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Introduction

The pseudo-effective cone Eff(X) of a smooth projective variety X is a fun-

damental, yet elusive invariant. On one hand, a few general facts are known: the

interior of the effective cone is the cone of big divisors so, in particular, X is of

general type if and only if KX ∈ int(Eff(X)); less obviously [4], a variety X is

uniruled if and only if KX is not pseudo-effective and the dual of Eff(X) is the

cone of movable curves; and, the effective cone is known to be polyhedral for Fano

varieties. For further background, see [60]. On the other hand, no general structure

theorem is known and the calculation of Eff(X) is a daunting task even in some of

the simplest cases. For instance, the problem of computing the cone Eff(C(2)) for a

very general curve C of genus g is known to be equivalent to Nagata’s Conjecture,

see [16].

The aim of this paper is to survey what is known about the effective cones of

moduli spaces, with a focus on the moduli spacesMg,n of stable curves, Ag of prin-

cipally polarized abelian varieties andMg,n(X,β) of stable maps. Because related

moduli spaces often have an inductive combinatorial structure and the associated

families provide a rich cycle theory, the study of effective cones of moduli spaces

has often proven more tractable and more applicable than that of general algebraic

varieties.

For example, in the case of Mg, we may define, following [49], the slope s(D)

of a divisor class D of the form aλ − bδ − cirrδirr −
∑
i ciδi, with a and b positive,
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all the c’s non-negative and at least one—in practice, almost always cirr—equal

to 0, to be a
b . We set s(D) = ∞ for divisors not of this form, for example, if

g ≥ 3, for the components ∆irr and ∆i. A fundamental invariant is then the slope

s(Mg) := inf{s(D) |D ∈ Eff(Mg)}. The Harris-Mumford theorem [50] on the

Kodaira dimension of Mg, is equivalent to the inequality s(Mg) < s(KMg
) = 13

2 ,

for g ≥ 24. For a long time, the conjecture of [49] that the inequality s(Mg) ≥
6 + 12

g+1 holds, equality being attained only for the classical Brill-Noether divisors

whose classes were also computed in [50], was widely believed. Counterexamples

were provided in [30] for infinitely many g though all of these have slope greater

than 6. On the other hand, all the methods (cf. [12, 49, 75]) for bounding s(Mg)

from below for large g, yield only bounds that tend to zero with g. This sets the

stage for the following fundamental question:

Problem 0.1. Does the limit s∞ := lim
g→∞

s(Mg) exist, and, if so, what is it’s

value?

The authors know of no credible, generally accepted conjectural answer. The

first tends to guess that s∞ = 0, the second and third that s∞ = 6. Hedging his

guess, the third author has a dinner bet with the second, made at the 2009 MSRI

Program in Algebraic Geometry: the former wins if s∞ = 0, the latter if s∞ > 0,

and the bet is annulled should the limit not exist.

The argument for s∞ = 0 is that the papers cited above. which compute the

invariants of movable curves in Mg using tools as diverse tools as Hurwitz theory,

Teichmüller dynamics and Hodge integrals, do no better than s(Mg) ≥ O( 1
g ).

Intriguingly, the first two methods, though apparently quite different in character,

suggest the same heuristic lower bound 576
5g for the slope; see Section 3 of this paper.

Is this coincidence or evidence for the refined asymptotic lim infg→∞ g s(Mg) = 576
5

conjectured by the first author in [12], and hence that s∞ = 0?

The argument for s∞ > 0 is that effective divisors of small slope are known to

have strong geometric characterizations: for instance, they must contain the locus

Kg of curves lying on K3 surfaces. Constructing any such divisors, let alone ones

of arbitrarily small slope, is notoriously difficult. In fact, for g ≥ 11, not a single

example of an effective divisor having slope less than 6 + 10
g is known. The current

state of knowledge concerning divisors of small slope is summarized in Section 2 of

the paper.

We invite the reader to take sides in this bet, or much better, settle it con-

clusively by computing s∞. To encourage work that might enable him to win, the

third author here announces the First Morrison Prize, in the amount of US$100, for

the construction of any effective divisor on Mg of slope less than 6, as determined

by a jury consisting of the present authors. One further question is to what extent

s∞ has a modular meaning. As pointed out in [49, p. 323], the inequality s∞ > 0

would imply a fundamental difference between the geometry of Mg and Ag and

provide a new geometric approach to the Schottky problem.
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We now describe the contents of the paper. Section 1 recalls the classical

constructions of effective divisors onMg, starting with Brill-Noether and Gieseker-

Petri divisors. Then we discuss the cases g ≤ 9, where a much better understanding

of the effective cone is available and alternative Mukai models ofMg are known to

exist. In Section 2, we highlight the role of syzygy divisors in producing examples

of divisors onMg of small slope and discuss the link to an interesting conjecture of

Mercat [64] that suggests a stratification of Mg in terms of rank 2 vector bundles

on curves. Special attention is paid to the interesting transition case g = 11, which

is treated from the point of view both of Koszul cohomology and higher rank Brill-

Noether theory.

Section 3 is devoted to finding lower bounds on s(Mg) and the existing meth-

ods are surveyed. The common idea is to find a Zariski dense collection of 1-cycles

Bµ, so that any effective divisor must intersect one of these curves non-negatively,

obtaining the bound s(Mg) ≥ infµ

(
Bµ·δ
Bµ·λ

)
. There are several methods of con-

structing these curves, e.g. by using simply-branched coverings of P1 and allowing

a pair of branch points to come together [49], by imposing conditions on curves in

projective spaces, especially canonical space [20, 41], as Teichmüller curves arising

from branched covers of elliptic curves [12], or as complete intersection of nef tau-

tological divisors on Mg, with intersection numbers evaluated via Gromov-Witten

theory [75].

In Section 4, we turn to moduli of abelian varieties and discuss the recent paper

[34] showing that the Andreotti-Mayer divisor N ′0 of 5-dimensional ppav whose

theta divisor is singular at a pair of points which are not two-torsion computes the

slope of the perfect cone compactification A5 of A5 as s(A5) = 54
7 .

Section 5 is devoted almost exclusively to moduli spaces of curves of genus g =

0. We begin with a few cases—the space M̃0,n that is the quotient ofM0,n by the

natural action of Sn induced by permuting the marked points and the Kontsevich

moduli spaces of stable maps M0,0(Pd, d)—in which unpublished arguments of

Keel make it easy to determine the effective cone completely. We then discuss

more systematically the spaceM0,0(Pd, d), sketching the sharper results of Coskun,

Harris and Starr [20] on their effective cones. We also review some of the results of

the first author with Coskun and Crissman concerning the Mori program for these

spaces, emphasizing the examplesM0,0(P3, 3) where [11] completely works out the

geometry of this program, giving an explicit chamber decomposition of the effective

cone in terms of stable base loci, and M0,0(P4, 4) for which much, though not all,

the geometry is worked out in [13].

The rest of Section 5 deals with results for M0,n. For n ≤ 5, the naive guess

that the effective cone might be generated by the components of the boundary is

correct, and we recall the argument for this. But for larger n new extremal rays

appear. We first review the example of Keel and Vermeire [88] and the proof of

Hassett and Tschinkel [52] that, for n = 6, there are no others. The main focus of
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this section is to give a brief guide to the ideas of Castravet and Tevelev [8] which

show just how rapidly the complexity of these effective cones grows.

We conclude this introduction by citing some work on effective divisors that

we have not reviewed. These include Rulla’s extensions in [79, 80] of the ideas in

§§5.1 to quotients by subgroups permuting only a subset of the marked points and

Jensen’s examples [53] for M5,1 and M6,1. In a very recent preprint, Cooper [17]

studies the moduli spaces of stable quotients Q1,0(Pn−1, d) of Marian, Oprea and

Pandharipande [62]. Because there is a surjection Mg,n(Pn−1, d)→ Qg,0(Pn−1, d),

this is relevant to §§5.2. In the case of g = 1 and n = 0 that Cooper considers,

the target Q1,0(Pn−1, d) is smooth with a rank 2 Picard group and she is able to

describe the effective (and nef) cones explicitly. Finally, we have not touched upon

connections with the F -conjecture, including Pixton’s exciting example [78] of an

effective divisor onM0,12 that intersects all topological 1-strata non-negatively yet

is not equivalent to an effective sum of boundary divisors.

Conventions and notation To simplify notation, we will ignore torsion classes

and henceforth use Pic
(
M
)

with no decoration for Pic
(
M
)
⊗Q. We set Eff

(
M
)

and

Nef
(
M
)

for the effective and nef cones of M . We denote by Mov(M) the cone of

movable divisors on M parametrizing effective divisors whose stable base locus has

codimension at least 2 in M . We write δirr for the class of the boundary component

of irreducible nodal curves, and, when there is no risk of confusion, we simplify

notation by omitting the limits of summations indexed by boundary components

consisting of reducible curves. We work throughout over C.

1. Geometric divisors on Mg

Any expression D = aλ − birrδirr −
∑
i biδi for an effective divisor D on Mg

(with all coefficients positive) provides an upper bound for s(Mg). Chronologically,

the first such calculations are those of the Brill-Noether divisors, which we briefly

recall following [24,50].

Definition 1.1. For positive integers g, r, d ≥ 1 such that

ρ(g, r, d) := g − (r + 1)(g − d+ r) = −1,

we denote by Mr
g,d := {[C] ∈ Mg : W r

d (C) 6= ∅} the Brill-Noether locus of curves

carrying a linear series of type grd.

It is known [23] that Mr
g,d is an irreducible effective divisor. The class of its

closure in Mg has been computed in [24] and one has the formula

[Mr

g,d] = cg,r,d

(
(g + 3)λ− g + 1

6
δirr −

∑
i

i(g − i)δi
)
,

where cg,r,d ∈ Q>0 is an explicit constant that can be viewed as an intersection

number of Schubert cycles in a Grassmannian. Note that s(Mr

g,d) = 6 + 12
g+1 , thus

implying the upper bound s(Mg) ≤ 6+ 12
g+1 , for all g such that g+1 is composite, so

that the diophantine equation ρ(g, r, d) = −1 has integer solutions. The initial Slope



EFFECTIVE DIVISORS ON MODULI SPACES 5

Conjecture [49] predicted that the Brill-Noether divisors are divisors of minimal

slope. This turns out to be true only when g ≤ 9 and g = 11.

Observe that remarkably, for various r, d ≥ 1 such that ρ(g, r, d) = −1, the

classes of the divisorsMr

g,d are proportional. The proof given in [24] uses essential

properties of Picard groups of moduli spaces of pointed curves and it remains a

challenge to find an explicit rational equivalence linking the various Brill-Noether

divisors on Mg. The first interesting case is g = 11, when there are two Brill-

Noether divisors, namely M1

11,6 and M2

11,9. Note that when g = 2, the divisor ∆1

has the smallest slope 10 in view of the relation 10λ = δirr + 2δ1 on M2, see for

instance [48, Exercise (3.143)].

When g = 3, 5, 7, 8, 9, 11, there exist Brill-Noether divisors which actually de-

termine the slope s(Mg). This has been shown in a series of papers [9, 36, 49, 85]

in the last two decades. Some cases have been recovered recently in [20,41].

For 3 ≤ g ≤ 9 and g = 11, it is well known [69] that a general curve of genus

g can be realized as a hyperplane section H of a K3 surface S of degree 2g − 2

in Pg. Consider a general Lefschetz pencil B in the linear system |H|. Blowing

up the 2g − 2 base points of B, we get a fibration S′ over B, with general fiber a

smooth genus g curve. All singular fibers are irreducible one-nodal curves. From

the relation

χtop(S′) = χtop(B) · χtop(F ) + the number of nodal fibers,

where F is a smooth genus g curve, we conclude that

B · δirr = 6g + 18, B · δi = 0 for i > 0.

Let ω be the first Chern class of the relative dualizing sheaf of S′ over B. By the

relation

12λ = δ + ω2

and

ω2 = c21(S′) + 4(2g − 2) = 6g − 6,

we obtain that

B · λ = g + 1.

Consequently the slope of the curve B is given by

sB = 6 +
12

g + 1
.

Since the pencil B fills-up Mg for g ≤ 9 or g = 11, we get the lower bound

s(Mg) ≥ 6 + 12
g+1 in this range. The striking coincidence between the slope of the

Brill-Noether divisors Mr

g,d and that of Lefschetz pencil on a fixed K3 surface of

genus g has a transparent explanation in view of Lazarsfeld’s result [59], asserting

that every nodal curve C lying on a K3 surface S such that Pic(S) = Z[C], satisfies

the Brill-Noether theorem, that is, W r
d (C) = ∅ when ρ(g, r, d) < 0. In particular,
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when ρ(g, r, d) = −1, the intersection of the pencil B ⊂Mg with the Brill-Noether

divisor Mr

g,d is empty, therefore also, B · Mr

g,d = 0. This confirms the formula

s(Mr

g,d) = sB = 6 +
12

g + 1
.

