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1. INTRODUCTION

In this paper we describe a general method of constructing special effective di-
visors on various moduli spaces using the syzygies of the parametrized objects. The
method can be applied to a wide range of moduli problems with the property that
the coarse moduli space has canonical singularities hence pluricanonical forms extend
over any desingularization of the moduli space. Here we treat the case of the moduli
stacksMg,n andwe develop the intersection theorymachinery necessary to understand
the compactification and compute the class of these Koszul divisors. Our main result
(Theorem 1.1) provides the first infinite sequence of actual (as opposed to virtual) coun-
terexamples to the Harris-Morrison Slope Conjecture and encodes in a single formula
virtually all known divisor class calculations onMg.

The idea of using geometric divisors to study the geometry of a moduli space
can be traced back to Harris and Mumford (cf. [HM]) who, in the course of their proof
thatMg is of general type for odd genus g = 2k − 1 ≥ 25, studied the Hurwitz divisor

M1
g,k := {[C] ∈ Mg : ∃ C k:1→ P1} consisting of curves with a pencil g1

k. By computing

the class of M1
g,k and comparing it in to KMg

, they showed that when g ≥ 25, the

canonical class is a combination with positive coefficients of [M1
g,k], the Hodge class

λ (which is big and nef) and various boundary classes. Later, numerous other divisor
class calculations were carried out. Eisenbud and Harris considered the Petri divisors on
M2k−2 consisting of curvesC of genus 2k−2 having a pencilA ∈W 1

k (C)which violates

the Petri Theorem, which then they used to show thatMg is of general type for even

g ≥ 24 (cf. [EH3]). Logan introduced pointed Brill-Noether divisors onMg,g consisting

of curves [C, x1, . . . , xg] ∈ Mg,g with the property that h
0(C,OC(x1 + · · · + xg)) ≥ 2 (cf.

[Log]) and used them to determine the Kodaira type ofMg,n for various g and n.

More recently, in [FP] in our work on the Harris-Morrison Slope Conjecture, we
reinterpreted the condition that a curve [C] ∈ M10 lie on a K3 surface as saying that
there exists a linear system L = KC(−g1

6) ∈ W 4
12(C) such that the embedded curve

C
|L|→֒ P4 is not projectively normal. Using this description we computed the class of

the compactification of the divisor K10 of curves with this property and showed that
s(K10) = 7, thus contradicting the Slope Conjecture. In [F1] we generalized this con-
struction to cover all cases g = 6i+ 10 and we obtained a (sometimes virtual) Hurwitz
type divisor onM6i+10 defined in terms of linear series g

3i+4
9i+12 = KC(−g1

3p+6) residual to
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a pencil of minimal degree. This locus, when a divisor, always has slope< 6+12/(g+1)
thus violating the Slope Conjecture (see [HMo] and [FP] for background on the effec-
tive cone ofMg and for the significance of the Harris-Morrison Conjecture). Around

the same, Khosla provided a different type of example of a divisor onMg having ex-

ceptionally small slope (cf. [Kh]): onM21 the closure of the locus of curves [C] ∈ M21

possessing an embedding C →֒ P6 given by a g6
24 such that C lies on a quadric, is a

divisor whose slope is less than the slope of the Harris-Mumford divisorM1
21,11.

The aims of this paper are (1) to give a unified framework for doing divisor class
calculation onMg,n and (2) to provide (empirical) evidence that syzygy divisors may
be the answer to the riddle: Given a moduli space, what is the most intrinsic, most nat-
ural and from the point of view of birational geometry, most useful effective divisor on
it? We prove that virtually all interesting known divisors onMg (the Harris-Mumford
divisor, the Petri divisor and all known counterexamples to the Harris-Morrison Con-
jecture) can be treated in a unified way and are particular instances of a single syzygy
type construction. In [F3] we shall further illustrate this ideology by studying moduli
spaces of curves with various level structures from the point of view of syzygies.

We fix integers i ≥ 0 and s ≥ 1 and set r := 2s+ si+ i, g := rs+ s and d := rs+ r.
We denote by Gr

d the stack parametrizing pairs [C,L] with [C] ∈ Mg and L ∈ W r
d (C)

and denote by σ : Gr
d → Mg the natural projection. Since ρ(g, r, d) = 0, by general

Brill-Noether theory, the general curve of genus g will have finitely many gr
d’s and there

exists a unique irreducible component of Gr
d which maps ontoMg.

We denote byKi,j(C,L) the (i, j)-th Koszul cohomology group of the pair [C,L] ∈
Gr

d and define a stratification of G
r
d with strata Ug,i := {(C,L) ∈ Gr

d : Ki,2(C,L) 6= 0}.
We then set Zg,i := σ∗(Ug,i).

Theorem 1.1. If σ : G̃r
d → M̃g is the compactification of G

r
d given by limit linear series on

tree-like curves, then there exists a natural morphism between torsion free sheaves of the same

rank φ : A → B over G̃r
d such that Zg,i is the image of the degeneracy locus of φ. The class of

the pushforward to M̃g of the virtual degeneracy locus of φ is given by

σ∗(c1(B −A)) ≡ aλ− b0 δ0 − b1 δ1 − · · · − b[g/2] δ[g/2],

where a, b0, . . . , b[g/2] are explicitly given coefficients such that b1 = 12b0 − a and

s
(
σ∗(c1(B −A))

)
=

a

b0
= 6

f(s, i)

(i+ 2) s h(s, i)
, with

f(s, i) = (i4+8i3+24i2+32i+16)s7+(i4+4i3−16i−16)s6−(i4+7i3+13i2−12)s5−(i4+
2i3+i2+14i+24)s4+(2i3+2i2−6i−4)s3+(i3+17i2+50i+41)s2+(7i2+18i+9)s+2i+2

and

h(s, i) = (i3 + 6i2 + 12i+ 8)s6 + (i3 + 2i2 − 4i− 8)s5 − (i3 + 7i2 + 11i+ 2)s4 −
− (i3 − 5i)s3 + (4i2 + 5i+ 1)s2 + (i2 + 7i+ 11)s+ 4i+ 2.

Furthermore, we have that 6 < a
b0
< 6 + 12

g+1 whenever s ≥ 2. If the morphism φ is generi-

cally non-degenerate, then Zg,i is a divisor onMg which gives a counterexample to the Slope
Conjecture for g = s(2s+ si+ i+ 1).
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For a precise definition of the partial compactification M̃g ⊂ Mg ofMg we re-

fer to Section 2. Since codim(Mg − M̃g,Mg) ≥ 2, it makes no difference whether

the computation of [Zg,i] is carried out over M̃g orMg. Despite its complicated ap-
pearance, the slope computed in Theorem 1.1 encodes a surprising amount of infor-
mation about Mg. In particular, for suitable choices of s and i it specializes to the
divisor class calculations carried out in [HM], [EH3], [Kh], [FP] and [F1] which were
originally obtained using a variety of ad hoc techniques. The first interesting case is

s = 1, g = 2i + 3 when gr
d = g

g−1
2g−2 = KC (the canonical bundle is the only g

g−1
2g−2 on a

curve of genus g). We can relate the locus Z2i+3,i to more classical loci inM2i+3 using
Green’s Conjecture which predicts that for any smooth curve C one has the equivalence
Kl,2(C,KC) = 0 ⇔ l < Cliff(C). Although Green’s Conjecture for arbitrary curves is
still open, Voisin proved it for generic curves of given gonality (cf. [V1], [V2]). In our
case this gives a set-theoretic identification between Z2i+3,i and the locusM1

2i+3,i+2 of

(i + 2)-gonal curves. Thus Theorem 1.1 provides a new way of calculating the class of
the compactification of the Brill-Noether divisor first computed byHarris andMumford
(cf. [HM]):

Corollary 1.2. The slope of the Harris-Mumford divisorM1
2i+3,i+2 onM2i+3 consisting of

curves which cover P1 with degree ≤ i+ 2 is given by the formula

s(M1
2i+3,i+2) =

6(i+ 3)

i+ 2
= 6 +

12

g + 1
.

For s = 2 and g = 6i+ 10 (that is, in the case h1(L) = 2when Gr
d is isomorphic to

a Hurwitz stack parameterizing covers of P1), we recover the main result from [F1]:

Corollary 1.3. The slope of the divisor Z6i+10,i onM6i+10 consisting of curves possessing a

pencil g1
3i+6 such that if L = KC(−g1

3i+6) ∈ W 3i+4
9i+12(C) denotes the residual linear system,

then C
|L|→֒ P3i+4 fails to satisfy the Green-Lazarsfeld property (Ni), is given by the formula:

s(Z6i+10,i) =
3(4i+ 7)(6i2 + 19i+ 12)

(12i2 + 31i+ 18)(i+ 2)
.

In the case i = 0 we have complete results in the sense that (1) we show that Zg,0

is an actual divisor onMg and (2) we can compute the entire class [Zg,0] rather than the
λ, δ0 and δ1 coefficients. In particular we show that bj ≥ b0 for j ≥ 1, hence the slope of

Zg,0 is always computed by the λ and δ0 coefficients.

Theorem 1.4. For g = s(2s + 1), r = 2s, d = 2s(s + 1) the slope of the virtual class of the
locus of those curves [C] ∈ Mg for which there exists L ∈W r

d (C) such that the embedded curve

C
|L|→֒ Pr sits on a quadric hypersurface, is

s(Zs(2s+1),0) =
a

b0
=

3(16s7 − 16s6 + 12s5 − 24s4 − 4s3 + 41s2 + 9s+ 2)

s(8s6 − 8s5 − 2s4 + s2 + 11s+ 2)
.

Note that this locus has been first considered by D. Khosla who, using a different
approach, was able to compute the coefficients a and b0 (cf. [Kh]). Showing that the
degeneration loci Zg,i are actual divisors onMg can be very difficult in practice (for
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instance, the statement that Z2i+3,i is a divisor onM2i+3 is essentially Green’s Conjec-
ture for a generic curve of odd genus). Apart from the case s = 1 (settled by Voisin in
[V2]), the only cases where it was previously known that Zg,i is an actual divisor were
s = 2, i = 0 (cf. [FP], this being the K3 divisor onM10), s = 2, i = 1, 2 (cf. [F1]) and
when s = 3, i = 0 (cf. [Kh]) - these last three cases having been settled using Macaulay.
Here we show that for i = 0 the degeneracy loci Zg,0 are honest divisors onMg, that
is, the map φ : A → B described in Theorem 1.1 is generically non-degenerate. This
provides the first infinite sequence of actual (as opposed to virtual) counterexamples to
the Harris-Morrison Slope Conjecture [HMo]:

Theorem 1.5. For an integer s ≥ 2 we set r := 2s, d := 2s(s + 1) and g := s(2s + 1). Then

φ : A → B is a generically non-degenerate map between vector bundles over G̃r
d having the

same rank and its degeneracy locus

Zg,0 := {[C] ∈ Mg : ∃L ∈W r
d (C) such that C

|L|→֒ Pr is not projectively normal}
is a divisor onMg of slope

s(Zg,0) =
3(16s7 − 16s6 + 12s5 − 24s4 − 4s3 + 41s2 + 9s+ 2)

s(8s6 − 8s5 − 2s4 + s2 + 11s+ 2)

contradicting the Slope Conjecture.

As an application of the techniques developed for proving Theorem 1.1 we com-
pute the class of the Gieseker-Petri divisors onMg. Recall that Petri’s Theorem asserts
that for a general curve [C] ∈ Mg and for an arbitrary line bundle L on C, the multipli-
cation map

µ0(L) : H0(L) ⊗H0(KC ⊗ L∨) → H0(KC)

is injective (see [EH4] and [Laz] for two very different, relatively short proofs). The map
µ0(L) governs the deformation theory of sections of the line bundle L. It is well-known
that Gr

d(C) is smooth of expected dimension ρ(g, r, d) at a point [L] ∈ W r
d (C) if and

only if µ0(L) is injective. The locus inMg where the Petri Theorem fails breaks up into
numerous components and its geometry is still quite mysterious (see [F2], [EH3]). For
integers r, s ≥ 1 we set again d := rs + r and g := rs + s, so that ρ(g, r, d) = 0. Like in
[F2] we define the Gieseker-Petri locus

GPr
g,d := {[C] ∈ Mg : ∃L ∈W r

d (C) such that µ0(L) is not injective }.

Theorem 1.6. For d = rs+ r and g = rs+ s, the class of the Gieseker-Petri divisor inMg is
given by the formula:

GPr
g,d ≡ cr(s− 1)r

(r + s+ 1)(rs+ s− 2)(rs+ s− 1)
(aλ− b0δ0 − b1δ1 −

[g/2]∑

j=2

bjδj),

where cr is an explicitly given constant defined in Lemma 2.6,

a = r2s2(4s+ r + rs+ 10) + s2(5rs+ 24r + 2s+ 15) + 21s+ 26rs+ 7r2s+ 2r + 2,

b0 =
s(s+ 1)(r + 1)(r + 2)(rs+ s+ 4)

6
,

b1 = (rs+ s− 1)(3rs2 + 2s2 + r2s2 + 7s+ 6rs+ r2s+ 2r + 2),
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and bj ≥ b1 for j ≥ 2. In particular we have the following expression for the slope:

s(GPr
g,d) = 6 +

12

g + 1
+

6(s+ r + 1)(rs+ s− 2)(rs+ s− 1)

s(s+ 1)(r + 1)(r + 2)(rs+ s+ 4)(rs+ s+ 1)
.

Theorem 1.6 shows that the Gieseker-Petri divisors satisfy the Slope Conjecture,

that is, s(GPr
g,d) ≥ 6 + 12/(g + 1). This is consistent with Proposition 2.2 from [FP]

stating that any effective divisor onMg violating the Slope Conjecture would have to

contain the locus Kg ⊂ Mg of curves lying onK3 surfaces and with Lazarsfeld’s result

(cf. [Laz]) that a general [C] ∈ Kg satisfies Petri’s Theorem. For s = 2, Theorem 1.6

specializes to Eisenbud and Harris’s computation originally used to show thatMg is of
general type for large even genus (cf. [EH3], Theorem 2):

Corollary 1.7. For g = 2r + 2, the Gieseker-Petri divisor GPr
2r+2,3r can be interpreted as

the branch locus of the generically finite map σ : Gr
3r → M2r+2 from the Hurwitz stack

Gr
3r = G1

r+2 of covers of degree r + 2 and one has the following expression for its class:

GPr
2r+2,3r ≡ cr

(6r2 + 25r + 20

2r + 1
λ− (r + 1)(r + 2)

2r + 1
δ0 − (3r + 4)δ1 −

r+1∑

j=2

bjδj
)
,

where bj > 1 for j ≥ 2.

In Section 4 we describe five different ways of constructing Koszul divisors on
Mg,n. The direct analogue of Theorem 1.1 in the pointed case is the following statement:

Theorem 1.8. Fix positive integers g and i such that

n :=
2g + i+ 1

2
+

√
(i+ 1)2 + 4ig + 8g

2
is an integer. Then the locus

Syzg,n := {[C, x1, . . . , xn] ∈ Mg,n : Ki,2

(
C,OC(x1 + · · · + xn)

)
6= 0}

is a divisor onMg,n, and the class of its compactification is given by the formula:

Syzg,n ≡ 1

n− g − i

(
n− g − 1

i

)(
−(n+g−1)λ+(3g−n+i+1)

n∑

j=1

ψj−0·δirr−
∑

j,t≥0

∑

|S|=t

bj:tδj:S

)
,

where bj:t > 1 are explicitly determined coefficients.

Another infinite sequence of interesting divisors onMg,n can be obtained by us-
ing the Gaussian-Wahl map associated to a line bundle on a curve. Recall that if L is a
line bundle on a curve C, the Wahl map

ψL : ∧2H0(C,L) → H0(C,KC ⊗ L⊗2)

is defined by the formula ψL(f ∧ g) := f · dg − g · df . The Gaussian ψL measures
deformations of the cone over the curve C embedded in projective space by the linear
system |L| and it is known that if C lies on aK3 surface then the Wahl map ψKC

cannot
be surjective (cf. [Wa]). Furthermore, the divisor Z10,0 onM10 can be viewed as the
global degeneracy locus corresponding to the Wahl map for canonical curve of genus
10 (see [FP] for details and further references). If [C, x1, . . . , xn] ∈ Mg,n, we set Γ :=
x1 + · · · + xn ∈ Cn for the divisor of marked points.
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Theorem 1.9. Fix an integer g such that

n :=
2g + 3 +

√
24g + 1

2

is an integer. Then the locus

Wahlg,n := {[C, x1, . . . , xn] ∈ Mg,n : ψΓ : ∧2H0(OC(Γ)) → H0(KC⊗OC(2Γ)) is degenerate}
is a divisor onMg,n and its compactification has the following class:

Wahlg,n = −(n− g − 1)λ+ (n− g − 1)
n∑

j=1

ψj − δirr −
∑

j,t≥0

bj:t
∑

|S|=t

δj:S ,

where bj:t > 1 are explicitly determined coefficients.

