the linear functions e�i on H1.�;Z/ are all nonzero,
and it is 3-edge connected if for i ¤ j one has e�i ¤ ˙e

�
j , i.e., .e�i /

2 ¤ .e�j /
2.

LetC be a stable curve whose dual graph is � and whose normalization is a disjoint union
of smooth rational curves. Then the 3g � 3 matrices Mi in formula (3.2), i.e., the functions
.e�i /

2, are linearly independent in Sym2.Zg/, cf. [5, Remark 3.6]. By looking at the leading
terms as zi ! 0, this easily implies that the image has full dimension 3g � 3.

After applying the exponential function, the map becomes

.z1; : : : ; z3g�3/ 7! (monomial map) � (invertible function):

Since the monomial part is given by monomials generating an algebra of transcendence degree
3g � 3, the image is full-dimensional.

Remark 3.5. Note that the regularity of the extended Torelli map Mg ! Avor
g played

no role in the proof of Lemma 3.4. All we need for the conclusion is the fact that the mon-
odromy matrices Mi are linearly independent.

3.6. The theory for Jacobians was extended to the case of Prym varieties in [4]. We
briefly recall it. Let Rg be the stack of Prym curves of genus g, classifying admissible pairs
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ŒC; �� consisting of a stable curve with involution � W C ! C , so that C=� is a stable curve of
genus g and the map C ! C=� is an admissible map of stable curves. We refer to [8] and [23]
for background on Rg . Consider one pair ŒC; �� 2 Rg and a small analytic neighborhood U
of it. As before, � is the dual graph of C .

Then the space H1.C;Z/ of the Jacobian case is replaced by the lattice H1=HC1 . Here,
HC1 and H�1 are the .C1/- and the .�1/-eigenspaces of the involution action �� on H1.C;Z/,
respectively. Via the natural projection H1� H1=H

C
1 , we identify H�1 with a finite index

sublattice of H1=HC1 .
The degeneration of Prym varieties as groups is

P.C; �/ D Ker.1C ��/0 D Im.1 � ��/; �� W Pic0.C /! Pic0.C /:

The monodromy of a degenerating family of Prym varieties is obtained by restricting the
monodromy map for JC to the .�1/-eigenspace. Combinatorially, it works as follows: For
every edge ei of � we have a linear function e�i on the group H�1 , the restriction of the linear
function on H1.C;Z/. For the divisor ¹zi D 0º on U corresponding to smoothing the node Pi
of C , the monodromy is given by the quadratic form .e�i /

2 restricted to H1.�;Z/�. Similarly
to Lemma 3.4, this can be used to prove various facts about the Prym–Torelli map, but we will
not pursue it here.

4. Degenerations of Prym–Tyurin–Kanev varieties

We choose a concrete boundary point in a compactification of the Hurwitz scheme Hur.
We start with a single cubic surface S and the set ¹`1; : : : ; `27º of 27 lines on it. Sometimes
we shall use the Schläfli notation ¹ai ; bi ; cij º for them, as in Section 2. We fix an embedding
of W.E6/ into the symmetric group S27 permuting the 27 lines on S .

4.1. We choose twelve roots ri which generate the root system E6. Let wi 2 W.E6/ be
the reflections in ri ; they generate W.E6/. As we saw in Section 2, each wi is a double-six.
Fixing the root ri gives it an orientation.

4.2. Consider a nodal genus 0 curve E whose normalization is a union of smooth ratio-
nal curves and whose dual graph is the tree T shown in the left half of Figure 1. The 24 ends
of this tree correspond to 24 points p1; : : : ; p24 on E. We label the points by roots r1; : : : ; r12.
Each of the outside vertices has two ends, we use the same label ri for both of them.

Definition 4.3. Let � W C ! E be an admissible 27 W 1 cover ramified at the point pi
with monodromy wi for i D 1; : : : ; 24.

For every irreducible component of E, the product of the monodromy elements equals 1;
this count includes the nodes. Since we required that for every component on the boundary
the two monodromies wi are the same, the map is unramified at the nodes. Thus, � is étale
over E n ¹p1; : : : ; p24º.

4.4. Here is a concrete description of the dual graph � of C . It has

10 � 27C 12 � .6C 15/ vertices and 21 � 27 edges:
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r1
r1r2 r2

r3

r3

r4

r4

r5

r5

r6
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r7r7 r8
r8

r9

r9

r10

r10

r11

r11

r12

r12

. . . 7→

a1

b1

a6

b6

. . .

cij

. . .

a1

b1

a6

b6

. . .

cij

Figure 1. The tree T for the target curve E of genus 0.

Each vertex v of T in the étale part has 27 vertices over it. Over each of the outside twelve
vertices, there are six vertices, where the map P1 ! P1 is 2 W 1 and ramified at a pair of the
points pi and piC12, and fifteen other vertices where the map P1 ! P1 is 1 W 1.

All the nodes of E lie in the étale part, so for each internal edge e of the tree T there
are 27 edges of � .

4.5. The graph � is homotopically equivalent to the following much simpler graph � 0.
It has:

(i) 27 vertices ¹vsº27sD1, labeled by the lines on S . (Here, s stands for “sheets”.)

(ii) 12 � 6 edges eij . For each of the twelve roots ri , there are six edges. For example, for
r D rmax, the edges are .a1; b1/; : : : ; .a6; b6/. The first edge is directed from a1 to b1,
etc.

The graph � 0 is obtained from � by contracting the tree in each sheet to a point, and removing
the middle vertex of degree 2 for each of the 12 � 6 paths corresponding to the double-sixes.
The process is illustrated in the right half of Figure 1.

By Euler’s formula, the genus of � is 12 � 6 � 27C 1 D 46. Thus, the curve C has
arithmetic genus 46.

4.6. Next we define a symmetric correspondence eD � C � C of degree 10, as follows.
To each pointQ 2 C over the étale part in the sheet labeled `i , associate ten points in the same
fiber of � that are labeled `ij by the lines that intersect `i .

This defines the curve eD0 � C 0 � C 0, where C 0 D C n ��1¹p1; : : : ; p24º. The corre-
spondence eD � C�C is the closure of eD0. Let pi be a ramification point with monodromywi .
Without loss of generality, we may assume w D wmax. The points in the fiber ��1.pi / are
labeled a1b1, . . . , a6b6 and cij for i ¤ j . Then the correspondence is described by

a1b1 7!

6X
iD2

.aibi C c1i /; c12 7! a1b1 C a2b2 C
X

i;j¤1;2

cij ; etc.
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Lemma 4.7. There exists an analytic neighborhood

U �M0;24

of the point ŒE; p1; : : : ; p24� and a family of covers �t W Ct ! Et together with correspon-
dences eD t � Ct � Ct over U , which extends � W C ! E and eD.

Proof. Since the map � is étale over each node of E, the families Ct and eD t extend
naturally. The monodromy data determine the families Ct as topological spaces. Then the finite
map Ct ! Et determines a unique structure of an algebraic curve on Ct .

Lemma 4.8. The correspondence eD � C � C induces an endomorphism of the homol-
ogy group D W H1.�;Z/! H1.�;Z/ satisfying the relation

.D � 1/.D C 5/ D 0:

The .�5/-eigenspace H .�5/
1 can be naturally identified with Ker.�/, where

� W

12M
iD1

ZRi ! E6; Ri 7! ri :

Here, Ri is a basis vector for the .�5/-eigenspace for the action of D on the rank 6 lattice
generated by the edges of � 0 above the root ri . Since the vectors ri generate E6, one has
rkH .�5/

1 D 6.

Proof. We will work with the graph � 0 defined in Paragraph 4.5, since the homology
groups of � and � 0 are canonically identified. The group C0.� 0;Z/ of vertices is

L27
iD1Zvi .

The endomorphism D0 on it is defined in the same way as the correspondence on the 27 lines.
The induced endomorphismD1 onC1.� 0;Z/ is the following. Pick one of the roots ri . Without
loss of generality, let us assume r D ˛max. Then

D1.a1; b1/ D �.a2; b2/ � � � � � .a6; b6/:

By Remark 2.6, D commutes with à, so defines an endomorphism on H1.� 0;Z/.
The endomorphism D1 on the group C1.� 0;Z/ splits into twelve blocks each given

by the .6 � 6/-matrix N such that Ni i D 0 and Nij D �1 for i ¤ j . It is easy to see that
.N � 1/.N C 5/ D 0 and that the .�5/-eigenspace of N is 1-dimensional and is generated by
the vector .a1; b1/C � � � C .a6; b6/.

This gives an identification

C1.�
0;Z/.�5/ D

12M
iD1

ZRi :

The homomorphism à W C1 ! C0 is defined by Ri 7!
P27
sD1.ri ; e

s/vs , where es are the 27
exceptional vectors. Since the bilinear form on E6 is nondegenerate and es span E_6 , one has

à

 
12X
iD1

niRi

!
D 0 ”

 
�

 
12X
iD1

niRi

!
; es

!
D 0 for s D 1; : : : ; 27

” �

 
12X
iD1

niRi

!
D 0:

Therefore, H .�5/
1 D C

.�5/
1 \ Ker.à/ D Ker.�/.
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It is an elementary linear algebra exercise to pick an appropriate basis in Ker.�/, which
becomes especially easy if r1; : : : ; r6 form a basis in E6.

Theorem 4.9. The limit of PTK varieties P.Ct ;Dt / as a group is the torus .C�/6 with
the character group H .�5/

1 . For each of the 21 internal edges ei of the tree T , the monodromy
around the divisor ¹zi D 0º in the neighborhood U �M0;24 is given by the quadratic form
Mi D

P27
sD1..e

s
i /
�/2 on H .�5/

1 .

Proof. The first statement is immediate: the limit of the Jacobians as a group is
a torus with the character group H1.�;Z/, and the PTK varieties are obtained by taking the
.�5/-eigenspace.

Every internal edge ei of T corresponds to a node of the curve E. Over it, there are
27 nodes of the curve C . The map is étale, so the local coordinates zsi for the smoothings of
these nodes can be identified with the local coordinate zi . By Section 3, the matrix for the
monodromy around zsi D 0 is ..esi /

�/2. The monodromy matrix for PTK varieties is obtained
by adding these 27 matrices together and restricting to the .�5/-eigenspace.

To compute the linear forms .esi /
� on H1.�;Z/, we unwind the identification

H1.�;Z/ D H1.�
0;Z/:

Lemma 4.10. Let p W
L12
iD1ZRi !

L21
jD1Zej be the map which associates to Ri the

oriented path in the tree T of Figure 1 from the central point O to an end labeled ri . Via the
identification H1.�;Z/.�5/ D Ker.�/ �

L12
kD1ZRk , the linear functions .esi /

� are defined
by the formula

.esi /
�.Rk/ D hrk; `si � hp.Rk/; e

�
i i;

where the first pairing is E6 �E�6 ! Z, and for the second one hej ; e�i i D ıij .

Proof. Let .vs1 ; vs2/ be an edge in � 0. To it, we associate the path in the graph � going
from the center of level s1 to the center of level s2:

path.Os1 ; r
s1
1 /C path.vs1 ; vs2/ � path.Os2 ; r

s2
1 /:

This rule gives an identification H1.� 0;Z/ D H1.�;Z/.
For each of the twelve roots rk , we have six edges in the graph � 0 going from the ver-

tices s with hrk; `si D 1 to the vertices s with hrk; `si D �1. The contribution of Rk to the
adjusted cycle therefore is

27X
sD1

hrk; `si � path.Os; rk/ D
27X
sD1

hrk; `si � p.Rk/
ˇ̌
eiDe

s
i

:

The value of the linear function esi on it is therefore given by the formula in the statement.

To complete the computation, we have to do the following:

(1) Choose a basis of the 6-dimensional space H1.�;Z/.�5/ D Ker.�/ �
L12
kD1ZRk .

(2) Compute the 21 � 27 linear functions .esi /
� on this 6-dimensional space.
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(3) Compute the 21 � 27 quadratic functions ..esi /
�/2, each of which is a symmetric

6 � 6-matrix.

(4) Finally, compute the 21 monodromy matrices Mi D
P27
sD1..e

s
i /
�/2 of Theorem 4.9.

Theorem 4.11. There exist collections of E6 roots r1; : : : ; r12 generating the lattice E6
for which the 21 symmetric .6 � 6/-matrices Mi of Theorem 4.9 are linearly independent.

Proof. A concrete example is r1 D ˛135, r2 D ˛12, r3 D ˛23, r4 D ˛34, r5 D ˛45,
r6 D ˛56, r7 D ˛456, r8 D ˛26, r9 D ˛123, r10 D ˛125, r11 D ˛256, r12 D ˛15. An explicit
computation using the formula in Lemma 4.10, aided by a computer algebra system, shows the
following:

(1) The monodromy matrices Mi are all divisible by 6. This corresponds to the fact that the
restriction of the principal polarization from the Jacobian to the PTK variety is 6 times
a principal polarization.

(2) For the normalized forms

M 0i D
Mi

6
;

the determinant of the corresponding .21�21/-matrix is 212 ¤ 0.

A Mathematica notebook with an explicit computation is available at [49].

Corollary 4.12. Theorem 1 holds.

Proof. By the same argument as in the proof of Lemma 3.4, the image of the complex-
analytic map U ! A6 has full dimension 21. Thus, the map PT W Hur! A6 is dominant.

Remark 4.13. Computer experimentation shows that for a very small portion of random
choices of the roots r1; : : : ; r12, the matricesMi are linearly independent. In most of these cases
the determinant is 212 but in some cases it is 213.

A necessary condition is for the roots r1; r2 to be non-orthogonal, and similarly for the
pairs r3; r4, etc. Experimentation also shows that there is nothing special about the graph in
Figure 1. Any other trivalent graph with twelve vertices of degree one works no worse and
no better.

5. Admissible covers and semiabelian Prym–Tyurin–Kanev varieties

In this section, we introduce the space H of admissible E6-covers and define semi-
abelian Prym–Tyurin–Kanev varieties of E6-admissible pairs. Then we study extensions of the
Prym–Tyurin map to the Satake compactification Asat

6 and the perfect cone toroidal compacti-
fication A6 WD A

perf
6 .