This Lefschetz pencil calculation also shows [36] that any effective divisor D ∈
Eff(Mg) such that s(D) < 6 + 12

g+1 must necessarily contain the locus

Kg := {[C] ∈Mg : C lies on a K3 surface}.

In particular, effective divisors of slope smaller than 6+ 12
g+1 have a strong geometric

characterization, hence constructing them is relatively difficult. If one views a

divisor on Mg as being given in terms of a geometric condition that holds in

codimension one in moduli, then in order for such a condition to lead to a divisor

of small slope on Mg, one must search for geometric properties that single out

sections of K3 surfaces among all curves of given genus. Very few such geometric

properties are known at the moment, for curves on K3 surfaces are known to behave

generically with respect to most geometric stratifications ofMg, for instance those

given by gonality or existence of special Weierstrass points.

For integers g such that g+1 is prime, various substitutes for the Brill-Noether

divisors have been proposed, starting with the Gieseker-Petri divisors. Recall that

the Petri Theorem asserts that for a line bundle L on a general curve C of genus

g, the multiplication map

µ0(L) : H0(C,L)⊗H0(C,KC ⊗ L∨)→ H0(C,KC)

is injective. This implies that the scheme Grd(C) classifying linear series of type

grd is smooth of expected dimension ρ(g, r, d) when C is general. The first proof of

this statement was given by Gieseker whose argument was later greatly simplified

in [25]. Eventually, Lazarsfeld [59] gave the most elegant proof, and his approach

has the added benefit of singling out curves on very general K3 surfaces as the only

collections of smooth curves of arbitrary genus verifying the Petri condition. The

locus where the Gieseker-Petri theorem does not hold is the proper subvariety of

the moduli space

GPg := {[C] ∈Mg : µ0(L) is not injective for a certain L ∈ Pic(C)} .

This breaks into subloci GPrg,d whose general point corresponds to a curve C such

that µ0(L) is not injective for some linear series L ∈W r
d (C). The relative position of

the subvarieties GPrg,d is not yet well-understood. The following elegant prediction

was communicated to the second author by Sernesi:

Conjecture 1.2. The locus GPg is pure of codimension one in Mg.

Clearly there are loci GPrg,d of codimension higher than one. However, in light

of Conjecture 1.2 they should be contained in other Petri loci in Mg that fill-up

a codimension one component in moduli. Various partial results in this sense are

known. Lelli-Chiesa [61] has verified Conjecture 1.2 for all g ≤ 13. It is proved

in [32] that whenever ρ(g, r, d) ≥ 0, the locus GPrg,d carries at least a divisorial
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component. Bruno and Sernesi [5] show that GPrg,d is pure of codimension one for

relatively small values of ρ(g, d, r), precisely

0 < ρ(g, r, d) < g − d+ 2r + 2.

The problem of computing the class of the closure GPrg,d has been completely solved

only when the Brill-Noether numbers is equal to 0 or 1. We quote from [24] (for

the case r = 1) and [30] (for the general case r ≥ 1).

Theorem 1.3. Fix integers r, s ≥ 1 and set d := rs + r and g := rs + s,

therefore ρ(g, r, d) = 0. The slope of the corresponding Gieseker-Petri divisor is

given by the formula:

s(GPrg,d) = 6 +
12

g + 1
+

6(s+ r + 1)(rs+ s− 2)(rs+ s− 1)

s(s+ 1)(r + 1)(r + 2)(rs+ s+ 4)(rs+ s+ 1)
.

For small genus, one recovers the class of the divisor GP1
4,3 of curves of genus

4 whose canonical model lies on a quadric cone and then s(GP1

4,3) = 17
2 . When

g = 6, the locus GP1
6,4 consists of curves whose canonical model lies on a singular

del Pezzo quintic surface and then s(GP1

6,4) = 47
6 . In both cases, the Gieseker-Petri

divisors attain the slope of the respective moduli space.

We briefly recall a few other divisor class calculations. For genus g = 2k, Harris

has computed in [47] the class of the divisor D1 whose general point corresponds

to a curve [C] ∈ Mg having a pencil A ∈ W 1
k+1(C) and a point p ∈ C with

H0(C,A(−3p)) 6= 0. This led to the first proof that Mg is of general type for even

g ≥ 40. This was superseded in [24], where with the help of Gieseker-Petri and

Brill-Noether divisors, it is proved that Mg is of general type for all g ≥ 24.

Keeping g = 2k, if σ : Hg,k+1 → Mg denotes the generically finite forgetful

map from the space of admissible covers of genus g and degree k + 1, then D1 is

the push-forward under σ of a boundary divisor on Hg,k+1, for the general point

of the Hurwitz scheme corresponds to a covering with simple ramification. The

other divisor appearing as a push-forward under σ of a boundary locus in Hg,k+1 is

the divisor D2 with general point corresponding to a curve [C] ∈Mg with a pencil

A ∈W 1
k+1(C) and two points p, q ∈ C such that H0(C,A(−2p−2q)) 6= 0. The class

of this divisor has been recently computed by van der Geer and Kouvidakis [86].

An interesting aspect of the geometry of the Brill-Noether divisors is that for

small genus, they are rigid, that is, [Mr

g,d] /∈ Mov(Mg), see for instance [32]. This

is usually proved by exhibiting a curve B ⊂ Mr

g,d sweeping out Mr

g,d such that

B · Mr

g,d < 0. Independently of this observation, one may consider the slope

s′(Mg) := inf{s(D) : D ∈ Mov(Mg)}

of the cone of movable divisors. For g ≤ 9, the inequality s′(Mg) > s(Mg) holds.

1.1. Birational models of Mg for small genus. We discuss models ofMg

in some low genus cases, when this space is unirational (even rational for g ≤ 6)

and one has a better understanding of the chamber decomposition of the effective

cone.
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Example 1.4. We set g = 3 and let B ⊂ M3 denote the family induced

by a pencil of curves of type (2, 4) on P1 × P1. All members in this family are

hyperelliptic curves. A standard calculation gives that B · λ = 3 and B · δirr = 28,

in particular B · M1

3,2 = −1. This implies not only that the hyperelliptic divisor

M1

3,2 is rigid, but also the inequality s′(M3) ≥ sB = 28
3 . This bound is attained

via the birational map

ϕ3 :M3 99K X3 := |OP2(4)|//SL(3)

to the GIT quotient of plane quartics. Since ϕ3 contracts the hyperelliptic divisor

M1

3,2 to the point corresponding to double conics, from the push-pull formula one

finds that s(ϕ∗3(OX3
(1)) = 28

3 . This proves the equality s′(M3) = 28
3 > 9 = s(M3).

That s′(Mg) is accounted for by a rational map from Mg to an alternative

moduli space of curves of genus g, also holds for a few higher genera, even though

the geometry quickly becomes intricate.

Example 1.5. For the case g = 4, we refer to [40]. Precisely, we introduce the

moduli space X4 of (3, 3) curves on P1 × P1, that is, the GIT quotient

X4 := |OP1×P1(3, 3)|//SL(2)× SL(2).

There is a birational map ϕ : M4 99K X4, mapping an abstract genus 4 curve

C to P1 × P1 via the two linear series g1
3 on C. The Gieseker-Petri divisor is

contracted to the point corresponding to triple conics. This shows that [GP1

4,3] ∈
Eff(M4) is an extremal point. By a local analysis, Fedorchuk computes in [40] that

s(ϕ∗4(O(1, 1))) = 60
9 = s′(M4) > s(M4). Furthermore, the model X4 is one of the

log-canonical models of M4.

Mukai [67, 69, 70] has shown that general canonical curves of genus g = 7, 8, 9

are linear sections of a rational homogeneous variety

Vg ⊂ Pdim(Vg)+g−2.

This construction induces a new model Xg of Mg having Picard number equal to

1, together with a birational map ϕg : Mg 99K Xg. Remarkably, s(ϕ∗g(OXg (1)) =

s′(Mg). The simplest case is g = 8, which we briefly explain.

Example 1.6. Let V := C6 and consider G := G(2, V ) ⊂ P(
∧2

V ). Codimen-

sion 7 linear sections of G are canonical curves of genus 8, and there is a birational

map

ϕ8 :M8 99K X8 := G(8,

2∧
V )//SL(V ) ,

that is shown in [67] to admit a beautiful interpretation in terms of rank two Brill-

Noether theory. The map ϕ−1
8 associates to a general projective 7-plane H ⊂

P(
∧2

V ) the curve [G ∩ H] ∈ M8. In particular, a smooth curve C of genus

8 appears as a linear section of G if and only if W 2
7 (C) = ∅. Observing that
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ρ(X8) = 1, one expects that exactly five divisors get contracted under ϕ8, and

indeed—see [37,38]—

Exc(ϕ8) = {∆1,∆2,∆3,∆4,M
2

8,7} .

Using the explicit construction of ϕ8 one can show that the Brill-Noether divisor

gets contracted to a point. Thus X8 can be regarded as a (possibly simpler) model

of M8 in which plane septimics are excluded.

1.2. Upper bounds on the slope of the moving cone. If f : X 99K Y is a

rational map between normal projective varieties, then f∗(Ample(Y )) ⊂ Mov(X).

In order to get upper bounds on s′(Mg) for arbitrary genus, a logical approach

is to consider rational maps from Mg to other projective varieties and compute

pull-backs of ample divisors from the target variety. Unfortunately there are only

few known examples of such maps, but recently two examples have been worked

out. We begin with [32], where a map between two moduli spaces of curves is

considered.

We fix an odd genus g := 2a + 1 ≥ 3 and set g′ := a
a+1

(
2a+2
a

)
+ 1. Since

ρ(2a + 1, 1, a + 2) = 1, we can define a rational map φa : Mg 99K Mg′ that

associates to a curve C its Brill-Noether curve φ([C]) := [W 1
a+2(C)] consisting

of pencils of minimal degree—that the genus of W 1
a+2(C) is is g′ follow from the

Harris-Tu formula for Chern numbers of kernel bundles, as explained in [24]. Note

that φ1 :M3 99KM3 is the identity map, whereas the map φ2 :M5 99KM11 has

a rich and multifaceted geometry. For a general [C] ∈M5, the Brill-Noether curve

W 1
4 (C) is endowed with a fixed point free involution ι : L 7→ KC⊗L∨. The quotient

curve Γ := W 1
4 (C)/ι is a smooth plane quintic which can be identified with the

space of singular quadrics containing the canonical image C ↪→ P4. Furthermore,

Clemens showed that the Prym variety induced by ι is precisely the Jacobian of C!

This result has been recently generalized by Ortega [73] to all odd genera. Instead

of having an involution, the curve W 1
a+2(C) is endowed with a fixed point free

correspondence

Σ :=
{

(L,L′) : H0(L′)⊗H0(KC ⊗ L∨)→ H0(KC ⊗ L′ ⊗ L∨) is not injective
}
,

which induces a Prym-Tyurin variety P ⊂ Jac(W 1
a+2(C) of exponent equal to the

Catalan number (2a)!
a!(a+1)! and P is isomorphic to the Jacobian of the original curve

C.

The main result of [32] is a complete description of the pull-back map φ∗a at

the level of divisors implying the slope evaluation:

Theorem 1.7. For any divisor class D ∈ Pic(Mg′) having slope s(D) = s,

s(φ∗a(D)) = 6 +
8a3(s− 4) + 5sa2 − 30a2 + 20a− 8as− 2s+ 24

a(a+ 2)(sa2 − 4a2 − a− s+ 6)
.

By letting s become very large, one obtains the estimate s′(Mg) < 6 + 16
g−1 .

A different approach is used by van der Geer and Kouvidakis [87] in even genus

g = 2k. We consider once more the Hurwitz scheme σ : Hg,k+1 →Mg. Associate
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to a degree k + 1 covering f : C → P1 the trace curve

TC,f := {(x, y) ∈ C × C : f(x) = f(y)}.

For a generic choice of C and f , the curve TC,f is smooth of genus g′ := 5k2−4k+1.

By working in families one obtains a rational map χ : Hg,k+1 99KMg′ . Observe that

as opposed to of the map φa from [32], the ratio g′

g for the genera of the trace curve

and that of the original curve is much lower. The map σ∗χ
∗ : Pic(Mg′)→ Pic(Mg)

is completely described in [86] and the estimate

s′(Mg) < 6 +
18

g + 2

is shown to hold for all even genera g. In conclusion, Mg carries moving divisors

of slope 6 +O
(

1
g

)
for any genus. We close by posing the following question:

Problem 1.8. Is it true that lim infg→∞ s(Mg) = lim infg→∞ s′(Mg)?

2. Syzygies of curves and upper bounds on s(Mg)

The best known upper bounds on s(Mg) are given by the Koszul divisors of

[30,33] defined in terms of curves having unexpected syzygies. An extensive survey

of this material, including an alternative proof using syzygies of the Harris-Mumford

theorem [50] on the Kodaira dimension of Mg for odd genus g > 23, has appeared

in [29]. Here we shall be brief and concentrate on the latest developments.