Note that although the divisors Syzg,n andWahlg,n live onMg,n’s for some very

particular choices of n, using the forgetful and clutching mapsMg,n → Mg,n−1 and

Mi,n1
×Mg−i,n2

→ Mg,n1+n2
one immediately has explicit Koszul divisors onMg,n for

all g and n.

Among other syzygetic ways of producing divisors onMg,n we single the one
using the Minimal Resolution Conjecture (cf. Theorem 4.2), which can be thought of
as a generalization of the divisor of higher Weierstrass points and which is especially
useful in the case of a large number of marked points. An immediate application of the
calculations in Section 4 is the following result about the Kodaira type ofMg,n:

Theorem 1.10. For integers g = 4, . . . , 21, the moduli spaceMg,n is of general type for all
n ≥ f(g) where f(g) is described in the following table.

g 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
f(g) 16 15 16 15 14 13 11 12 13 11 10 10 9 9 9 7 6 4

This result represents an improvement of Logan’s Theorem 5.1 for g = 4 − 6, 10,
14 − 16, 18 − 22, the entries for the remaining values of g being those from [Log].

Acknowledgment: I am grateful to Sean Keel for many discussions over the years on
topics related to this circle of ideas.

2. CONSTRUCTING DIVISORS OF SMALL SLOPE USING SYZYGIES

For a projective variety X and a line bundle L on X we denote by Ki,j(X,L) the
Koszul cohomology group obtained from the complex

∧i+1H0(L) ⊗H0(L⊗(j−1)) −→ ∧iH0(L) ⊗H0(L⊗j) −→ ∧i−1H0(L) ⊗H0(L⊗(j+1)),

where the maps are the Koszul differentials (cf. [Gr]). Assume L is globally generated
andML is the vector bundle on X defined by the exact sequence

0 →ML → H0(L) ⊗OX → L→ 0.
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A simple argument using the exact sequences

0 −→ ∧aML ⊗ L⊗b → ∧aH0(L) ⊗ L⊗b −→ ∧a−1ML ⊗ L⊗(b+1) −→ 0

for various a and b, shows that there is an identification

(1) Ka,b(X,L) =
H0(∧aML ⊗ L⊗b)

Image{∧a+1H0(L) ⊗H0(L⊗(b−1))} .

From now on we fix integers i ≥ 0 and s ≥ 1 and set

r := 2s+ si+ i, g := rs+ s, and d := rs+ r.

We introduce the open substackM0
g ofMg corresponding to curves [C] ∈ Mg such

that W r
d−1(C) = ∅ and W r+1

d (C) = ∅. Then codim(Mg −M0
g,Mg) ≥ 2. We denote by

Picd the degree d Picard stack overMg (precisely, the étale sheafification of the Picard

functor). In particular if Picd
Mg
is the coarse moduli space associated to Picd, then for

any Mg-scheme T → Mg originating from a family of genus g curves X → T , the

fibre product T ×Mg Picd
Mg
is the relative Picard algebraic space Picd

X/T. We denote by

Gr
d ⊂ Picd the stack parameterizing pairs [C,L] with [C] ∈ Mg and L ∈ W r

d (C) and
by σ : Gr

d → Mg the natural projection. Since ρ(g, r, d) = 0, by general Brill-Noether
theory, the general curve of genus g will have finitely many gr

d’s and there exists a
unique irreducible component ofGr

d which maps ontoMg. Moreover, the image of any
component of Gr

d having dimension ≥ 3g − 2 is a substack of codimension ≥ 2 inMg

(cf. Corollary 2.5), thus one can ignore these extraneous components of Gr
d when doing

divisor class calculations onMg.

We shall define a determinantal substack of Gr
d consisting of those pairs [C,L]

satisfying the condition Ki,2(C,L) 6= 0. We denote by π : M0
g,1 → M0

g the universal

curve and by L a universal Poincaré bundle on the fibre productM0
g,1 ×M0

g
Gr

d (In the

case such anL does not exist, we pass to an étale surjection Σ → Gr
d such that Σ is a

scheme andM0
g,1 ×M0

g
Σ admits a Poincaré bundle and we carry out the construction

at this level. In the end our construction does not depend on the choice of Σ, see also
[Est2], Section 6.2). If p1 : M0

g,1 ×M0
g

Gr
d → M0

g,1 and p2 : M0
g,1 ×M0

g
Gr

d → Gr
d are

the natural projections, then E := p2∗(L∨) is a vector bundle of rank r + 1 and there
is a tautological embedding of the pullback of the universal curveM0

g,1 ×M0
g

Gr
d into

the projective bundle u : P(E) → Gr
d. We define the vector bundle F on P(E) by the

sequence

0 −→ F −→ u∗(E) −→ OP(E)(1) −→ 0,

and we further introduce two vector bundles A and B over Gr
d by setting

A := u∗

(
∧iF ⊗OP(E)(2)

)
, and B := u∗

(
∧iF ⊗OM0

g,1×M0
g
Gr

d
(2)

)
.

If C
|L|→ Pr is the map corresponding to a point [C,L] ∈ Gr

d, then

A(C,L) = H0(Pr,∧iMPr(2)) and B(C,L) = H0(C,∧iML ⊗ L2)
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and there is a vector bundle morphism φ : A → B given by restriction. Grauert’s
Theorem guarantees that both A and B are vector bundles over Gr

d and their ranks are

rank(A) = (i+ 1)

(
r + 2

i+ 2

)
and rank(B) =

(
r

i

)(
− id
r

+ 2d+ 1 − g
)

(We use thatML is a stable vector bundle, see [F1], Proposition 2.1 and this implies that
H1(∧iML ⊗ L⊗2) = 0, hence rank(B) can be computed from Riemann-Roch). Because
of the way we chose g, r and d we can see that rank(A) = rank(B).

While the construction of A and B clearly depends on the choice of the Poincaré
bundle L (and of Σ), it is easy to check that the vector bundle HomOGr

d
(A,B) on Gr

d

as well as the morphism φ ∈ H0
(
Gr

d, HomOGr
d
(A,B)

)
are independent of such choices.

More precisely, let us denote by Ξ the collection of pairs α := (πα,Lα)where πα : Σα →
Gr

d is an étale surjective morphism from a scheme Σα and Lα is a Poincaré bundle on
p2,α : M0

g,1 ×M0
g

Σα → Σα. Recall that if Σ → Gr
d is an étale surjection from a scheme

and L and L′ are two Poincaré bundles on p2 : M0
g,1 ×M0

g
Σ → Σ, then the sheaf

N := p2∗Hom(L,L′) is invertible and there is a canonical isomorphism L ⊗ p∗2N ∼= L′.
For every α ∈ Ξ we construct the morphism between vector bundles of the same rank
φα : Aα → Bα over Σα as above. Then since a straightforward cocycle condition is
met, we find that there exists a vector bundle HomOGr

d
(A,B) on Gr

d together with a

section φ ∈ H0
(
Gr

d, HomOGr
d
(A,B)

)
such that for every α = (πα,Lα) ∈ Ξ we have that

π∗α(HomOGr
d
(A,B)) = HomOΣα

(Aα,Bα) and π∗α(φ) = φα.

Theorem 2.1. The cycle Ug,i := {(C,L) ∈ Gr
d : Ki,2(C,L) 6= 0} is the degeneracy locus of

vector bundle map φ : A → B over Gr
d.

Proof. Along the same lines as the proof of Proposition 2.5 in [F1]. �

Thus Zg,i := σ∗(Ug,i) is a virtual divisor onMg when g = s(2s+ si+ i+ 1).

Remark 2.2. Using (1) it is easy to prove that for every (C,L) ∈ Gr
d one have the van-

ishing of Koszul cohomology groups Ka,0(C,L) = 0 for all a ≥ 1 and Ka,b(C,L) = 0
for all b ≥ 3. Thus the only non-trivial Koszul type conditions one could impose on Gr

d
involve the groups Ka,1(C,L) and Ka,2(C,L). BecauseML is a stable vector bundle on
C, it is straightforward to show using (1) that

dimKi,2(C,L) − dimKi+1,1(C,L) =

(
r

i

)
(2d− id

r
+ 1 − g) − (i+ 1)

(
r + 2

i+ 2

)
.

For our choices of g, r and d, it follows that dimKi+1,1(C,L) = dimKi,2(C,L), hence
Ug,i can also be defined as the locus whereKi+1,1(C,L) fails to vanish. This shows that,
at least in the case of curves, there are no other Koszul divisors except Ug,i.

To prove Theorem 1.1 we shall extend the determinantal structure of Zg,i over

a substack of Mg whose complement has codimension ≥ 2. We denote by M̃g :=

M0
g ∪

(
∪[g/2]

j=0 ∆0
j

)
the locally closed substack ofMg obtained by adding toM0

g the open

subsets ∆0
j ⊂ ∆j for 1 ≤ j ≤ [g/2] consisting of 1-nodal genus g curves C ∪y D, with

[C] ∈ Mg−j and [D, y] ∈ Mj,1 being Brill-Noether general curves, and the locus ∆0
0 ⊂
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∆0 containing 1-nodal irreducible genus g curves C ′ = C/q ∼ y, where [C, q] ∈ Mg−1

is a Brill-Noether general pointed curve and y ∈ C, together with their degenerations
consisting of unions of a smooth genus g− 1 curve and a nodal rational curve. One can
then extend the finite covering σ : Gr

d → M0
g to a proper, generically finite map

σ : G̃r
d → M̃g

by letting G̃r
d be the space of limit g

r
d’s on the curves from M̃g which are all tree-like

(see [EH1], Theorem 3.4 for the construction of the variety of limit linear series and
also [Oss] for a more functorial approach which in the case ρ(g, r, d) = 0 leads to the
Eisenbud-Harris space). Strictly speaking, Eisenbud and Harris have only constructed
the space of refined limit gr

d’s. Using the observation that when ρ(g, r, d) = 0 every crude
non-refined limit gr

d on a curve of compact typeC∪yD, where [C] ∈ Mj and [D] ∈ Mg−j

can be canonically interpreted as a refined limit gr
d on the pre-stable curve C∪y1

P1∪y2
D

obtained from C ∪y D by inserting a single P
1 at the node y, their construction can be

easily adapted to cover the case of crude gr
d’s as well. Note that since all limit gr

d’s

are dimensionally proper (cf. [EH1], Corollary 3.7), every limit linear series from G̃r
d is

smoothable.

To compute the class [Zg,i], we intersect Zg,i with test curves in the boundary

ofMg which are defined as follows: we fix a Brill-Noether general curve C of genus
g − 1, a general point q ∈ C and a general elliptic curve E. We define two 1-parameter
families

(2) C0 := {C/y ∼ q : y ∈ C} ⊂ ∆0 ⊂ Mg and C
1 := {C ∪y E : y ∈ C} ⊂ ∆1 ⊂ Mg.

It is well-known that these families intersect the generators of Pic(Mg) as follows:

C0 · λ = 0, C0 · δ0 = −(2g − 2), C0 · δ1 = 1 and C0 · δa = 0 for a ≥ 2, and

C1 · λ = 0, C1 · δ0 = 0, C1 · δ1 = −(2g − 4), C1 · δa = 0 for a ≥ 2.

Next, we fix 2 ≤ j ≤ [g/2], a general curve C of genus j and a general curve pointed
curve (D, y) of genus g− j. We define the 1-parameter family Cj := {C ∪yD : y ∈ C} ⊂
∆j ⊂ Mg. We have that

Cj · λ = 0, Cj · δa = 0 for a 6= j and Cj · δj = −(2j − 2).

We review the notation used in the theory of limit linear series (see [EH1]). If X is
a tree-like curve and l is a limit gr

d on X , for a component Y of X we denote by lY =

(LY , VY ⊂ H0(LY )) the Y -aspect of l. For a point y ∈ Y we denote by {alY
i (y)}i=0,...,r the

vanishing sequence of l at y, by {αlY
i (y) = alY

i (y) − i}i=0,...,r the ramification sequence and

by ρ(lY , y) := ρ(g, r, d) − ∑r
i=0 α

lY
i (y) the adjusted Brill-Noether number with respect

to y.

Proposition 2.3. (1) Let C1
y = C ∪y E be an element of ∆

0
1. If (lC , lE) is a limit gr

d on C
1
y ,

then VC = H0(LC) and LC ∈ W r
d (C) has a cusp at y. If y ∈ C is a general point, then

lE =
(
OE(dy), (d − r − 1)y + |(r + 1)y|

)
, that is, lE is uniquely determined. If y ∈ C is

one of the finitely many points for which there exists LC ∈ W r
d (C) such that ρ(LC , y) = −1,

then lE(−(d − r − 2)y) is a gr
r+2 with vanishing sequence at y being ≥ (0, 2, 3, . . . , r, r + 2).

Moreover, at the level of 1-cycles we have the identification σ∗(C1) ≡ X + ν T , where

X := {(y, L) ∈ C ×W r
d (C) : h0(C,L(−2y)) ≥ r},
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T ∼= P
(
H0(OE((r+2)y))/H0(OE(ry))

)
is the curve consisting of gr

r+2’s onE with vanishing
≥ (0, 2, . . . , r, r + 2) at the fixed point y ∈ E and ν is an explicitly known positive integer.

(2) Let C0
y = C/y ∼ q be an element of ∆0

0. Then limit linear series of type gr
d on C

0
y are

in 1:1 correspondence with complete linear series L on C of type gr
d satisfying the condition

h0(C,L⊗OC(−y− q)) = h0(C,L)− 1. There is an isomorphism between the cycle σ∗(C0) of
gr

d’s on all curves C
0
y with y ∈ C and the smooth curve

Y := {(y, L) ∈ C ×W r
d (C) : h0(C,L(−y − q)) ≥ r}.

Proof. Part (1) is similar to the proof of Proposition 3.3 from [F1] andwe omit the details.
For part (2), we claim that for any limit gr

d on a curve C
0
y where y ∈ C, the underlying

torsion free sheaf is actually locally free. Indeed, otherwise the underlying sheaf would
be of the form ν∗(L), where ν : C → Cy

0 is the normalization map and L ∈ W r
d−1(C).

But [C] ∈ Mg−1 is assumed to be Brill-Noether general, henceW
r
d−1(C) = ∅. �

Throughout this paper we routinely use basic facts from Schubert calculus which

we briefly recall. If G(r, d) denotes the Grassmannian of r-planes in Pd and

C
d+1 = V0 ⊃ V1 ⊃ · · · ⊃ Vr+1 = 0

is a decreasing flag, then for any Schubert index 0 ≤ α0 ≤ . . . ≤ αr ≤ d − r, we define
the Schubert cycle

σ(α0,...,αr) := {Λ ∈ G(r, d) : dim(Λ ∩ Vαi+i) ≥ r + 1 − i, for i = 0, . . . , r}.
(This differs slightly from the standard notation from e.g. [FuPr], but it seems better
suited for dealing with ramification sequences of linear series). Often we use the fact
that if (α0, . . . , αr) is a Schubert index and g is an integer such that rg +

∑r
i=0 αi =

(r + 1)(d− r), then there is an identity in H∗(G(r, d)):

(3) σ(α0,...,αr) · σg
(0,1,...,1) = g!

∏
i<j(αj − αi + j − i)

∏r
i=0(g − d+ i+ αi + r)!

.