5.1. The Hurwitz space.

5.1. We denote by H the Hurwitz space ofE6-covers � W C ! P1 together with a label-
ing .p1; : : : ; p24/ of its branch points. Let H be the compactification of H by admissible
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W.E6/-covers. By [1], the stack H is isomorphic to the stack of balanced twisted stable maps
into the classifying stack BW.E6/ of W.E6/, that is,

H WDM0;24.BW.E6//:

By a slight abuse of notation, we shall use the same symbol H both for the stack and for the
associated coarse moduli space. For details concerning the local structure of spaces of admis-
sible coverings, we refer to [1]. Note that H is a smooth stack isomorphic to the normalization
of the Harris–Mumford moduli space HME6 defined (in the case of covers with Sn-mono-
dromy) in [27]. The boundary H nM0;24.BW.E6// is a divisor with normal crossings. Points
of HME6 are E6-admissible coverings Œ� W C ! R;p1; : : : ; p24�, where C and R are nodal
curves of genus 46 and 0, respectively, and p1; : : : ; p24 2 Rreg are the branch points of � . The
local monodromy of � around pi 2 P1 is given by a reflectionwi 2 W.E6/, for i D 1; : : : ; 24.
Let b W H !M0;24 be the branch morphism and let ' W H !M46 be the source morphism.
Obviously, S24 acts on H and the projection q W H ! Hur is a principal S24-bundle. Passing to
the S24-quotient and denoting eM0;n WDM0;n=Sn, we consider the induced branch and source
maps

br W Hur! eM0;24 and ' W Hur!M46;

respectively. For 2 � i � 12, let

Bi WD
X
jT jDi

ı0WT 2 Pic.M0;24/

be the boundary class, where the sum runs over all subsets T � ¹1; : : : ; 24º of cardinality i .
Recall that ı0WT is the class of the closure of the locus of pointed curves consisting of two
rational components, such that the marked points lying on one component are precisely those
labeled by T . Let eB i be the reduced boundary divisor on eM0;24 which pulls-back to Bi under
the quotient map M0;24 !

eM0;24.
For eachE6-cover Œ� W C ! P1� 2 Hur, there is an induced Kanev endomorphism at the

level of JacobiansD WJC!JC and at the level of differentialsD WH 0.C;!C /!H 0.C;!C /,
which we denote by the same symbol. This induces a splitting

H 0.C; !C / D H
0.C; !C /

.C1/
˚H 0.C; !C /

.�5/

into .C1/- and .�5/-eigenspaces, respectively. From (1.2), it follows that

dim H 0.C; !C /
.�5/
D dim PT.C;D/ D 5;

hence dim H 0.C; !C /
.C1/ D 40. We have a decomposition of the rank 46 Hodge bundle

E WD '�.E/ pulled-back from M46 into eigenbundles

E D E.C1/ ˚ E.�5/;

where, as we pointed out, rk.E.C1// D 40 and rk.E.�5// D 6. We set �.C1/ WD c1.E.C1// and
�.�5/ WD c1.E.�5//, therefore � WD '�.�/ D �.C1/ C �.�5/. We summarize the discussion in
the following diagram:

(5.1) H
q

//

b

��

Hur

br

��

'
// M46

M0;24
// eM0;24.
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5.2. Semiabelian Prym–Tyurin–Kanev varieties.

Lemma 5.2. Let Œ� W C ! R;p1; : : : ; p24� 2 H be an E6-admissible cover. Then it
comes with a correspondence eD � C � C inducing an endomorphism D W JC ! JC of the
semiabelian group variety JC D Pic0.C /, which satisfies the same identity .D�1/.DC5/ D 0
as for covers of smooth curves. The group variety PT.C;D/ WD Im.D � 1/ is a semiabelian
group subvariety of JC .

Proof. Consider any one-parameter family �s W Cs ! Rs of E6-admissible covers over
a smooth base .S; 0/ such that �s is smooth for s ¤ 0 and �0 D � . It gives an identification
of the smooth fibers of � with the nearby fibers of �s up to the monodromy W.E6/. Thus, we
have a symmetric degree 10 correspondence eD0 on the smooth locus of � , and it clearly does
not depend on a chosen one-parameter family. We take eD � C � C to be the closure of eD0.

By the above identification, this correspondence satisfies the identity

.D0 � 1/.D0 C 5/ D 5 � Trace.�/:

The target curveR is a tree of P1s, so Pic0.R/ D 0. Any element of Pic0.C / can be represented
by a divisor on C of multidegree .0; : : : ; 0/ supported on the smooth locus of C . Thus, eD
induces a correspondenceD W Pic0 C ! Pic0.C / satisfying .D�1/.DC5/ D 0. The image of
a homomorphism .D � 1/ W JC ! JC is a semiabelian variety, which finishes the proof.

Definition 5.3. Any semiabelian variety G has a unique extension

1! T ! G ! A! 0:

We call tor.G/ D T and ab.G/ D A the toric and abelian parts of G, respectively, and we call
their dimensions the toric and abelian ranks of G. In particular, we shall talk about the toric
rank kPT of a Prym–Tyurin–Kanev (PTK) variety PT.

Lemma 5.4. Let 1! T ! G ! A! 0 be a semiabelian variety with an endomor-
phism satisfying .D � 1/.D C 5/ D 0. Then:

(1) P WD Im.D � 1/ coincides with Ker.D C 5/0, the connected component of identity.

(2) D induces homomorphisms DT of the toric part T and DA of the abelian part A.

(3) The toric part of P coincides with PT WD .DT � 1/T , and the abelian part of P is
isogenous to PA WD .DA � 1/A.

Proof. (1) One has the inclusions

Im.D � 1/ � Ker.D C 5/0; Im.D C 5/ � Ker.D � 1/0;

and
Ker.D � 1/ \ Ker.D C 5/ � GŒ6�;

which is a finite group. Since G is also 6-divisible, it follows that Im.D � 1/ are Im.D C 5/
span G, and so they are semiabelian subvarieties of complementary dimensions. The quotient
Ker.D C 5/= Im.D � 1/ is the kernel of a surjective homomorphism

.D C 5/ W G= Im.D � 1/! Im.D C 5/

of varieties of the same dimension, so it is finite. Thus, Im.D � 1/ D Ker.D C 5/0.



Alexeev, Donagi, Farkas, Izadi and Ortega, The uniformization of A6 183

(2) The homomorphism from the affine variety T to the projective variety A is con-
stant, so D.T / � T and we get DT D DjT , which in turn induces an endomorphism DA of
A D G=T .

(3) Clearly, Im.DT � 1/ � Im.D � 1/ and Im.D � 1/� Im.DA � 1/. The kernel of
the homomorphism Im.D � 1/! Im.DA � 1/ � A is T \ Im.D � 1/. One has

Im.DT � 1/ � T \ Im.D � 1/ � Ker.DT C 5/:

By (1) applied to T the difference between the last and the first groups is finite. Therefore, the
difference between the middle and the first groups is finite. In other words, the homomorphism
Ker.P=PT ! PA/ has finite kernel. Thus, P=PT is an abelian variety that is the abelian part
of P , it is isogenous to PA, and PT is the toric part of P .

The structure of an E6-admissible map � W C ! R makes the computation of PT.C;D/
especially easy. The target curve R is a tree ¹Ri ' P1ºniD1 of smooth rational curves. Then we
have induced maps �i W Ci ! Ri and correspondencesDi for Ci satisfying the same quadratic
identity. The curves Ci are smooth; however, they may be disconnected.

Lemma 5.5. One has the following:

(1) The abelian part of PT.C;D/ is isogenous to
Qn
iD1 P.Ci ;Di /.

(2) The correspondence eD induces correspondencesDC0 ,DC1 andDH1 on the cycle groups
C0.�;Z/, C1.Z/ and on the homology group H1.�;Z/ D Ker¹C1.�;Z/! C0.�;Z/º
of the dual graph � of C . The toric part of the semiabelian variety PT.C;D/ has the
character group Im.DH1 � 1/.

Proof. Part (1) follows from Lemma 5.4. The definition and properties of the correspon-
dences onC0.�;Z/,C1.�;Z/ andH1.�;Z/ are immediate. For a homomorphism � W T1! T2
of tori with dual homomorphism �� W X2 ! X1 of character lattices, Im� is a torus with char-
acter lattice Im��. We apply this to the toric part of JC whose character lattice is H1.�;Z/
and use Lemma 5.4.

5.3. Extensions of the Prym–Tyurin map.

5.6. There are several natural targets to consider for the extended Prym–Tyurin map.
The easiest one is the Satake-Baily-Borel compactification

Asat
g D Ag tAg�1 t � � � tA0

(g D 6 in our case). Other natural targets are the toroidal compactifications Ag D A
perf
g and

Avor
g for the perfect cone, respectively 2nd Voronoi fans. The space A

perf
g has the advantage of

having only one boundary divisor. The space Avor
g is modular: by [2] it is the normalization of

the main component of the moduli space of principally polarized stable semiabelic varieties.
All toroidal compactifications of Ag contain the same open subset eAg introduced by

Mumford [43], the moduli space of principally polarized abelian varieties of dimension g
together with their degenerations of toric rank 1, This is a partial compactification of Ag

isomorphic to the blow-up of the open subset ASat
g;tor:rk�1 D Ag tAg�1 in Asat

g . Moreover,eAg D Ag t eDg , where eDg is the universal Kummer variety over Ag�1. The closure of eDg
in A

perf
g is the unique boundary divisor Dg .
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On the other hand, by [43], any semiabelian varietyG with a principally polarized abelian
part of dimension g � 1 has a canonical compactification X , a rank-1 degeneration of ppav. In
the language of [2], in this case there exists a unique principally polarized stable semiabelic
pair .G Õ X � ‚/. So the moduli of toric rank � 1 semiabelian varieties and the moduli of
toric rank � 1 stable semiabelic pairs are the same.

Lemma 5.7. Let C ! R! S be a family of admissible covers parameterized by H

over a reduced scheme S such that the restrictions of C ! S , R! S are smooth over an open
dense subset. Then there is a semiabelian group scheme P T ! S whose fiber over s 2 S is
PT.Cs;Ds/ as defined above.

Proof. By taking the closure of the correspondence over U , we obtain a correspondence
on C whose fibers were described in Lemma 5.2. Thus, we have a semiabelian group scheme
Pic0

C=S together with an endomorphism D over S giving an endomorphism as in Lemma 5.2
fiberwise. Then P T WD Im.D � id/ satisfies the conditions of the statement.

Lemma 5.8. The map PT W Hur! A6 extends to a regular map PTsat W Hur! Asat
6 .

A point ŒC ! R� maps to the abelian part of PT.C;D/.

Proof. As discussed in the previous section, Hur is a smooth stack and the boundary
Hur n Hur is a divisor with normal crossings.

The extension exists by Borel’s extension theorem [9]. To find the image of ŒC ! R� it is
sufficient to consider a one-parameter family of covers parameterized by .S; 0/ with covers of
smooth curves for s ¤ 0. It is known that for any family of dimension g semiabelian varieties
G ! S whose restriction to S n 0 is a family of principally polarized abelian varieties, the
image of 0 2 S of the extended map to ASat

g is the abelian part of G0. We apply this to the
family P T ! S of the previous lemma.

Theorem 5.9. The rational map PT W HurÜ A
perf
6 has an indeterminacy locus of codi-

mension at least 2. On the open subset Hurtor:rk�1 � Hur where PTK varieties have toric
rank � 1, the map is regular and proper, and it factors through eA6.

Proof. The indeterminacy locus has codimension � 2 simply because Hur (viewed as
a variety) is normal and A

perf
6 is proper. By the discussion in Paragraph 5.6, we have a regular

map Hurtor:rk�1 ! Avor
6 and Lemma 5.8 implies that the image is contained in eA6. Thus, we

have a morphism PT W Hurtor:rk�1 ! eA6 � A
perf
6 . Since both maps g W eA6 ! ASat

6;tor:rk�1 and
g ı PT W Hurtor:rk�1 ! ASat

6;tor:rk�1 are proper, it follows that PT is proper.

6. Positivity properties of the Hurwitz space of E6-covers

In this section we study in detail the divisor theory on the Hurwitz space H . In partic-
ular, we express explicitly the Hodge class � in terms of boundary classes and we prove that
the canonical class of H is big. We recall that the pull-back of the Hodge class under the
morphism

' W Hur!M46;
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is the sum
� WD '�.�/ D �.C1/ C �.�5/ WD c1.E

.C1//C c1.E
.�5//

of the first Chern classes of the Hodge eigenbundles for the C1 and the �5 eigenvalues, see
Paragraph 5.1.

Lemma 6.1. Both Hodge eigenclasses �.C1/ and �.�5/ 2 CH 1.Hur/ are nef.

Proof. Kollár [38] showed that the Hodge bundle E is semipositive, therefore the eigen-
bundles E.C1/ and E.�5/ as quotients of E are semipositive as well. Therefore det.E.C1// and
det.E.�5// are nef line bundles.

6.2. The conclusion of Theorem 1 can be restated in terms of the positivity of �.�5/.
The fact that the map PT W Hur! A6 is dominant implies that the class �.�5/ 2 CH 1.Hur/
is big. One can formulate a necessary and sufficient condition for A6 to be of general type in
similar terms.

Corollary 6.3. Let Di be the irreducible divisors supported on Hur n Hurtor:rk�1. Then
to prove that A6 is of general type, it suffices to show that there exist some integers ai such that
the divisor PT�.K

A6
/C

P
aiDi on Hur is big.

Proof. If this divisor is big on Hur, then its corresponding linear system has maximal
Iitaka dimension. Then the linear system jPT�PT�.K

A6
/j has maximal Iitaka dimension as

well. Since all boundary divisors Di are contracted under the Prym–Tyurin map, we write

PT�.PT�.K
A6
// D PT�

�
PT�.K

A6
/C

X
i

aiDi

�
D deg.PT/K

A6
:

So K
A6

is big.

We now turn to describing the geometry of the Hurwitz space H . We make the following:

Definition 6.4. For a partition � D .�1; : : : ; �`/ ` n, we define

lcm.�/ WD lcm.�1; : : : ; �`/ and
1

�
WD

1

�1
C � � � C

1

�`
:

For i D 2; : : : ; 12, we denote by Pi the set of partitions � ` 27 associated to the cycle decom-
positions of the conjugacy classes of products of i reflections in W.E6/ � S27.

The possible partitions of 27 corresponding to products of reflections can be read off
Table 1. For instance, we find that P2 D ¹.2

10; 17/; .36; 19/º.

6.5. We now describe a way of indexing the boundary divisors of Hur. We fix the fol-
lowing combinatorial data:

(1) A partition I t J D ¹1; : : : ; 24º, such that jI j � 2, jJ j � 2.