As pointed out in [36] as well as earlier in this survey, any effective divisor

D ∈ Eff(Mg) of slope s(D) < 6 + 12
g+1 must necessarily contain the locus Kg of

curves lying on K3 surfaces. It has been known at least since the work of Mukai

[66] and Voisin [91] that a curve C lying on a K3 surface S carries special linear

series that are not projectively normal. For instance, if A ∈ W 1
b g+3

2 c
(C) is a pencil

of minimal degree, then the multiplication map for the residual linear system

Sym2H0(C,KC ⊗A∨)→ H0(C,K⊗2
C ⊗A

⊗(−2))

is not surjective. One can interpret projective normality as being the Green-

Lazarsfeld property (N0) and accordingly, stratify Mg with strata consisting of

curves C that fail the higher properties (Np) for p ≥ 1, for a certain linear system

L ∈W r
d (C) with h1(C,L) ≥ 2. This stratification ofMg is fundamentally different

from classical stratifications given in terms of gonality or Weierstrass points (for

instance the Arbarello stratification). In this case, the locus Kg lies in the smallest

stratum, that is, it plays the role of the hyperelliptic locus M1
g,2 in the gonal-

ity stratification! Observe however, that this idea, when applied to the canonical

bundle KC (when of course h1(C,KC) = 1), produces exactly the gonality strat-

ification, see [29, 45] for details. Whenever the second largest stratum in the new

Koszul stratification is of codimension 1, it will certainly contain Kg and is thus a

good candidate for being a divisor of small slope. The main difficulty in carrying

out this program lies not so much in computing the virtual classes of the Koszul

loci, but in proving that they are divisors when one expects them to be so.
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We begin by recalling basic definitions and refer to the beautiful book of

Aprodu-Nagel [1] for a geometrically oriented introduction to syzygies on curves.

Definition 2.1. For a smooth curve C, a line bundle L and a sheaf F on C,

we define the Koszul cohomology group Kp,q(C;F , L) as the cohomology of the

complex

p+1∧
H0(C,L)⊗H0(C,F ⊗ L⊗(q−1))

dp+1,q−1−→
p∧
H0(C,L)⊗H0(C,F ⊗ L⊗q) dp,q−→

dp,q−→
p−1∧

H0(C,L)⊗H0(C,F ⊗ L⊗(q+1)).

It is a basic fact of homological algebra that the groups Kp,q(C;F , L) describe

the graded pieces of the minimal resolution of the graded ring

R(F , L) :=
⊕
q≥0

H0(C,F ⊗ L⊗q)

as an S := Sym H0(C,L)-module. Precisely, if F• → R(F , L) denotes the minimal

graded free resolution with graded pieces Fp = ⊕qS(−q)⊕bpq, then

dim Kp,q(C;F , L) = bpq, for all p, q ≥ 0.

When F = OC , one writes Kp,q(C,L) := Kp,q(C;OC , L).

Example 2.2. Green’s Conjecture [45] concerning the syzygies of a canonically

embedded curve C ↪→ Pg−1 can be formulated as an equivalence

Kp,2(C,KC) = 0⇔ p < Cliff(C).

Despite a lot of progress, the conjecture is still wide open for arbitrary curves.

Voisin has proved the conjecture for general curves of arbitrary genus in [89,90]. In

odd genus g = 2p+ 3, the conjecture asserts that the resolution of a general curve

[C] ∈M2p+3 is pure and has precisely the form:

0→ S(−g − 1)→ S(−g + 1)⊕b1 → · · · → S(−p− 3)⊕bp+1 → S(−p− 1)⊕bp → · · ·

→ S(−2)⊕b3 → S(−2)⊕b1 → R(KC)→ 0.

The purity of the generic resolution in odd genus is reflected in the fact that the

syzygy jumping locus

{[C] ∈M2p+3 : Kp,2(C,KC) 6= 0}

is a virtual divisor, that is, a degeneracy locus between vector bundles of the same

rank overM2p+3. It is the content of Green’s Conjecture that set-theoretically, this

virtual divisor is an honest divisor which moreover coincides with the Brill-Noether

divisor M1
g,p+2.

One defines a Koszul locus on the moduli space as the subvariety consisting

of curves [C] ∈ Mg such that Kp,2(C,L) 6= 0, for a certain special linear system

L ∈W r
d (C). The case when ρ(g, r, d) = 0 is treated in the papers [33] and [30]. For

the sake of comparison with the case of positive Brill-Noether number, we quote a
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single result, in the simplest case p = 0, when the syzygy condition K0,2(C,L) 6=
0 is equivalent to requiring that the embedded curve C

|L|→ Pr lie on a quadric

hypersurface.

Theorem 2.3. Fix s ≥ 2 and set g = s(2s+ 1), r = 2s and d = 2s(s+ 1). The

locus in moduli

Zs :=
{

[C] ∈Mg : K0,2(C,L) 6= 0 for a certain L ∈W r
d (C)

}
is an effective divisor on Mg. The slope of its closure in Mg is equal to

s(Zs) =
a

b0
=

3(16s7 − 16s6 + 12s5 − 24s4 − 4s3 + 41s2 + 9s+ 2)

s(8s6 − 8s5 − 2s4 + s2 + 11s+ 2)
.

This implies that s(Zs) < 6 + 12
g+1 . In particular s(Mg) < 6 + 12

g+1 , for all

genera of the form g = s(2s + 1). In the case s = 2, one has the set-theoretic

equality of divisors Z2 = K10 and s(Z2) = s(M10) = 7. This was the first instance

of a geometrically defined divisor on Mg having smaller slope than that of the

Brill-Noether divisors, see [36].

The proof of Theorem 2.3 breaks into two parts, very different in flavor. First

one computes the virtual class of Zs, which would then equal the actual class [Zs],
if one knew that Zs was a divisor on Mg. This first step has been carried out

independently and with different techniques by the second author in [30] and by

Khosla in [57]. The second step in the proof involves showing that Zs is a divisor. It

suffices to exhibit a single curve [C] ∈Mg such that K0,2(C,L) = 0, for every linear

series L ∈W r
d (C). By a standard monodromy argument, in the case ρ(g, r, d) = 0,

this is equivalent to the seemingly weaker requirement that there exist both a curve

[C] ∈ Mg and a single linear series L ∈ W r
d (C) such that K0,2(C,KC) = 0. This

is proved by degeneration in [30].

The case of Koszul divisors defined in terms of linear systems with positive Brill-

Noether number is considerably more involved, but the rewards are also higher. For

instance, this approach is used in [29] to prove that M22 is of general type.

We fix integers s ≥ 2 and a ≥ 0, then set

g = 2s2 + s+ a, d = 2s2 + 2s+ a,

therefore ρ(g, r, d) = a. Consider the stack σ : Grd → Mg classifying linear series

grd on curves of genus g. Inside the stack Grd we consider the locus of those pairs

[C,L] with L ∈W r
d (C), for which the multiplication map

µ0(L) : Sym2H0(C,L)→ H0(C,L⊗2)

is not injective. The expected codimension in Grd of this cycle is equal to a + 1,

hence the push-forward under σ of this cycle is a virtual divisor in Mg. The case

a = 1 of this construction will be treated in the forthcoming paper [31] from which

we quote:

Theorem 2.4. We fix s ≥ 2 and set g = 2s2 + s+ 1. The locus

Ds := {[C] ∈Mg : K0,2(C,L) 6= 0 for a certain L ∈W 2s
2s(s+1)+1(C)}
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is an effective divisor on Mg. The slope of its closure inside Mg equals

s(Ds) =
3(48s8 − 56s7 + 92s6 − 90s5 + 86s4 + 324s3 + 317s2 + 182s+ 48)

24s8 − 28s7 + 22s6 − 5s5 + 43s4 + 112s3 + 100s2 + 50s+ 12
.

We observe that the inequality

6 +
10

g
< s(Ds) < 6 +

12

g + 1
,

holds for each s ≥ 3. The case s = 3 of Theorem 2.4 is presented in [29] and

it proves that M22 is a variety of general type. Another very interesting case is

s = 2, that is, g = 11. This case is studied by Ortega and the second author in

[35] in connection with Mercat’s Conjecture in higher rank Brill-Noether theory. In

view of the relevance of this case to attempts of establishing a credible rank two

Brill-Noether theory, we briefly explain the situation.

We denote as usual by Fg the moduli space parametrizing pairs [S,H], where

S is a smooth K3 surface and H ∈ Pic(S) is a primitive nef line bundle with

H2 = 2g − 2. Over Fg one considers the projective bundle Pg classifying pairs

[S,C], where S is a smooth K3 surface and C ⊂ S is a smooth curve of genus g.

Clearly dim(Pg) = dim(Fg) + g = 19 + g. Observe now that for g = 11 both spaces

M11 and P11 have the same dimension, so one expects a general curve of genus

11 to lie on finitely many K3 surfaces. This expectation can be made much more

precise.

For a general curve [C] ∈M11, the rank 2 Brill-Noether locus

SUC(2,KC , 7) := {E ∈ UC(2, 20) : det(E) = KC , h
0(C,E) ≥ 7}

is a smooth K3 surface. Mukai shows in [68] that C lies on a unique K3 surface

which can be realized as the Fourier-Mukai partner of SUC(2,KC , 7). Moreover,

this procedure induces a birational isomorphism

φ11 :M11 99K P11, φ11([C]) :=
[ ̂SUC(2,KC , 7), C

]
and the two Brill-Noether divisorsM1

11,6 andM2

11,9 (and likewise the Koszul divi-

sor) are pull-backs by φ of Noether-Lefschetz divisors on F11.

Next we define the second Clifford index of a curve which measures the com-

plexity of a curve in its moduli space from the point of view of rank two vector

bundles.

Definition 2.5. If E ∈ UC(2, d) denotes a semistable vector bundle of rank

2 and degree d on a curve C of genus g, one defines its Clifford index as γ(E) :=

µ(E)− h0(C,E) + 2 and the second Clifford index of C by the quantity

Cliff2(C) := min
{
γ(E) : E ∈ UC(2, d), d ≤ 2(g − 1), h0(C,E) ≥ 4

}
.

Mercat’s Conjecture [64] predicts that the equality

(2.6) Cliff2(C) = Cliff(C)

holds for every smooth curve of genus g. By specializing to direct sums of line

bundles, the inequality Cliff2(C) ≤ Cliff(C) is obvious. Lange and Newstead have
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proved the conjecture for small genus [58]. However the situation changes for g = 11

and the following result is proved in [35]:

Theorem 2.7. The Koszul divisor D2 on M11 has the following realizations:

(1) (By definition) {[C] ∈M11 : ∃L ∈W 4
13(C) such that K0,2(C,L) 6= 0}.

(2) {[C] ∈M11 : Cliff2(C) < Cliff(C)}.
(3) φ∗11(NL), where NL is the Noether-Lefschetz divisor of (elliptic) K3 sur-

faces S with lattice Pic(S) ⊃ Z ·H ⊕ Z · C, where C2 = 20, H2 = 6 and

C ·H = 13.

The closure D2 of D2 in M11 is a divisor of minimal slope

s(D2) = s(M11) = 7.

In [35], the second description in Theorem 2.7 is shown to imply that D2 is the

locus over which Mercat’s Conjecture fails. Since D2 6= ∅, Mercat’s Conjecture in its

original form is false onM11. On the other hand, Theorem 2.7 proves equality (2.6)

for general curves [C] ∈M11. Proving Mercat’s Conjecture for a general [C] ∈Mg,

or understanding the loci in moduli where the equality fails, is a stimulating open

question.

Remark 2.8. Note that in contrast with lower genus, for g = 11 we have

s(M11) = s′(M11) = 7. Furthermore, the dimension of the linear system of effec-

tive divisors of slope 7 is equal to 19 (see [36]). The divisorsM1

11,6, M2

11,9 and D2

are just three elements of this 19-dimensional linear system.

3. Lower bounds on s(Mg)

In this section we summarize several approaches towards finding lower bounds

for s(Mg) when g is large. The idea is simple. One has to produce one-dimensional

collections of families C → B of genus g curves—in other words, curves B ∈Mg—

such that the union of all the curves B is Zariski dense. For example, a single

moving curve B provides such a collection. No effective divisor D contain all such

B and, when B does not lie in D, the inequality B ·D ≥ 0 implies that the slope

sB := B·δ
B·λ is a lower bound for s(D), and hence that the infimum of these slopes is

a lower bound for s(Mg). The difficulty generally arises in computing this bound.

We discuss several constructions via covers of the projective line, via imposing

conditions on space curves, via Teichmüller theory and via Gromov-Witten theory,

respectively. Observe that when Mg is a variety of general type, it carries no

rational or elliptic moving curves.