Proposition 2.4. Let [C] ∈ Mj be a general curve with g−2 ≥ j ≥ [g/2] andCj ⊂ ∆j ⊂ Mg

the associated test curve of type (j, g− j). Then one has the following equality of 1-cycles in G̃r
d:

σ∗(Cj) =
∑

(α0,...,αr)∈P1

Ng−j,α ·Xj,α +
∑

(β0,...,βr)∈P2

Mj,β · Yg−j,β +
∑

(β0,...,βr)∈P3

Qg−j,β · Uj,β,

where we introduce the following notations: P1 := {(0 ≤ α0 ≤ . . . ≤ αr ≤ s) :
∑r

i=0 αi = j},

P2 := {(0 ≤ β0 ≤ . . . ≤ βr ≤ s+ 1) :
∑r

i=0 βi = j + 1, βr−1 ≤ s},

P3 := {(0 = β0 < β1 ≤ . . . ≤ βr ≤ s+ 1) :
∑r

i=0 βi = r + 1 + j},

Mj,β := σj
(0,1,...,1) · σ(β0,...,βr) ∈ H∗(G(r, r + j)) for β ∈ P2,

Ng−j,α := σg−j
(0,1,...,1) · σ(j−αr,...,j−α0) ∈ H∗(G(r, d)) for α ∈ P1,

Qg−j,β := σg−j
(0,1,...,1) · σ(j+1−βr,...,j+1−β1,j+1) ∈ H∗(G(r, d)) for β ∈ P3,
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Xj,α := {(y, LC) ∈ C × Picr+j(C) : αLC

i (y) ≥ αi for i = 0 . . . r}, α ∈ P1,

Yg−j,β := {lD ∈ Gr
d(D) : αlD

i (y) ≥ j − βr−i for i = 0 . . . r}, β ∈ P2,

Uj,β := {(y, lC) ∈ C ×Gr
r+j+1(C) : αlC (y) ≥ (0, β1, . . . , βr)}, for β ∈ P3.

Proof. Suppose that l = (lC , lD) is a limit gr
d on C ∪y D. It is easy to see that the generic

point of any component of σ∗(Cj) corresponds to a refined limit gr
d, so we may assume

that l is refined as well. If (α0, . . . , αr) is the ramification sequence of lC at y, then the
condition that [D, y] ∈ Mg−j,1 carries a gr

d with ramification sequence at y being at least

(d−r−αr, . . . , d−r−α0), is that σ
g−j
(0,1,...,1) ·σ(d−r−αr,...,d−r−α0) 6= 0 ∈ H∗(G(r, d)). Using

the Littlewood-Richardson rule, we find that this implies that αr ≤ rs+ s− j. A similar
reasoning can be used for C. Degenerating C to a stable curve consisting of a rational
spine and j elliptic tails, we obtain that if there exists a point y ∈ C and a gr

d with ramifi-
cation sequence (α0, . . . , αr) at y, then either y specializes to a point on the rational spine

in which case we find the condition σj
(0,1,...,1) · σ(α0,...,αr) 6= 0 ∈ H∗(G(r, d)) which im-

plies that α0 ≥ rs− j, or else, y specializes to a point on one of the elliptic tails in which
case we find that there must exist two indices 0 ≤ e < f ≤ r with αe ≥ αe−1 + 1 and

αf ≥ αf−1 +1, such that σj−1
(0,1,...,1) ·σ(α0+1,αe−1+1,αe,αe+1+1,...,αf−1+1,αf ,αf+1+1,...,αr+1) 6= 0.

This last condition leads to the inequality α0 ≥ max{0, rs− j − 1}.
Suppose we are in the first case, that is, α0 ≥ rs − j and moreover ρ(lC , y) =

ρ(lD, y) = 0, which is the situation which occurs for a generic choice of y ∈ C. Then

lC(−(rs − j)y) = |LC |, where LC ∈ Picr+j(C) with αLC
r (y) ≤ s and

∑r
i=0 α

LC

i (y) = j,
that is, (LC , y) ∈ Xj,α. If α0 ≥ rs − j but now ρ(lC , y) = −1 and ρ(lD, y) ≤ 1, then

{αLC

i (y)− (rs− j)}i=0...r must be one of the partitions from the set P2. Choosing such a
partition, we haveMj,β choices for the C-aspect, while lD ∈ Yg−j,αLC (y)−(rs−j). Finally

let us assume that we are in the case αlC
0 (y) = rs−j−1. Then necessarily αlC

1 (y) ≥ rs−j,
ρ(lC , y) = ρ(lD, y) = 0 and lC(−(rs−j−1)y) ∈ Uj,β , where βi := αlC

i (y)−(rs−j−1) for
i = 0 . . . r. This accounts for the third sum in σ∗(Cj). Arguing along the lines of [EH2],

Lemma 3.4, G̃r
d is smooth along σ

∗(Cj) and since all limit gr
d described in this proof are

smoothable, we obtain that the claimed formula holds at the level of 1-cycles (including
multiplicities). �

The next corollary shows that ”ghost” components of G̃r
d having dimension >

3g − 3, do not matter in the calculation of [σ∗(Gi,2 −Hi,2)].

Corollary 2.5. In the case ρ(g, r, d) = 0, every irreducible component of Z of G̃r
d such that

dim(Z) ≥ 3g − 2 has the property that dim σ(Z) ≤ 3g − 5.

Proof. For a general [C] ∈ Mg, the scheme W
r
d (C) is reduced and 0-dimensional, thus

every component of G̃r
d mapping dominantly onto M̃g must have dimension 3g − 3.

Suppose that Z is a component of dimension at least 3g − 2 such that σ(Z) is a divisor

on M̃g. Then for any [C] ∈ σ(Z) we have that dim σ−1([C]) ≥ 2. Since this property
does not hold along any of the curves σ∗(Cj) for any 0 ≤ j ≤ [g/2] (see Proposition 2.4),
it follows that σ(Z) is disjoint from the test curves Cj ⊂ Mg for all j ≥ 0. This implies
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then that [σ(Z)] = 0 ∈ Pic(M̃g), hence σ(Z) = 0 (use that the Satake compactification
ofMg has boundary of codimension 2). This is a contradiction. �

Let C be a Brill-Noether general curve of genus g − 1 (recall that g = rs + s and

d = rs+ r). Then dimW r
d (C) = r and it is easy to see that C carries no gr

d−1’s or g
r+1
d ’s,

hence every L ∈ W r
d (C) corresponds to a complete and base point free linear series.

We denote by L a Poincaré bundle on C × Picd(C) and by π1 : C × Picd(C) → C

and π2 : C × Picd(C) → Picd(C) the projections. We define the cohomology class

η = π∗1([point]) ∈ H2(C × Picd(C)), and if δ1, . . . , δ2g ∈ H1(C,Z) ∼= H1(Picd(C),Z)
is a symplectic basis, then we set

γ := −
g∑

α=1

(
π∗1(δα)π∗2(δg+α) − π∗1(δg+α)π∗2(δα)

)
.

We have the formula (cf. [ACGH], p. 335) c1(L) = dη + γ, corresponding to the Hodge
decomposition of c1(L). We also record that γ3 = γη = 0, η2 = 0 and γ2 = −2ηπ∗2(θ).
On W r

d (C) we have the tautological rank r + 1 vector bundle E := (π2)∗(L|C×W r
d
(C)).

The Chern numbers of E can be computed using the Harris-Tu formula (cf. [HT]): if we
write

∑r
i=0 ci(E∨) = (1 + x1) · · · (1 + xr+1), then for every class ζ ∈ H∗(Picd(C),Z) one

has the formula 1

xi1
1 · · ·xir+1

r+1 ζ = det
( θg−1+r−d+ij−j+l

(g − 1 + r − d+ ij − j + l)!

)
1≤j,l≤r+1

ζ.

If we use the expression of the Vandermonde determinant, we get the formula

det
( 1

(aj + l − 1)!

)
1≤j,l≤r+1

=
Πj>l (al − aj)

Πr+1
j=1 (aj + r)!

.

By repeatedly applying this formulawe compute all the intersection numbers onW r
d (C)

which we shall need:

Lemma 2.6. If ci := ci(E∨) we have the following identities in H∗(W r
d (C),Z):

(1) cr−1θ = r(s+1)
2 cr

(2) cr−2θ
2 = r(r−1)(s+1)(s+2)

6 cr

(3) cr−2c1θ = r(s+1)
2

(
1 + (r−2)(r+2)(s+2)

3(s+r+1)

)
cr

(4) cr−1c1 = (1 + (r−1)(r+2)(s+1)
2(s+r+1) )cr

(5) cr = 1! 2!···(r−1)! (r+1)!
(s−1)! (s+1)! (s+2)!···(s+r)!θ

g−1 .

We point out that the constant cr equals the number of linear series g
r
d on a general

curve of genus g (note that ρ(g, r, d) = 0). In Section 3 we shall use the following result:

1There is a confusing sign error in the formula (1.4) in [HT]: the formula is correct as it is appears in
[HT], if the xj ’s denote the Chern roots of the dual of the kernel bundle.
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Lemma 2.7. If [C] ∈ Mg−1, then one has the following identity in H
∗(W r

d (C),Z):

c1
(
R1π2∗(L|C×W r

d
(C))

)
= θ − c1(E∨).

Proof. Let us recall how one can obtain a determinantal structure onW r
d (C). Oncewe fix

a divisorD ∈ Ce of degree e >> 0,W r
d (C) is the degeneracy locus of rank d+e−g+1−r

of the vector bundle map (π2)∗
(
L⊗O(π∗1D)

)
→ (π2)∗

(
L⊗O(π∗1D)|π∗

1(D)

)
. Consequently,

we have an exact sequence of vector bundles overW r
d (C):

0 −→ E −→ (π2)∗
(
L⊗O(π∗1D)

)
−→ (π2)∗

(
L⊗O(π∗1D)|π∗

1D

)
−→ R1π2∗(L|C×W r

d
(C)) −→ 0,

fromwhich the claim follows by using that (π2)∗
(
L⊗O(π∗D)|π∗

1D

)
is numerically trivial

while ct
(
(π2)∗(L ⊗O(π∗1D))

)
= e−θ (cf. [EH3] or [ACGH]). �

For integers 0 ≤ a ≤ r and b ≥ 2we shall define vector bundles Ga,b andHa,b over

σ−1(M0
g ∪ ∆0

0 ∪ ∆0
1) ⊂ G̃r

d which over the locus corresponding to smooth curves have
fibres

Ga,b(C,L) = H0(C,∧aML ⊗ L⊗b) and Ha,b(C,L) = H0(Pr,∧aMPr(b))

for each (C,L) ∈ Gr
d giving a map C

|L|→ Pr. Clearly Gi,2|Gr
d

= B and Hi,2|Gr
d

= A, where
A and B are the vector bundles introduced in Theorem 2.1. Partially extending these
bundles over the boundary of G̃r

d will enable us to compute the λ, δ0 and δ1 coefficients

of Zg,i and determine the slope s(Zg,i).

Proposition 2.8. For each b ≥ 2 there exists a vector bundle G0,b over σ
−1(M0

g ∪∆0
0 ∪∆0

1) ⊂
G̃r

d having rank bd+ 1 − g whose fibres admit the following description:

• For (C,L) ∈ Gr
d, we have that G0,b

(
C,L) = H0(C,L⊗b).

• For t = (C ∪y E,L) ∈ σ−1(∆0
1), where L ∈W r

d (C) has a cusp at y ∈ C, we have that

G0,b(t) = H0(C,L⊗b(−2y)) + C · ub ⊂ H0
(
C,L⊗b),

where u ∈ H0(C,L) is any section such that ordy(u) = 0.
• For t = (C/y ∼ q, L) ∈ σ−1(∆0

0), where q, y ∈ C and L ∈ W r
d (C) is such that

h0(C,L(−y − q)) = h0(L) − 1, we have that

G0,b(t) = H0(C,L⊗b(−y − q)) ⊕ C · ub ⊂ H0(C,L⊗b),

where u ∈ H0(C,L) is a section such that ordy(u) = ordq(u) = 0.

Proof. Very similar to Proposition 3.9 in [F1]. �

Having defined the vector bundles G0,b we now define inductively all vector bun-
dles Ga,b by the exact sequence

(4) 0 −→ Ga,b −→ ∧aG0,1 ⊗ G0,b
da,b−→ Ga−1,b+1 −→ 0.

To define Ha,b is even easier. We set H0,b := SymbG0,1 for all b ≥ 1 and we define Ha,b

inductively via the exact sequence

(5) 0 −→ Ha,b −→ ∧aH0,1 ⊗ SymbH0,1 −→ Ha−1,b+1 −→ 0.
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The surjectivity of the right map in (5) is obvious, whereas to prove that da,b is surjective,
one argues like in [F1], Proposition 3.10. There is a natural vector bundle morphism
φa,b : Ha,b → Ga,b. Moreover rank(Hi,2) = rank(Gi,2) and the degeneracy locus of φi,2 is
the codimension one compactification of Zg,i overM0

g ∪ ∆0
0 ∪ ∆0

1.

We prove a technical result we shall use later for extending the bundles G0,b with
b ≥ 2 over the boundary ofGr

d. It can be interpreted as saying that on a suitably general
curve, the ramification points of a linear series are distinct from those of its higher order
powers.

Proposition 2.9. Fix integers s ≥ 2, r ≥ 2s and a partition 0 ≤ β0 ≤ β1 ≤ · · · ≤ βr ≤ s such
that

∑r
i=0 βi = γ. Let (D, y) be a general pointed curve of genus γ ≥ 3s. Then for every line

bundle LD ∈ Picγ+r(D) satisfying the conditions αLD

i (y) = βi for 0 ≤ i ≤ r, we have that

H0
(
D,KD ⊗ L

⊗(−2)
D ⊗OD(ay)

)
= 0, for all a ≤ 2(r + s).

Proof. Clearly it suffices to prove the theorem in the case a = 2(r + s). We degenerate
(D, y) to a stable curve E0 ∪ . . .∪Eγ−1, consisting of a string of elliptic curves such that
Ei−1 ∩ Ei = {pi} for 1 ≤ i ≤ γ − 1. Moreover, we assume that y = p0 specializes to a
point lying on E0 and that the differences pi − pi−1 ∈ Pic0(Ei−1) are not torsion for all

1 ≤ i ≤ γ−1. We assume by contradiction thatH0
(
D,KD⊗L⊗(−2)

D ⊗OD(2(r+s)y)
)
6= 0

for some LD ∈ Picγ+r(D) and denote by LEi
∈ Picγ+r(Ei) the Ei-aspect of the induced

limit linear series gr
r+γ on ∪γ−1

i=0 Ei satisfying the ramification conditions α
LE0

t (p0) = αt

for 0 ≤ t ≤ r. Fix an integer 1 ≤ i ≤ γ − 1. By the additivity of the Brill-Noether
number, we have that ρ(LEi−1

, pi, pi−1) = 0 and there exists an integer 0 ≤ k ≤ r such

that α
LEi
t (pi) = α

LEi−1

t (pi−1) + 1 for t 6= k while α
LEi

k (pi) = α
LEi−1

k (pi−1). In particular,

LEi−1
= OEi−1

(
(α

LEi−1

k (pi−1) + k) · pi−1 + (γ + r − k − α
LEi−1

k (pi−1)) · pi

)
,

that is LEi−1
corresponds to a divisor supported only at the points pi−1 and pi. Our

assumption implies that for all 0 ≤ i ≤ γ − 1 there exist sections

0 6= ρi ∈ H0
(
Ei,OEi

(2(r + s+ i)pi + 2(γ − i− 1)pi+1) ⊗ L
⊗(−2)
Ei

)
)

satisfying the compatibility conditions

ordpi
(ρi) ≥ ordpi−1

(ρi−1) and ordpi
(ρi−1) + ordpi

(ρi) = 2s− 2.

We reach a contradiction once we show that

ordpγ−1
(ργ−1) > 2s− 2 = deg(OEγ−1

(2(r + s+ γ − 1)pγ−1 ⊗ L
⊗(−2)
Eγ−1

))

which gives that ργ−1 = 0. Assume now that ordpi+1
(ρi+1) = ordpi

(ρi) for some 0 ≤
i ≤ γ − 2. Then ordpi

(ρi) + ordpi+1
(ρi) = 2s − 2, hence the section ρi vanishes only at

pi and pi+1 ∈ Ei and ordpi
(ρi) = 2b for some integer b ≥ 0. We must have that LEi

=

OEi
((r+s+i−b)·pi+(γ−i−s−b)·pi+1) (we use that pi+1−pi ∈ Pic0(Ei) is not torsion). In

particular r+s+ i− b is one entry in the vanishing sequence aLEi (pi) and the vanishing

sequence aLEi+1 (pi+1) is obtained from aLi(pi) by raising all entries by 1, except for
r+s+i−bwhich remains unmodified. Obviously then, the number r+s+i+1−b cannot
appear in the vanishing sequence aLEi+1 (pi+1). But this implies that ordpi+2

(ρi+2) ≥
ordpi+1

(ρi+1)+1. This argument shows that as we trace the non-decreasing sequence of
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vanishing orders {ordpi
(ρi)}γ−1

i=0 along any group of 3 consecutive components Ei−1, Ei

and Ei+1, we will find at least 2 along which ordpi
(ρi) jumps. Since γ ≥ 3s, we find that

ordpγ−1
(ργ−1) > 2s− 2 and this brings about a contradiction. �

Next we extend Ga,b andHa,b over the divisors σ
−1(∆0

j ) for [g/2] ≤ j ≤ g − 2.