(2) Reflections ¹wiºi2I and ¹wj ºj2J in W.E6/, such that
Q
i2I wi D u,

Q
j2J wj D u

�1,
for some u 2 W.E6/. The sequence w1; : : : ; w24 is defined up to conjugation by the
same element g 2 W.E6/.
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Minimal number of reflections Partition � of 27 Conjugacy class 1
�

0 127 1a 27

1 .26; 115/ 2c 18

2 .210; 17/ 2b 12

2 .36; 19/ 3b 11

3 .212; 13/ 2d 9

3 .45; 21; 15/ 4d 27
4

3 .61; 34; 23; 13/ 6e 6

4 .212; 13/ 2a 9

4 .39/ 3c 3

4 .46; 13/ 4a 9
2

4 .45; 23; 1/ 4b 15
4

4 .55; 12/ 5a 3

4 .63; 23; 13/ 6b 5

4 .62; 32; 24; 1/ 6d 4

5 .45; 23; 1/ 4c 15
4

5 .62; 35/ 6f 2

5 .64; 31/ 6g 1

5 .83; 21; 1/ 8a 15
8

5 .101; 53; 21/ 10a 6
5

5 .121; 61; 42; 1/ 12b 7
4

6 .39/ 3a 3

6 .64; 31/ 6a 1

6 .63; 23; 13/ 6c 5

6 .93/ 9a 1
3

6 .122; 31/ 12a 1
2

Table 1. Products of reflections in W.E6/.

To this data, we associate the locus of E6-admissible covers with labeled branch points

t WD Œ� W C ! R; p1; : : : ; p24� 2 HME6 ;

where ŒR D R1 [q R2; p1; : : : ; p24� 2 BjI j �M0;24 is a pointed union of two smooth ratio-
nal curves meeting at the point q. The marked points lying onR1 are precisely those labeled by
the set I . Over q, the map � is ramified according to u, that is, the points in ��1.q/ correspond
to cycles in the permutation u considered as an element of S27. Let � WD .�1; : : : ; �`/ ` 27
be the partition induced by u 2 S27 and denote by Ei W� the boundary divisor on H classifying
E6-twisted stable maps with underlying admissible cover as above, with ��1.q/ having par-
tition type �, and precisely i of the points p1; : : : ; p24 lying on R1. Only partitions from the
set Pi introduced in Definition 6.4 are considered.
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In Table 1 we give the list of partitions of 27 appearing as products of reflections in
W.E6/ (using the GAP notation for the conjugacy classes). For future use, we also record the
invariants 1

�
, for each partition �. If one partition from this list appears in Pi , it will appear

in PiC2j , for all i C 2j � 12.

6.6. We recall the local structure of the morphism b W H !M0;24, over the point t , see
also [27, p. 62]. The (non-normalized) space HME6 is locally described by its local ring

(6.1) bO t;HME6
D CŒŒt1; : : : ; t21; s1; : : : ; s`��=s

�1
1 D � � � D s

�`
`
D t1;

where t1 is the local parameter on M0;24 corresponding to smoothing the node q 2 R. By pass-
ing to the normalization � W H ! HME6 , we deduce that over each point t 0 2 ��1.t/ the map
b W H !M0;24 is ramified with index lcm.�/. The fiber ��1.t/ consists of �1 � � ��`=lcm.�/
points. The local ring at t 0 is then given by bO

t 0;H
D CŒŒ�; t2; : : : ; tb�3�� and the normalization

map � is given in local coordinates by

t1 D �
lcm.�/; s1 D �

lcm.�/
�1

�1 ; : : : ; s` D �
lcm.�/
�`

�` ;

where ��i is a �i -th root of unity for i D 1; : : : ; `. This description implies that for each
i D 2; : : : ; 12, we have a decomposition

b�.Bi / D
X
�2Pi

lcm.�/Ei W�:

In view of applications to the Kodaira dimension of H , we discuss in detail the pull-
back b�.B2/. Pick a point t D Œ� W C D C1 [C2 ! R D R1 [q R2; p1; : : : ; p24� 2 b

�.B2/

as in Paragraph 6.5, where Ci D ��1.Ri /. Without loss of generality, we can assume that
I D ¹1; : : : ; 22º, thus p1; : : : ; p22 2 R1 and p23; p24 2 R2. The group G D hw1; : : : ; w22i
generated by the reflections in the remaining roots r1; : : : ; r22 2 E6 is the Weyl group for a
lattice L D LG � E6. Since

Q24
iD1wi D 1, it follows that w23 � w24 2 G, hence

rk.L/ � rk.E6/ � 1 D 5:

6.7. Assume that the reflections w23 and w24 corresponding to the coalescing points
p23 and p24 are equal, hencew23 D w24. In this case, the corresponding partition is� D .127/
and we set E0 WD E2W127 . We denote by EL the boundary divisor of admissible covers in
E2W.127/ corresponding to the lattice L. The map b is unramified along each divisor EL and
we have

E0 D
X
L�E6

EL � H :

The general cover t corresponding to each divisor EL carries no automorphism preserving all
branch points p1; : : : ; p24, that is, Aut.t/ D ¹Idº.

Suppose now that the reflections w23 and w24 are distinct. Following [13, Section 9.1],
we distinguish two possibilities depending on the relative position of the two double-sixes,
described in terms of a general admissible cover

t D Œ� W C D C1 [ C2 ! R1 [q R2; p1; : : : ; p24�:
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6.8. The reflections w23 and w24 form an azygetic pair, that is, the corresponding roots
r23 and r24 satisfy r23 � r24 ¤ 0. In this case, hw23; w24i D W.A2/ and r23 C r24 or r23 � r24
is again a root that is azygetic to both r23 and r24. The double-sixes associated to w23 and
w24 share six points and the permutation w23 � w24 decomposes into six disjoint three cycles,
therefore � D .36; 19/ ` 27. Accordingly, C2 D ��1.R2/ decomposes into six rational com-
ponents mapping 3 W 1, respectively nine components mapping isomorphically onto R2. If

Eazy WD E2W.36;19/ � H

is the boundary divisor parametrizing such points, then b is triply ramified along Eazy. The
general point of Eazy has no non-trivial automorphisms preserving all the branch points.

6.9. The reflections w23 and w24 form a syzygetic pair, that is, r23 � r24 D 0. We have
hw23; w24i D W.A

2
1/. The two associated double-sixes share four points and w23 � w24 2 S27

decomposes into a product of ten disjoint transpositions, therefore� D .210; 17/. Eight of these
transpositions are parts of the double-sixes corresponding to w23 and w24 that remain disjoint,
respectively. Note that C2 consists of eight rational components mapping 2 W 1 ontoR2, as well
as a smooth rational component, say Z, mapping 4 W 1 onto R2. The fibers ��1Z .q/; ��1Z .p23/

and ��1Z .p24/ each consist of two ramification points. We denote by

Esyz WD E2W.210;17/ � H

the boundary divisor of admissible syzygetic covers. For a general cover t 2 Esyz, note that
Aut.t/ D Z2, see Remark 6.12.

6.10. To summarize the discussion above, we have the following relation:

b�.B2/ D E0 C 3Eazy C 2Esyz:

In opposition to E0, we show in Theorem 7.15 that the boundary divisors Eazy or Esyz have
fewer components. Precisely, for a general element t 2 Eazy or t 2 Eazy, we have

G D W.L/ D W.E6/;

hence the subcurve C1 D ��1.R1/ is irreducible.

6.11. The Hurwitz formula applied to the ramified cover b W H !M0;24, coupled with
the expression

K
M0;24

�

12X
iD2

�
i.24 � i/

23
� 2

�
Bi

to be found, e.g., in [36], yields

(6.2) K
H
D b�K

M0;24
C Ram.b/ D �

2

23
ŒE0�C

19

23
ŒEsyz�C

40

23
ŒEazy�CN;

whereN is the effective combination of the boundary divisors of H disjoint fromE0; Esyz,Eazy

with the coefficient of ŒEi W�� for i D 3; : : : ; 12 being equal to lcm.�/. i.24�i/
23

� 1/ � 1 > 0.
The ramification divisor of the projection q W H ! Hur is contained in the pull-back

b�.B2/ (recall the commutative diagram (5.1)). Note that B2 is the ramification divisor of the
quotient map M0;24 !

eM0;24. The general point of each of the components of E0 and Eazy
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admits an involution compatible with the involution of the rational curve R2 preserving q and
interchanging the branch points p23 and p24, respectively. No such automorphism exists for
a general point of the divisor Esyz (see Remark 6.12), thus

Ram.q/ D E0 CEazy:

Remark 6.12. We illustrate the above statement in the case of the divisor Esyz. We
choose a general point t WD Œ� W C ! R D R1 [q R2; p1; : : : ; p24� 2 Esyz, and denote by
�Z W Z ! R2, the degree 4 cover having as source a smooth rational curve Z and such that

��Z.q/ D 2uC 2v; ��Z.pi / D 2xi C 2yi ; i D 23; 24:

Then Aut.t/ D Z2. Indeed, there exists a unique automorphism � 2 Aut.Z/ with �.u/ D u,
�.v/ D v, �.x23/ D y23 and �.x24/ D y24 and such that �Z ı � D �Z . Note that � induces
the unique non-trivial automorphism of t fixing all the branch points. In contrast, the general
point of Eazy corresponds to an admissible cover which has no automorphisms fixing all the
branch points.

Definition 6.13. On the space Hur of unlabeled E6-covers, we introduce the reduced
boundary divisorsD0;Dsyz;Dazy, as well as the boundary divisors ¹Di W� W 3� i � 12; � 2 Piº

which pull-back under the map q W H ! Hur to the corresponding divisors indexed byE’s, that
is, q�.D0/ D 2E0, q�.Dazy/ D 2Eazy, q�.Dsyz/ D Esyz and q�.Di W�/ D Ei W� for 3 � i � 12
and � 2 Pi . More generally, for each sublattice L � E6, we denote byDL � Hur the reduced
divisor which pulls back to EL under the map q.

IfD is an irreducible divisor on Hur, we denote as usual by ŒD� WD ŒD�Q 2 CH 1.Hur/Q
its Q-class, that is, the quotient of its usual class by the order of the automorphism group of
a general point from D.

Theorem 6.14. The canonical class of the Hurwitz space Hur is given by the formula:

KHur D �
25

46
ŒD0�C

19

23
ŒDsyz�C

17

46
ŒDazy�

C

12X
iD3

X
�2Pi

�
lcm.�/

�
i.24 � i/

23
� 1

�
� 1

�
ŒDi W��:

Proof. We apply the Riemann–Hurwitz formula to the map q W H ! Hur and we find

q�.KHur/ D KH
� ŒE0� � ŒEazy�

D �
25

23
ŒE0�C

19

23
ŒEsyz�C

17

23
ŒEazy�C � � � 2 CH

1.H /:

6.1. The Hodge class on the space of admissible E6-covers.

6.15. We describe the Hodge class on the Hurwitz space H in terms of boundary divi-
sors. Let  1; : : : ;  24 2 Pic.M0;24/ be the cotangent tautological classes corresponding to the
marked points. The universal curve over M0;24 is the morphism � WD �25 WM0;25 !M0;24,
forgetting the marked point labeled by 25. The following formulas are well known, see, for
example, [21].
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Proposition 6.16. We have

c1.!�/ D  25 �

24X
iD1

ı0Wi;25 2 CH
1.M0;25/;

24X
iD1

 i D

12X
iD2

i.24 � i/

23
ŒBi � 2 CH

1.M0;24/;

�1 D

12X
iD2

.i � 1/.23 � i/

23
ŒBi �:

We now find a boundary expression for the Hodge class at the level of H .

Theorem 6.17. The Hodge class at the level of H is given by the following formula:

� D

12X
iD2

X
�2Pi

1

12
lcm.�/

�
9i.24 � i/

23
� 27C

1

�

�
ŒEi W��:

Note that a boundary formula for � in the case of Sn-covers appeared first in [37] and
was confirmed later with algebraic methods in [26].

Proof. Over the Hurwitz space H we consider the universal E6-admissible cover

f W C ! P ;

where P WD H �
M0;24

M0;25 is the universal orbicurve of genus zero over H . Over a general
point t D ŒC ! R;p1; : : : ; p24� of a boundary divisor Ei W�, where � D .�1; : : : ; �`/ 2 Pi
corresponds to the local description (6.1), even though P has a singularity of type Alcm.�/�1,
the space C has singularities of type Alcm.�/=�i�1 at the ` points corresponding to the inverse
image of Rsing.

Let � W P ! H and q W P !M0;25 be the two projections and put v WD �ıf W C ! H

and f WD q ı f W C !M0;25. The ramification divisor of f decomposes as

R1 C � � � CR24 D R � C ;

where a general point of Ri is of the form ŒC ! R; p1; : : : ; p24; x�, with x 2 C one of the
six ramification points lying over the branch point pi . In particular, f�.ŒRi �/ D 6ŒBi �, where
Bi � P is the corresponding branch divisor.

We apply the Riemann–Hurwitz formula for f and write c1.!v/ D f �q�c1.!�/C ŒR�.
We are going to push-forward via v the square of this identity and describe all the intervening
terms in the process. Over H we have the identity

v�c
2
1.!v/ D v�

�
f
�
c21.!�/C 2f

�
c1.!�/ � ŒR�C ŒR�

2
�
:

We evaluate each term:

v�.f
�
c1.!�/ � ŒR�/ D

24X
iD1

��.q
�c1.!�/ � 6ŒBi �/

D 6

24X
iD1

��q
�.c1.!�/ � Œ�0Wi;25�/ D 6b

�

 
24X
iD1

 i

!
:



Alexeev, Donagi, Farkas, Izadi and Ortega, The uniformization of A6 191

Furthermore, we write f �.Bi / D 2RiCAi , where the residual divisorAi defined by the previ-
ous equality maps 15 W 1 onto Bi . Note thatAi andRi are disjoint, hence f �.ŒBi�/�Ri D 2R

2
i ,

therefore
v�.ŒRi �

2/ D 3��.ŒB
2
i �/ D 3��.q

�.ı20Wi;25// D �3b
�. i /:

Using Proposition 6.16, we find that

v�.ŒR�
2/ D v�

 
24X
iD1

ŒRi �
2

!
� �3

12X
iD2

i.24 � i/

23
b�.Bi /:

We use Proposition 6.16, and the relation ��.ı20Wi;25/ D � i , to write

v�f
�
c21.!�/ D ��.27q

�c21.!�// D 27b
���

 
 25 �

24X
iD1

ı0Wi;25

!2

D 27b�

 
�1 �

24X
iD1

 i

!
� �27b�

 
12X
iD2

Bi

!
:

We find the following expression for the pull-back of the Mumford � class to H :

v�c
2
1.!v/ �

12X
iD2

�
9i.24 � i/

23
� 27

�
b�.Bi /(6.3)

�

12X
iD2

X
�2Pi

lcm.�/
�
9i.24 � i/

23
� 27

�
Ei W�:

Using Mumford’s GRR calculation in the case of the universal genus 46 curve v W C ! H ,
coupled with the local analysis of the fibers of the map b, we have

12'�.�/ � v�c
2
1.!v/C

12X
iD2

X
�2Pi

lcm.�1; : : : ; �`/
�
1

�1
C � � � C

1

�`

�
Ei W�:

Substituting in (6.3), we finish the proof.