3.1. Covers of P1 with a moving branch point. Harris and the third au-

thor [49] constructed moving curves inMg using certain Hurwitz curves of branched

covers of P1. Consider a connected k-sheeted cover f : C → P1 with b = 2g−2+2k

simply branch points p1, . . . , pb. If γi is a closed loop around pi separating it from

the other pj ’s, then, since pi is a simple branch point, the monodromy around γi
is a simple transposition τi in the symmetric group Sk on the points of a general
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fiber. The product of these transpositions (suitable ordered) must be the identity

since a loop around all the pi is nullhomotopic, the subgroup they generate must

be transitive (since we assume that C is connected), and then covers with given

branch points are specified by giving the τi up to simultaneous Sk-conjugation.

Varying pb while leaving the others fixed, we obtain a one-dimensional Hurwitz

space Z. When pb meets another branch point, say pb−1, the base P1 degener-

ates to a union of two P1-components glued at a node s, with p1, . . . , pb−2 on one

component and pb−1 and pb on the other. The covering curve C degenerates to a

nodal admissible cover accordingly, with nodes, say, t1, . . . , tn. Such covers were

introduced by Beauville for k = 2 [3] and by Harris and Mumford [50] for general

k; for a non-technical introduction to admissible covers, see [48, Chapter 3.G].

Locally around ti, the covering map is given by (xi, yi) → (u = xkii , v = ykii ),

where xi, yi and u, v parameterize the two branches meeting at ti and s, respectively.

We still call ki − 1 the order of ramification of ti. The data (n; k1, . . . , kn) can be

determined by the monodromy of the cover around pb−1 and pb.

When pb approaches pb−1, consider the product τ = τb−1τb associated to the

vanishing cycle β that shrinks to the node s as shown in Figure 1.

p1

pb−2

pb−1

pb

β
γ1

γb−2

γb−1

γb

Figure 1. The target P1 degenerates when two branch points meet

Without loss of generality, suppose τb = (12), i.e. it switches the first two

sheets of the cover, and suppose τb−1 = (ij). There are three cases:

(1) If τb−1 = τb, then τ = id. Consequently over the node s, we see k nodes

t1, . . . , tk arising in the degenerate cover, each of which is unramified;

(2) If |{i, j} ∩ {1, 2}| = 1, say (ij) = (13), then τ = (123), i.e. it switches the

first three sheets while fixing the others. We see k − 2 nodes t1, . . . , tk−2 arising in

the degenerate cover, such that t1 has order of ramification 3−1 = 2 and t2, . . . , tk−2

are unramified;

(3) If {i, j}∩{1, 2} = ∅, say (ij) = (34), then τ = (12)(34). We see k− 3 nodes

t1, . . . , tk−2 arising in the degenerate cover, such that t1 and t2 are both simply

ramified and t3, . . . , tk−2 are unramified.

Let f : Z → Mg be the moduli map sending a branched cover to (the stable

limit of) its domain curve. The intersection f∗Z ·δ can be read off from the descrip-

tion of admissible covers. For instance, if an admissible cover belongs to case (1), it
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possesses k unramified nodes. Over the P1-component containing pb−1 and pb, there

are k − 2 rational tails that map isomorphically as well as a rational bridge that

admits a double cover. Blowing down a rational tail gives rise to a smooth point

of the stable limit, hence only the rational bridge contributes to the intersection

with δ and the contribution is 2, since it is a (−2)-curve. The intersection f∗Z · λ
can be deduced from the relation 12λ = δ + ω2, where ω is the first Chern class of

the relative dualizing sheaf of the universal covering curve over Z, cf. [48, Chapter

6.C] for a sample calculation.

Using these ideas, Harris and the third author obtained a slope formula for

sZ [49, Corollary 3.15] in terms of counts of branched covers in each of the three

cases, for which they provide only recursive formulae in terms of characters of the

symmetric group. More generally, enumerating non-isomorphic branched covers

with any fixed ramification is a highly non-trivial combinatorial Hurwitz counting

problem.

Consider the case when 2k ≥ g+2. Since the Brill-Noether number ρ(g, 1, k) ≥
0, a general curve of genus g admits a k-sheeted cover of P1. Therefore, Z is

a moving curve in Mg. Assuming that, for g large, all ordered pairs of simple

transpositions are equally likely to occur as (τb−1, τb)—which seems plausible to

first order in k—leads to the estimate (cf. [49, Remark 3.23]) sZ ' 576
5g (plus terms

of lower order in g) as g →∞.

3.2. Linear sections of the Severi variety. A branched cover of P1 can be

regarded as a map to a one-dimensional projective space. One way to generalize

is to consider curves in P2. Let P(d) = P(d+2
2 )−1 be the space of plane curves of

degree d. Consider the Severi variety V d,nirr ⊂ P(d) defined as the closure of the

locus parameterizing degree d, irreducible, plane nodal curves with n nodes. The

dimension of V d,nirr is N = 3d + g − 1, where g =
(
d−1

2

)
− n is the geometric genus

of a general curve in V d,nirr . Let Hp ⊂ P(d) be a hyperplane parameterizing curves

that pass through a point p in P2. Now fix N −1 general points p1, . . . , pN−1 in the

plane. Consider the one-dimensional section of V d,nirr cut out by these hyperplanes:

Cd,nirr = V d,nirr ∩Hp1 ∩ · · · ∩HpN−1
.

Normalizing the nodal plane curves as smooth curves of genus g, we obtain

a moduli map from Cd,nirr to Mg (after applying stable reduction to the universal

curve). The calculation for the slope of Cd,nirr was carried out by Fedorchuk [41].

The intersection Cd,nirr · δ can be expressed by the degree of Severi varieties. For

instance, let Nd,n
irr be the degree of V d,nirr in P(d). Then Nd,n+1

irr corresponds to the

number of curves in Cd,nirr that possesses n + 1 nodes. Each such node contributes

1 to the intersection with δirr. Therefore, we have

Cd,nirr · δirr = (n+ 1)Nd,n+1
irr .

Moreover, the degree of Severi varieties was worked out by Caporaso and Harris

[6, Theorem 1.1], though again only a recursive formula is known.
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The calculation of Cd,nirr · λ is much more involved. Based on the idea of [6], fix

a line L in P2 and consider the locus of n-nodal plane curves whose intersections

with L are of the same type, namely, intersecting L transversely at a1 fixed points

and at b1 general points, tangent to L at a2 fixed points and at b2 general points,

etc. The closure of this locus is called the generalized Severi variety. A hyperplane

section of the Severi variety, as a cycle, is equal to a union of certain generalized

Severi varieties [6, Theorem 1.2] and Cd,nirr degenerates to a union of linear sections

of generalized Severi varieties. The difficulty arising from this approach is that the

surface of the total degeneration admits only a rational map to Mg, which does

not a priori extend to a morphism, as would be the case over a one-dimensional

base. Treating a plane curve as the image of a stable map, Fedorchuk was able to

resolve the indeterminacy of this moduli map, take the discrepancy into account,

and eventually express Cd,nirr · λ as a recursion [41, Theorem 1.11].

When the Brill-Noether number ρ(g, 2, d) = 3d − 2g − 6 is non-negative, a

general curve of genus g can be realized as a plane nodal curve of degree d. In

this case Cd,nirr yields a moving curve in Mg. Fedorchuk evaluated the slope of

Cd,nirr explicitly for d ≤ 16 and g ≤ 21, cf. [41, Table 1], which consequently

serves as a lower bound for s(Mg). In this range, the bounds decrease from 10

to 4.93 and Fedorchuk speculates that “even though we have nothing to say about

the asymptotic behavior of the bounds produced by curves Cd,nirr , it would not be

surprising if these bounds approached 0, as g approached ∞”.

3.3. Imposing conditions on canonical curves. We have discussed covers

of P1 and curves in P2 as means of producing moving curves in Mg. What about

curves in higher dimensional spaces? A natural way of embedding non-hyperelliptic

curves is via their canonical model. Coskun, Harris and Starr carried out this

approach and obtained sharp lower bounds for s(Mg) up to g ≤ 6 [20, §§ 2.3].

Let us demonstrate their method for the case g = 4. A canonical genus 4 curve

is a degree 6 complete intersection in P3, cut out by a quadric surface and a cubic

surface. The dimension of the family of such canonical curves is equal to 24. Passing

through a point imposes two conditions to a curve in P3 and intersecting a line

imposes one condition. Now consider the one-dimensional family B parameterizing

genus 4 canonical curves that pass through 9 general fixed points and intersect 5

general lines. Note that 9 general points uniquely determine a smooth quadric Q

containing them, and 5 general lines intersect Q at 10 points. Let C be a curve in

the family parameterized by B. If C is not contained in Q, then it has to intersect Q

at ≥ 9+5 = 14 points, contradicting that C ·Q = 12. Therefore, every curve in B is

contained in Q. Recall that the Gieseker-Petri divisor GP1

4,3 on M4 parameterizes

genus 4 curves whose canonical images lie in a quadric cone, and its slope is 17
2 .

Therefore, the image of B inM4 and the divisor GP1

4,3 are disjoint. Moreover, since

the points and lines are general, B is a moving curve in M4. As a consequence,

sB = 17
2 is a lower bound for s(M4). This bound is sharp and is attained by the

Gieseker-Petri divisor of genus 4 curves lying on singular quadric surface in P3 .
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In general, the dimension of the Hilbert scheme of genus g canonical curves in

Pg−1 is g2 + 3g−4. Since g2 + 3g−4 = (g+ 5)(g−2) + 6, we get a moving curve B,

for g ≥ 9 from the canonical curves that contain g + 5 general points and intersect

a general linear subspace Pg−7. Several difficulties arise in trying to imitate the

calculation of the slope of B. We have no detailed description of the geometry of

canonical curves for large g, and especially of their enumerative geometry. However,

this approach is sufficiently intriguing for us to propose the following:

Problem 3.1. Determine the lower bounds for s(Mg) resulting from comput-

ing the characteristic numbers of canonical curves of arbitrary genus g.

3.4. Descendant calculation of Hodge integrals. We have seen a number

of explicit constructions of moving curves in Mg. A rather different construction

was investigated by Pandharipande [75] via Hodge integrals on Mg,n. Let ψi be

the first Chern class of the cotangent line bundle on Mg,n associated to the ith

marked point. It is well known that ψi is a nef divisor class. Since a nef divisor

class is a limit of ample classes, any curve class of type

ψa11 · · ·ψann ,

n∑
i=1

ai = 3g − 4 + n

is a moving curve class inMg,n. Pushing forward toMg, we obtain a moving curve

in Mg whose slope is equal to

(3.2)

∫
Mg,n

ψa11 · · ·ψann · δ∫
Mg,n

ψa11 · · ·ψ
an
n · λ

.

In general, such an integral given by the intersection of tautological classes on

Mg,n is called Hodge integral. Pandharipande evaluated (3.2) explicitly for n = 1

and a1 = 3g − 3. The calculation was built on some fundamental results of Hodge

integrals from [28]. For example, normalize a one-nodal, one-marked irreducible

curve of arithmetic genus g to a smooth curve of genus g − 1 with three marked

points corresponding to the original marked point and the inverse images of the

node. Then we have ∫
Mg,1

ψ3g−3
1 · δirr =

1

2

∫
Mg−1,3

ψ3g−3
1 ,

where the coefficient 1
2 is because the normalization map Mg−1,3 → ∆irr ⊂ Mg,1

is generically two to one. The Hodge integral on the right, as well as that in the

denominator of (3.2) are calculated in [28].

Putting everything together, Pandharipande obtains the lower bound, for all

g ≥ 2,

s(Mg) ≥
60

g + 4
.

It remains an interesting question to calculate (3.2) for general a1, . . . , an, but based

on low genus experiments, it seems that the case n = 1 and a1 = 3g − 3 provides

the best lower bound (cf. [75, §5, Conjecture 1]). So, any new bound arising from

this approach would be most likely of size O( 1
g ) as g tends to ∞.
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3.5. Covers of elliptic curves and Teichmüller curves. Recall that [49]

constructs moving curves using covers of P1. What about covers of curves of higher

genera? Suppose the domain curve has genus g and the target has genus h. If h > 1,

by the Riemann-Hurwitz formula, a d-sheeted cover satisfies 2g − 2 ≥ d(2h − 2),

hence there are only finitely many choices for d. An easy dimension count shows

that the Hurwitz space parameterizing all such covers (under the moduli map) is

a union of proper subvarieties of Mg. In principle there could exist an effective

divisor containing all of those subvarieties.

This leaves the case h = 1, which was studied by the first author in [10].

Let µ = (m1, . . . ,mk) be a partition of 2g − 2. Consider the Hurwitz space Td,µ
parameterizing degree d, genus g, connected covers π of elliptic curves with a unique

branch point b at the origin whose ramification profile is given by µ, i.e.