Proposition 2.10. (1) For g = rs + s, d = rs + r and b ≥ 1, there exists a vector bun-

dle G0,b defined over G̃r
d, extending the already constructed vector bundle G0,b over

σ−1(M0
g ∪ ∆0

0 ∪ ∆0
1) and such that if t = (C ∪y D, lC , lD) ∈ σ−1(∆0

j ), where

g(C) = j ≥ [s(r+ 1)/2], g(D) = g− j ≥ 2 and (lC , lD) is a limit gr
d on C ∪y D, then

G0,b(t) = H0(C ∪y D,L
⊗b),

with

L :=
(
LC = lC(−(rs− j)y), LD = lD(−(j + r)y)

)
∈ Picj+r(C) × Picrs−j(D),

in the case s(r + 1)/2 ≤ j ≤ s(r − 1) = g − 2s, and

L :=
(
LC = lC(−(g − j + r)y), LD = lD(−(j − s)y)

)
∈ Picj−s(C) × Picrs+s−j+r(D),

in the case s(r − 1) < j ≤ s(r + 1) − 2.

(2) For each 0 ≤ a ≤ r, b ≥ 1 there exists a vector bundle Ha,b over G̃r
d restricting to

the already defined vector bundle Ha,b over σ
−1(M0

g ∪ ∆0
0 ∪ ∆0

1), such that H0,b =

Symb(G0,1) for all b ≥ 1 and which also has the property that the exact sequences (5)

remain exact over G̃r
d.

(3) For each 0 ≤ a ≤ r, b ≥ 1, there exists a torsion free sheaf Ga,b over G̃
r
d that restricts to

the vector bundle Ga,b over σ
−1(M0

g ∪∆0
0∪∆0

1), which for a = 0 agrees with the vector
bundle G0,b defined above, and which has the property that the vector bundle morphisms
φa,b defined over σ

−1(M0
g ∪ ∆0

0 ∪ ∆0
1) extend to morphisms φa,b : Ha,b → Ga,b over

G̃r
d.

Proof. We start with an arbitrary point t = (C ∪y D, lC , lD) ∈ σ∗(Cj) where we assume

first that [g/2] ≤ j ≤ rs − s. We set LC := lC(−(rs − j)y) ∈ Picr+j(C) and LD :=
lD(−(r+j)y) ∈ Picrs−j(D). If L = (LC , LD) ∈ Picrs+r(C∪yD), the essential observation
is that because [C] ∈ Mj and [D, y] ∈ Mg−j,1 are Brill-Noether general, we always

have that rs + r − 1 ≤ alC
0 (y) + alD

r (y) ≤ rs + r, hence h0(LC) ≥ r, h0(LD) ≤ 1 and

h0(C ∪y D,L) = r + 1 (see Proposition 2.4). If p : M̃g,1 × fMg
G̃r

d → G̃r
d is the universal

curve over G̃r
d, we denote by P a Poincaré bundle of relative degree d = rs+ r enjoying

the following properties:

(1) For each [g/2] ≤ j ≤ g − 2, P|p−1(σ−1(∆0
j )) parameterizes line bundles of bide-

gree (r + j, rs− j) on curves of type C ∪y D where g(C) = j and g(D) = g − j.

(2) If τj : σ−1(∆0
j ) → M̃g,1 × fMg

G̃r
d denotes the section which assigns the single

node corresponding to every curve from σ−1(∆0
j ), then τ

∗
j (P) = Oσ−1(∆0

j ).

Note that since the divisors σ−1(∆0
i ) and σ

−1(∆0
j ) are disjoint for [g/2] ≤ i <

j ≤ g − 2, the construction can be carried out over a fixed divisor ∆0
j at a time. Since
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h0(p−1(t),P|p−1(t)) = h0(C ∪y D,L) = r + 1 for each t ∈ G̃r
d, by Grauert’s Theorem,

G0,1 := p∗(P) is a locally free sheaf which satisfies our first requirement. For b ≥ 2

we define G0,b = p∗(P⊗b). Based on degree considerations we have that H1(L⊗b
C ) =

H1(L⊗b
C ⊗ OC(−y)) = 0. Using Proposition 2.9 we see that H1(L⊗b

D ) = 0, hence h0(C ∪
D,L⊗b) = h0(L⊗b

C ) + h0(L⊗b
D ) − 1 = bd + 1 − g. Grauert’s Theorem implies that G0,b is

locally free for all b.

In the remaining case when rs − s + 1 ≤ j ≤ g − 2, that is, 2 ≤ g(D) ≤ s − 1,

we define LC := lC(−(rs + s + r − j)y) ∈ Picj−s(C) and LD := lD(−(j − s)y) ∈
Picrs+s−j+r(D). Then h0(LC) ≤ 1, h0(LD) ≥ r and h0(C ∪y D,L) = r + 1. Proposition

2.9 gives again that h1(L⊗b
C ) = 0 for all b ≥ 2, hence h0(C ∪ D,L⊗b) = bd + 1 − g.

This time , we denote by P the Poincaré bundle parametrizing line bundles of bidegree
(j − s, rs + s + r − j) on curves of type C ∪y D and then G0,b := p∗(P⊗b) is locally free
in this case too because of Grauert’s Theorem.

To define Ga,b for a ≥ 1, we introduce the sheafM := Ker{p∗(p∗(P)) → P} and
then we set Ga,b := p∗(∧aM ⊗ P⊗b). The morphism φ0,b is simply the natural map

Symbp∗(P) → p∗(P⊗b), and to define these maps for a ≥ 1 we use that the vector
bundlesHa,b fit into exact sequences of type (5) and then proceed inductively. �

Remark 2.11. Just like in the case of the vector bundles A and B defined initially over
Gr

d (cf. Section 2), the sheaves Ha,b,Ga,b depend on the choice of a Poincaré bundle,

whereas Hom O
G

r
d
(Ha,b,Ga,b) and φa,b ∈ H0

(
G

r
d, Hom O

G
r
d
(Ha,b,Ga,b)

)
are independent

of such a choice. Moreover, since the projection p : M̃g,1 × fMg
G̃r

d → G̃r
d has a canonical

section over each divisor σ−1(∆0
j ) where [g/2] ≤ j ≤ g − 1, it is possible to choose the

Poincaré bundle P|p−1(σ−1(∆0
j )) in an unambiguous way (which is precisely what we did

in the proof of Proposition 2.10) and then Ha,b|σ−1(∆0
j ) and Ga,b|σ−1(∆0

j ) are unambigu-

ously defined as vector bundles over σ−1(∆0
j ). This is of course a minor point which

plays no role in the calculation of σ∗(c1(Gi,2 −Hi,2)) ∈ A1(M̃g).

We now determine the class of the curves X and Y defined in Proposition 2.3:

Proposition 2.12. Let C be a Brill-Noether general curve of genus g − 1 and q ∈ C a general
point. We denote by π2 : C ×W r

d (C) →W r
d (C) the projection and set ci := (π2)

∗
(
ci(E∨)

)
.

(1) The class of the curve X = {(y, L) ∈ C ×W r
d (C) : h0(C,L(−2y)) ≥ r} is given by

[X] = cr + cr−1(2γ + (2d+ 2g − 4)η) − 6cr−2 ηθ.

(2) The class of the curve Y = {(y, L) ∈ C ×W r
d (C) : h0(C,L(−y − q)) ≥ r} is given by

[Y ] = cr + cr−1(γ + (d− 1)η) − 2cr−2 ηθ.

Proof. We realize both X and Y as degeneracy loci over C ×W r
d (C) and compute their

classes using the Thom-Porteous formula. For each (y, L) ∈ C × W r
d (C) we have a

natural map

H0(C,L|2y)
∨ → H0(C,L)∨
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which globalizes to a vector bundle map ζ : J1(L)∨ → (π2)
∗(E∨). Clearly X = Z1(ζ),

hence

[X] =
[ct(π∗2(E∨))

ct(J1(L)∨)

]
r
.

From the exact sequence defining the jet bundle of L
0 −→ π∗1(KC) ⊗ L → J1(L) → L → 0

we obtain that ct(J1(L∨))−1 = 1+2γ+2dη+(2g−4)η−6ηθ, which quickly leads to the
desired expression for [X]. The calculation of [Y ] is entirely similar and we skip it. �

We also need the following intersection theoretic result:

Lemma 2.13. For each j ≥ 2 we have the following formulas:

(1) c1(G0,j |X) = −j2θ − (2g − 4)η − j(dη + γ).

(2) c1(G0,j |Y ) = −j2θ + η.

Proof. We observe that for all j ≥ 2, H1(L⊗j) = 0, hence (π2)∗(L⊗j) is a vector bundle

over Picd(C). Riemann-Roch applied to the map π2 : C × Picd(C) → Picd(C) yields

c1
(
(π2)∗(L⊗j)

)
= −j2θ. If we denote by u, v : C × C × Picd(C) → C × Picd(C) the

two projections and by∆ ⊂ C ×C × Picd(C) the diagonal, we have the following exact
sequences

0 −→ u∗(v
∗(L⊗j) ⊗ I2

∆)|X −→ G0,j|X −→ L⊗j
|X −→ 0

and
0 −→ u∗(v

∗(L⊗j) ⊗ I2
∆) −→ (π2)∗(L⊗j) −→ J1(L⊗j) −→ 0

(and an entirely similar situation for G0,j|Y ) from which both claims follow easily. �

Now we are in a position to prove Theorem 1.1:

Proof of Theorem 1.1. Since codim(Mg − M̃g,Mg) ≥ 2, it makes no difference whether

we compute the class σ∗(Gi,2 −Hi,2) on M̃g or onMg and we can write

(6) σ∗(Gi,2 −Hi,2) = Aλ−B0 δ0 −B1 δ1 − · · · −B[g/2] δ[g/2] ∈ Pic(Mg),

where λ, δ0, . . . , δ[g/2] are the generators of Pic(Mg). We start with the following:

Claim: One has the relation A− 12B0 +B1 = 0.

We pick a general curve [C, q] ∈ Mg−1,1 and at the fixed point q we attach to

C a Lefschetz pencil of plane cubics. If we denote by R ⊂ Mg the resulting curve,
then R · λ = 1, R · δ0 = 12, R · δ1 = −1 and R · δj = 0 for j ≥ 2. The relation
A−12B0 +B1 = 0 follows once we show that σ∗(R) · c1(Gi,2 −Hi,2) = 0. To achieve this

we check that G0,b|σ∗(R) is trivial and then use (4) and (5). We take [C ∪q E] ∈ Mg to be
an arbitrary curve from R, where E is an elliptic curve. The pointed curve [C, q] being
Brill-Noether general, limit gr

d’s on C ∪q E are in 1 : 1 correspondence with linear series
L ∈ W r

d (C) having a cusp at q (This is a statement independent of the j-invariant of E,
in particular, it also holds for the 12 rational nodal curves in the pencil). Furthermore,
the fibre of G0,b|σ∗(∆0

1) over each point from σ∗(R) consists of the global sections of the

genus g − 1 aspect of the limit gr
d and the claim now follows.
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Nowwe determine explicitly the coefficientsA,B0 andB1. We fix a general curve
[C, q] ∈ Mg−1,1 and construct the test curves C

1 ⊂ ∆1 and C
0 ⊂ ∆0. Using the notation

from Proposition 2.3, we write that σ∗(C0) · c1(Gi,2 −Hi,2) = c1(Gi,2|Y ) − c1(Hi,2|Y ) and

σ∗(C1) · c1(Gi,2 −Hi,2) = c1(Gi,2|X) − c1(Hi,2|X) (the other component T of σ∗(C1) does
not appear because G0,b|T is trivial for all b ≥ 1). On the other hand

C0 · σ∗(c1(Gi,2 −Hi,2)) = (2g − 2)B0 −B1 and C
1 · σ∗(c1(Gi,2 −Hi,2)) = (2g − 4)B1,

while we already know that A− 12B0 +B1 = 0.Next we use the relations

c1(Gi,2) =
i∑

l=0

(−1)lc1(∧i−lG0,1 ⊗ G0,l+2) =
i∑

l=0

(−1)l

(
r + 1

i− l

)
c1(G0,l+2)+

+
i∑

l=0

(−1)l
(
(l + 2)(rs+ r) + 1 − rs− s

)( r

i− l − 1

)
c1(G0,1), and

c1(Hi,2) =

i∑

l=0

(−1)lc1(∧i−lG0,1 ⊗ Syml+2G0,1) =

=
i∑

l=0

(−1)l
((

r

i− l − 1

)(
r + l + 2

l + 2

)
+

(
r + 1

i− l

)(
r + l + 2

r + 1

))
c1(G0,1) =

=

(
2s+ is+ i

i

)
(s+ 1)(i+ 2)c1(G0,1),

which when restricted toX and Y , enable us (also using Lemma 2.13), to obtain explicit
expressions for c1(Gi,2 − Hi,2)|X and c1(Gi,2 − Hi,2)|Y in terms of the classes η, θ, γ and
c1 = π∗2(c1(E∨)). Intersecting these classes with [X] and [Y ] and using Lemma 2.6, we
finally get a linear system of 3 equations in A,B0 and B1 which leads to the stated
formulas for the first three coefficients. �

Next we prove that when i = 0, we can get a formula for the slope of Zs(2s+1),0:
precisely we show that if we write σ∗(c1(G0,2 −H0,2)) = Aλ − B0δ0 − · · · − B[g/2]δ[g/2],

then Bj ≥ B0 for all j ≥ 1. In particular, s
(
σ∗(c1(G0,2 − H0,2))

)
= A/B0 which has

already been computed in Theorem 1.1. We note that the proof uses in an essential way
the divisor class calculation from Theorem 4.6.

Proof of Theorem 1.4. Using the convention Bg−j = Bj for g/2 ≤ j ≤ g − 1, we show that
Bj ≥ B0 only when s(2s + 1)/2 ≤ j ≤ s(2s − 1). The case 2s2 ≤ j ≤ s(2s + 1) − 1 is
dealt with in a similar fashion. To compute Bj we intersect the class σ∗(c1(G0,2 −H0,2))
with Cj . Then we use that [Yg−j,β] · c1(G0,2 −H0,2) = [Uj,γ ] · c1(G0,2 −H0,2) = 0, for all
β ∈ P2, γ ∈ P3, to obtain that

(2j − 2)Bj = σ∗(Cj) · c1(G0,2 −H0,2) =
∑

(α0,...,αr)∈P1

Ng−j,α

(
[Xj,α] · c1(G0,2 −H0,2)

)
.

We fix a Schubert index (α0 ≤ . . . ≤ αr) ∈ P1 and denote by π1 : Xj,α → C and

π2 : Xj,α → Picr+j(C) the two projection maps. As before, L is the Poincaré bundle
on C × Picr+j(C). There is an isomorphism of bundles G0,1|Xj,α

= π∗2
(
(π2)∗(L)

)
|Xj,α

obtained by globalizing the projection isomorphism at the level of spaces of sections
H0(C ∪y D,L) ∼= H0(C,LC) valid for each point (y, LC) ∈ Xj,α. (We recall that L =
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(LC , LD) ∈ Pic2s+j(C) × Pic2s2−j(D)). For b ≥ 2, we have a surjective morphism of
vector bundles G0,b|Xj,α

։ π∗2
(
(π2)∗(L⊗b)

)
|Xj,α

whose kernel is a trivial bundle along

Xj,α. Thus one has that c1(G0,b|Xj,α
) = −b2θ|Xj,α

and c1(H0,2|Xj,α
) = c1(Sym

2G0,1|Xj,α
) =

−(2s+ 2)θ|Xj,α
, therefore

(7) (2j − 2)Bj = (2s− 2)
∑

(α0,...,αr)∈P1

Ng−j,α ([Xj,α] · θ).