Remark 6.18. Using Definition 6.13, we spell out Theorem 6.17 at the level of Hur:

(6.4) � D
33

46
ŒD0�C

7

46
ŒDazy�C

17

46
ŒDsyz�C � � � 2 CH

1.Hur/:

Proposition 6.19. The morphism ' W H !M46 has ramification of order 12 along the
divisor E0. In particular, the class '�.ı0/ � 12ŒE0� � 2ŒEsyz� 2 CH

1.H / is effective.

Proof. The morphism ' factors via Hur, that is, we have ' D ' ı q, where we recall that
q W H ! Hur is the projection map and ' W Hur!M46. We have observed that q is ramified
along E0. Furthermore, since the general element of '.E0/ is an irreducible 6-nodal curve,
the local intersection number .'.�/ � ı0/'.t/, for any curve � � Hur passing through a point
t 2 q.E0/, is at least equal to 6. Finally, ŒEsyz� appears with multiplicity 2 because, as pointed
out in Remark 6.12, each point of Esyz has an automorphism of order 2.
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6.2. The positivity of the canonical class of H .

6.20. To establish the bigness of the class K
H

, we use Moriwaki’s class [41]

mo WD .8g C 4/� � gı0 �

b
g
2
cX

iD1

4i.g � i/ıi 2 CH
1.Mg/:

It is shown in [41] that mo non-negatively intersects all complete curves in Mg whose members
are stable genus g curves with at most one node. Further, the rational map �n�mo WMgÜ P �

defined by a linear system jn �moj with n� 0, induces a regular morphism on Mg . In our
situation when g D 46, this implies that the pull-back '�.mo/ is an effective Q-divisor class
on H , which we shall determine. In what follows, if D1 and D2 are divisors on a normal
variety X , we write D1 � D2 if D1 �D2 is effective.

Proposition 6.21. The following divisor class on the Hurwitz space H is effective:

�
2

23
E0 C

523

2415
Esyz C

62

115
Eazy C

12X
iD3

X
�2Pi

93

1610
i.24 � i/ lcm.�/Ei W�:

Proof. We give a lower bound for the coefficient of Ei W� in the expression '�.�/ of
Theorem 6.17, by observing that for a partition .�1; : : : ; �`/ ` 27, the inequality

1

�1
C � � � C

1

�`
� 27

holds. Using this estimate together with Theorem 6.17

'�.�/ D
33

23
ŒE0�C

17

46
ŒEsyz�C

7

23
ŒEazy�C � � �;

as well as Proposition 6.19, we write

0 �
1

210
'�.mo/ �

372

210
'�.�/ �

46 � 12

210
ŒE0� �

46 � 2

210
ŒEsyz�

D �
2

23
ŒE0�C

523

2415
ŒEsyz�C

62

115
ŒEazy�C

12X
iD3

X
�2Pi

93

1610
i.24 � i/ lcm.�/ŒEi W��:

The scaling has been chosen to match the negative E0 coefficient in the class K
H

of (6.2).

As a step towards determining the Kodaira dimension of Hur we establish the following:

Theorem 6.22. The canonical class of H is big.

Proof. Recalling that b W H !M0;24, for each 0 < ˛ < 1, using (6.2), we write the
equality

K
H
D .1 � ˛/b�.�1/C ˛b�.�1/ �

12X
iD2

X
�2Pi

Ei W�:

Since the class �1 2 CH 1.M0;24/ is well known to be ample, in order to establish that K
H

is
big, it suffices to show that for ˛ sufficiently close to 1, the class ˛b�.�1/ �

P
i;�2Pi

ŒEi W�� is
effective. After brief inspection, this turns out to be a consequence of Proposition 6.21.
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7. The Prym–Tyurin map along the boundary components of Hur

In this section we study the extended Prym–Tyurin map and refine the analysis of the
boundary divisors of Hur. In particular, we identify the divisors that are not contracted by the
extended Prym–Tyurin map PT W HurÜ A6.

7.1. Following Paragraph 6.5, we denote by EI WL1;L2;� the divisor of H of E6-admis-
sible covers

t WD Œ� W C WD C1 [ C2 ! R1 [q R2; p1; : : : ; p24�;

where I [ J D ¹1; : : : ; 24º, R1 contains the branch points ¹piºi2I , with roots ¹riºi2I gener-
ating the lattice L1 � E6 and the corresponding reflections generating the group

G WD W.L1/ � W.E6/;

whereas R2 contains the branch points ¹pj ºj2J , with roots ¹rj ºj2J generating the lattice
L2 � E6 and reflections generating the group H WD W.L2/ � W.E6/, respectively. We set
u WD

Q
i2I wi , therefore u�1 D

Q
j2J wj . As before, � ` 27 is the partition corresponding to

the cycle type of u 2 S27 which describes the fiber ��1.q/. Let OG (respectively OH ) denote
the set of orbits of G (respectively H ) on the set 27 WD ¹1; : : : ; 27º. In particular, there is a
bijection between OG (respectively OH ) and the set of irreducible components of C1 (respec-
tively C2). Returning to the notation in Paragraph 6.5, for � 2 Pi we write

Ei W� D
X

jI jDi;L1;L2

EI WL1;L2;�;

the sum being taken over sublattices L1 and L2 of E6 as above.

Definition 7.2. Let u 2 W.E6/ and let A D A1 t � � � t Aa and B D B1 t � � � t Bb be
two u-invariant partitions of the set 27. We define the graph �.u;A;B/ to be the following
bipartite graph:

(1) The vertices are A1; : : : ; Aa and B1; : : : ; Bb , respectively.

(2) The edges correspond to cycles Ck in the cyclic representation of u 2 S27, including
cycles of length 1.

(3) For each cycle Ck , there exist unique vertices Ai and Bj containing the set ck . Then the
edge Ck joins Ai and Bj .

When both partitions A and B are trivial, that is each consists of the single set 27, we set
�u WD �.u; 27; 27/ and �1 WD �.1; 27; 27/, respectively.

Example 7.3. The graph �1 has two vertices and 27 edges. One has C1.�1;Z/ D Z27,
and H1.�1;Z/ ' Z26 consists of elements

P27
sD1 nses with

P27
sD1 ns D 0. There is a natural

degree 10 homomorphism DC1 W C1.�1;Q/! C1.�1;Q/ with eigenvalues 10; 1;�5, which
induces a homomorphism DH1 W H1.�1;Q/! H1.�1;Q/ with .C1/-eigenspace of dimen-
sion 20 and .�5/-eigenspace of dimension 6, respectively.

In particular, for the dual graph � of C , the group H1.�;Z/ comes with an endomor-
phism DH1 by Lemma 5.5.
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Theorem 7.4. Let t 2 EI;J WL1;L2 be a general point in a boundary divisor of H

corresponding to the above data. Then the toric rank of the PTK variety PT.C;D/ equals
the dimension of the .�5/-eigenspace H1.�.u;OG ; OH /;Q/.�5/ of the endomorphism DH1
on H1.�.u;OG ; OH /;Q/.

Proof. By Lemma 5.5, the toric rank of PT.C;D/ equals

rank Im.DH1 � 1/ D rank Ker.DH1 C 5/ D dim.H1 ˝Q/.�5/;

as desired.

In case both curves C1 and C2 are irreducible, the above result simplifies considerably.

Corollary 7.5. Assume that jOG j D jOH j D 1, that is, both groups G and H act tran-
sitively on the set 27. Then the toric rank of PT.C;D/ equals the dimension of invariant sub-
space of u in the 6-dimensional representation E6 ˝Q of W.E6/.

Corollary 7.5 agrees with the result of [39, p. 236] concerning the abelian part of the PTK
variety PT.C;D/.

Lemma 7.6. For u 2 W.E6/, the following statements hold:

(1) H1.�u;Q/.�5/ D .H1.�1;Q/.�5//u (that is, the u-invariant subspace).

(2) H1.�.u;A;B/;Q/.�5/ � H1.�u;Z/.�5/.

Proof. Suppose we have the following cycle decomposition:

u D C1 � C2 � � � � Ck 2 S27

and let n WD ord.u/ and `.Ci / denote the length of Ci . We write C1.�u;Z/ D
Lk
iD1ZeCi .

Then one has an orthogonal projection C1.�1;Z/� C1.�u;Z/ given by

e 7!
1

n

n�1X
iD0

ui � e

for an edge e, which identifies C1.�u;Z/ with a sublattice in C1.�1;Q/ via the injection

eCi 7!
1

`.Ci /

X
j2Ci

ej :

This induces a surjection fromH1.�1;Z/ toH1.�u;Z/, which clearly commutes withD, i.e.,
D.C1.�u;Z// � C1.�u;Z/. It follows thatH1.�u;Z/.�5/ is the projection ofH1.�1;Z/.�5/

to the .�5/-eigenspace in C1.�u;Q/ and that H1.�u;Q/.�5/ D .H1.�1;Q/.�5//u.
The graph �.u;A;B/ is obtained from �u by splitting the two vertices into aC b new

vertices. This can be obtained by inserting in place of the two vertices two trees with a and b
vertices – without changing H1 – and then removing the edges of these trees. Thus, one has
an inclusion H1.�.u;A;B/;Z/ � H1.�u;Z/, commuting with D, which gives an inclusion
H1.�.u;A;B/;Z/.�5/ � H1.�u;Z/.�5/.
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Lemma 7.7. The .�5/-eigenspaceH1.�.u;A;B/;Q/.�5/ is a subspace of the u-invar-
iant subspace .E6 ˝Q/u in the standard 6-dimensional W.E6/-representation.

Proof. Indeed, we have

H1.�1;Q/
.�5/
D E6 ˝Q;

therefore .H1.�1;Q/u/.�5/ D .E6 ˝Q/u.

7.8. In order to illustrate Theorem 7.4 in concrete situations, we classify all root sub-
lattices of E6. Recall that with the notation of Section 2, the standard roots in the E6 Dynkin
diagram are r2 D ˛12; : : : ; r6 D ˛56, and r1 D ˛123. In the extended Dynkin diagram eE6 there
is an additional root r0 D �˛max, so that 3r4 C 2r1 C 2r3 C 2r5 C r2 C r6 C r0 D 0.

Lemma 7.9. The following is the complete list of root sublattices L � E6:

(1) If dim.L/ D 6, then L is either E6, or isomorphic to A5A1, or A32.

(2) If dim.L/ D 5, then L is isomorphic to A5, D5, A4A1, A3A21, or A22A1.

(3) If dim.L/ D 4, then L is isomorphic to A4, D4, A22, A3A1, A2A21, or A41.

(4) If dim.L/ D 3, then L is isomorphic to A3, A2A1, or A31.

(5) If dim.L/ D 2, then L is isomorphic to A2, or A21.

(6) If dim.L/ D 1, then L is isomorphic to A1.

Furthermore, all the above sublattices (and the associated subgroups) can be obtained by
removing vertices from the extended E6 diagram eE6:

r2
�

r3
�

r4
�

r5
�

r6
�

�r1

?r0 .

If the root lattices L and L0 corresponding to reflections subgroups G and G0 of W.E6/ are
isomorphic, then they differ by an automorphism of the E6 lattice, and the corresponding sub-
groups G and G0 are conjugate in W.E6/.

Proof. We first note that there is a natural bijection between root sublattices L of E6
and subgroups G generated by reflections of W.E6/. One has Aut.E6/ D W.E6/˚ Z2, with
Z2 acting on E6 by multiplication by˙1. Any automorphism of E6 induces an automorphism
of W.E6/, and the kernel of � W Aut.E6/! AutW.E6/ is Z2. Finally, by [25, Section 2.3]),
all automorphisms of W.E6/ are inner, so that AutW.E6/ D W.E6/ and � is surjective.

Thus, the proof reduces to showing that all root sublattices of E6 are of the above types,
and that if L;L0 are isomorphic as abstract root lattices, then they differ by an element of
Aut.E6/. The statement that all such root sublattices correspond to proper subdiagrams of the
extended Dynkin diagram eE6 is an a posteriori observation.
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The standard method for finding all root sublattices of a given root lattice is described
in [10, 18]. A modern treatment can be found in [17, Theorem 1]. The method is to repeatedly
apply the following two procedures to Dynkin diagrams � , starting from � D E6: (1) remove
a node, and/or (2) replace one of the connected components �s of � by an extended Dynkin
diagram e�s and remove a node from it. Applying the above method repeatedly, we obtain all
the lattices listed above. The fact that isomorphic root sublattices differ by an automorphism of
E6 is a case by case computation. This can also be found in [46, Table 10.2].

7.10. Table 2 lists the orbits for one choice of roots (the other choices being similar)
for each type of lattice. The last column describes the degrees of the maps from the irredu-
cible components of C1 to R1. We keep the Schläfli notation ai ; bi ; cij for the elements of
the set 27, which is being identified with the set of lines of a cubic surface. The smooth (pos-
sibly disconnected) curve C1 is a 27-sheeted cover of R1 D P1, with branch points ¹piºi2I
with local monodromy given by the reflection wi , and an additional branch point q, with local
monodromy u�1, where u D …i2Iwi .

We apply Theorem 7.4 to compute the toric ranks associated to the divisors

EL WD
X
jI jD22

EI IL;A1;.127/ � H :

Since dim.L/ � 5, using Lemma 7.9, we have the following possibilities:

L 2 ¹E6; A5A1; A
3
2; A5;D5; A4A1; A3A

2
1; A

2
2A1º:

Proposition 7.11. The toric rank of each boundary divisor EL with L ¤ E6 is equal
to zero. The toric rank of EE6 is equal to 1.

Proof. Note that there are jOH j D 21 vertices on the right, of which fifteen vertices are
ends and thus can be removed without changing the homology of the graph. The remaining
six vertices each have degree 2. Contracting unnecessary edges, we reduce the calculation to
a graph with jOG j vertices and six edges. The six edges correspond to the six transpositions
appearing in the decomposition of w23 D w24 2 S27.