π−1(b) = (m1 + 1)p1 + · · ·+ (mk + 1)pk + q1 + · · ·+ ql,

where pi has order of ramification mi and qj is unramified. Over a fixed elliptic

curve E, there exist finitely many non-isomorphic such covers. If we vary the j-

invariant of E, the covering curves also vary to form a one-dimensional family,

namely, the Hurwitz space Td,µ is a curve.

The images of Td,µ for all d form a countable union of curves in Mg. We will

see below that Td,µ is a Teichmüller curve hence rigid. Nevertheless if k ≥ g − 1,

the union ∪dTd,µ forms a Zariski dense subset in Mg [10, Proposition 4.1]. In this

case the lim inf of the slopes of Td,µ as d approaches∞ still provides a lower bound

for s(Mg) and since effective divisor can contain only finitely many Td,µ.

To calculate the slope of Td,µ, note that an elliptic curve can degenerate to

a one-nodal rational curve, by shrinking a vanishing cycle β to the node. The

monodromy action associated to β determines the topological type of the admissible

cover arising in the degeneration, which in principle indicates how to count the

intersection number Td,µ · δ. Moreover, using the relation 12λ = δ + ω2 associated

to the universal covering map, one can also calculate Td,µ·λ. This leads to a formula,

again recursive and difficult to unwind for the same reasons as the formulae in [49],

for the slope of Td,µ in [10, Theorem 1.15].

However, Td,µ can be regarded as a special Teichmüller curve, and this provides

a whole new perspective. Let H(µ) parameterize pairs (X,ω) such that X is a

genus g Riemann surface, ω is a holomorphic one-form on X and (ω)0 =
∑
mipi

for distinct points pi ∈ X. Note that integrating ω along a path connecting two

points defines a flat structure on X. In addition, integrating ω along a basis of the

relative homology group H1(X; p1, . . . , pk) realizes X as a plane polygon with edges

identified appropriately under affine translation. The reader may refer to [92] for

an excellent introduction to flat surfaces. Varying the shape of the polygon induces

an SL2(R) action on H(µ). Project an orbit of this action toMg by sending (X,ω)

to X. The image is called a Teichmüller curve if it is algebraic. Teichmüller curves

possess a number of fascinating properties. They are geodesics under the Kobayashi
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metric on Mg. They are rigid [63], hence give infinitely many examples of rigid

curves on various moduli spaces, in particular, on the moduli space of pointed

rational curves [12].

Consider a branched cover π : X → E parameterized in Td,µ, where E is the

square torus with the standard one-form dz. The pullback ω = π−1(dz) has divisor

of zeros
∑
imipi. Therefore, (X,ω) yields a point in H(µ). Alternatively, one can

glue d copies of the unit square to realize X as a square-tiled surface endowed with

flat structure; Figure 2 shows an example.

5

1 2 3 4

Figure 2. A square-tiled surface for g = 2, d = 5 and µ = (2)

The SL2(R) action amounts to deforming the square to a rectangle, i.e. chang-

ing the j-invariant of E, hence the Hurwitz curve Td,µ is an invariant orbit under

this action. Indeed, Td,µ is called an arithmetic Teichmüller curve. Note that there

exist Teichmüller curves that do not arise from a branched cover construction and

their classification is far from complete. We refer to [65] for a survey on Teichmüller

curves from the viewpoint of algebraic geometry.

As a square-tiled surface, X decomposes into horizontal cylinders with various

heights and widths, which are bounded by horizontal geodesics connecting two zeros

of ω. For instance, the top square of the surface in Figure 2 admits a horizontal

cylinder of height and width both equal to 1, while the bottom four squares form

another horizontal cylinder of height 1 and width 4. Suppose the vanishing cycle

of E is represented by the horizontal core curve of the square. Then the core

curve of a horizontal cylinder of height h and width l shrinks to h nodes, each of

which contributes 1
l to the intersection Td,µ · δ by a local analysis. Denote by h

l

the modulus of such a cylinder. In general, the “average” number of modulus of

horizontal cylinders in an SL2(R)-orbit closure is defined as the Siegel-Veech area

constant cµ associated to the orbit. See [26] for a comprehensive introduction to

Siegel-Veech constants.

The slope of Td,µ has an expression involving its Siegel-Veech constant [12, The-

orem 1.8], which also holds for any Teichmüller curve [14, §3.4]. Based on massive

computer experiments, Eskin and Zorich believe that the Siegel-Veech constant

cµ approaches 2 as g tends to ∞ for Teichmüller curves in any (non-hyperelliptic)

H(µ). Assuming this expectation, the slope formula cited above implies that s(Td,µ)

grows as ∼ 576
5g for g � 0 and k ≥ g−1. We have seen this bound 576

5g in Section 3.1.

But the curves used in [49] are moving while Teichmüller curves are rigid! It would
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be interesting to see whether this is only a coincidence having to do with some

property of branched covers or whether the bound 576
5g has a more fundamental

“hidden” meaning.

A final remark on Teichmüller curves is that their intersection numbers with

divisors on Mg can provide information about the SL2(R) dynamics on H(µ). For

instance, about a decade ago Kontsevich and Zorich conjectured, based on numer-

ical data, that for many low genus strata H(µ) the sums of Lyapunov exponents

are the same for all Teichmüller curves contained in that stratum. This conjec-

ture has been settled by the first author and Möller [14]. The idea is that the

three quantities—the slope, the Siegel-Veech constant and the sum of Lyapunov

exponents—determine each other, hence it suffices to show the slopes are non-

varying for all Teichmüller curves in a low genus stratum.

Consider, as an example, H(3, 1) in genus g = 3. If a curve C possesses a

holomorphic one-form ω such that (ω)0 = 3p1 +p2 for p1 6= p2, then C is not hyper-

elliptic, since the hyperelliptic involution would switch the zeros. Consequently a

Teichmüller curve in H(3, 1) is disjoint from the divisorM1
3,2 of hyperelliptic curves

inM3. Checking that this remains true for the respective closures of these two loci

immediately implies that the slopes of all Teichmüller curves in H(3, 1) are equal

to s(M1

3,2) = 9. For a detailed discussion of the interplay between Teichmüller

curves and the Brill-Noether divisors, see [14]. Using similar ideas, the first au-

thor and Möller also settled the case of Teichmüller curves generated by quadratic

differentials in low genus in [15].

3.6. Moduli spaces of k-gonal curves. We end this section by discussing

various questions related to slopes on moduli spaces of k-gonal curves and we begin

with the case of hyperelliptic curves.

Let Hg :=M1

g,2 be the closure of locus of genus g hyperelliptic curves in Mg.

Alternatively, it is the admissible cover compactification of the space of genus g,

simply branched double covers of P1. We have an injection ι : Hg ↪→ Mg. The

rational Picard group of Hg is generated by boundary components Ξ0, . . . ,Ξ[ g−1
2 ]

and Θ1, . . . ,Θ[ g2 ] (cf. [48, Chapter 6.C]) and [56] shows that these classes also

generate Eff
(
Hg

)
. A general point of Ξi parameterizes a double cover of a one-

nodal union P1 ∪P1 branched at 2i+ 2 points in one component and 2g− 2i in the

other. A general point of Θi parameterizes a double cover of P1 ∪ P1 branched at

2i+ 1 points in one component and 2g − 2i+ 1 in the other. Cornalba and Harris

[18] proved the following formulae:

ι∗(∆irr) = 2

b g−1
2 c∑
i=0

Ξi, ι∗(∆i) =
1

2
Θ2i+1 for i ≥ 1,

ι∗(λ) =

b g−1
2 c∑
i=0

(i+ 1)(g − i)
4g + 2

Ξi +

b g2 c∑
i=1

i(g − i)
4g + 2

Θi.
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Since the smallest boundary coefficient in the expression of ι∗(λ) is g
(4g+2) for Ξ0 ≡

ι∗
(

∆irr

2

)
(modulo higher boundary terms), if we impose formally the same slope

problem to Hg, the lower bound for slopes of effective divisors on Hg is

2 · 4g + 2

g
= 8 +

4

g
.

Phrasing it differently, if B ⊂ Hg is any one-dimensional family of genus g curves

whose general member is smooth and hyperelliptic, then (8g + 4)B · λ ≥ gB · δ,
therefore sB ≤ 8+ 4

g , cf. [18] or [48, Corollary 6.24]. Note that this bound converges

to 8 as g approaches ∞. The maximum 8 + 4
g can be achieved by considering a

Lefschetz pencil of type (2, g + 1) on the quadric P1 × P1. Similar bounds were

obtained for trigonal families by Stankova [83]. If B ⊂M1

g,3 is any one-dimensional

family of trigonal curve with smooth generic member, then

sB ≤
36(g + 1)

5g + 1
.

A better bound sB ≤ 7 + 6
g is known to hold for trigonal families B ⊂ Mg not

lying in the Maroni locus of M1

g,3, that is, the subvariety of the trigonal locus

corresponding to curves with unbalanced scroll invariants. It is of course highly

interesting to find such bounds for the higher k-gonal strataM1

g,k. A yet unproven

conjecture of Harris, see [83, Conjecture 13.3], predicts that if B ⊂ M1

g,k is any

1-dimensional family with smooth generic member and not lying in a codimension

one subvariety of M1

g,k, then:

sB ≤
(

6 +
2

k − 1

)
+

2k

g
.

To this circle of ideas belongs the following fundamental question:

Problem 3.3. Fix g sufficiently large, so that Mg is of general type. Find

the smallest integer kg,max ≤ g+2
2 such that M1

g,k is a variety of general type for a

k ≥ kg,max. Similarly, find the largest integer 2 ≤ kg,min such thatM1

g,k is uniruled

for all k ≤ kg,min. Is it true that

lim inf
g→∞

kg,min = lim inf
g→∞

kg,max?

Obviously a similar question can be asked for the Severi varieties M2

g,d, or indeed

for all Brill-Noether subvarieties of the moduli space. To highlight our ignorance in

this matter, Arbarello and Cornalba [2], using a beautiful construction of Beniamino

Segre, showed that M1

g,k is unirational for k ≤ 5, but it is not even known that

kg,min ≥ 6 for arbitrarily large g. The best results in this direction are due to Geiss

[44] who proves the unirationality of M1

g,6 for most genera g ≤ 45.

4. The slope of Ag

In view of the tight analogy with the case ofMg, we want to discuss questions

related to the slope of the moduli space Ag of principally polarized abelian varieties

(ppav) of dimension g. Let Ag be the perfect cone, or first Voronoi, compactifica-

tion of Ag and denote by D := Ag − Ag the irreducible boundary divisor. Then

Pic(Ag) = Q · λ1 ⊕Q · [D], where λ1 := c1(E) is the first Chern class of the Hodge
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bundle. Sections of det(E) are weight 1 Siegel modular forms. Shepherd-Barron [82]

showed that for g ≥ 12, the perfect cone compactification is the canonical model of

Ag.
In analogy with the case of Mg, we define the slope of an effective divisor

E ∈ Eff(Ag) as

s(E) := inf
{a
b

: a, b > 0, aλ1 − b[D]− [E] = c[D], c > 0
}
,

and then the slope of the moduli space as the quantity

s(Ag) := inf
E∈Eff(Ag)

s(E).

Since KAg = (g+1)λ1−[D], it follows thatAg is of general type if s(Ag) < g+1, and

Ag is uniruled when s(Ag) > g+ 1. Mumford [71] was the first to carry out divisor

class calculations in Ag. In particular, he studied the Andreotti-Mayer divisor N0

on Ag consisting of ppav [A,Θ] having a singular theta divisor. Depending on

whether the singularity occurs at a torsion point or not, one distinguishes between

the components θnull and N ′0 of the Andreotti-Mayer divisor. The following scheme-

theoretical equality holds:

N0 = θnull + 2N ′0.

The cohomology classes of the components of N0 are given are computed in [71]:

[N
′
0] =

( (g + 1)!

4
+
g!

2
− 2g−3(2g + 1)

)
λ1 −

( (g + 1)!

24
− 22g−6

)
[D],

respectively

[θnull] = 2g−2(2g + 1)λ1 − 22g−5[D].

Using these formulas coupled with Tai’s results on the singularities of Ag, Mumford

concluded that Ag is of general type for g ≥ 7. Note that at the time, the result

had already been established for g ≥ 9 by Tai [84] and by Freitag [42] for g = 8. On

the other hand, it is well-known that Ag is unirational for g ≤ 5. The remaining

case is notoriously difficult. This time, the three authors refrain from betting on

possible outcomes and pose the:

Problem 4.1. What is the Kodaira dimension of A6?

The notion of slope for Ag is closely related to that ofMg via the Torelli map

τ :Mg 99K Ag,

sending a curve to its (generalized) Jacobian. The restriction of τ to the union of

Mg and the locus of one-nodal irreducible curves is an embedding. If a curve C

consists of a one-nodal union of two lower genus curves C1 and C2, then J(C) ∼=
J(C1) × J(C2), which does not depend on the position of the node. Therefore, τ

contracts ∆i for i > 0 to a higher codimension locus in Ag. Moreover, we have that

τ∗(λ1) = λ, τ∗(D) = δirr.