The class of the curve Xj,α can be computed using the generalized Giambelli formula
(cf. [FuPr], pg. 15-17) as follows: If Jαr+r−1(L) ։ · · · ։ Jαi+i−1(L) ։ · · · ։ Jα0−1(L)
is the flag of jet bundles corresponding to the ramification sequence (α0, . . . , αr), then

Xj,α = {(y, L) ∈ C×Picr+j(C) : rk{π∗2
(
(π2)∗(L)

)
(y, L) → Jαi+i−1(L)(y, L)} ≤ i for all i}

and then [Xj,α] is given by the determinant of the (αr × αr)-matrix having entries

aik = cr+1−l+k−i

(π∗2
(
(π2)∗(L)

)

Jαl+l−1(L)

)
, for all αl−1 ≤ i ≤ αl, 0 ≤ l ≤ r and 1 ≤ j ≤ αr.

Since

ci

(π∗2
(
(π2)∗(L))

Ja−1(L)

)
=
θi

i!
+

θi−1

(i− 1)!

(
aγ+ a(j+ r)η+ a(a− 1)(j− 1)η

)
− θi−1

(i− 2)!
a(a+ 1)η,

clearly [Xj,α] is a linear combination of θj , θj−1η and θj−1γ in H2j(C × Picr+j(C)). The
intersection number [Xj,α] · θ can be interpreted as the number of line bundles LC ∈
Picr+j(C) satisfying the condition αLC

i (y) ≥ αi for i = 0, . . . , r at an unspecified point
y ∈ C, and which, moreover, are also ramified at a fixed point q ∈ C, that is, aLC

r (q) ≥
r + 1.

Using this interpretation, the quantity
∑

α∈P1
Ng−j,α([Xg−j,α]·θ) can be expressed

as the intersection number C̃j · Lin
r
d(1) over the moduli spaceMg,1. Here Linr

d(1) is the
divisor onMg,1 consisting of pointed curves [C, q] such that there exists L ∈ W r

d (C)

with h0(C,L⊗OC(−(r+ 1)q) ≥ 1, while C̃j = {C ∪y D, q}y∈C ⊂ ∆j:1 ⊂ Mg,1 is the test
curve obtained by varying the point of attachment y on the genus j component, while

the marked point q ∈ C remains fixed. The class of Lin
r
d(1) is computed in the course of

the proof of Theorem 4.6 and one has

Lin
r
d(1) ≡ µ

(
(g + 3)λ− g + 1

6
δirr −

g−1∑

j=1

δj:1

)
+ ν

(
−λ+ ψ −

g−1∑

j=1

(
g − j + 1

2

)
δj:1

)
,

where

ν =
r(r + 2)

(rs+ s− 1)(rs+ s+ 1)
and µ =

r(r + 1)(r + 2)(s− 1)(s+ 1)(rs+ s+ 4)

2(s+ r + 1)(rs+ s− 2)(rs+ s− 1)(rs+ s+ 1)
.

Since C̃j ·ψ = 1, C̃j · δg−j:1 = 1 (the only point of intersection corresponds to y = q ∈ C),

C̃j · δj:1 = −(2j − 1), while C̃j · λ = C̃j · δi:1 = 0 for i 6= j, g − j, we can compute that

Bj

cr
=

s− 1

(j − 1)cr

∑

α∈P1

Ng−j,α([Xj,α] · θ) =
s− 1

(j − 1)cr
C̃j · Lin

r
d(1) =
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=
4(s− 1)j

(
2js3 + js2 − 2js− 2j + 4s3 + 4s2 − 3s

)
(2s2 + s− j)

(2s2 + s− 2)(3s+ 1)(2s− 1)(j − 1)
≥

≥ B0

cr
=
s(8s6 − 8s5 − 2s4 + s2 + 11s+ 2)

3(2s2 + s− 2)(3s+ 1)(2s− 1)
.

This finishes the proof and shows that s(σ∗(G0,2 −H0,2)) = A/B0. �

As we have already pointed out, Theorem 1.1 produces only virtual divisors on
Mg of slope less than 6+12/(g+1). To get actual divisors one has to show that the vector
bundle map φ : Hi,2 → Gi,2 is generically non-degenerate. We carry this out in the case
i = 0 and we produce for the first time an infinite sequence of genuine counterexamples
to the Slope Conjecture.

Proof of Theorem 1.5. From Brill-Noether theory one knows that there exists a unique

component of G̃r
d which maps onto M̃g. Moreover, if (C,L) ∈ Gr

d is such that L ∈
W r

d (C)−W r+1
d (C) corresponds to an embedding C ⊂ Pr, then a sufficient condition for

the smoothness of Gr
d at [C,L] is thatH1(NC/Pr) = 0, and then, the differential (dσ)[C,L]

is surjective if and only if the Petri map µ0(C) : H0(L) ⊗ H0(KC ⊗ L∨) → H0(KC) is
injective (see e.g. [AC2]). In our situation, it is then enough to produce a Brill-Noether-
Petri general smooth curveC ⊂ P2s having degree 2s(s+1) and genus s(2s+1) such that
C does not sit on any quadrics, that isH0(IC/P2s(2)) = H1(IC/P2s(2)) = 0. We carry this

out inductively: For each 0 ≤ a ≤ s, we construct a smooth non-degenerate curve Ca ⊂
Ps+a with deg(Ca) =

(
s+a+1

2

)
+ a and g(Ca) =

(
s+a+1

2

)
+ a − s, h1(Ca,OCa(1)) = a (or

equivalently, h0(Ca,OCa(1)) = s+a+1), and such that (1)Ca satisfies the Petri Theorem
(in particular one has that H1(Ca, NCa/Ps+a) = 0), and (2) the multiplication map µ2 :

Sym2H0(Ca,OCa(1)) → H0(Ca,OCa(2)) is surjective (or equivalently, an isomorphism).

To construct C0 ⊂ Ps we consider the White surface S = Bl{p1,...,pδ}(P
2) ⊂ Ps

obtained by blowing-up P2 at general points p1, . . . , pδ ∈ P2 where δ =
(
s+1
2

)
, and

embedding it via the linear system |sh − ∑δ
i=1Epi

|. Here h is the class of a line on
P2. It is known that S ⊂ Ps is a projectively Cohen-Macaulay surface and its ideal is
generated by the (3× 3)-minors of a certain (3× s)-matrix of linear forms (see e.g. [GG]
even though these surfaces have been studied in the classical literature by T.G. Room
in [R]). The Betti diagram of S ⊂ Ps is the same as that of the ideal of (3 × 3)-minors
of a (3 × s)-matrix of indeterminates. In particular, we have that H i(IS/Ps(2)) = 0 for

i = 0, 1. On S we consider a generic smooth curve C ≡ (s + 1)h − ∑δ
i=1Epi

. We find

that the embedded curve C ⊂ S ⊂ Ps has deg(C) =
(
s+1
2

)
and g(C) =

(
s
2

)
. From the

exact sequence

0 −→ IS/Ps(1) −→ IC/Ps(1) −→ IC/S(1) −→ 0,

using also that H1(IS/Ps(1)) = 0 and that H1(IC/S(1)) = 0 (e.g. by Riemann-Roch), we

find thatH1(IC/Ps(1)) = 0 and H1(OC(1)) = 0, hence h0(OC(1)) = s+ 1. Furthermore,

since H0(IS/Ps(2)) = H1(IS/Ps(2)) = 0, we obtain that H1(IC/Ps(2)) = 0. Finally, since

H1(OC(1)) = 0, it follows trivially that H1(NC/Ps) = 0 and µ0(C) is injective, being a
map with source the trivial vector space. Even though [C] ∈ Mg(C) itself is not a Petri
general curve, the map HC → Mg(C) from the Hilbert scheme HC of curves C

′ ⊂ Ps

with deg(C ′) = deg(C) and g(C ′) = g(C), is smooth and dominant around the point



KOSZUL DIVISORS ON MODULI SPACES OF CURVES 21

[C] ∈ HC , hence a generic deformation [C0 →֒ Ps] ∈ HC of [C →֒ Ps] will be Petri
general and still satisfy the condition H1(IC0/Ps(2)) = 0.

Assume now that we have constructed a Petri general curve Ca ⊂ Ps+a with all
the desired properties. We pick general points p1, . . . , ps+a+2 ∈ Ca with the property

that if∆ := p1 + · · · + ps+a+2 ∈ Syms+a+2Ca, then the variety

T := {(M,V ) ∈W s+a+1
d(Ca)+s+a+2(Ca) : dim

(
V ∩H0(Ca,M ⊗OCa(−∆))

)
≥ s+ a+ 1}

of linear series having an (s + a + 2)-fold point along ∆, has the expected dimension
ρ(g(Ca), s + a + 1, d(Ca) + s + a + 2) − (s + a + 1)2. We identify the projective space
Ps+a containing Ca with a hyperplaneH ⊂ Ps+a+1 and choose a linearly normal elliptic
curve E ⊂ Ps+a+1 such that E ∩ H = {p1, . . . , ps+a+2}. The fact that such an E exists
is an easy consequence of the vanishing H1(NE/Ps+a+1(−1)) = 0 for each elliptic curve

E embedded by a complete linear series; the vanishing itself is a consequence of the
fact that NE/Ps+a+1 is a poly-stable vector bundle (cf. [GL], Theorem 4.1), having the

property that µ(NE/Ps+a+1(−1)) > 1). We now set X := Ca ∪{p1,...,ps+a+2} E →֒ Ps+a+1

and then deg(X) = pa(X) + s. From the exact sequence

0 −→ OE(−p1 − · · · − ps+a+2) −→ OX −→ OCa −→ 0,

we can write that h0(OX(1)) ≤ h0(OCa(1)) + h0(OE) = s + a + 2, hence h0(OX(1)) =
s+ a+ 2 and h1(OX(1)) = a+ 1. One can also write the exact sequence

0 −→ IE/Ps+a+1(1) −→ IX/Ps+a+1(2) −→ ICa/H(2) −→ 0,

from which we obtain that H1(IX/Ps+a+1(2)) = 0, hence by a dimension count we also

get that H0(IX/Ps+a+1(2)) = 0, that is, X and a general deformation of X inside Ps+a+1

lie on no quadrics.

We now show that X →֒ Ps+a+1 can be deformed to an embedding of a smooth
curve Ca+1 in P

s+a+1 such that H1(NCa+1/Ps+a+1) = 0. We choose an (s + a + 2)-

dimensional subspace H0(OCa(1)) ⊂ V ⊂ H0(OCa(1) ⊗ OCa(∆)) which gives a map

f : Ca → Ps+a+1 such that f(p1) = · · · = f(ps+a+2) = p. If we denote by P̃
s+a+1

the
blow-up of Ps+a+1 at p, by choosing V suitably we may assume that f lifts to an em-

bedding f̃ : Ca →֒ P̃s+a+1
which projected from p gives rise to the original embedding

Ca →֒ H . We consider another copy of Ps+a+1 which we denote by Ps+a+1
1 and we de-

note byZ the scheme obtained by gluing Ps+a+1
1 and P̃

s+a+1
alongH , where we identify

the exceptional divisor of P̃
s+a+1

with H ⊂ Ps+a+1 via the projection from p. There is a

natural map h : Z → Ps+a+1 which on Ps+a+1
1 is the identity while on P̃

s+a+1
is the pro-

jection from p. Via this map, the inclusion X →֒ Ps+a+1 lifts to an embedding X →֒ Z.
Note that Z is a degeneration of Ps+a+1 something which can be seen by blowing-up
the codimension 2 subschemeH×{0} of Ps+a+1 ×P1. If we denote by X the total space
of the blow-up and by ǫ : X → P1 the projection onto the second component, then for
t 6= 0 we have that ǫ−1(t) = Ps+a+1, whereas ǫ−1(0) = P ∪ E , where P is the strict trans-
form of Ps+a+1 × {0} which is isomorphic to Ps+a+1, while E = P(OH ⊕ OH(1)) is the
exceptional divisor, which is isomorphic to Ps+a+1 blown-up at a point. In the special
fibre, P and E are joined along a divisor which is H inside P.
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Next we write down the standard exact sequences of normal bundles

0 −→ NE/Ps+a+1 ⊗OE(−∆) −→ NX/Z −→ N
Ca/ePs+a+1 −→ 0

(the right hand side map is restriction to the component Ca of X), and

0 −→ OCa(1) ⊗OCa(2∆) −→ N
Ca/ePs+a+1 −→ NCa/H −→ 0,

from which it easily follows that H1(NX/Z) = 0 (Use the hypothesis H1(NCa/Ps+a) = 0

and that H1
(
NE/Ps+a+1 ⊗ OE(−∆)

)
= 0 because NE/Ps+a+1 is semi-stable). Thus the

space of deformations of X in Z is unobstructed of dimension h0(NX/Z). On the other

hand, by general theory the space T 1
(X,Z) of infinitesimal deformations of the pair (X,Z)

has dimension at least χ(NX/Z) + 1 = h0(NX/Z) + 1. This shows that there exists a

deformation of (X,Z) in which Z deforms non-trivially. But dim(T 1
Z) = 1, that is, the

only possible deformation of Z is the smoothing to Ps+a+1 previously described, and
in this deformation the map X →֒ Z will deform to an embedding Ca+1 →֒ Ps+a+1 of
a smooth curve, which proves our claim. We are left with showing that the dimension
estimate

(8) dim
(
W s+a+1

d(Ca+1)(Ca+1)
)

= ρ
(
g(Ca+1), s+ a+ 1, d(Ca+1)

)

holds. Assuming that (8) has been proved, since the condition H1(NCa+1/Ps+a+1) = 0

guarantees the local smoothness of the scheme Gs+a+1
d(Ca+1), it follows that the morphism

Gs+a+1
d(Ca+1) → Mg(Ca+1) is dominant in a neighbourhood of the point [Ca+1 →֒ Ps+a+1].

Therefore the curve Ca+1 ⊂ Ps+a+1 can be chosen to be Petri general as well, which
enables us to continue the induction.

We return to proving (8) and denote by U the versal deformation space of [X] ∈
Mg(Ca+1) and by φ : C → U the universal family such that φ−1(0) = X , where 0 ∈
U . Then in a way similar to [EH1], Theorem 3.3, one can construct a quasi-projective
variety σ : G̃s+a+1

d(Ca+1) → U of limit linear series such that for points u ∈ U with Cu =

φ−1(u) smooth, we have that σ−1(u) = Gs+a+1
d(Ca+1)(Cu), whereas σ−1(0) consists of the

following data: an underlying line bundle L on X together with linear series {La, Va ∈
G(s+a+2, H0(X,La))} and {LE , VE ∈ G(s+a+2, H0(X,LE))} such that the following
conditions are satisfied (see also [Est], Theorem 1):

(1) The line bundles La and LE on X are suitable twists of L by multiples of the
divisor∆: precisely there exists an integer l such that La|Ca

= LE|Ca
⊗OCa(l ·∆)

and La|E = LE|E ⊗OE(−l ·∆). Moreover deg(La|Ca
)+deg(LE|E) = deg(Ca+1)+

l(s+ a+ 2).
(2) The restriction maps Va → H0(Ca, La|Ca

) and VE → H0(E,LE|E) are both injec-
tive.

(3) The restriction maps Va → H0(E,La|E) and VE → H0(Ca, LE|Ca
) are both non-

zero.
(4) If l is the integer defined above and (a0 ≤ . . . ≤ as+a+1) denotes the vanishing

sequence of (La|Ca
, Va+1) with respect to the divisor ∆ ∈ Syms+a+2Ca while

(b0 ≤ · · · ≤ bs+a+1) denotes the vanishing sequence of (LE|E , VE) with respect
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to∆ ∈ Syms+a+2E, then we have the inequalities ai+bs+a+1−i ≥ l for all indices
0 ≤ i ≤ s+ a+ 1 (see also [Est], Proposition 6).