Assume jOG j D 1, which, by Table 2, is the case if and only if L D E6. Then

H1.�;Z/ D
6M
iD1

Zei

and
D.ei / D �

X
j¤i

ej :

Therefore H1.�;Q/.�5/ is 1-dimensional and generated by the element e1 C � � � C e6. The
other cases follow similarly by direct calculation.

Remark 7.12. For more details concerning the calculation of the toric rank in the case
L D D5, see Paragraph 8.2.

7.13. Although the divisor theory of H is quite complicated, we now show that most
of these divisors are contracted under the Prym–Tyurin map. We first establish the following
theorem.
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Sublattice Roots Orbits Degrees

E6 r1; : : : ; r6 ¹ai ; bi ; cij º 27

A5A1 r0; r2; : : : ; r6 ¹ai ; bi º, ¹cij º 15, 12

A32 ri ; i ¤ 4 ¹ai ; bi ; cij j 1 � i; j � 3º, ¹ai ; bi ; cij j 4 � i; j � 6º 93

¹cij j 1 � i � 3; 4 � j � 6º

D5 r1; : : : ; r5 ¹a6º, ¹ai ; b6; cij j 1 � i; j � 5º, ¹bi ; ci6 j 1 � i � 5º 1, 10, 16

A5 r2; : : : ; r6 ¹ai º, ¹bi º, ¹cij º 62; 15

A4A1 r0; r2; : : : ; r5 ¹ai ; cij j 1 � i; j � 4º, ¹bi ; c56 j 1 � i � 4º 2; 5; 102

¹a5; a6º, ¹bj ; cij j 1 � i � 4; 5 � j � 6º

A3A
2
1 r0; r2; r3 ¹a1; bi ; cij ; c56 j 2 � i; j � 4º, ¹b1º, ¹ai ; cij j 2 � i; j � 4º 82; 6; 4; 1

r4; r6 ¹a5; a6; c15; c16º, ¹bj ; cij j 2 � i � 4; 5 � j � 6º

A22A1 ri ; i ¤ 0; 4 ¹ai ; cij j 1 � i; j � 3º, ¹bi ; cij j 4 � i; j � 6º, ¹a4; a5; a6º 9; 62; 32

¹b1; b2; b3º, ¹cij j 1 � i � 3; 4 � j � 6º

A4 r2; : : : ; r5 ¹ai ; cij j 1 � i; j � 4º, ¹bi ; c56 j 1 � i � 4º, ¹a5º, ¹a6º 10; 53; 12

¹b5; ci6 j 1 � i � 4º, ¹b6; ci5 j 1 � i � 4º

D4 r1; r3; r4; r5 ¹a1; cij ; b6 j 2 � i; j � 5º, ¹ai ; c1i j 2 � i � 5º, ¹a6º 83; 13

¹b1º, ¹bi ; ci6 j 2 � i � 5º, ¹c16º

A22 r2; r3; r5; r6 ¹a1; a2; a3º, ¹b1; b2; b3º, ¹a4; a5; a6º, ¹b4; b5; b6º 9; 36

¹c12; c13; c23º, ¹c45; c46; c56º, ¹cij j 1 � i � 3; 4 � j � 6º

A3A1 r2; r3; r4; r6 ¹c56º, ¹a5; a6º, ¹b5; b6º, ¹a1; : : : ; a4º, ¹b1; : : : ; b4º 8; 6; 42; 22; 1

¹cij j 1 � i; j � 4º, ¹cij j 1 � i � 4; 5 � j � 6º

A2A
2
1 r1; r2; r3; r5 ¹a6º, ¹b6; c45º, ¹b1; b2; b3º, ¹c16; c26; c36º, ¹b5; b6; c64; c65º 62; 4; 32; 22; 1

¹a4; a5º, ¹ai ; cij j 1 � i; j � 3º, ¹cij j 1 � i � 3; 4 � j � 5º

A41 r0; r2; r4; r6 ¹a6º, ¹b1º, ¹a1; b6; c23; c45º, ¹a2; a3; c12; c13º 46; 13

¹a4; a5; c14; c15º, ¹b2; b3; c26; c36º, ¹b4; b5; c46; c56º
¹c24; c34; c25; c35º, ¹c16º

A3 r2; r3; r4 ¹c12; c13; c14; c23; c24; c34º, ¹c15; c25; c35; c45º 6; 44; 15

¹c16; c26; c36; c46º, ¹a1; a2; a3; a4º, ¹b1; b2; b3; b4º
¹ai º, ¹bi º; 5 � i � 6; ¹c56º

A2A1 r1; r2; r3 ¹b1; b2; b3º, ¹c14; c24; c34º, ¹c15; c25; c35º 6; 34; 23; 13

¹a1; a2; a3; c12; c13; c23º, ¹c16; c26; c36º
¹bj ; ckl º, ¹j; k; lº D ¹4; 5; 6º, ¹ai º; 4 � i � 6

A31 r2; r4; r5 ¹c13; c14; c23; c24º, ¹c15; c16; c25; c26º, ¹c35; c36; c45; c46º 43; 26; 13

¹ai ; aiC1º, ¹bi ; biC1º, ¹ci iC1º; i D 1; 3; 5

A2 r2; r3 ¹a1; a2; a3º, ¹b1; b2; b3º, ¹c12; c13; c23º, ¹c14; c24; c34º 36; 19

¹c15; c25; c35º, ¹c16; c26; c36º, ¹ai º, ¹bi º, ¹cij º; 4 � i; j � 6

A21 r2; r4 ¹c13; c23; c14; c24º, ¹c56º, ¹ai ; aiC1º, ¹bi ; biC1º; 4; 28; 17

¹cij ; ciC1j º, ¹aj º, ¹bj º, ¹ci iC1º; i D 1; 3; j D 5; 6

A1 r0 ¹ai ; bi º, ¹cij º; 1 � i; j � 6 26; 115

Table 2. Sublattices and orbits.
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Theorem 7.14. Assume that the image of a componentB ofEI WL1;L2 under the rational
Prym–Tyurin map H Ü A

perf
6 has codimension 1 in A

perf
6 . Then ¹jI j; jI cjº D ¹2; 22º.

Proof. With notation as in Paragraph 7.1, denote Pi WD PT.Ci ;Di / the PTK varieties
for the two parts ofR. Recall that by Lemma 5.4 the abelian part ab.PT/ is isogenous toP1�P2.

Without loss of generality, we may assume that i WD jI j � 12. Since

codim.Aperf
6 n

eA6/ � 2;

if the irreducible components Ri , i D 1; 2, of R image of B has codimension 1, then for a gen-
eral point of B , the toric rank kP of the corresponding PTK variety P is either 0 or 1.

Suppose first that kP D 0. In this case in fact P Š P1 � P2. If both P1 and P2 have
positive dimension, then P belongs to a subvariety of A6 parametrizing products and each such
subvariety has codimension greater than 1. So one of the Pi is zero. The parameter space of P1
has dimension at most i � 2, that of P2 has dimension at most 22 � i . Since the parameter
space of P is 20-dimensional and i � 12, we have P2 D 0, and dim.P1/ D 6. We deduce
that i D 22.

Now assume kP D 1. In this case the image of B is the boundary divisor D6 of A
perf
6 .

Then P1 � P2 must be a general abelian variety of dimension 5. Once again, one of the Pi is
zero. The assumption i � 12 implies P2 D 0, hence dim.P1/ D 5. The parameter space of P1
is 15-dimensional, which implies i � 17. Let ¹p1; : : : ; p`º D C1 \ C2 be the set of the nodes
of C , which also label the edges of � . For each i , let p0i and p00i be the points of C1 and C2,
respectively, that we identify to obtain pi on C . Choose the orientation of � in such a way that
each edge pi is oriented from C1 to C2. The extension

0! H 1.�;C�/! JC ! JC1 � JC2 ! 0

is given by the map � W H1.�;Z/! JC1 � JC2 sending the edge pi to p00i � p
0
i . We observe

that the extension

0! C� D .DT � 1/H
1.�;C�/! P ! ab.P /! 0

is given by the map �P W .DH1 � 1/H1.�;Z/! ab.P /. Clearly the composition of �P with
the isogeny ab.P /! P1 � P2 is the restriction of � to .DH1 � 1/H1.�;Z/ composed with
the projection JC1 � JC2 ! .DA � 1/.JC1 � JC2/ D P1 � P2.

Since P2 D 0, this means that the extension class of P does not depend on C2 (up to
a finite set). Therefore the moduli of C2 does not produce positive moduli for the extension
class of P . It follows that the cover C1 ! R1 depends on twenty moduli, hence R1 contains
at least 22 branch points, therefore i D 22.

The following result shows that the boundary divisors have many fewer irreducible com-
ponents than one would a priori expect. Recall that in Paragraphs 6.8 and 6.9 we introduced
the divisors Eazy WD

P
jI jD22EI WL1;A2;.36;19/ and Esyz WD

P
jI jD22EI WL1;A21;.210;17/

, respec-
tively.

Theorem 7.15. Assume that jI j D 22 and L2 D A2 or A21. Then EI WL1;L2 is empty
unless L1 D E6. In other words, for a general E6-admissible cover

Œ� W C D C1 [ C2 ! R1 [q R2; p1; : : : ; p24� 2 Eazy or Esyz;

the curve C1 is irreducible with monodromy W.E6/ over R1.
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Proof. Consider first the azygetic case L2 D A2. Then, as we saw in Paragraph 6.8, the
curve C2 has fifteen components, each of which intersects C1 in exactly one point. Therefore,
no component of C2 can connect two components of C1 and C1 is irreducible.

In the syzygetic case, as we saw in Paragraph 6.9, the curve C2 has sixteen components.
Of the components of C2, only the 4-sheeted cover (denoted by Z in Paragraph 6.9) intersects
C1 in two points. All other components of C2 intersect C1 in exactly one point. It follows
that C1 has at most two irreducible components. Looking now at Table 2, we see that there are
only two possibilities for the lattice L1, namely L1 D E6 or L1 D A5A1.

We now eliminate the possibility L1 D A5A1 in the syzygetic case. It is a consequence
of Lemma 7.9 that the A5 summand of L1 is the orthogonal complement of the A1 summand.
Hence the latticeL1 and the groupG1 generated by the reflectionsw1; : : : ; w22 are determined
by theA1 sublattice. Since all reflections are conjugate, we can assume that theA1 summand is
generated by the reflection w0 in the root r0 (see 7.10). As hG1; w23i D hG1; w24i D W.E6/,
the reflections w23; w24 do not belong to G1. Therefore the pairs .w0; w23/, .w0; w24/ are
azygetic.

After a permutation of the indices ¹1; : : : ; 6º, we can assume that w23 is the reflection
in the root ˛123 and w24 is the reflection in the root ˛145 (see, e.g., [13, Section 9.1]). The
composition w23 � w24 2 S27, contains the double transposition .a1; b6/.c23; c45/ which acts
on the 4-sheeted cover Z. However, w23 � w24 also contains the transposition .a2; c13/ which
acts on a degree 2 component of C2, i.e., the points corresponding to a2 and c13 come together
over the node. Looking at the orbits of C1 in Table 2 in the A5A1 case, we see that the points
a2 and c13 belong to two different components of C1 and cannot come together over the node,
which is a contradiction.

We now consider the components of the divisor E0 introduced in 6.7. Recall that

EL WD
X
jI jD22

EI IL;A1;.127/ � H :

Theorem 7.16. For L ¨ E6 the divisor EL is contracted by PT.

Proof. Let Œ� W C WD C1 [ C2 ! R1 [q R2� be a general element of a component B
ofEL withL ¨ E6. By Proposition 7.11, the toric rank of P WD PT.C;D/ is 0. As in the proof
of Theorem 7.14 and with the notation there, we have

P D P1 � P2 D P1 D PT.C1;D1/

because all the components of C2 are rational. Furthermore, since C1 ! R1 is not ramified
at q, the isomorphism class of C1 and hence also of P1 is independent of the choice of the
point q. It follows that P D P1 depends on at most 19 D dim.M0;22/ parameters, hence B is
contracted by PT.

We summarize the results of this section in terms of the Hurwitz space Hur WD H=S24:

Theorem 7.17. The only boundary divisors of Hur that are not contracted under the
Prym–Tyurin map PT W HurÜ A6 are DE6 , Dsyz and Dazy. The divisor DE6 maps onto the
boundary divisor D6 of A6, whereas Dsyz and Dazy map onto divisors not supported on the
boundary of A6.
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8. Ordinary Prym varieties regarded as Prym–Tyurin–Kanev varieties

The aim of this section is to illustrate how 6-dimensional Prym varieties appear as
PTK varieties of type E6 and thus prove Theorem 5. The Prym moduli space R7 has codimen-
sion 3 inside A6, where we identify R7 with the image of the generically injective Prym
map P W R7 ! A6. We shall show that the boundary divisor DD5 of Hur is an irreducible
component of PT�1.R7/ and we shall explicitly describe the 2-dimensional fibers of the
restriction PTDD5 W DD5Ü R7.

8.1. Consider an admissible cover Œ� W C D C1 [ C2 ! R1 [R2� in the divisor DD5
of Hur. We choose such a cover as follows. The cover C1 ! R1 hasD5-monodromy generated
by the roots r1; : : : ; r5, and it is ramified at 22 distinct points. The local monodromy at each
branch point is given by one of the reflections wi 2 W.D5/ associated to ri , choosing the
ordering such that

Q22
iD1wi D 1. The cover C2 ! R2 has A1-monodromy generated by the

root r0, and is branched at two points. Both covers are unramified at the point q 2 R1 \R2.
As listed in Table 2, we have the following irreducible components and orbits for C1:

F1W ¹b1; b2; b3; b4; b5; c16; c26; c36; c46; c56º;

F2W ¹a1; a2; a3; a4; a5; c12; c13; c14; c15; c23; c24; c25; c34; c35; c45; b6º;

F0W ¹a6º;

and the following irreducible components and orbits for C2:

1 � i � 6; Hi W ¹ai ; biº;

7 � i � 21; Hi W ¹ck.i/`.i/º for some choice of integers k.i/ < `.i/ between 1 and 6:

One computes that the three components F1; F2 and F0 of C1 have genera 13; 29 and 0, and
map ontoR1 with degree 10, 16 and 1, respectively. The components of C2 are all rational with
H1; : : : ;H6 mapping 2 W 1 to R2 and H7; : : : ;H21 mapping isomorphically. The description
of the orbits given above also specifies the points of intersection Fi and Hj . For instance, H6
intersects F2 at a point corresponding to b6 and it intersects F0 at a point corresponding to a6.