Therefore, if F is an effective divisor on Ag and that does not contain τ(Mg), then

τ∗(F ) and F have the same slope. If we know that s(Mg) ≥ ε for a positive number
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ε, then any modular form of weight smaller than ε has to vanish on τ(Mg). This

would provide a novel approach to understand which modular forms cut outMg in

Ag, and thus give a solution to the geometric Schottky problem. By work of Tai [84]

(explained in [46, Theorem 5.19]), the lower bound for slopes of effective divisors

on Ag approaches 0 as g tends to ∞, that is, limg→∞s(Ag) = 0. In fact, there

exists an effective divisor on Ag whose slope is at most

σg :=
(2π)2(

2(g!)ζ(2g)
)1/g .

Since ζ(2g) → 1 and (g!)1/g → g
e as g → ∞, we find that g σg → 68.31 . . ..

Although this is a bit bigger than the unconditional lower bound of 60 for g s(Mg)

of subsection 3.4, this shows that the slope of this divisor is smaller than the

heuristic lower bound 576
5g for s(Mg) emerging from [49] and [12] for large values of

g.

As for Mg, the slope of Ag is of great interest. The first case is g = 4 and it

is known [81] that s(A4) = 8, and the minimal slope is computed by the divisor

τ(M4) of genus 4 Jacobians. In the next case g = 5, the class of the closure of the

Andreotti-Mayer divisor is

[N
′
0] = 108λ1 − 14D,

giving the upper bound s(A5) ≤ 54
7 . Very recently, a complete solution to the slope

question on A5 has been found in [34] by Grushevsky, Salvati-Manni, Verra and the

second author. We spend the rest of this section explaining the following result:

Theorem 4.2. The slope of A5 is attained by N ′0. That is, s(A5) = 54
7 . Fur-

thermore, κ(A5, N
′
0) = 0, that is, the only effective divisors on A5 having minimal

slope are the multiples of N
′
0.

The proof relies on the intricate geometry of the generically 27 : 1 Prym map

P : R6 99K A5.

The map P has been investigated in detail in [22] and it displays some breathtak-

ingly beautiful geometry. For instance the Galois group of P is the Weyl group of

E6, that is, the subgroup of S27 consisting of permutations preserving the inter-

section product on a fixed cubic surface. The divisor N ′0 is the branch locus of P ,

whereas the ramification divisor Q has three alternative realizations as a geometric

subvariety of R6, see [38] and [34] for details. One should view this statement as a

Prym analogue of the various incarnations of the K3 divisor K10 onM10, see [36]:

Theorem 4.3. The ramification divisor Q of the Prym map P : R6 → A5 has

the following geometric incarnations:

(1)
{

[C, η] ∈ R6 : Sym2H0(C,KC ⊗ η)
�
−→ H0(C,K⊗2

C )
}
.

(2)
{

[C, η] ∈ R6 : C has a sextic plane model with a totally tangent conic
}
.

(3)
{

[C, η] ∈ R6 : C is a section of a Nikulin surface
}
.

(4)
{

[C, η] ∈ R6 : Singst(Ξ) 6= 0
}
.
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The first realization is the most straightforward and it relies on the description

of the differential of the Prym map via Kodaira-Spencer theory, see [22]. Description

(4) refers to stable singularities of the theta divisor Ξ ⊂ P (C, η) associated to the

Prym variety. In particular, Ξ has a stable singularity if and only if the étale double

cover f : C̃ → C induced by the half-period η ∈ Pic0(C), η⊗2 = OC , carries a line

bundle L with Nmf (L) = KC with h0(C̃, L) ≥ 4. Description (3) concerns moduli

spaces of K3 surfaces endowed with a symplectic involution (Nikulin surfaces): see

[38]. The equivalence (1)⇔ (4) can be regarded as stating that Q is simultaneously

the Koszul and the Brill-Noether divisors (in Prym sense) on the moduli space R6!

By a local analysis, if π : R6 → M6 is the morphism forgetting the half-period,

one proves the following relation in Pic(R6):

(4.4) P ∗(N
′
0) = 2Q+ U + 20δ

′′

irr,

where U = π∗(GP1
6,4) is the anti-ramification divisor of P and finally, δ

′′

irr denotes

the boundary divisor class corresponding to Wirtinger coverings. Using the different

parametrizations of Q provided by Theorem 4.3, one can construct a sweeping

rational curve R ⊂ Q such that

R · U = 0, R · δ
′′

irr = 0 and R · Q < 0.

Via a simple argument, this shows that in formula (4.4), the divisor Q does not

contribute to the linear system |P ∗(N ′0)|. Similar arguments show that U and δ
′′

irr

do not contribute either, that is, N ′0 is the only effective divisor in its linear system,

or equivalently κ(A5, N
′
0) = 0. In particular s(A5) = s(N

′
0) = 54

7 . This argument

shows that N ′0 is rigid, hence s′(A5) > s(A5), so we ask:

Problem 4.5. What is s′(A5)?

A space related to bothMg and Ag is the universal theta divisors Thg →Mg,

which can be viewed as the universal degree g−1 symmetric productMg,g−1//Sg−1

overMg. The following result has been recently established by Verra and the second

author in [39]:

Theorem 4.6. Thg is a uniruled variety for genus g ≤ 11 and of general type

for g ≥ 12.

The proof gives also a description of the relative effective cone of Thg over

Mg as being generated by the boundary divisor ∆̃0,2 corresponding to non-reduced

effective divisors of degree g − 1 and by the universal ramification divisor of the

Gauss map, that is, the closure of the locus of points [C, x1+· · ·+xg−1] for which the

support of the 0-dimensional linear series |KC(−x1−· · ·−xg−1)| is non-reduced. The

paper [39] also gives a complete birational classification of the universal symmetric

product Mg,g−2//Sg−2, showing that, once again, the birational character of the

moduli space changes around genus g = 12.

We close this section with a general comment. Via the Torelli map, the moduli

space of curves sits between Hg and Ag. In terms of lower bounds for slopes, Hg
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and Ag behave totally different for large g: the former has lower bound converging

to 8, whereas the latter approaches 0. The failure to find of effective divisors with

small slope seems to suggest that Mg is “closer” to Hg, while the failure to find

moving curves seems to suggest that Mg is “closer” to Ag.

5. Effective classes on spaces of stable curves and maps of genus 0

5.1. Symmetric quotients in genus 0. On M0,n itself, the components of

the boundary ∆ are the loci ∆I , indexed by I ⊂ {1, 2, . . . , n} (subject to the iden-

tification ∆I = ∆I∨ and to the stability condition that both |I| and |I∨| be at least

2), whose general point parameterizes a reducible curve having two components

meeting in a single node and the marked points indexed by I on one side and those

indexed by I∨ on the other. These generate, but not freely, Pic
(
M0,n

)
, see [55].

The starting point for the study of effective cones in genus 0 is the paper of

Keel and McKernan [56]. In it, they consider the space M̃0,n that is the quotient

of M0,n by the natural action of Sn by permutations of the marked points. For

instance M̃0,2g+2 is isomorphic to the compactified moduli space of hyperelliptic

curves of genus g already discussed in this survey. The boundary ∆̃ of M̃0,n has

components ∆̃i that are simply the images of the loci ∆i on M0,n defined as the

union of all ∆I with |I| = i for i between from 2 and b g2c.

Lemma 5.1. Every Sn-invariant, effective divisor class D on M0,n is an ef-

fective sum of the boundary divisors ∆i

Corollary 5.2. The cone Eff
(
M̃0,n

)
is simplicial, and is generated by the

boundary classes ∆̃i.

Proof of Lemma 5.1. Any Sn-invariant divisor D is clearly a linear combi-

nation
∑
bi∆i so the point is to show that, if D is effective, then we can take the

bi all non-negative, and this is shown by a pretty induction using test curves. We

may assume that D contains no ∆i since proving the result for the D′ that results

from subtracting all such contained components will imply the result for D.

As a base for the induction, pick an n-pointed curve
(
C, [pi, . . . , pn]

)
not in the

support of D and form a test family with base B ∼= C by varying pn, while fixing

the other pi. Since C is not in D, the curve B must meet D non-negatively. On

the other hand, B · ∆2 = (n − 1)—there is one intersection each time pn crosses

one of the other pi—and is disjoint from the other ∆i. Hence, b2 ≥ 0.

Now assume inductively that bi ≥ 0. Choose a generic curve

C =
(
C ′, [p′1, . . . , p

′
i]
)
∪
(
C ′, [p′′1 , . . . , p

′′
n−i]

)
in ∆i in which q′ on C ′ has been glued to q′′ on C ′′ and form the family B ∼= C ′′

by keeping q′ and the marked points on both sides fixed but varying q′′ (as in

[48, Example (3.136)]). As above B · D ≥ 0, B · ∆j = 0 unless j is either i or

i + 1. And, as above, B · ∆i+1 = n − i (we get one intersection each time q′′

crosses a p′′k), but now B lies in ∆i so to compute B · ∆i we use the standard
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approach of [48, Lemma (3.94)]. On the “left” side, the family over B is C ′ × C ′

and the section corresponding to q′ has self-intersection 0. On the “right” side, the

family is C ′′ × C ′′ ∼= P1 × P1 blown up at the points where the constant sections

corresponding to the p′′k meet the diagonal section corresponding to q′′ and hence

the proper transform of that section has self-intersection
(
2− (n− i)

)
. The upshot

is that B ·D = (n− i)bi+1 − (n− i− 2)bi completing the induction. �

In fact, this proof shows quite a bit more. It immediately gives the first in-

equalities in Corollary 5.3 and the others follow by continuing the induction and

using the identifications ∆i = ∆n−i.

Corollary 5.3 ([56, Lemma 4.8]). If D =
∑
bi∆i is an effective divisor class

on M̃0,n whose support does not contain any ∆i (or, if D is nef), then (n−i)bi+1 ≥
(n− i− 2)bi for 2 ≤ i ≤ bn2 c − 1 and ibi−1 ≥ (i− 2)bi for 3 ≤ i ≤ bn2 c.

At this point, it is natural to hope that we might be able to replace the twiddles

in Corollary 5.2 with bars with a bit more work. We will see in §§5.3 that this is

far from the case.

Next, we give another application of Lemma 5.1, also due to Keel and kindly

communicated to us by Jason Starr, this time to the Kontsevich moduli spaces of

stable maps M0,0(Pd, d). A general map f in M0,0(Pd, d) has a smooth source

curve C with linearly non-degenerate image f(C) ⊂ Pd of degree d and hence is

nothing more than a rational normal curve. The space M0,0(Pd, 1) is just the

Grassmannian of lines in Pd. The philosophy is to view M0,0(Pd, d) as a natural

compactification of the family of such curves. For example,M0,0(P2, 2) has an open

stratum consisting of plane conics. One boundary divisor arises when the curve C

becomes reducible, the map f has degree 1 on each component and image consists

of a pair of transverse lines. But there is a second component, in which the map

f degenerates to a double cover of a line in which the image is “virtually marked”

with the two branch points. These intersect in a locus of maps from a pair of lines

to a single line in which only the image of the point of intersection is “virtually

marked”.

This generalizes: Pic
(
M0,0(Pd, d)

)
is freely generated by effective classes Γi,

the closure of the locus whose generic map has a domain with two components on

which it has degrees i and d − i with 1 ≤ i ≤ bd2c, and a class G, the degenerate

locus where f(C) lies in a proper subspace of Pd—see [76, Theorem 1].

Lemma 5.4. A class D = aG +
∑
i biΓi is effective if and only if a ≥ 0 and

each bi ≥ 0.

Proof. All we need to show is that effective classes have positive coefficients.

We start with a. Choose a general map g : P2 → Pd for which g∗
(
O(1)

)
= O(d) (i.e.

a generic d + 1-dimensional vector space V of degree d polynomials in the plane).

Then g sends a general pencil B of lines in P2 to a pencil of rational curves of degree

d. The image of a general element of this pencil will be a rational normal curve of
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degree d, hence non-degenerate, so g(B) 6⊂ G and hence g(B) ·G ≥ 0. No element

of the pencil will be reducible, hence g(B) ·Γi = 0. Since we can make any rational

normal curve a member of the pencil by suitably choosing V and B, this family

of test curves must meet any effective divisor, in particular, D, non-negatively. So

a ≥ 0.

To handle the bi, we use a remark of Kapranov [54] that the set K of maps

[f ] ∈ M0,0(Pd, d) whose image contains a fixed set of d+ 2 linearly general points

is disjoint from G (by construction) and may be identified with M0,d+2 (by using

the points as the markings), so that points of Γi ∩K correspond to those of ∆i+1.