By construction we have the dimension estimate dim(G) ≥ dim(U)+ρ
(
g(Ca+1), s+a+

1, d(Ca+1)
)
, (see also [EH1]), thus in order to prove (8) it suffices to show that

dim(σ−1(0)) = ρ
(
g(Ca+1), s+ a+ 1, d(Ca+1)

)
= ρ(g(Ca), s+ a, d(Ca)) − a

(here by dimension we mean the smallest dimension of an irreducible component). It is
now easy to describe the fibre σ−1(0) in a neighbourhood of the point corresponding to
a smoothing of the embeddingX →֒ Ps+a+1: If {La, Va}, {LE , VE} is a limit linear series
on X , then the aspect corresponding to E is just a very ample line bundle on X giving
the embedding into Ps+a+1, that is, LE|Ca

∈ W s+a
d(Ca)(Ca) and LE|E = OE(∆), whereas

the aspect corresponding to Ca is described by La|E = OE and La|Ca
= OCa(∆)⊗LE|Ca

(and in particular l = 1). The only possibility for the vanishing sequences of the E and
Ca aspects is that (a0, . . . , as+a+1) = (0, 1, . . . , 1) and (b0, . . . , bs+a+1) = (0, . . . , 0, 1). This

shows that locally, σ−1(0) is isomorphic to the variety of line bundles L ∈ Picd(Ca+1)(X)
such that L|E = OE , h

0(X,L) ≥ s + a + 2 and h0(Ca,L|Ca
(−∆)) ≥ s + a + 1 (Loosely

speaking this is the subscheme consisting of those La ∈ W s+a
d(Ca)(Ca) for which there

exists a section τ ∈ P
(
H0(La ⊗ O(∆))/H0(La)

)
which glues to the unique section of

the trivial bundle OE at the points of attachment p1, . . . , ps+a+2). Thus locally σ
−1(0)

is a (C∗)s+a+1-bundle over the subvariety T of W s+a+1
d(Ca+1) having an (s + a + 2)-fold

point along the divisor ∆, and by our inductive hypothesis we know that dim(T ) =

dim
(
W s+a+1

d(Ca+1)(Ca)
)
− (s+ a+ 1)2. It follows that

dim(σ−1(0)) = dim(T ) + s+ a+ 1 = ρ
(
g(Ca+1), s+ a+ 1, d(Ca+1)

)
,

and this finishes the proof. �

Remark 2.14. It is natural to wonder whether (8) could not be proved more easily by
showing directly that the Petri map µ0(X) : H0(OX(1))⊗H0(ωX(−1)) → H0(ωX) is in-
jective. Indeed Theorem 1.3 from [CR] seems to imply this to be the case based on the in-
ductive hypothesis that µ0(Ca) is injective whereas µ0(E) is injective for trivial reasons.
That claim is incorrect: from the exact sequence 0 −→ ωE −→ ωX −→ ωCa(∆) −→ 0, we
find the isomorphism H0(ωX(−1)) = H0(ωCa(−1) ⊗OCa(∆)) and then a simple analy-
sis shows thatH0(OE)⊗H0(ωCa(−1)) ⊂ H0(OX(1))⊗H0(ωX(−1)) is an a-dimensional
subspace lying entirely inside Ker(µ0(X)).

3. THE CLASS OF THE GIESEKER-PETRI DIVISORS

In this section we prove Theorem 1.6. We use the same strategy as in the previous

section and we intersect GPr
g,d with the test curves C

0, C1 and Cj for [g/2] ≤ j ≤ g − 2.

Recall that we have constructed a rank r + 1 vector bundle G0,1 over the variety G̃r
d (cf.

Proposition 2.10). As usual, we denote by E the Hodge bundle overMg.

Proposition 3.1. There exists a rank s vector bundle N over G̃r
d together with a morphism

G0,1 ⊗N → σ∗(E ⊗O fMg
(δ1)) of vector bundles of the same rank over G̃

r
d such that the fibres

of N admit the following description:
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• If (C,L) ∈ Gr
d, then N (C,L) = H0(C,KC ⊗ L∨).

• If t = (C∪yE,LC , lE) ∈ σ−1(∆0
1), whereL ∈W r

d (C) is such that h0(L⊗OC(−2y)) =
r, then N (t) = H0(C,KC ⊗ L∨

C ⊗OC(2y)).
• If t = (C/y ∼ q, L) ∈ σ−1(∆0

0), where y, q ∈ C and L ∈W r
d (C) is a linear series such

that h0(L⊗OC(−y− q)) = h0(L)− 1, thenN (t) = H0(C,KC ⊗L∨ ⊗OC(y+ q)).
• If t = (C ∪y D, lC , lD) ∈ σ−1(∆0

j ) where [g/2] ≤ j ≤ g− 2, g(C) = j, g(D) = g− j,

thenN (t) = H0(C∪yD,ωC∪D ⊗L∨), where L = (lC(−(rs−j)y), lD(−(j+r)y)) ∈
Picj+r(C) × Picrs−j(D).

Note that over Gr
d the morphism G0,1 ⊗N → σ∗(E ⊗O fMg

(δ1)) is simply the Petri

multiplicationmap. We start the proof of Theorem 1.6 by expanding [GPr
g,d] in Pic(Mg):

GPr
g,d ≡ aλ− b0δ0 − · · · − b[g/2]δ[g/2].

We show that the coefficients a, b0 and b1 as well as s(GPr
g,d) can be read off from the

vector bundle map G0,1 ⊗ N → σ∗(E ⊗ O fMg
(δ1)). Even though this bundle map is

degenerate along the boundary components contained in σ∗(∆0
j ) with j ≥ 2, we can

show that it is generically non-degenerate along σ∗(∆0
0) and σ

∗(∆0
1) which ultimately

suffices to compute s(GPr
g,d).

Proposition 3.2. One has the relation a− 12b0 + b1 = 0. Moreover, one has the identity

GPr
g,d ≡ σ∗

(
c1(σ

∗(E ⊗O fMg
(δ1)) − c1(G0,1 ⊗N )

)
+

[g/2]∑

j=2

djδj ,

where dj ≥ 0.

Proof. It is enough to show that if [C, y] ∈ Mg−1,1 is a general pointed curve, then for
every L ∈W r

d (C) satisfying h0(L⊗OC(−2y)) = r, the multiplication map

µ0(L, y) : H0(L) ⊗H0(KC ⊗ L∨ ⊗OC(2y)) → H0(KC ⊗OC(2y))

is an isomorphism. This shows that the morphism G0,1 ⊗N → σ∗(E⊗O fMg
(δ1)) is non-

degenerate along each component of the divisor σ−1(∆0
1) and the conclusion follows. To

show that µ0(L, y) is an isomorphism, we use a variation of the degeneration considered
by Eisenbud and Harris to prove the Gieseker-Petri Theorem (cf. [EH4]). Precisely, we
consider a 1-dimensional family π : C → B of generically smooth pointed curves of
genus g − 1 with a section τ : B → C, degenerating to a curve of compact type C0

consisting of a string of rational components and g elliptic components E1, . . . , Eg such
that the stable model of C0 is E1 ∪p1

E2 ∪p2
E3 ∪ · · · ∪pg−1

Eg−1. We assume moreover
that the marked point specializes to a point p0 ∈ E1 and we choose our degeneration
general enough such that pi − pi−1 ∈ Pic0(Ei) is not a torsion point for all 1 ≤ i ≤ g− 1.
By contradiction, we assume that for a general t ∈ B there exists Lt ∈ W r

d (π−1(t)) with
h0

(
π−1(t), Lt⊗O(−2τ(t))

)
= r, such that µ0(Lt, τ(t)) has non-trivial kernel. For 1 ≤ i ≤

g we denote by Li ∈ Picd(C0) the limit line bundle of the Lt’s having the property that

deg(Li
|Ej

) = 0 for i 6= j, hence deg(Li
|Ei

) = d. Similarly, we defineM i ∈ Pic2g−2−d(C0)

to be the limit when t → 0 of Kπ−1(t) ⊗ L∨
t ⊗ Oπ−1(t)(2τ(t)) uniquely characterized by

the property deg(M i
|Ej

) = 0 for i 6= j and deg(M i
|Ei

) = 2g − 2 − d. We denote by
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{
(
Li
|Ei
, Vi ∈ G(r + 1, H0(Ei, L|Ei

))
)
} and by {

(
M i

|Ei
,Wi ∈ G(r + 1, H0(Ei,M|Ei

))
)
} the

limit linear series on C0 corresponding to Lt and Kπ−1(t) ⊗ L∨
t respectively as t → 0.

Reasoning along the lines of [EH4] or [F2], Proposition 5.2, for each 1 ≤ i ≤ g we find
non-trivial elements

ρi ∈ Ker{Vi ⊗Wi → H0(Ei, L
i ⊗M i

|Ei
)}

satisfying ordpi
(ρi+1) ≥ ordpi−1

(ρi) + 2 for 1 ≤ i ≤ g − 1. Since both V1 andW1 have a
cusp at p0 ∈ E1, it follows that ordp1

(ρ1) ≥ 2, hence ordpg−1
(ρg) ≥ 2g− 2 = deg(Lg

|Eg
) +

deg(Mg
|Eg

), which is a contradiction because ρg−1 ∈ H0(Eg, L
g
|Eg

)⊗H0(Eg,M
g
|Eg

) being

an element in the kernel of the multiplication map must be a tensor of rank at least
4. �

Proposition 3.3. If cr is the constant defined in Lemma 2.6, then the δ1 coefficient in the

expression of [GPr
g,d] is given by:

b1 = cr
r(s− 1)

(s+ r + 1)(rs+ s− 2)
(3rs2 + 2s2 + r2s2 + 7s+ 6rs+ r2s+ 2r + 2).

Proof. We fix a general curve C of genus g − 1 and consider the associated test curve
C1 ⊂ ∆1. We view the curve X ⊂ C ×W r

d (C) defined in Proposition 2.12, as sitting

inside G̃r
d. Then the projection π1 : X → C is the restriction of σ : G̃r

d → M̃g once we
identify C with C1 (Note that the degree of π1 is precisely cr). One can write the relation

(2g− 4)B1 = C1 · GPr
g,d = c1(σ

∗(E⊗O fMg
(δ1)) |X)− c1(G0,1 |X ⊗N |X) and we are going

to compute each term in this expression.

The restriction E⊗O fMg
(δ1)|C1 is identified with the vector bundle (p2)∗

(
p∗1(KC)⊗

O(2∆)
)
, where p1, p2 : C×C → C are the two projections and∆ ⊂ C×C is the diagonal.

Using Grothendieck-Riemann-Roch for the map p2, we find that

c1(E ⊗O fMg
(δ1)|C1) = c1

(
(p2)!(p

∗
1(KC) ⊗O(2∆))

)
= −2g + 4,

hence c1(σ
∗(E) ⊗O fMg

(δ1))|X = −(2g − 4)cr (remember that we have set ci = c1(E∨)).

The fibre N|X(y, L) is identified with H0(KC ⊗ L∨(2y)) = H1(L ⊗ O(−2y))∨.
Keeping in mind that we have introduced the vector bundle map ζ in Proposition 2.12,
we have an exact sequence over X

0 −→ Ker(ζ)∨ −→ N∨
|X −→ π∗2

(
R1π2∗(L|C×W r

d
(C))

)
−→ 0,

globalizing the cohomology exact sequence for each (y, L) ∈ C ×W r
d (C)

· · · −→ H0(L)
ζ∨−→ H0(L|2y) −→ H1(L(−2y)) −→ H1(L) −→ 0.

Hence c1(N∨
|X) = θ − c1(E∨) + c1(Ker(ζ)

∨). Using Proposition 2.12 we can write that

C1 · GPr
g,d = −(2g − 4)crη − (r + 1 − s)c1 · [X] + (r + 1)c1(Ker(ζ)

∨) =

−(2g − 4)crη − (r + 1 − s)
(
(2d+ 2g − 4)c1cr−1η − 6c1cr−2θη

)
+

+(r + 1)
(
(2d+ 2g − 4)cr−1θη − 6cr−2θ

2η
)

+ (r + 1)c1(Ker(ζ)
∨).
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To compute the Chern number c1(Ker(ζ)
∨) we use once more [HT] and we find the

following relation in Htop(C ×W r
d (C)):

c1(Ker(ζ)
∨) = cr+1

(π∗2(E∨)

J1(L∨)

)
= (2d+ 2g − 4)crη − 6ηθcr−1.

Combining the last two relations and then applying Lemma 2.6 we obtain the formula
for b1. �

Proposition 3.4. The δ0 coefficient in the expression of [GPr
g,d] is given by:

b0 = cr
r(r + 1)(r + 2)(s− 1)s(s+ 1)(rs+ s+ 4)

6(r + s+ 1)(rs+ s− 2)(rs+ s− 1)
.

Proof. We pick a general curve C of genus g − 1 and consider the test curve C0 ⊂ ∆0.
Similarly to the proof of Proposition 3.3 we view the projection π1 : Y → C as the

restriction of σ : G̃r
d → M̃g over C

0. Then one has the relation

(2g − 2)b0 − b1 = C0 · GPr
g,d = c1(σ

∗(E ⊗O fMg
(δ1))|Y ) − c1(G0,1|Y ⊗N|Y ).

The Hodge bundle E⊗OfMg
(δ1)|C0 is identified with (p2)∗

(
p∗1(KC)⊗O(∆+Γq)

)
, where

Γq = {q}×C, and it is easy to compute that c1(σ∗(E⊗O fMg
(δ1))|Y ) = cr. If we denote by

υ the vector bundlemorphism over Y which globalizes themapsH0(L|y+q)
∨ → H0(L)∨

for each (y, L) ∈ Y , we obtain an exact sequence of vector bundles over Y

0 −→ Ker(υ)∨ −→ N∨
|Y −→ π∗2

(
R1π2∗(L|C×W r

d
(C))

)
−→ 0,

from which we can compute c1(N∨
|Y ) if we use [HT] which in this case reads

c1(Ker(υ
∨)) = cr+1

(π∗2(E∨)

F
)
,

where F is the vector bundle on C ×W r
d (C) with fibre F(y, L) = H0(L|y+q)

∨. Finally,
we write

C0 · GPr
g,d = crη + ((r + 1)(θ − c1 + c1)) · [Y ] + (r + 1)(cr(d− 1) − 2cr−1θ)η,

which eventually leads to the stated formula. �

To finish the proof of Theorem 1.6 it suffices to show that for [g/2] ≤ j ≤ g − 2,
the coefficient of δj in the expression of σ∗

(
c1(σ

∗(E)⊗O fMg
(δ1))− c1(G0,1 ⊗N )

)
always

exceeds the coefficient of δ0, which equals b0 and was computed in Proposition 3.4. This
is a calculation along the lines of the proof of Theorem 1.4. To keep the length of this
paper under control, we skip the details.

4. FIVE WAYS OF CONSTRUCTING KOSZUL DIVISORS FOR POINTED CURVES

In this section we construct Koszul divisors on moduli spaces of pointed curves.
As an application we improve Logan’s results on whichMg,n’s are of general type.

We start by recalling a few things about divisor classes onMg,n. For 0 ≤ i ≤ g
and a set of indices S ⊂ {1, . . . , n}, the boundary divisor∆i:S corresponds to the closure
of the locus of nodal curves C1 ∪ C2, with C1 smooth of genus i, C2 smooth of genus
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g − i, and such that the marked points sitting on C1 are precisely those labeled by S.
We also introduce the divisor ∆irr consisting of irreducible pointed curves with one
node. We denote by δi:S ∈ Pic(Mg,n) the class of ∆i:S and by δirr that of ∆irr. For each
1 ≤ i ≤ n we define the tautological class ψi := c1(Li), where Li is the line bundle on
Mg,n with fibre Li([C, x1, . . . , xn]) = T∨

xi
(C) over each point [C, x1, . . . , xn] ∈ Mg,n. It is

well known that when g ≥ 3, the Hodge class λ, the boundaries δirr and δi:S , and the
tautological classes ψi for 1 ≤ i ≤ n, freely generate Pic(Mg,n).

4.1. Divisors defined in terms of the Minimal Resolution Conjecture.

We fix integers g, r ≥ 1 and 0 ≤ i ≤ g and set n := (2r+1)(g−1)−2i. We define a
divisor onMg,n consisting of smooth pointed curves (C, x1, . . . , xn) such that the points

x1, . . . , xn fail theMinimal Resolution Conjecture for the canonical curve C
|KC |→֒ Pg−1 (see

[FMP] for background on MRC). Precisely we define the locus

Mrcr
g,i := {[C, x1, . . . , xn] ∈ Mg,n : h1

(
C,∧iMKC

⊗K⊗(r+1)
C ⊗OC(−x1−· · ·−xn)

)
≥ 1}.

If we denote by Γ := x1 + · · ·+xn ∈ Cn, by Serre duality, the condition appearing
in the definition ofMrcr

g,i is equivalent to

h0
(
C,∧iM∨

KC
⊗OC(Γ) ⊗K

⊗(−r)
C

)
≥ 1 ⇐⇒ OC(Γ) ⊗K

⊗(−r)
C ∈ Θ∧iM∨

KC

,

where we recall that for a stable vector bundle E on C having slope ν(E) = ν ∈ Z, its
theta divisor is the determinantal locus

ΘE := {η ∈ Picg−µ−1(C) : h0(C,E ⊗ η) ≥ 1}.