8.2. In order to compute the toric rank of the Prym–Tyurin varietyP WD .D � 1/.JC1/,
we apply the correspondence D to the homology group H1.� 0;Z/, where � 0 denotes the sim-
plified dual graph of the stable curve C1 [ C2 (see Paragraph 4.5 for the notation). The graph
� 0 consists of two vertices joined by five edges: e1 WD .b1; a1/, e2 WD .b2; a2/, e3 WD .b3; a3/,
e4 WD .b4; a4/, e5 WD .b5; a5/ andH1.� 0;Z/ D

L4
iD1Z .ei � eiC1/ (see Paragraph 3.2). One

computes

D.à.e1 � e2// D D.a1 � b1/ �D.a2 � b2/ D b2 � a2 � .b1 � a1/ D à.e1 � e2/:

By Remark 2.6, D commutes with à, hence

D.e1 � e2/ D .e1 � e2/:

Similarly, one checks that

D.ei � eiC1/ D .ei � eiC1/; i D 1; : : : ; 4;

hence .D � 1/H1.� 0;Z/ D 0. Therefore, the Prym–Tyurin variety P WD .D � 1/.JC1/ has
toric rank 0 and it is contained in JC1, since JC2 D ¹0º.
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8.3. As is apparent from the description of the orbits, the correspondence D restricts
to a fixed-point-free involution � W F1 ! F1, a correspondence D2 of valence 5 on F2, a cor-
respondence D12 W F1 ! F2 and its transpose D21 W F2 ! F1 of degree 8 over F1 and of
degree 5 over F2.

The variety P is the image of the following endomorphism of JC1 D JF1 � JF2: 
� � 1 D21

D12 D2 � 1

!
:

8.4. Suppose that f W F1 ! Y is the induced unramified double cover on the curve
Y WD F1=h�i of genus 7. Note that the degree 10map �1 W F1 ! R1 factors through a degree 5
map h W Y ! R1. The image Q1 WD .� � 1/JF1 � JF1 is the ordinary Prym variety P.F1; �/
associated to the double cover Œf W F1 ! Y � 2 R7.

8.5. Observe that the relationship between the curves F1 and F2 (or between the tower
F1

f
�! Y

h
�! R1 and the map �2 W F2 ! R1) is an instance of the pentagonal construction [15,

Section 5.17]. This is the n D 5 case of the n-gonal construction, see [15, Section 2] or [29,
Section 1], which applies to covers

F1
f
! Y

h
! R1

whose Galois group is the Weyl group W.Dn/. The idea is to consider the following curve
inside the symmetric product F .n/1 :

h�F1 WD
®
G 2 F

.n/
1 W Nmf .G/ D h

�1.t/ for some t 2 R1
¯
:

The induced map h�F1 ! R1 is of degree 2n D 32 and one checks that above a branch point
t 2 R1 there are exactly 2n�2 D 8 simple ramification points in h�F1.

Proposition 8.6. The map h�F1 is the union of two isomorphic components

h�F1 D X0 tX1

with X0 ' X1 being smooth curves of genus 1C 2n�3.nC g.Y / � 5/ D 29.

Proof. The splitting is explained in [15, Section 2.2] and [29, Section 1]. The smooth-
ness is proved in [29, Lemma 1.1]. The genus calculation follows from the Hurwitz for-
mula.

Two divisors G1; G2 2 h�F1 with Nmf .G1/ D Nmf .G2/ belong to the same compo-
nent if they share an even number of points of F1.

We specialize to the case n D 5. Let X D X0 be the component of h�F1 whose fiber
over a point t 2 R1 can be identified with the class of the divisor c16 C � � � C c56. The proof of
the following result is immediate.

Proposition 8.7. The map  W F2 ! X given by x 7! D21.x/ 2 h�F1 is an isomor-
phism.

Remark 8.8. Under the above identification, the restriction D2 of the Kanev (inci-
dence) correspondence coincides with the correspondence D defined in [29, Section 2]. Also,
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the restriction D21 of the Kanev correspondence coincides with the correspondence S defined
in [28, Section 2]. It follows from [29, Corollary 6.2] that the image Q2 of the ordinary Prym
varietyQ1 in JF2 byD21 is the eigen-abelian variety ofD2 for the eigenvalue�nC2 D �3. It
also follows from [29, Section 6.6] and [32, Theorem 3.1] that in this caseQ2 is a Prym–Tyurin
variety of dimension 6 and exponent �.�3/C 1 D 4 for the correspondence D2. The restric-
tion � of the correspondenceD � 1 toQ1 � JF1 gives the sequence of isogenies of principally
polarized abelian varieties

Q1
�
! P ! Q2; x1 7! ..� � 1/x1;D12x1/ 7! D12x1:

Proposition 8.9. The map � factors through multiplication by 2 to induce an isomor-
phismQ1 WD P.F1; �/ ' P and a surjectionQ1 ! Q2 WD P.F2;D2/ whose kernel is a max-
imal isotropic subgroup H (with respect to the Weil pairing) of the group of points of order 2
in Q1.

Proof. For an abelian variety A, we denote by nA W A! A the morphism given by mul-
tiplication by n 2 Z. It follows from [28, Corollary 2.3] that D21 ıD12 D 8Q1 . A straightfor-
ward generalization of the proof of [28, Proposition 3.3] implies that D12 D ' ı 2Q1 , for an
isogeny ' W Q1 ! Q2 such that '�‚Q2 D ‚Q1 , where ‚Qi is the polarization of Qi . There-
fore we have ' ı 't D 2Q2 . It follows that the kernel of ' is a maximal isotropic subgroup H
of the group Q1Œ2� of points of order 2 in Q1. Since the restriction of � � 1 to Q1 is �2Q1 , its
kernel is the subgroup of points of order 2. Therefore � D  ı 2Q1 , where now  W Q1 ! P

is injective, hence an isomorphism.

9. The Weyl–Petri realization of the Hodge eigenbundles

Since the pull-back of the Hodge class from A6 is precisely the class �.�5/ on Hur,
describing it in terms intrinsic to the Hurwitz space is of obvious importance. Here we show
that, at least on an open dense subset of Hur, both Hodge eigenbundles E.C1/ and E.�5/ admit
a Petri-like incarnation, which makes them amenable to intersection-theoretic calculations.

9.1. For a smooth E6-cover Œ� W C ! P1� 2 Hur, set

L WD ��.OP1.1// 2 W
1
27.C /

and let
�.L/ W H 0.C;L/˝H 0.C; !C ˝ L

_/! H 0.C; !C /

be the Petri map given by multiplication of global sections. Assume h0.C;L/ D 2, so that
h0.C; !C ˝ L

_/ D 20. If, as expected, for a general choice of ŒC; L� 2 Hur, the map �.L/
is injective, then Im�.L/ is a codimension 6 subspace of H 0.C; !C /. Remarkably, this is
the .C1/-eigenspace of H 0.C; !C /. At the end of this paper, we shall establish that a general
covering from Hur is Petri general:

Theorem 9.2. For a general point ŒC; L� 2 Hur, the Petri map �.L/ is injective.

Postponing the proof, we have the following description of the Hodge eigenbundles.
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Theorem 9.3. Let ŒC; L� 2 Hur be an element corresponding to a nodal curve of genus
46 and a base point free line bundle L 2 W 1

27.C /, such that h0.C;L/ D 2 and the Petri map
�.L/ is injective. One has the following canonical identifications:

H 0.C; !C /
.C1/
D H 0.C;L/˝H 0.C; !C ˝ L

_/;

H 0.C; !C /
.�5/
D

�
H 0.C;L˝2/

S2H 0.C;L/

�_
˝

^2
H 0.C;L/:

Proof. Let L be an E6-pencil on C . Consider a general divisor � 2 jLj and the exact
sequence

0! OC
�s
! L! O�.�/! 0

induced by a section s 2 H 0.C;L/ with div.s/ D � , and its cohomology sequence

0! H 0.C;OC /! H 0.C;L/! H 0.O�.�//(9.1)
˛
! H 1.C;OC /! H 1.C;L/! 0:

There is an action of W.E6/ on H 0.O�.�// compatible with the trivial action on H 0.C;L/,
because L and H 0.L/ are pull-backs from P1. We identify the space H 0.O�.�// with the
vector space generated by the 27 lines on a smooth cubic surface; each line is represented
by a point of � and the incidence correspondence of lines is the Kanev correspondence D.
Therefore the representation of W.E6/ on H 0.O�.�// splits into the sum of three irreducible
representations: the trivial 1-dimensional one, the 6-dimensional one which coincides with the
representation on the primitive cohomology of a cubic surface and the 20-dimensional one,
which coincides with the one on the space of linear equivalences on a cubic surface, see for
instance [6].

The Kanev correspondence D induces an endomorphism on H 0.O�.�// compatible
with the endomorphism D_ 2 End.H 1.C;OC // via the cohomology sequence (9.1). On a
cubic surface, the action of the incidence correspondence on the primitive cohomology is equal
to multiplication by �5 and its action on the space of rational equivalences is the identity.
Therefore this is also how the action on H 0.O�.�// can be described. It follows that the
image ˛.H 0.O�.�/// contains the .�5/-eigenspace, that is, we have an inclusion

.H 0.C; !C /
.�5//_ � ˛.H 0.O�.�/// D

�
H 0.C; !C /

H 0.C;L/˝H 0.C; !C ˝ L_/

�_
:

When the Petri map �.L/ is injective, the two spaces appearing in this inclusion have the same
dimension and the inclusion becomes an equality, which establishes the first claim.

To prove the second claim, we start by observing that the Base Point Free Pencil Trick
yields the sequence 0!

V2
H 0.C;L/˝ L_ ! H 0.C;L/˝OC ! L! 0. After tensoring

with L and taking cohomology, we arrive at the following exact sequence:

0!
H 0.C;L˝2/

Sym2H 0.C;L/
!

^2
H 0.C;L/˝H 1.C;OC /

u
! H 0.C;L/˝H 1.C;L/! 0:

To describe the map u in this sequence, let us choose a basis s1; s2 2 H 0.C;L/. Then

u.s1 ^ s2 ˝ f / D s1 ˝ .s2 � f / � s2 ˝ .s1 � f / 2 H
0.C;L/˝H 1.C;L/:

It follows via Serre duality, that Ker.u/ consists of all linear maps v W H 0.C; !C /! C van-
ishing on H 0.C;L/˝H 0.C; !C ˝ L

_/ � H 0.C; !C /, which proves the claim.
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The identifications provided by Theorem 9.3 extend to isomorphisms of vector bundles
over a partial compactification of Hur which we shall introduce now. This allows us to express
to Hodge classes �.C1/ and �.�5/ in terms of certain tautological classes and define the Petri
map globally at the level of the moduli stack.

9.4. Let eM46 be the open subvariety of M46 parametrizing irreducible curves and
denote by G 127 !

eM46 the stack parametrizing pairs ŒC; L�, where ŒC � 2 eM46 (in particular C
is a stable curve) and L is a torsion free sheaf of degree 27 on C with h0.C;L/ � 2. Note that
G 127 is a locally closed substack of the universal Picard stack of degree 27 over eM46. Let GE6 be
the locus of pairs ŒC; L� 2 G 127, where L is locally free and base point free with h0.C;L/ D 2
and the monodromy of the pencil jLj is equal to W.E6/. We denote by � W GE6 ! eM46 the
projection map given by �.ŒC;L�/ WD ŒC �.

9.5. One has a birational map ˇ W HurÜ GE6 � G 127 which can be extended over each
boundary divisor of Hur not contracted under the Prym–Tyurin map (see Theorem 7.17 for
a description of these divisors). Let t WD Œ� W C D C1 [ C2 ! R1 [q R2� be a general point
of one of the divisorsDE6 ,Dazy orDsyz, where we recall that Ci WD ��1.Ri / for i D 1; 2 and
only two branch points of � specialize to R2. We assign to t the point

Œst.C /; st.f �OR1[R2.1; 0//� 2 GE6 ;

where st is the map assigning to a nodal curve X its stable model st.X/ and to a line bundle
L on X the line bundle st.L/ on st.C / obtained by adding base points to each destabilizing
component of X which is contracted. Geometrically, for the general point of each of the divi-
sors DE6 , Dazy or Dsyz, the map ˇ W HurÜ GE6 contracts the curve C2. We still denote by
Dazy;Dsyz andDE6 the images under ˇ of the boundary divisors denoted by the same symbols
on Hur.

We now describe the effect of ˇ along each of the boundary divisors in question. If
t 2 Dazy is a general point, then C1 is smooth and L WD ��C1.OR1.1// 2 W

1
27.C1/ has six

triple ramification points over the branch point q 2 R1. Then we have ˇ.t/ D ŒC1; L� 2 GE6 .
If, on the other hand, t is a general point of Dsyz, then retaining the notation of Remark 6.12,
C1 is a smooth curve of genus 45, meeting the smooth rational component Z in two points
u; v 2 ��1.q/. Then ˇ.t/ D ŒC 0; L�, where C 0 WD C1=u � v is an irreducible 1-nodal curve
of genus 46 and L 2 W 1

27.C
0/ is the pencil inducing the map � . Finally, if t 2 DE6 , then

ˇ.t/ D ŒC 0; L�, where C 0 is a 6-nodal curve obtained from C1 by identifying the points of
��1.q/ which belong to the same component of C2.

We record the formula

� D
33

46
ŒD0�C

7

46
ŒDazy�C

17

92
ŒDsyz�C � � � 2 CH

1.GE6/

for the Hodge class at the level of GE6 . The factor of 1
2

in front of ŒDsyz� compared to (6.4)
is explained by the fact that the general point of Dsyz � Hur has an automorphism of order 2,
whereas its image under ˇ has only trivial automorphisms.