We can choose K not to lie in D by taking the (d + 2)-points to lie on a rational

normal curve not in D so K must induce an effective class DK on M0,d+2. But K

does not depend on the ordering of the d+ 2 points so DK is Sn-invariant and the

non-negativity of the bi follows from Lemma 5.2. �

We also note that the argument about B in the first paragraph of the proof

generalizes. If f is a stable map with domain C that is not in G or in any of the

Γi, then f(C) is an irreducible, non-degenerate curve of degree d in Pd, hence is

a rational normal curve. The translations of f by PGL(d + 1) will thus be the

locus of all rational normal curves, which is dense inM0,0(Pd, d). Thus, we get the

following, see [20, Lemma 1.8]:

Corollary 5.5. If B is any reduced, irreducible curve inM0,0(Pd, d) not lying

in G or any of the Γi, then B is a moving curve.

We will next look at sharpenings and extensions of these results.

5.2. Effective classes onM0,0(Pr, d). We computed Eff
(
M0,0(Pd, d)

)
above

in terms of the classes G and Γi in Lemma 5.4 above and we now want to discuss the

extensions of Coskun, Harris and Starr [20] toM0,0(Pr, d). Since there is no longer

any risk of confusion between boundaries in M0,n and M0,0(Pr, d), we will now

write ∆i for the Γi defined above1. We begin by introducing two other important

effective classes on M0,0(Pr, d).

Definition 5.6.

(1) Let H be the locus of maps whose image meets a fixed codimension 2

linear subspace L ⊂ Pd.
(2) Let ∆wt be the weighted total boundary defined by

∆wt =
∑
i

i(d− i)
d

∆i .

By a test curve argument ([20, Lemma 2.1]) using the curves Bk, 1 ≤ k ≤ bd2c
defined as the one-parameter families of maps whose images contain a fixed set of

d + 2 linearly general points, and meet a fixed subspace of dimension k (and, if

k > 1, a second of dimension d− k), these classes are related by

1Note that [20] uses Ddeg and for our G and ∆i,d−i for our ∆i.
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(5.7) 2G =
(d+ 1)

d
H −∆wt .

By [43, Lemma 14], the general point of each Bk is a map with image a rational

normal curve and hence, by Corollary 5.5, all the Bk are moving curves. Since, for

k > 1, Bk, and only Bk, meets ∆k, they are independent, and by construction,

degBk(G) = 0 for all k. Hence the Bk are a set of moving curves spanning the null

space of G in the cone of curves of M0,0(Pr, d).

We can use (5.7) to identify

ud,r : Vd := spanC

{
H,∆i, i = 1, . . . bd

2
c
}
→ Pic

(
M0,0(Pr, d)

)
and view all the cones Eff

(
M0,0(Pr, d)

)
for a fixed d as living in Vd as well. The

next lemma asserts that these cones are nested and stabilize.

Lemma 5.8 ([20, Proposition 1.3]). The inclusions

Eff
(
M0,0(Pr, d)

)
⊂ Eff

(
M0,0(Pr+1, d)

)
hold for all r ≥ 2, with equality if r ≥ d.

Informally, maps to the complement U of a point p ∈ Pr+1 have codimension

r ≥ 2 in M0,0(Pr+1, d) so projection from p induces a map

h : Pic
(
M0,0(Pr, d)

)
→ Pic

(
M0,0(Pr+1, d)

)
sending effective divisors to effective divisors and compatible with the identifications

ud,r. This gives the inclusions. Equality follows for r ≥ d by producing inclusions

Eff
(
M0,0(Pr, d)

)
⊂ Eff

(
M0,0(Pd, d)

)
as follows. If D ∈ Eff

(
M0,0(Pr+1, d)

)
, then

the map associated to a general point of D has image spanning a d-plane W ⊂ Pr

and the pullback of D by any linear isomorphism j : Pd → W is an effective class

with the same coordinates in Vd. In the sequel, Lemma 5.8 lets us define new

effective classes for a fixed small r and obtain classes for all larger values and, to

simplify, we use the same notation for the prototypical class and its pullbacks.

We will refer the reader to [20, §3] for other complementary results—in par-

ticular, the construction of moving curves dual to the one-dimensional faces of

Eff
(
M0,0(Pd, d)

)
, either exactly, assuming the Harbourne-Hirschowitz conjecture,

or approximately to any desired accuracy without this assumption.

Because we have such an explicit description of Eff
(
M0,0(Pr, d)

)
, and like-

wise, from the sequel [19] of Nef
(
M0,0(Pr, d)

)
, it is possible, at least for small

values of r and d, to answer more refined questions. In particular, we can at-

tempt to understand the chamber structure of the stable base locus decomposition

of Eff
(
M0,0(Pr, d)

)
. The case r = d is particularly interesting and we conclude

this subsection by describing the results of Chen, Coskun and Crissman [11,13] for

d = 3 and d = 4 which reveal interesting relations with other moduli spaces.

To start we need the rosters of additional effective classes exhibited as geometric

loci in Table 1. Then we need to give the coordinates of all these classes in terms

of the basis consisting of H and the boundaries. In fact, they are all of the form
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aH + b∆ + bwt∆wt. The coefficients, also given in the table, summarize cases

worked out in §2 of [13] (where the coordinates of many tautological classes are

also computed) and earlier results in [21,74,76], all obtained by standard test curve

calculations.

Divisor Least r Description of general map

with smooth domain

a b bwt

T r f(C) is tangent to a fixed

hyperplane.

d−1
d 0 1

NL 2 f(C) has a node lying on a

fixed line.

(d−1)(2d−1)
2d 0 − 1

2

TN 2 f(C) has tacnode. 3(d−1)(d−3)
d 4 d− 9

TR 2 f(C) has triple point. (d−1)(d−2)(d−3)
2d −1 −d−6

2

NI 3 f(C) is not an isomor-

phism; a generic f(C) is

irreducible rational, of de-

gree d, with a single node.

(d−1)(d−2)
d 1 −d2

Table 1. Other classes on M0,0(Pr, d) defined as geometric loci

When d = r = 3, there is considerable collapsing. The loci TN and TR are

empty, NI = T and NL coincides with a class called F in [11] and defined as the

closure of the locus of maps meeting a fixed plane in two points collinear with a fixed

point. Writing M(α) := Proj
(⊕

m≥0H
0
(
m(H + α∆)

))
for the model of “slope”

α, this leads —cf. [11, Theorem 1.2] to which we refer for further details—to the

picture in Figure 3 of the chamber structure of Eff
(
M0,0(P3, 3)

)
. In this figure,

each wall is labeled D : α with D a spanning class from the list above and α its

slope. Each chamber is labeled with the model, defined below, that arises as M(α)

in its interior with brackets (or parentheses) used to indicate of whether this is (or

is not) also the model on the corresponding wall.

We will briefly describe the models and wall-crossing maps in the figure, refer-

ring to [11] for further details. We start at the bottom right with M0,0(P3, 3, 2),

which is the space of 2-stable maps of Mustaţă and Mustaţă [72] in which maps

whose source has a degree 1 “tail” are replaced by maps of degree 3 on the “degree

2” component that have a base point at the point of attachment of the tail; the

map M0,0(P3, 3) → M0,0(P3, 3, 2) is the contraction of ∆ by forgetting the other

end of the tail. The chamber bounded by T and H is, as is shown in [19], the Nef

cone of M0,0(P3, 3).

The ray through H itself gives a morphism φ : M0,0(P3, 3) → Chow(P3, 3)

by sending a map f to the cycle class of f(C) and this is the right side of a

flip that contracts the 8 dimensional locus P3 where f is a degree 3 cover of a

line and the 9 dimensional locus P1,2 on which f covers a pair of intersecting
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G : −1
2

NL : −1
5
H : 0

T : 1

∆ :∞

(
M0,0(P3, 3)

)

[
M0,0(P3, 3, 2)

)

(
H
)(

H′
]

Figure 3. Chamber structure of Eff
(
M0,0(P3, 3)

)
lines with degrees 1 and 2. The Hilbert scheme of twisted cubics contains a 12-

dimensional component H whose general member is a twisted cubic (and a second

15-dimensional component—cf. [77]) and the left side of this flip is the cycle map

ψ : H → Chow(P3, 3) which contracts the 9-dimensional locus R ⊂ H of curves

possessing a non-reduced primary component.

Finally, by [27, Lemma 2], every point of H (and not just those coming from

twisted cubics) is cut out by a unique net of quadrics, and hence there is a morphism

ρ : H → H′ ⊂ G(3, 10) that contracts G.

Already, when r = d = 4, the picture gets substantially more complicated, and

not simply because the dimension of this Eff
(
M0,0(P4, 4)

)
is 3, In this case, the

stable base locus decomposition is no longer completely known. Again we refer

to [13, §2] for proofs and further details about the claims that follow, and for less

complete results about M0,0(Pr, d) for other values of r and d.

Figure 4 shows a slice in barycentric coordinates in the rays G, and the compo-

nents ∆′1 := 3
4∆1 and ∆2 of the weighted boundary ∆wt (which give a slightly more

symmetric picture than using ∆1 and ∆2). Two extra classes appear as vertices.

The first is the class P = H + ∆1 + 4∆2, which is shown in [19, Remark 5.1] to be

one of the 3 vertices of Nef
(
M0,0(P4, 4)

)
—the other two are H and T . The second

is the class Q = 3H + 3∆1 − 2∆2 defined (up to homothety) as the ray in which

the ∆2−P−T -plane meets the ∆′1−NI-plane.

In the figure, the white circles label these classes and those in Table 1. There are

no longer any coincidences between these classes but there quite a few coplanarities

visible in the figure as collinearities. The lines show the boundaries of chambers

in Eff
(
M0,0(P4, 4)

)
(not necessarily the full set of chambers corresponding to the

stable base locus decomposition) in terms of the classes above. The central triangle

shaded in dark gray is, as noted above, Nef
(
M0,0(P4, 4)

)
.
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G

∆′1 ∆ ∆wt ∆2

NL

H

T

TR

P

NI

TN

Q

Figure 4. Chamber structure of Eff
(
M0,0(P4, 4)

)
A heavier line segment joins each of the three vertices of Eff

(
M0,0(P4, 4)

)
to

an interior class. The two triangles formed by joining this edge to one of the two

other vertices are the locus of divisors whose stable base locus contains the common

vertex. For example, the triangle ∆2-P -TR is the chamber whose stable base locus

contains ∆2 but not G or ∆1. Together these triangles cover the complement of

the light gray quadrilateral which therefore contains the cone of moving divisors;

equality would follow if one could produce a locus with classQ and with no divisorial

base locus, as the defining descriptions in Table 1 provide for the other vertices.

5.3. The combinatorial extremal rays of Castravet and Tevelev. We

now focus on the spaceM0,n itself. Since the boundary divisors ∆I are an effective

set of generators of Pic
(
M0,n

)
, a natural question—rendered even more tempting

by Corollary 5.2—is whether they generate Eff
(
M0,n

)
. This is trivial for n = 3

and n = 4 when M0,n is respectively, a point and P1, and easy for n = 5.

Let us recall the argument from [52, Proposition 4.1] in the last case. Kapra-

nov’s construction [54] (or the weighted variant in [51]) exhibits M0,5, with the 5th

marked point distinguished, as the blowup of P2 in 4 general points pi. Denote by

L the class of a general line, by Ei the ith exceptional divisor, and by E the sum of
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the Ei. We can then identify ∆{i,5} with Ei and ∆{i,j} with L−Ei−Ej (these are

the proper transform of the lines through pi and pj , the other (−1)-curves). With

these identifications, the 5 maps M0,5 → M0,4 forgetting the ith marked point,

respectively correspond to the 5 (semiample) divisors L − Ei and 2L − E and the

5 blow-downs to P2 correspond to 2L− E + Ei and to L.

Brute force calculation shows that, in the vector space spanned by L and the

Ei, the cone C spanned by the 10 boundaries is dual to the cone spanned by these

10 semiample classes. Since the effective cone is the dual of the moving cone of

curves and the latter lies inside the dual of the semiample cone, this shows that the

boundaries generate Eff
(
M0,5

)
.

However, for any n ≥ 6, examples due to Keel and Vermeire [88] show that

there are effective classes Fσ that are not effective sums of the boundaries. For

n = 6, fix one of the 15 partitions σ of the marked points into three pairs—say

σ = (12)(34)(56) which we also view as determining an element in Sn. We can

associate to this choice a divisor in two ways. The first is as the fixed locus Fσ of

the involution of M0,6 given by σ. There is a map φ :M0,6 →M3 by identifying

the points in each pair to obtain a 3-nodal irreducible rational curve, and we also

obtain Fσ as φ∗(M1

3,2) where M1

3,2 is the closure in M3 of the hyperelliptic locus

in M3.