The main result from [FMP] gives an identification Θ∧iM∨
KC

= Cg−i−1 − Ci, where the

right hand side is one of the difference varieties associated to C. Thus one has an al-
ternative description of points inMrcr

g,i: a point (C, x1, . . . , xn) ∈ Mrcr
g,i if and only if

there exists D ∈ Ci such that h
0
(
C,OC(Γ +D) ⊗K

⊗(−r)
C

)
≥ 1.

First we equip Mrcr
g,i with a determinantal scheme structure. We consider the

following cartesian diagram of stacks

X q−−−−→ Mg,nyf

yπ

Cg
p−−−−→ Mg

in which all the morphisms are smooth and p (hence also q) is proper. We denote by
ωp ∈ Pic(Cg) the relative dualizing sheaf of the universal curve p : Cg → Mg and by
E := p∗(ωp) the Hodge bundle. We define the vector bundleM over Cg having rank
g−1 as the kernel of the evaluation map p∗E −→ ωp. Thus for every [C] ∈ Mg, we have
M|p−1([C]) ≃ MKC

. For each 1 ≤ j ≤ n we have a section qj : Mg,n −→ X of q given
by qj([C, x1, . . . , xn]) = ([C, x1, . . . , xn], xj) ∈ X and we set Ej := Im(qj), hence Ej is a
relative divisor overMg,n.
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For integers 0 ≤ a ≤ i, b ≥ r+2 and (a, b) = (0, r+1)we define the vector bundle

Aa,b := q∗
(
f∗(∧aM⊗ ω⊗b

p ) ⊗OX (−
n∑

j=1

Ej)
)
,

henceAa,b([C, x1, . . . , xn]) = H0(∧aMKC
⊗K⊗b

C ⊗OC(−Γ)). To prove thatAa,b is locally
free overMg,n, we use the fact thatMKC

is a semi-stable vector bundle over C and that

µ
(
∧aMKC

⊗K⊗b
C (−Γ)

)
> 2g − 1, hence

R1q∗
(
f∗(∧aM⊗ ω⊗b

p ) ⊗OX (−
n∑

j=1

Ej)
)

= 0

whenever b ≥ r + 2. To reach the same conclusion in the case of the sheaf A0,r+1, we

use that H1(K
⊗(r+1)
C (−Γ))∨ = H0(OC(Γ) ⊗K

⊗(−r)
C ) = 0, if Γ ∈ Cn lies outside a subset

of codimension ≥ 3. Furthermore there is a vector bundle map

φ : π∗(∧i
E) ⊗A0,r+1 → Ai−1,r+2

which over each point [C, x1, . . . , xn] ∈ Mg,n corresponds to the natural map

φ(C,Γ) : ∧iH0(KC) ⊗H0
(
K

⊗(r+1)
C ⊗OC(−Γ)

)
→ H0

(
∧i−1MKC

⊗K
⊗(r+2)
C ⊗OC(−Γ)

)
.

Note that rank(Ai−1,r+2) = rank
(
π∗(∧i

E) ⊗ A0,r+1

)
= 2i

(
g
i

)
and a simple argument

using the exact sequence 0 −→ ∧iMKC
−→ ∧iH0(KC) ⊗OC −→ ∧i−1MKC

⊗KC −→ 0
shows thatMrcr

g,i is the degeneracy locus of the map φ.

Proposition 4.1. The vector bundle morphism φ : π∗(∧i
E)⊗A0,r+1 → Ai−1,r+2 is generically

non-degenerate. It follows thatMrcr
g,i is a divisor onMg,n.

Proof. We show that φ is generically non-degenerate over the pull-back π∗(Hg) of the
hyperelliptic locus. We fix a hyperelliptic curve C of genus g and we denote by L ∈
W 1

2 (C) its hyperelliptic involution. By writing down the Euler sequence on P1 one

shows thatMKC
= (L∨)⊕(g−1), hence the conditionH1(∧iMKC

⊗K⊗(r+1)
C ⊗OC(−Γ)) = 0

is equivalent to H0
(
OC(Γ) ⊗ L⊗(i−r(g−1))

)
= 0. This however is obvious because when

Γ ∈ Cn is a general divisor of degree n thenOC(Γ)⊗L⊗(i−r(g−1)) is a general line bundle
of degree g − 1, therefore it has no global sections. �

The main result here is the computation of the class ofMrc
r
g,i:

Theorem 4.2. When n = (2r + 1)(g − 1) − 2i, the locusMrcr
g,i is a divisor onMg,n and the

class of its compactification inMg,n is given by the following formula:

Mrc
r
g,i ≡

1

g − 1

(
g − 1

i

)(
aλ+ c

n∑

j=1

ψj − birrδirr −
∑

j,s≥0,

bj:s
∑

|S|=s

δj:S

)
,

where

c = rg + g − i− r − 1, birr = − 1

g − 2

((
r + 1

2

)
(g − 1)(g − 2) + i(i+ 1 + 2r − rg − g)

)
,

a = − 1

g − 2

(
(g − 1)(g − 2)(6r2 + 6r + 1) + i(24r + 10i+ 10 − 10g − 12rg)

)
,
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b0:s =

(
s+ 1

2

)
(g − 1) + s(rg − r) − si, and bj:s ≥ b0:s for j ≥ 1.

Remark 4.3. For i = 0, n = (2r + 1)(g − 1), the divisorMrc
r
g,0 specializes to the locus

of points [C, x1, . . . , x(2r+1)(g−1)] ∈ Mg,(2r+1)(g−1) such that
∑(2r+1)(g−1)

j=1 xj ∈ |K⊗r
C | and

Theorem 4.2 gives that:

Mrc
r
g,0 ≡ −(6r2+6r+1)λ+(r+1)

((2r+1)(g−1)∑

j=1

ψj

)
+

(
r + 1

2

)
δirr−(2r+3)

∑

|S|=2

δ0:S−· · · .

By letting all the marked points coalesce and using the standard formulas for pushing
forward products of tautological classes (cf. e.g. [FMP] or [Log], Theorem 2.8), Theorem
4.2 offers a quick way of computing the class of the closure of the locusWr+1 of (r+1)-
Weierstrass points inMg,1 which is the main result of [CF].

First we determine the class of the locusMrcr
g,i over the interiorMg,n. In order to

do this, we first recall a few well-known intersection theory relations (see e.g. [HM]):

Lemma 4.4. If q : X → Mg,n is the morphism defined earlier, one has the following identities:

(i) q∗(f
∗c1(ωp)

2) = 12λ.

(ii) q∗(q
∗λ · f∗c1(ωp)) = (2g − 2)λ.

(iii) q∗q
∗(λ2) = 0.

(iv) q∗(c1(Ej) · q∗λ) = λ.

(v) q∗(c1(Ej) · f∗c1(ωp)) = ψj .

(vi) q∗q
∗c2(π

∗(E)) = 0.

(vii) q∗(c1(Ej)
2) = −ψj .

Proposition 4.5. If a and b are the numbers defined in the statement of Theorem 4.2, we have
the following relation in Pic(Mg,n):

Mrcr
g,i ≡

1

g − 1

(
g − 1

i

)(
aλ+ b

n∑

j=1

ψj

)
.

Proof. Since φ is generically non-degenerate (cf. Proposition 4.1), we have the identity
Mrcr

g,i ≡ c1(Ai−1,r+2) − c1(π
∗(∧i

E) ⊗ A0,r+1). To compute these Chern classes we use
Grothendieck-Riemann-Roch applied to the proper map q. For simplicity we set D :=∑n

j=1Ej and F := f∗
(
∧i−1M⊗ ω

⊗(r+2)
p ) ⊗OX (−D)

)
. Then we have that

c1(Ai−1,r+2) = q∗
[((

g − 1

i− 1

)
+c1(F)+

c21(F) − 2c2(F)

2
+· · ·

)
·
(
1−f

∗c1(ωp)

2
+
f∗c21(ωp)

12
)+. . .

)]
.

Using that c1(M) = p∗(λ) − c1(ωp), one obtains that

c1(F) =

(
g − 2

i− 2

)
q∗(λ) +

(
(r + 2)

(
g − 1

i− 1

)
−

(
g − 2

i− 2

))
f∗c1(ωp) −

(
g − 1

i− 1

)
c1(D).



30 G. FARKAS

We also use the identity

c2(F) = c2(f
∗ ∧i−1 M) +

((
g − 1

i− 1

)
− 1

)
c1(f

∗ ∧i−1 M) ·
(
(r + 2)f∗c1(ωp) − c1(D)

)
+

+
1

2

(
g − 1

i− 1

)((
g − 1

i− 1

)
− 1

)(
(r + 2)f∗c1(ωp) − c1(D)

)2
,

which together with the formula c2(M) = c21(ωp) − c1(ωp) · p∗(λ) and Lemma 4.4, en-
able us to compute c1(Ai−1,r+2). In a similar fashion, we obtain from Grothendieck-
Riemann-Roch applied to the map q, that

c1(A0,r+1) = (6r2 + 6r + 1)λ− (r + 1)
n∑

j=1

ψj

and finally

c1(π
∗ ∧i

E ⊗A0,r+1) =

(
g

i

)
c1(A0,r+1) + ((2r + 1)(g − 1) − r)

(
g − 1

i− 1

)
λ,

which quickly leads to the stated formula. �

To compute the remaining coefficients in [Mrc
r
g,i] we extend the vector bundles

Aa,b to sheaves overMg,n as follows. We denote by q : Mg,n+1 → Mg,n the projection

dropping the (n + 1)-st marked point and by π : Mg,n → Mg the forgetful map. We

introduce the following twist of the Hodge bundle onMg,n:

H := q∗

(
ωq ⊗OMg,n+1

( ∑

[g/2]≤j≤g−1

∑

|S|≤n

(g − j)∆j:S

))
.

(In other words, the fibre of H over a pointed curve from π∗(∆j) where [g/2] ≤ j ≤ g,

is the space of global sections of the genus j-aspect of the limit gg−1
2g−2 corresponding to

the canonical linear series). We then define

M := Ker{q∗(H) → OMg,n+1

( ∑

[g/2]≤j≤g−1

∑

|S|≤n

(g − j)∆j:s

)
}.

Furthermore, for each pair of integers 0 ≤ a ≤ i, b ≥ r+2 or (a, b) = (0, r+1), we define

Aa,b := q∗

(
∧aM⊗ω⊗b

q ⊗OMg,n+1

( ∑

[g/2]≤j≤g−1

∑

|S|≤n

((2b−1)(g−j)−b)∆j:S−
n∑

j=1

∆0:j,n+1

))
.

(Obviously, this is an extension of the definition of Aa,b overMg,n). The twists were
chosen in such a way that we have exact sequences of the type

0 −→ Aa,b −→ ∧aH⊗A0,b −→ Aa−1,b+1 −→ 0,

at least in a dense open subset inside π−1(Mg ∪∆0∪∆1). Also, there exists a morphism
φ : ∧iH⊗A0,r+1 → Ai−1,r+2 which overMg,n restricts to the vector bundle map defined
in Proposition 4.1.
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Proof of Theorem 4.2. We expand the class ofMrc
r
g,i in Pic(Mg,n):

Mrc
r
g:i ≡ Aλ+B

n∑

j=1

ψj −Birrδirr −
∑

j,s≥0

Bj:s

∑

|S|=j

δj:S .

We have already determined the values of A and B. One can write down the following
relation in Pic(Mg,n):

(9) c1(Ai−1,r+2 − ∧iH⊗A0,r+1) = [Mrc
r
g,i] +

∑

j,s≥0

dj,s

∑

|S|=s

δj:S ,

where dj,s is the multiplicity of the divisor ∆j:S in the degeneracy locus of φ. By inter-

secting both sides of (9) with test curves inMg,n, sometimes we are able to show that
φ is generically non-degenerate along ∆j:S (that is, dj:s = 0), and then we explicitly de-
termine the value of Bj:S in Theorem 4.2, otherwise we only get lower bounds on Bj:S .
We are only going to explain in detail the case of the coefficient Birr the remaining ones
being somewhat similar.

We define a test curve in the boundary ofMg,n as follows. If [C, q, x1, . . . , xn] ∈
Mg−1,n+1 is a general pointed curve, then we define the 1-dimensional family

C0
n := {[C/y ∼ q, x1, . . . , xn]}y∈C ⊂ ∆irr ⊂ Mg,n.

The fibre of this family when the variable point y ∈ C hits the fixed marked point xi for

1 ≤ i ≤ n is the pointed curve (C̃xi
:= C ∪x1,q P

1, x̃1, x2, . . . , xn), where x̃1 ∈ P1 (here
we regard x1, x̃1, q ∈ P1 as three distinct points). One has the identities

C0
n·δirr = −2g+2, C0

n·δ1:∅ = 1, C0
n·ψi = 1 for 1 ≤ i ≤ n, C0

n·λ = C0
n·δi:S = 0 for (i, S) 6= (1, ∅).

By intersecting both sides of (9) with C0
n one can write down the identity C

0
n · Mrc

r
g,i =

(2g − 2)Birr + nB −B1:∅. On the other hand one also has the relation

A− 12Birr +B1:∅ = 0,

reflecting the fact thatMrc
r
g,i is physically disjoint from the curve {[C∪qR, x1, x2, . . . , xn]}R

obtained by attaching to a fixed Brill-Noether general curve [C, q, x1, . . . , xn] ∈ Mg−1,n+1

a pencil of plane cubics in which R denotes a generic member. Thus determining Birr

and B1:∅ boils down to (i) showing that φ is generically non-degenerate along C
0
n and

(ii) estimating the intersection numberC0
n ·c1(Ai−1,r+2−∧iH⊗A0,r+1). By local analysis

one can see that for 1 ≤ l ≤ i− 1 there are exact sequences of bundles over C0
n

0 −→ Ai−l,r+l+1|C0
n
−→ ∧i−lH⊗A0,r+l+1|C0

n
−→ Ai−l−1,r+l+2|C0

n
−→ 0,

therefore we can write the identities

C0
n · c1(Ai−1,r+2) =

i∑

l=1

(−1)l−1c1
(
∧i−lH|C0

n
⊗A0,r+l+1|C0

n

)
=

i∑

l=1

(−1)l−1
((

g − 1

i− l − 1

)
((2r + 2l + 1)(g − 1) − n)c1(H|C0

n
) +

(
g

i− l

)
c1(A0,r+l+1|C0

n
)
)
.

Next we describe the vector bundle A0,j|C0
n
. We identify C0

n with C via the map

C ∋ y 7→ [C/y ∼ q, x1, . . . , xn] ∈ Mg,n
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and denote by p1, p2 : C × C → C the two projections, by ∆ ⊂ C × C the diagonal and
set Γq := {q} × C ⊂ C × C. Then for every j ≥ r we have the following exact sequence
of vector bundles on C:

0 −→ (p2)∗

(
p∗1(K

⊗j
C ) ⊗OC×C

(
(j − 1)∆ + (j − 1)Γq −

n∑

j=1

{xj} × C
))

−→ A0,j|C0
n
−→

−→ (p2)∗

(
p∗1(K

⊗j
C )⊗OC×C

(
j∆+jΓq−

n∑

j=1

{xj}×C
)
⊗OΓq

)
⊗OC(−x1−· · ·−xn) −→ 0,

which quickly leads to the formula

c1(A0,j|C0
n
) = 1 + 2j − 2jrg − 2jg − j2 + j2g + 2jr + 2ji.

Since one also has that c1(H|C0
n
) = 1 (use that H(y) = H0(KC ⊗ OC(y + q)) for each

y ∈ C0
n under the identification described above), we obtain a formula for C

0
n · Mrc

r
g,i

and ultimately a formula for Birr. Dealing with the other coefficients Bj:S is similar in
general.

�

4.2. Divisors defined by imposing linear conditions on marked points.

Here we present another general construction that produces families of effective
divisors onMg,n. Like in Section 2, we pick integers g, r, d ≥ 1 such that ρ(g, r, d) = 0,
therefore we can write d = rs+r and g = rs+s for some integer s ≥ 1. We set n := r+1
and define the following divisor onMg,n:

Linr
d := {[C, x1, . . . , xr+1] : ∃L ∈W r

d (C) such that h0(L⊗OC(−x1 − · · · − xr+1)) ≥ 1}.
We recall that we have introduced the number

N := cr = g!
1! 2! . . . r!