9.6. At the level of GE6 one can introduce several tautological classes along the lines
of [20]. We denote by f W CE6 ! GE6 the universal genus 46 curve and choose a univer-
sal line bundle L 2 Pic.CE6/ satisfying the property Ljf �1.ŒC;L�/ D L 2 W

1
27.C /, for each
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point ŒC; L� 2 GE6 . We then define the following tautological classes:

A WD f�.c
2
1.L//; B WD f�.c1.L/ � c1.!f //; � WD f�.c

2
1.!f // 2 CH

1.GE6/:

Via Grauert’s theorem, we observe that V WD f�L is a locally free sheaf of rank 2 on GE6 .
Similarly, the sheaf

V2 WD f�.L
˝2/

is locally free of rank 9 over GE6 . Globalizing at the level of moduli the multiplication map
of global sections Sym2H 0.C;L/! H 0.C;L˝2/, we define the rank 6 vector bundle E2
over GE6 via the following exact sequence:

0! Sym2.V/! V2 ! E2 ! 0:

9.7. Note that the choice of L is not unique; replacing L by L0 WD L˝ f �.˛/, where
˛ 2 Pic.GE6/, and denoting the corresponding tautological classes by A0;B0 2 CH 1.GE6/,
respectively, we find the relations

A0 D AC 2 � 27 � ˛ and B0 D BC .2 � 46 � 2/ � ˛:

It follows that B0 � 5
3
A0 D B � 5

3
A, that is, the class

 WD B �
5

3
A 2 CH 1.GE6/

is well defined and independent of the choice of a Poincaré bundle L. We now describe in
a series of calculations the Chern classes of the vector bundles we have just introduced.

Proposition 9.8. The following relations hold in CH 1.GE6/:

c1.V2/ D � �BC 2A and c1.R
1f�.!f ˝L_// D �C

A

2
�

B

2
� c1.V/:

Proof. We apply Grothendieck–Riemann–Roch to f W CE6 ! GE6 and write

c1.V2/ D f�

��
1C 2c1.L/C 2c

2
1.L/

�
�

�
1 �

c1.!f /

2
C

c21.�
1
f
/C c2.�

1
f
/

12

��
2

:

Now use Mumford’s formula f�.c21.�
1
f
/C c2.�

1
f
// D 12�, see [27, p. 49], and conclude.

9.9. Theorem 9.2 (to be proved in Section 10) shows that the Petri map�.L/ is injective
for a general point of ŒC; L� 2 GE6 . However, we cannot rule out the (unlikely) possibility that
�.L/ is not injective along a divisor N on GE6 . We denote by n WD ŒN� 2 CH 1.GE6/. This
(possibly zero) class is effective. Globalizing Theorem 9.3, we obtain isomorphisms of vector
bundles over GE6 �N:

E.C1/ D R1f�.!f ˝L_/˝ V and E.�5/ D E_2 ˝ det.V/:

Extending this to GE6 , there exists an injection of vector bundles

R1f�.!f ˝L_/˝ V ,! E.C1/;

with quotient a sheaf supported on N and on possibly other higher codimension cycles.
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Proposition 9.10. The following formulas hold at the level of GE6:

�.C1/ D 2� �  C n and �.�5/ D ��C  � n:

Proof. We have �.C1/ D c1.R1f�.!f ˝L_/˝ V/ � ŒN� 2 CH 1.GE6/ and the rest is
a consequence of Theorem 9.3 coupled with Proposition 9.8.

Proposition 9.11. We have A D 27c1.V/ 2 CH
1.GE6/.

Proof. Recall that GE6 has been defined as a locus of pairs ŒC; L� such that L is a base
point free pencil. In particular, the image under f of the codimension 2 locus in CE6 where
the morphism of vector bundles f �.V/! L is not surjective is empty, hence by Porteous’
formula

0 D f�
�
c2.f

�V/ � c1.f
�V/ � c1.L/C c

2
1.L/

�
D �27c1.V/CA;

as desired.

Essential in all the ensuing calculations is the following result expressing the divisorDazy

in terms of Hodge eigenbundles and showing that its class is quite positive:

Theorem 9.12. The following relation holds:

ŒDazy� D 5�C �
.�5/
� 3ŒDE6 � �

5

6
ŒDsyz�C n 2 CH 1.GE6/:

Proof. The idea is to represent Dazy as the push-forward of the codimension two locus
in the universal curve CE6 of the locus of pairs ŒC; L; p� such that h0.C;L.�3p// � 1. We
form the fiber product of the universal curve CE6 together with its projections:

CE6
�1
 � CE6 �GE6

CE6
�2
�! CE6 :

For each k � 1, we consider the locally free jet bundle Jk.L/ defined, e.g., in [19], as a locally
free replacement of the sheaf of principal parts P k

f
.L/ WD .�2/�.�

�
1 .L/˝ I.kC1/�/ on CE6 .

Note that P k
f
.L/ is not locally free along the codimension two locus in CE6 where f is not

smooth. To remedy this problem, we consider the wronskian locally free replacements J k
f
.L/,

which are related by the following commutative diagram for each k � 1:

0 // �k
f
˝L //

��

P k
f
.L/

��

// P k�1
f

.L/

��

// 0

0 // !˝k
f
˝L // J k

f
.L/ // J k�1

f
.L/ // 0.

Here �k
f

denotes the OGE6
-module Ik�=I.kC1/�. The first vertical row here is induced by

the canonical map �k
f
! !˝k

f
, relating the sheaf of relative Kähler differentials to the relative

dualizing sheaf of the family f . The sheaves P k
f
.L/ and J k

f
.L/ differ only along the codimen-

sion 2 singular locus of f . Furthermore, for each integer k � 0 there is a vector bundle mor-
phism �k W f

�.V/! J k
f
.L/, which for points ŒC; L; p� 2 GE6 such that p 2 Creg, is just the
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evaluation morphism H 0.C;L/! H 0.Lj.kC1/p/. We specialize now to the case k D 2 and
consider the codimension two locus Z � CE6 where �2 W f �.V/! J 2

f
.L/ is not injective.

Then, at least over the locus of smooth curves, Dazy is the set-theoretic image of Z. A simple
local analysis shows that the morphism �2 is simply degenerate for each point ŒC; L; p�, where
p 2 Csing. Taking into account that a general point of Dazy corresponds to a pencil with six
triple points aligned over one branch point, and that the stable model of a general element of
the divisor Dsyz corresponds to a curve with one node, whereas that of a general point of DE6
to a curve with six nodes and so on, we obtain the formula

6ŒDazy� D f�c2

�
J 2
f
.L/

f �.V/

�
� 6ŒDE6 � � 3ŒDsyz� 2 CH

1.GE6/:

The fact that Dsyz appears with multiplicity 3 is a result of the following local computation.
We choose a family F W X ! B of curves of genus 46 over a smooth 1-dimensional base
B such that X is smooth, and there is a point b0 2 B such that Xb WD F�1.b/ is smooth
for b 2 B n ¹b0º, whereas Xb0 has a unique node N 2 X . Assume also that L 2 Pic.X/ is a
line bundle such that Lb WD LjXb is a pencil with E6-monodromy on Xb for each b 2 B , and
furthermore ŒXb0 ; Lb0 � 2 Dsyz. Choose a local parameter t 2 OB;b0 and x; y 2 OX;N such that
xy D t represents the local equation of X around the point N . Then !F is locally generated
by the meromorphic differential � D dx

x
D �

dy
y

. We choose two sections s1; s2 2 H 0.X;L/,
where s1 does not vanish at N and s2 vanishes with order 2 at N along both branches of Xb0 .
Then we have the relation s2;N D .x2 C y2/s1;N between the germs of the two sections s1
and s2 at N . We compute

d.s2/ D 2xdx C 2ydy D 2.x
2
� y2/� and d.x2 � y2/ D 2.x2 C y2/�:

In local coordinates, the map H 0.Xb0 ; Lb0/! H 0.Xb0 ; Lb0j3N / is then given by the 2 � 2
minors of the following matrix: 

1 0 0

x2 C y2 x2 � y2 x2 C y2

!
:

This completes the proof that ŒDsyz� appears with multiplicity 3 in the degeneracy locus.
We compute

c1.J
2
f .L// D 3c1.L/C 3c1.!f /

and
c2.J

2
f .L// D 3c

2
1.L/C 6c1.L/ � c1.!f /C 2c

2
1.!f /;

hence

f�c2

�
J 2
f
.L/

f �.V/

�
D 3AC 6B � 3.d C 2g � 2/c1.V/C 2�1 D 6 C 2�1:

Furthermore,
�1 D 12� � 6ŒDE6 � � ŒDsyz� � � � � ;

hence after applying Proposition 9.10, we obtain the claimed formula.

We can also express the divisors Dsyz and Dazy in terms of the Hodge eigenclasses.
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Proposition 9.13. The following formulas hold in CH 1.GE6/:

ŒDazy� D
25

16
�C

51

16
�.�5/ C

3

4
ŒDE6 �C

51

16
n

and
ŒDsyz� D

33

8
� �

21

8
�.�5/ �

9

2
ŒDE6 � �

21

8
n:

Proof. Combine Theorem 9.12 with the expression of the Hodge class � in terms of the
boundary divisor classes on GE6 .

Corollary 9.14. We have

ŒDsyz� �
33

8
� �

21

8
�.�5/ �

9

2
ŒDE6 �:

We are now in a position to determine the class of the ramification divisor of the
Prym–Tyurin map in terms of the classes already introduced. Recall thatD6 WD A6 nA6 is the
irreducible boundary divisor of the perfect cone compactification of A6 and �1 2 CH 1.A6/

denotes the Hodge class. Note that K
A6
D 7�1 � ŒD6�, see [43].

Theorem 9.15. The ramification divisor of the map PT W GE6Ü A6 is given by

ŒRam.PT/� D
73

32
� �

221

32
�.�5/ �

9

8
ŒDE6 �C

3

32
n:

Proof. The general point of DE6 corresponds to a semiabelian variety of torus rank 1,
whereas for all the other boundary divisors in br�.eB2/ the corresponding torus rank is zero.
Moreover, PT�.D6/ D DE6 (recall that in this proof, the map PT is defined on the partial
compactification GE6 , the formula above does not hold on Hur). Via the Hurwitz formula, we
obtain that

ŒRam.PT/� D KGE6
� PT�.7�1 � ŒD6�/ D KGE6

� 7�.�5/ C ŒDE6 �:

Recall that the canonical class KHur has been expressed in terms of boundary divisors on Hur.
Using Theorem 9.12, we can pass to a new basis in CH 1.GE6/ involving the Hodge eigenbun-
dles and one boundary divisor, namely DE6 . After simple manipulations we obtain

KGE6
D
73

32
�C

3

32
�.�5/ �

17

8
ŒDE6 �C

3

32
n;

which then leads to the claimed formula.

We now complete the proof of Theorem 3. In what follows, we revert to the notation of
the introduction and PT W HurÜ A6 denotes the extended Prym–Tyurin map.

Theorem 9.16. The canonical class of the partial compactification GE6 of Hur is big.
It follows that there exists a divisor E on Hur with PT�.E/ D 0 such that KHur CE is big.

Proof. The varieties GE6 and Hur differ in codimension one only along boundary divi-
sors that are collapsed under the Prym–Tyurin map. Showing thatKGE6

is big implies therefore
the second half of the claim, and thus Theorem 3. Using Theorem 6.14 (note the caveat about
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the already mentioned factor 1
2

in front of the coefficient of ŒDsyz� when passing from Hur
to GE6), coupled with Proposition 9.13, we write

KGE6
D �

25

46
ŒDE6 �C

19

46
ŒDsyz�C

17

46
ŒDazy�

� �
25

46
ŒDE6 �C

19

46
ŒDsyz�C

17

46

�
25

16
�C

51

16
�.�5/ C

3

4
ŒDE6 �

�
D
867

736
�.�5/ C

425

736

�
� �

196

425
ŒDE6 �

�
:

Putting Proposition 6.19 together with the fact that �.�5/ is big, the conclusion follows by
comparing the ratio of the � and ŒDE6 �-coefficients of the last expression. Indeed, it is shown
in (6.20) by pulling-back the Moriwaki class from M46 that the Q-class

� �
6

8C 4
g

ŒDE6 � D � �
23

31
ŒDE6 �

is effective on GE6 . It follows that � � 196
425
ŒDE6 � is then also an effective class, hence KGE6

is big.

10. The ramification divisor of the Prym–Tyurin map

The aim of this section is to describe the differential of the Prym–Tyurin map PT and
prove Theorem 4. In this section, the tangent spaces we consider are those of the corresponding
moduli stacks. As in the previous section, we fix a smooth E6-cover � W C ! P1 with branch
divisor B WD p1 C � � � C p24 and denote L WD ��.OP1.1//.

Via the étale map br W Hur!M0;24=S24, we identify the cotangent space T _
ŒC;��

.Hur/
with the spaceH 0.P1; !˝2

P1
.B//. Further, the cotangent space T _

ŒP.C;f /�
.A6/ is identified with

Sym2H 0.C; !˝2C /.�5/.

Definition 10.1. LetR andA be the ramification and antiramification divisors of � , that
is, the effective divisors of C defined by the formulas

��.B/ D 2RC A; KC D �
�.KP1/CR; 2KC C A D �

�.2KP1 C B/:

Definition 10.2. Let tr W ��OC .�A/! OP1 be the trace map on regular functions. For
an open affine subset U � P1, a regular function ' 2 �.U;OC .�A//, and a point y 2 U , one
has

tr.'/.y/ D
X

x2f �1.y/

'.x/;

counted with multiplicities. Note that tr is surjective. Let ��OC .2KC /! OP1.2KP1 C B/ be
the induced trace map at the level of quadratic differentials. We denote the corresponding map
on global sections by Tr W H 0.C; !˝2C /! H 0.P1; !˝2

P1
.B//.

Theorem 10.3. The codifferential

.dPT /_ŒC;�� W T
_
ŒPT.C;�/�.A6/! T _ŒC;��.Hur/
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is given by the following composition of maps:

Sym2H 0.!C /
.�5/ ,! Sym2H 0.!C /

mul
��! H 0.!˝2C /

Tr
��! H 0.!˝2

P1
.p1 C � � � C p24//:

Proof. The second map is the codifferential of the Torelli map M46 ! A46. The first
map is the codifferential of the map from the moduli space of ppav of dimension 46 together
with an endomorphism D having eigenvalues .C1/ and .�5/ (with eigenspaces of dimensions
20 and 6, respectively) to A6. The third map is the codifferential of the map Hur!M46.

10.4. We now analyze the differential dPT at a point ŒC; �� 2 Hur in detail. For each of
the 24 branch points pi 2 P1, let ¹rij º6jD1 � C be the ramification points lying over pi . The
formal neighborhoods of the points rij are naturally identified, so that we can choose a single
local parameter x and write any quadratic differential  2 H 0.C; !˝2C / as

 D 'ij .x/ � .dx/
˝2 near rij 2 C:

Choose a local parameter y at the point pi , so that � is given locally by the map y D x2. We
can use the same local parameter at the remaining fifteen antiramification points ¹qikº15kD1 over
pi at which � is unramified, and write  D  ik.y/ � .dy/˝2 near qik 2 C for k D 1; : : : ; 15.