To analyze Fσ, the starting point is again an explicit model ofM0,6 (one starts

by blowing up 5 general points in P4, and then blows up the proper transforms

of the 10 lines through 2 of these points). It is again straightforward to write

down expressions for the ∆I and for fixed loci like Fσ as combinations of classes

L, Ei and Eij defined in analogy with those above (cf. the table on p.79 of [88]).

Vermeire then gives an essentially diophantine argument with these coefficients to

show that Fσ is not an effective sum of boundaries. Pulling back Fσ by forgetful

maps, produces effective classes on M0,n for any n ≥ 6 that are not effective sums

of boundaries.

In another direction, these examples are known be sufficient to describe only

Eff
(
M0,6

)
. Hassett and Tschinkel [52, Theorem 5.1] prove this by again showing

that the dual of the cone generated by these classes lies in the moving cone of

curves, for which the use of a tool like Porta which was convenient for n = 5 is now

essential. Castravet [7] gives another argument that, though quite a bit longer, can

be checked by hand, based on showing that the divisors of boundary components

and the Fσ generate the Cox ring of M0,6.

At this point, experts were convinced that Eff
(
M0,n

)
probably had many non-

boundary extremal rays but there was no clear picture of how they might be classi-

fied, indeed there were no new examples, until the breakthrough of Castravet and

Tevelev [8] in 2009, which provides a recipe for constructing such rays from irre-

ducible hypertrees Γ—combinatorial data whose definition we will give in a moment,

along with the related notions of generic and spherical duals—that they conjecture

yields them all.



34 DAWEI CHEN, GAVRIL FARKAS, AND IAN MORRISON

Theorem 5.9 ([8, Theorem 1.5, Lemma 7.8 and Lemma 4.11]). Every hypertree

Γ of order n determines an effective divisor DΓ ⊂M0,n.

(1) If Γ is irreducible, then DΓ is a non-zero, irreducible effective divisor

satisfying:

(a) DΓ is an extremal ray of Eff
(
M0,n

)
and meets M0,n.

(b) There is a birational contraction fΓ : M0,n 99K XΓ onto a nor-

mal projective variety XΓ whose exceptional locus consists of DΓ and

components lying in ∆.

(c) If Γ and Γ′ are generic and DΓ = DΓ′ , then Γ and Γ′ are spherical

duals.

(2) The pullback via a forgetful map M0,n → M0,m of the divisor DΓ on

M0,m associated to any irreducible hypertree of order m, which when n is

understood we will again (abusively) denote by DΓ, also spans an extremal

ray of Eff
(
M0,n

)
.

(3) If Γ is not irreducible, then every irreducible component of DΓ—if this

locus is nonempty—is pulled back via a forgetful map from the divisor

DΓ′ ⊂M0,m of an irreducible hypertree Γ′ of order m < n.

The table below shows the number IH(n) of irreducible hypertrees of order n,

up to Sn-equivalence. For n = 5, this count must be 0 since all extremal rays

are boundaries. For n = 6, the unique DΓ yields the Keel-Vermeire divisors (cf.

Figure 5).

n 5 6 7 8 9 10 11

IH(n) 0 1 1 3 11 93 1027

As the table indicates, IH(n) grows rapidly with n. Empirically, most hyper-

trees are generic. So the upshot of Theorem 5.9 is to provide, as n increases, very

large numbers of new extremal effective divisors. As a complement, [8, §9] gives

examples of larger collections of non-generic irreducible hypertrees which give the

same ray in Eff
(
M0,n

)
.

Based, as far as the authors can tell on the cases n ≤ 6, Castravet and Tevelev

propose a very optimistic converse conjecture. We quote from [8, Conjecture 1.1]:

Conjecture 5.10. Every extremal ray of Eff
(
M0,n

)
is either a boundary di-

visor or the divisor DΓ of an irreducible hypertree Γ of order at most n.

To our knowledge, more of the activity this has prompted has been devoted to

searching for a counterexample than for a proof. Aaron Pixton informs us that he

has an example (different from that of [78]) of a divisor D onM0,12 that is effective

and non-moving, and that is not equal to any irreducible hypertree divisor, but

whether this divisor lies outside the cone spanned by the hypertree divisors is not,

at the time of writing, clear.

We now turn to defining all the terms used above. We have taken the liberty

of introducing a few new terms like triadic (see below) for notions used or referred



EFFECTIVE DIVISORS ON MODULI SPACES 35

to often, but not named in [8]. It will simplify our definitions to write <n> :=

{1, 2, . . . , n} (or any other model set of cardinality n).

Recall that a hypergraph Γ of order n consists of collection indexed by j ∈ <d>
of hyperedges Γj ⊂ <n>. We say that Γ′ is a sub-hypergraph of Γ if each of the

hyperedges Γ′k is a subset of some hyperedge Γj . We start with the notion of

convexity of a hypergraph.

Definition 5.11.

(1) For any set S of hyperedges, let TS =
⋃
j∈S Γj , τS = |TS | − 2 and σS =∑

j∈S
(
|Γj | − 2

)
. We call Γ convex if for all S ⊂ <d>, τS ≥ σS . Taking

S to be a singleton, this implies that every hyperedge contains at least

3 vertices. We call Γ strictly convex if this inequality is strict whenever

2 ≤ |S| ≤ (d− 1).

(2) A hypertree is triadic if every hyperedge contains exactly 3 vertices (i.e.

τS = σS for S any hyperedge). For such a hypertree, convexity simply

says that any set S of hyperedges contains at least |S|+ 2 vertices.

Now we turn to the notions of hypertree and of irreducibility.

Definition 5.12.

(1) A hypertree Γ of order n is a hypergraph satisfying:

(a) Every vertex lies on at least 2 hyperedges.

(b) (Convexity) Γ is convex. In particular, every hyperedge contains at

least 3 vertices.

(c) (Normalization) τΓ = σΓ; that is, n− 2 =
∑
j∈<d>

(
|Γj | − 2

)
.

(2) A hypertree is irreducible if it is strictly convex.

Empirically, most hypertrees are triadic in which case the normalization con-

dition simply says that n = d + 2 and irreducibility says that any proper subset

of e ≥ 2 hyperedges contains at least e + 3 vertices. The use of the term “tree” is

motivated by the observation that a dyadic hypergraph (i.e. an ordinary graph) is

a tree exactly when n = d+ 1

Now we turn to the notion of genericity.

Definition 5.13. We let Conv(Γ) denote the set of all convex sub-hypergraphs

of Γ and define the capacity of Γ by

cap(Γ) := max
Γ′∈Conv(Γ)

σΓ′ .

Definition 5.14.

(1) A triple T of vertices that do not lie on any hyperedge of Γ but such that

any two do lie on a hyperedge is called a wheel2 of Γ.

(2) If Γ is a triadic hypertree of order n and T is a triple of vertices that is

not a hyperedge, we can form a new triadic hypertree ΓT of order (n− 2)

2Here the term triangle might better capture the intuition.
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by identifying the vertices in T and deleting any hyperedges containing 2

of these vertices.

(3) An irreducible triadic hypertree is generic if, whenever T is a triple that

is neither a hyperedge nor a wheel, we have cap(ΓT ) = n− 4.

An important source of generic triadic examples is provided by triangulations of

the 2-sphere in which each vertex has even valence, or equivalently whose triangles

can be 2-colored, say black and white, so that each edge has one side of each color.

Definition 5.15.

(1) For any 2-colorable spherical triangulation, the triangles of each color form

the set of hyperedges of a triadic hypertree—called a spherical hypertree—

on the full set of vertices, and we say this pair of hypertrees are spherical

duals (or, in [8], the black and white hypertrees of an even triangulation

of the sphere).

(2) Given a distinguished triangle in each of two spherical hypertrees, we may

form their connected sum by choosing colorings which make one triangle

white and the other black, deleting these two triangles, and glueing along

the exposed edges.

Lemma 5.16. A spherical hypertree is irreducible unless it is a connected sum.

Figure 5. The Keel-Vermeire hypertree

At the left of Figure 5, we show the simplest 2-colorable spherical triangulation

for which both the spherical duals give the irreducible triadic hypertree ΓKV of order

6 shown in the center. The divisor DΓKV of this hypertree is the Keel-Vermeire

divisor. On the right, we show the hypertree given by taking the connected sum of

this black and white spherical duals. This is not irreducible by taking S to be the

set of hyperedges on the left or right side of the picture.

Proving Theorem 5.9 involves delicate combinatorial and geometric arguments

that are far too involved to give here. All we will attempt to do is to sketch the

main steps of the argument. Castravet and Tevelev [8] also prove many other

complementary results that we will not even cite here.

A key motivating idea, though one whose proof comes rather late in the devel-

opment, is that every irreducible hypertree has a planar realization, by which we
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mean an injection of fΓ : <n>→ P2 so that the set of lines in the plane containing

3 or more points of the image of fΓ is exactly the set of hyperedges of Γ. If so, and

πp is the projection to P1 from a point p not on any of the lines through at least 2

of the points in this image, then the composition πp ◦ fΓ defines a set of n marked

points on P1 and hence a point [fΓ, p] ∈M0,n. A typical realization and projection

for the Keel-Vermeire curve are shown in Figure 6.

Figure 6. Planar realization and projection of the Keel-Vermeire hypertree

The closure of the locus of all such points is defined to be DΓ and, by the time

the non-emptiness of this locus can be established, the fact that it is an irreducible

divisor has been established via a second description. Both planarity of hypertrees

and irreducibility of the loci DΓ are obtained as byproducts of a study of hypertree

curves and associated Brill-Noether loci. We will sketch the ideas in the simpler

case when Γ is triadic, simply hinting at the complications for general Γ.

The hypertree curve Σγ associated to a triadic hypertree Γ is obtained by

taking a copy of a 3-pointed P1 for each hyperedge of Γ and gluing all the points

corresponding to the vertex i to a single point pi as a scheme-theoretic pushout

(i.e. so that the branches look locally like the coordinate axes in an affine space of

dimension equal to the valence of the vertex). Note that Σγ has genus g = n− 3 =

d − 1 and the Picard scheme Pic1 of line bundles of degree 1 on each component

is (non-canonically) isomorphic to (Gm)g. For a hypertree whose vertices all have

valence 2, this curve is already stable (as in Figure 6). In general, to get a stable

model, it is necessary to replace each vertex of valence v ≥ 3 by a v-pointed copy

of P1 glued to the coincident components at its marked points, and to avoid adding

moduli, to fix the choice of this curve in some arbitrary way.

Now the connection to Brill-Noether theory enters. For a general smooth curve

Σ of genus g ≥ 2, there is a birational morphism ν : G1
g+1 → W 1

g+1 ' Picg+1
(
Σ
)

sending a pencil of divisors of degree g + 1 to its linear equivalence class, and

whose exceptional divisor E lies over the codimension 3 locus W 2
g+1 of line bundles
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with h0(L) ≥ 3. The general pencil D in G1
g+1 and in E is globally generated, so

the general pencil D in E can be obtained as the composition of the map to P2

associated to ν(E) with projection from a general point of P2.

The idea unifying all the steps above in [8] is to extend this picture to the

genus 0 hypertree curves ΣΓ above. Sticking to the simpler case of triadic Γ with

all vertices of valence 2, a linear system on ΣΓ is admissible if it is globally generated

and sends the singularities to distinct points and an invertible sheaf is admissible

if its complete linear series is. Define Pic1 to be the set of admissible line bundles

having degree 1 on each component, define the Brill-Noether locus W r ⊂ Pic1 to be

the locus of admissible line bundles with h0(Σ, L) ≥ r+ 1, and define the locus Gr

to be the pre-image of W r under the natural forgetful map ν from pencils to line

bundles. Again, there are extra complications if the hypertree is not triadic (because

then the hypertree curves have moduli), or if there are vertices of higher valence

(in which case, sheaves in Pic1 are required to have degree 0 on the components

inserted as each such vertex).

The main line of argument of [8] may then be sketched as follows. Theorem

2.4 identifies M0,n with G1 and shows that ν is birational with exceptional locus

G2 (and compactifies this picture when Γ is not triadic). After an interlude in §3
devoted to computing the dimensions of images of maps generalizing this compact-

ification to hypergraphs that are not necessarily convex, Theorem 4.2 shows that

the divisor DΓ obtained by taking the closure of G2 in M0,n is non-empty and

irreducible and partially computes its class; a by product is the characterization

of the components of DΓ (Lemma 4.11) when Γ is not irreducible. Section 5 is

another interlude proving Gieseker stability (with respect to the dualizing sheaf) of

invertible sheaves in the (generalized) Pic1 which is then applied to complete the

construction of the birational contraction of Theorem 5.9 (cf. also Theorem 1.10).

The reconciliation of the descriptions of DΓ as the closure of the locus of plane

realizations (in particular, the existence of such realizations) and as the closure of

G2 is carried out in §6 (Theorem 6.2). Finally, that the divisor DΓ of a generic,

irreducible Γ determines it (up to spherical duals) is proved in §7.
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