Lemma 10.5. The kernel of the trace map Tr W H 0.C; !˝2C /! H 0.P1; !˝2
P1
.B// con-

sists of quadratic differentials  such that

6X
jD1

'ij .rij / D 0 for i D 1; : : : ; 24:

Proof. From y D x2, we get dy D 2x dx and .dx/˝2 D .dy/˝2

4y
. We have

Tr./ D

 
1

4y

6X
jD1

.'ij .x/C 'ij .�x//C

15X
kD1

 ik.y/

!
� .dy/˝2 near pi :

Suppose Tr./ D 0. Then the leading coefficient 1
2

P6
jD1 'ij .rij / is zero. Conversely, assume

that the 24 expressions are zero. Then

Tr./ 2 H 0.P1; !˝2
P1
/ D 0;

as desired.

In order to understand the condition in Lemma 10.5, we recall the action of the endomor-
phism D W H 0.C; !C /! H 0.C; !C / induced by the Kanev correspondence in local coordi-
nates at the points p 2 C and q 2 ��1.p/, see also Theorem 9.3.

10.6 (The unramified case). Suppose that � is unramified at p, thus

� WD ��1.p/ D

27X
sD1

qs:

Since � is étale, we can use the same local parameter y at p, as well as at each qs 2 C . Let
˛ 2 H 0.C; !C /. In a formal neighborhood of each point qs , we write locally ˛ D ˛s.y/dy.
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Assume p D Œ0 W 1� 2 P1. One has
27X
sD1

Resqs

�
˛ �
x0

x1

�
D 0;

so
P27
sD1 ˛s.qs/ D 0. The action of the correspondence on .˛s/ is described by an endomor-

phism of OO26 D ¹
P27
sD1 ˛s D 0º �

OO27, where OO D OOP1;p. This endomorphism is given by
the same integral .26 � 26/-matrix as the action of D on H 0.O�.�//=H

0.C;L/, as in the
proof of Theorem 9.3. Thus, D has two eigenvalues .C1/ and .�5/ with the eigenspaces of
dimensions 20 and 6, respectively. Choose a basis ¹vmº6mD1 of the .�5/-eigenspace in Z26.
Then an element ˛.�5/ 2 H 0.C; !C /

.�5/ can be locally written uniquely as

˛.�5/ D

6X
mD1

ımvm 2 OO
27

for some ım 2 OO.

10.7 (The ramified case). Suppose that � is branched at p and ��1.p/ consists of rami-
fication points r1; : : : ; r6 and fifteen antiramification points qk . The points ri correspond to the
ordered pairs .ai ; bi / of sheets coming together. On the sheets, the correspondence is defined
by

ai 7!
X
j¤i

.bj C cij / and bi 7!
X
j¤i

.aj C cij /; i D 1; : : : ; 6:

As above, we use a local coordinate y for p 2 P1 and the fifteen points qk 2 C , and a local
coordinate x for the ramification points ri , with y D x2. Thus, we write locally

˛ D ˛ri .x/dx near ri and ˛ D ˛qk .y/dy near qk :

The local involution x 7! �x splits the differential form into the odd and even parts:

˛ri .x/dx D ˛
odd
ri
.x2/dx C ˛ev

ri
.x2/xdx;

˛ri .�x/d.�x/ D �˛
odd
ri
.x2/dx C ˛ev

ri
.x2/xdx:

The even part can be written in terms of y as 1
2
˛ev
ri
.y/dy. The odd parts have no such interpre-

tation and we claim that they do not mix with the fifteen sheets on which � is étale:

Lemma 10.8. The correspondence D induces an endomorphism on the 6-dimensional
OOy-module of odd parts h˛odd

ri
dxi. It is given by a matrix which has 0 on the main diagonal

and .�1/ elsewhere. The .�5/ eigenspace is 1-dimensional with generator .1; : : : ; 1/, and, for
every element ˛ 2 H 0.C; !C /

.�5/, one has

.˛odd
r1
; : : : ; ˛odd

r6
/ D .�; : : : ; �/

for some � D �.y/ independent of i D 1; : : : ; 6.

Proof. This case is obtained by taking a limit of the unramified case. We work in the
complex-analytic topology. A ramification point r 2 C is a limit of two points qai ; qbi 2 C
on the sheets ai and bi , respectively. The local parameters x; x0 at qai ; qbi are identified as
x0 D �x. One has y D x2 D .x0/2 and we look at the limit as x tends to 0. From dx0 D �dx
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it follows

˛qai .x/dx D ˛
odd
ri
.x2/dx C ˛ev

ri
.x2/xdx;

˛qbi
.x/dx D �˛odd

ri
.x2/dx C ˛ev

ri
.x2/xdx:

Under the correspondence between the 27 sheets, the ˛odd contributions from ai and bi to the
five sheets cij (j ¤ i ) cancel out. Conversely, the terms ˛cij contribute to ˛ev but not to ˛odd

at the point ri .
It follows that the homomorphism D sends the OO6 block of the odd parts ˛odd

ri
to itself.

The matrix of this linear map is the same as the matrix of an endomorphism of Z6 with the basis
of vectors ai � bi , that is, ai � bi 7! �

P
j¤i .aj � bj /. It is easy to see that this linear map

has eigenvalues .C1/ and .�5/ and that the .�5/-eigenspace is 1-dimensional and is generated
by the vector .1; : : : ; 1/. The statement now follows.

Corollary 10.9. Let ˇ 2 Sym2H 0.C; !C /
.�5/ and let  D mul.ˇ/ be its image in the

space H 0.C; !˝2C /. Then in the notation of Lemma 10.5, one has

'ij .rij / D 'ij 0.rij 0/

for all i D 1; : : : ; 24 and all 1 � j; j 0 � 6.

Proof. Let ˛; ˛0 2 H 0.C; !C /
.�5/. Then in the notation of Lemma 10.8, one has

mul.˛ ˝ ˛0/.rij / D ˛odd
rij
.rij / � .˛

0/odd
rij
.rij / D �.0/�

0.0/;

which is independent of j D 1; : : : ; 6.

Lemma 10.8 has consequences for the geometry of the Abel–Prym–Tyurin canonical
curve '.�5/ D 'H0.C;!C /.�5/

W C ! P5. In stark contrast with the case of ordinary Prym-
canonical curves, the map '.�5/ is far from being an embedding.

Proposition 10.10. For an E6-cover � W C ! P1, we have

'.�5/.ri1/ D � � � D '.�5/.ri6/

for each i D 1; : : : ; 24.

Proof. This is a consequence of Lemma 10.8: the condition that ˛ 2 H 0.C; !C /
.�5/

vanishes along the divisor ri1 C � � � C ri6 is expressed by a single condition �.0/ D 0, there-
fore dim jH 0.C; !C /

.�5/.�ri1 � � � � � ri6/j D 4.

Finally, we are in a position to describe the ramification divisor of the map PT. Like in
the classical Prym case, it turns out that the infinitesimal study of the Prym–Tyurin map can be
reduced to the projective geometry of he Abel–Prym–Tyurin curve:

Proof of Theorem 4. By using Lemma 10.5 and Corollary 10.9, it follows that the map
PT is ramified at a point ŒC; �� 2 Hur if and only if there exists 0 ¤ ˇ 2 Sym2H 0.C; !C /

.�5/

such that
mul.ˇ/ 2 H 0.C; 2KC �R/ D H

0.C;KC � 2L/ D Ker.�.L//;

where the last equality follows from the Base Point Free Pencil Trick applied to the Petri
map �.L/. If now �.L/ is injective, it follows that mul.ˇ/ D 0, which finishes the proof.
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11. A Petri theorem on Hur

We now prove the Petri-like Theorem 9.2, using a degeneration similar to the one used
to establish the dominance of the map PT. We start with a cover �t W Ct ! P1 ramified in
24 points such that the local monodromy elements are reflections wi in twelve pairs of roots
r1; : : : ; r12 generating the lattice E6. We consider a degeneration in which the twelve pairs
of roots with the same label come together. The degenerate cover � W C ! P1 is branched at
twelve points q1; : : : ; q12 2 P1. Over each point qi there are six simple ramification points.
The curve C is nodal with 12 � 6 D 72 ordinary double points. We record the following fact:

Lemma 11.1. The curve C has 27 irreducible components isomorphic to P1 and the
restriction of � to each of them is an isomorphism.

Note that the cover � is not admissible in the sense of Section 5. The corresponding
admissible cover is obtained by replacing each point qi 2 P1 by an inserted P1 with two addi-
tional marked points pi , piC12, and modifying the curve C accordingly.

11.2. The 27 irreducible components ¹Xs ' P1º27sD1 of C are in bijection with the lines
¹`sº

27
sD1 on a cubic surface. Let � be the dual graph of C . For each root ri with i D 1; : : : ; 12,

there are six pairs of lines .aij ; bij / such that ri � aij D 1, bij D aij C ri , hence ri � bij D �1.
To each pair we associate an edge .aij ; bij / of � directed from the vertex aij to the vertex bij .
We also fix twelve ramification points qi 2 P1 n ¹0;1º D C� and denote by ¹psiº

ns
iD1 the

nodes of C lying on Xs . Clearly, �.psi / 2 ¹q1; : : : ; q12º, for all s and i .

Lemma 11.3. The space H 0.C; !C / is naturally identified with

H1.�;C/ D Ker

´
12M
iD1

6M
jD1

C.aij ; bij /!
27M
sD1

C`s

µ
:

To an edge .aij ; bij / over a root ri one associates a differential form !ij equal to dz
z�qi

onXaij ,
to � dz

z�qi
on Xbij and 0 on Xs , for s ¤ aij ; bij . Then H 0.C; !C / is the subspace of

27M
sD1

H 0

 
Xs; KXs

 
nsX
iD1

psi

!!

of the forms ! D
P
cij!ij such that for 1 � s � 27 the sum of residues of ! on Xs is zero.

Equivalently, for each 1 � s � 27, one considers a space of forms

!s D
X

s2¹aij ;bij º

ci
dz

z � qi

such that
P
i ci D 0. Then a form ! 2 H 0.C; !C / is equivalent to a collection of log forms

¹!sº
27
sD1 satisfying the 72 conditions

Resqi .!aij /C Resqi .!bij / D 0

for each edge .aij ; bij / of � .
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Proof. This follows by putting together two well-known facts:
(1) Let C be a nodal curve with normalization � W eC ! C and nodes pi 2 C such that

��1.pi / D ¹p
C
i ; p

�
i º. Then H 0.C; !C / is identified with the space of sections

Q! 2 H 0
��C ;K�C

�X
.pCi C p

�
i /
��

satisfying
Res

p
C

i

. Q!/C Resp�
i
. Q!/ D 0:

(2) A section of H 0.P1; KP1.
P
i qi // is a linear combination

P
i ci

dz
z�qi

with coeffi-
cients ci satisfying

P
i ci D 0.

In practice, assume that H 0.Xs; !C jXs / is identified with the space of fractions

Ps.x/Qns
iD1.x � �.psi //

dx;

where Ps.x/ is a polynomial of degree ns � 2. Then

H 0.C; !C / �

27M
sD1

H 0.Xs; !C jXs /

is characterized by the condition that for every node of psj D ps0j 0 2 C joining components
Xs and Xs0 , the sum of the residues

Ress WD
Ps.�.psj //Q

i¤j .�.psj / � �.psi //

and Ress0 respectively is 0.

11.4. We wish to show the injectivity of the Petri map

�.L/ W H 0.C;L/˝H 0.C; !C ˝ L
_/! H 0.C; !C /

for a 72-nodal curve C corresponding to a cover � W C ! P1 as above.

Lemma 11.5. Let H 0.P1;O.1// D hx0; x1i � H 0.C;L/. Then the subspace

H 0.C; !C ˝ L
_/˝ hx0i � H

0.C; !C ˝ L
_/˝H 0.C;L/ � H 0.C; !C /

consists of elements ¹!sº27sD1 as above, satisfying for each 1 � s � 27 the additional condi-
tion

P
ciqi D 0. Similarly, the subspace H 0.C; !C ˝ L

_/˝ hx1i � H
0.C; !C / consists of

elements ¹!sº27sD1 as above, satisfying for 1 � s � 27 an additional condition
P ci

qi
D 0.

Proof. We may identify the space H 0.C; !C ˝ L
_/ with H 0.C; !C .��

�1//, hence
H 0.C; !C ˝ L

_/˝ hx0i is the space of forms ¹!sº27sD1 such that for each s D 1; : : : ; 27, they
satisfy the equality

0 D Res1

�
!s �

x1

x0

�
D �

X
Resqi

�
!s �

x1

x0

�
D �

X
ciqi ;

as desired.
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To prove Theorem 9.2, it is sufficient to find one degeneration � W C ! P1 such that the
following hold:

(1) h0.C;L/ D 2.

(2) The three linear subspaces H 0.C; !C ˝ L
_/˝ hx0i, H 0.C; !C ˝ L

_/˝ hx1i and
H 0.C; !C /

.�5/ generate the vector space H 0.C; !C /.

The initial input consists of twelve points qi 2 P1 n ¹0;1º D C�, and twelve roots ri
generating the lattice E6. We obtain a system of linear equations in the 72 variables

xij D Resqi .!aij / D �Resqi .!bij / for i D 1; : : : ; 12 and j D 1; : : : ; 6:

For each of the spaces H 0.C0; !C ˝ L
_/˝ hx0i, respectively H 0.C; !C ˝ L

_/˝ hx1i, we
get 2 � 27 equations. By Lemma 10.8,H 0.C; !C /

.�5/ is the subspace ofH 0.C; !C / of forms
¹!sº

27
sD1 satisfying xij D xij 0 for all 1 � j; j 0 � 6 and i D 1; : : : ; 12. This gives a system of

27C 12 � 5 equations.

Lemma 11.6. The above conditions are satisfied for the following choices of roots and
ramification points:

(1) r1 D ˛135, r2 D ˛12, r3 D ˛23, r4 D ˛34, r5 D ˛45, r6 D ˛56, r7 D ˛max, r8 D ˛124,
r9 D ˛234, r10 D ˛35, r11 D ˛13, r12 D ˛36.

(2) qi D i , for i D 1; : : : ; 12.

Proof. This is now a straightforward linear algebra computation, which we performed
in Mathematica. It can be found at [49].
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