(g − d+ r)! . . . (g − d+ 2r)!
,

which counts linear series gr
d on a general curve of genus g (cf. [ACGH]). Our main

result is the computation of the class [Lin
r
d]:

Theorem 4.6. Fix integers r, s ≥ 1 and set d := rs+ r, g := rs+ s. Then Lin
r
d is an effective

divisor onMg,n and we have the following formula for its class in Pic(Mg,r+1):

Lin
r
d ≡ rcr

rs+ s− 1

(
aλ+ c

r+1∑

j=1

ψj − birrδirr −
∑

j,t≥0

bj:t
∑

|S|=t

δj:S
)
,

where

a =
(r + 2)(r2s3 − r2s+ 2rs3 + 6rs2 − 2rs− 8r + s3 + 6s2 + 3s− 8)

2(s+ r + 1)(rs+ s− 2)
,

c =
s+ 1

2
, birr =

(s− 1)(s+ 1)(r + 1)(r + 2)(rs+ s+ 4)

12(s+ r + 1)(rs+ s− 2)
,

bj:0 =
j(r + 2)

(
rs(s2 − 1)(r + 2) + s(s2 − 2j − 3) + (r + 1)(3s2 − js2 + 2j − 2)

)

2(r + s+ 1)(rs+ s− 2)
for j ≥ 1
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b0:t =
t

2r
(trs+ ts− t+ r − s+ 1) for 2 ≤ t ≤ r + 1,

b1:t =

(
t− 1

2

)
rs+ s− 1

r
+

(s− 1)(s+ 1)(r + 1)(r3s+ 3r2s− 2s+ 4)

2r(r + s+ 1)(rs+ s− 2)
for all t ≥ 1

and bj:t ≥ b0:t for all j ≥ 2.

Remark 4.7. For s = 1 and r = g−1, Theorem 4.6 specializes to Logan’s formula for the

class of the divisor Lin
g−1
2g−2 of points [C, x1, . . . , xg] ∈ Mg,g with h

0(OC(x1 + · · ·+xg)) ≥
2. We have the formula (cf. [Log], Theorem 5.4):

Lin
g−1
2g−2 ≡ −λ+

g∑

j=1

ψj − 0 · δirr −
g∑

t=2

(
t+ 1

2

) ∑

|S|=t

δ0:S −
g∑

t=1

(
t

2

) ∑

|S|=t

δ1:S − · · · .

In the next case, s = 2, g = 2r + 2 and d = 3r we get a new divisor onM2r+2,r+1 and
our formula reads

(10) Lin
r
3r ≡ 1

2(2r + 1)

(
(3r + 5)(r + 2)λ+ 3r

r+1∑

j=1

ψj −
(
r + 2

2

)
δirr −

∑

|S|=2

δ0:S − · · ·
)
.

Proof of Theorem 4.6. Proving that Linr
d is a divisor onMg,r+1 follows immediately from

Brill-Noether theory: a general [C] ∈ Mg has precisely N linear series L ∈ W r
d (C)

and each of them is base point free and satisfies h0(L) = r+1 and Linr
d consists of those

(r+1)-tuples of points onC which are not in general linear positionwith respect to some

L ∈ W r
d (C). We start the calculation of the class of Lin

r
d by determining the coefficients

of λ, δirr and ψj . To do this we use the observation that if πn : Mg,n → Mg,n−1 is
the projection forgetting the marked point labeled by n and D is any divisor class on
Mg,n, then for distinct labels i, j 6= n, the λ, δirr and ψj coefficients of the divisorsD on

Mg,n and (πn)∗(D · δ0:in) onMg,n−1 are the same (see [FMP], Prop. 4.4). The divisor
(πn)∗(D · δ0:in) can be thought of as the locus of those points [C, x1, . . . , xn] ∈ D where
the points xi and xn are allowed to come together. Using this observation repeatedly,

we obtain that the divisor Lin
r
d(1) onMg,1 obtained by letting all points x1, . . . , xn come

together, has the same λ and δirr coefficients as Linr
d. But clearly

Linr
d(1) = {[C, x] ∈ Mg,1 : ∃L ∈W r

d (C) such that h0(L⊗OC(−(r + 1)x)) ≥ 1},
that is, Linr

d(1) is generically the locus of ramification points in one of the finitely many
linear series gr

d on a given curve of genus g. By applying Theorem 4.1 from [EH2], we

obtain that the class of Lin
r
d(1) can be written as a combination Lin

r
d(1) ≡ µ ·BN+ν ·W ,

where

BN := (g + 3)λ− g + 1

6
δirr −

g−1∑

j=1

j(g − j)δj:1

is the pull-back fromMg of the class of the Brill-Noether divisor and

W := −λ+

(
g + 1

2

)
ψ −

g−1∑

j=1

(
g − j + 1

2

)
δj:1

is the class of the Weierstrass divisor. To determine the coefficients µ and ν we use
two test curves inside Mg,1. First we fix a genus g curve C and we let the marked
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point vary along C. If we denote this curve by C̄ ⊂ Mg,1, then the only generator of

Pic(Mg,1) which has non-zero intersection number with C̄ is ψ, and C̄ · ψ = 2g − 2.

On the other hand C̄ · Lin
r
d(1) is the total number of ramification points on all gr

d’s on
C. This number is N(r + 1)(d + r(g − 1)) (see e.g. [EH1], pg. 345), which shows that
ν = N(r + 1)(d + r(g − 1))/((g − 1)g(g + 1)). To compute µ we use a second test
curve constructed as follows: we fix a 2-pointed elliptic curve [E, x, y] ∈ M1,2 such
that the class x − y ∈ Pic0(E) is not torsion, and a fixed general curve [C] ∈ Mg−1.
We define the family C̄1 := {(C ∪y E, x)}y∈C (that is, the point of attachment varies on

C). The only generator of Pic(Mg,1) meeting C̄1 non-trivially is δ1:1 = δg−1:∅, in which

case C̄1 · δ1;1 = −2g + 4. The calculation of C̄1 · Lin
r
d(1) is a standard exercise in the

theory of limit linear series. Suppose l = {lC , lE} is a limit gr
d on C ∪y E such that

alE
r (x) ≥ r + 1. Then because the class x − y ∈ Pic0(E) is not torsion, we must have
that ρ(lE , x, y) = 0 and ρ(lC , y) = −1. An easy calculation shows that we must also
have alE (x) = (0, 1, . . . , r − 1, r + 1) and alC (y) = (0, 2, 3, . . . , r, r + 2), and moreover
the aspect lE is uniquely determined. Thus we have to count the number of points
y ∈ C such that there exists L ∈ W r

d (C) with the property that h0(L(−2y)) ≥ r and
h0(L(−(r + 2)y)) ≥ 1.

To compute this number we further degenerate the curve C to a transverse union
R ∪y1

E1 ∪ . . . ∪yg−1
Eg−1 consisting of a smooth rational spine R and g − 1 elliptic tails

E1, . . . , Eg−1. Using Proposition 1.1 from [EH1] we see that the point y has to specialize
to one of the tails Ej , and without loss of generality we assume that y ∈ E1 (all the
intersection numbers we compute will be multiplied by g − 1 to account for y lying
on a different elliptic tail). Suppose now that l = {lR, lE1

, . . . , lEg−1
} is a limit gr

d on

R ∪ E1 ∪ . . . ∪ Eg−1 such that a
lE1 (y) = (0, 2, 3, . . . , r, r + 2). Then ρ(lR, y1, . . . , yg−1) =

0, ρ(lEj
, xj) = 0 for 2 ≤ j ≤ g − 1 and ρ(lE1

, y1, y) = −1. A close inspection shows that
there are three numerical possibilities:

(α) alR(y1) = (0, 2, 4, 5, . . . , r, r + 1, r + 3) and then y1 − y ∈ Pic0(E1)[2]. This contri-
bution will be equal to 3(g − 1) multiplied by the number of gr

d’s on R having ordi-
nary cusps at g − 2 general points and vanishing (0, 2, 4, . . . , r + 1, r + 3) at another
fixed point. By Schubert calculus this number equals the product of Schubert cycles

σg−2
(0,1,...,1) · σ(0,1,2,...,2,3) ∈ H∗(G(r, d)).

(β) alR(y1) = (0, 3, 4, . . . , r+1, r+2), in which case y−y1 ∈ Pic0(E1)[r+2]. The number

we get in this situation is (g − 1)((r + 2)2 − 1)σg−2
(0,1,...,1) · σ(0,2,...,2) ∈ H∗(G(r, d)).

(γ) alr(y) = (1, 2, 4, . . . , r + 1, r + 2) and then y − y1 ∈ Pic0(E1)[r]. We obtain a final

contribution of (g − 1)(r2 − 1)σg−2
(0,1,...,1) · σ(0,0,1,...,1) ∈ H∗(G(r, d − 1)). Adding all these

together and using (3), we obtain that the total intersection number is

C̄1 · Lin
r
d(1) =

N r(r + 1)(r + 2)(rs+ 2s2 − 4 + s)

s+ r + 1
,

which leads to

µ =
Nr(r + 1)(r + 2)(s− 1)(s+ 1)(rs+ s+ 4)

2(s+ r + 1)(rs+ s− 2)(rs+ s− 1)(rs+ s+ 1)
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and then the stated formulas for the λ and δirr coefficients. We also note that the δj:∅
coefficient of Lin

r
d equals the δj:∅ = δg−j:1 coefficient of Lin

r
d(1) and this is equal to

j(g−j)µ+j(j+1)ν/2 and we obtain the desired expression for bj:0. Next we determine

the coefficient c of the ψj classes. We introduce the divisor Lin
r
d(2) onMg,2 obtained by

letting x2, . . . , xr+1 coincide while keeping x1 apart. Then

Linr
d(2) = {[C, x1, x2] ∈ Mg,2 : ∃L ∈W r

d (C) such that h0(L⊗OC(−x1 − rx2)) ≥ 1}
and we can write Lin

r
d(2) ≡ N(aλ + cψ1 + c2ψ2 − e12δ0:12 − · · · ) (that is, the λ and

ψ1 coefficients coincide with those of Lin
r
d). We intersect Lin

r
d(2) with two curves in

Mg,2: consider a curve C of genus g and define C̃1 := {[C, x1, x2]}{x2 moves on C} and

C̃2 := {[C, x1, x2]}{x1 moves on C}. Then C̃2 ·Lin
r
d(2) = N(c2 +(2g− 1)c− e12) = N(d− r)

and C̃1 · Lin
r
d(2) = N((2g − 1)c2 + c− e12) = N(r + 1)(d− 1 + (r− 1)(g − 1)). (The first

identity is obvious, for the second, use that what we are counting is the total number of
ramification points on all linear series L⊗OC(−x1), where L ∈ W r

d (C) and x1 ∈ C is a
fixed general point). We thus have a system of two equations in the unknowns c, c2 and

e12, but we can also use that e12 equals the ψ coefficient of Lin
r
d(1) = (π2)∗(Lin

r
d(2)·δ0:12),

where π2 : Mg,2 → Mg,1 is the map forgetting the second point. Thus e12 = νg(g +
1)/2, which gives us enough relations to determine c. We note that in this way we also
determine b0:2 = (2rs+ r + s− 1)/(rs+ s− 1).

To compute the coefficient bj:t for 1 ≤ t ≤ r + 1 we consider another test curve
defined as follows: we fix integers 1 ≤ j ≤ g − 1 and 1 ≤ t ≤ r + 1, together with gen-
eral pointed curves [C, y, x2, . . . , xt] ∈ Mj,t and [Y, y, xt+1, . . . , xr+1] ∈ Mg−j,r−t+2. We
define the test curve C̄j,s := {C ∪y Y, x1, . . . , xt, xt+1, xr+1}x1∈C (thus x1 is the moving
point on the genus j component). Then we have the relation

(11) C̄j,t · Lin
r
d = (2j + 2t− 3)c− (t− 1)b0:2 + bj:t − bj:t−1,

which can be used to compute bj:t provided we know bj:t−1 (note that we have already
computed bj:∅ for all j).

We now describe directly the intersection cycle C̄j,t · Lin
r
d. Since [C, y] ∈ Mj,1

and [Y, y] ∈ Mg−j,1 are general, on the stable Y ∪y C there will be precisely N limit
gr

d’s which can be described as follows: We first choose a Schubert (ramification) se-
quence max{0, j − t} ≤ α0 ≤ . . . αr ≤ j such that

∑r
i=0 αi = rj. Then we choose

lY ∈ Gr
d(Y ) having vanishing sequence (alY (y) = αi + i)0≤i≤r; in fact there will be

σg−j
(0,1,...,1) · σ(α0,...,αr) ∈ H∗(G(r, d)) such linear series. On C we choose a complementary

linear series lC ∈ Gr
d(C) with vanishing sequence (alC

i (y) = rs+ i− αi)0≤i≤r; there are

σj
(0,1,...,1) · σ(rs−αr,...,rs−α0) ∈ H∗(G(r, d)) choices. Every limit linear series on C ∪y Y

appears in this way and the intersection C̄j,t ·Lin
r
d is everywhere transverse (cf. [EH3]).

We also have the identity

(12) N =
∑

j−t≤α0≤...≤αr≤j,
Pr

l=0 αl=j

(
σg−j

(0,1,...,1) · σ(α0,...,αr)

) (
σj

(0,1,...,1) · σ(rs−αr,...,rs−α0)

)
.

If l = {lC , lY } is one of these N limit gr
d’s corresponding to a sequence (α0 ≤ . . . ≤ αr)

as above, the condition that there exists x1 ∈ C such that the divisor x1 + · · · + xr+1 is
the specialization of a linear divisor with respect to a gr

d on a nearby smooth curve, can
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be translated as follows: there exist sections σY ∈ |lY |, σC ∈ |lC | such that div(σY ) ≥
xt+1 + · · · + xr+1 and div(σC) ≥ x1 + . . . + xt; the sections σC and σY being the limit
linear series specializations of a single section on a nearby smooth curve, they must
also satisfy the compatibility relation ordy(σY ) + ordy(σC) = rs + r. Because the fixed
points xt+1, . . . , xr+1 ∈ Y are general, they impose independent conditions on lY which

quickly leads to the equalities ordy(σY ) = alY
t−1(y) = αt−1 + t − 1, hence ordy(σC) =

alC
r−t+1(y). Thus div(σC) ≥ alC

r−t+1(y)+x2 + . . .+xb and up to multiplication by scalars,
the sections σC and σY are unique with this property. For each σC we have precisely

d− alC
r−t+1(y) − (t− 1) = αt−1 choices for x1 ∈ C. Therefore

(13) C̄j,t · Lin
r
d =

∑

α0≤···≤αr

αt−1

(
σg−j

(0,1,...,1) · σ(α0,...,αr)

)
·
(
σj

(0,1,...,1) · σ(rs−αr,...,rs−α0)

)
.

For j = 0 the only sequence (αl)0≤l≤r allowed is the sequence (0, . . . , 0) which shows

that C̄0:t ·Lin
r
d = 0 for all 3 ≤ t ≤ r+1. Since b0:2 has already been determined, applying

(11) we obtain the stated formulas for b0:t. Similarly, for j = 1 the only sequence allowed

is (0, 1, . . . , 1) and then C̄1:t · Lin
r
d = N for t ≥ 2, while C̄1:1 · Lin

r
d = 0; this allows us to

determine b1:t for all t. When j ≥ 2 for each sequence (αl)0≤l≤r appearing in this sum,
we have the inequalities rj =

∑r
l=0 αl ≤ tαt−1 + (r+ 1− t)j, therefore αt−1 ≥ (t− 1)j/t

and then C̄j,t ·Lin
r
d ≥ N(t−1)j/t. To obtain the desired bound on bj:t we use repeatedly

(11) and we can write

bj:t − bj:0 =

(
t

2

)
b0:2 − (2bj + b2 − 2b)c+

t∑

l=1

C̄j,l · Lin
r
d.

Using the previous inequality we can now check that bj:t ≥ bj:0.

�

4.3. The divisor of n-fold points.

We describe another way of constructing effective divisors onMg,n. Instead of
looking at loci of points [C, x1, . . . , xn] ∈ Mg,n for which the points x1, . . . , xn become
linearly dependent in a suitable embedding of C, we can consider the loci where the
marked points give rise to an n-fold point on a suitable model of C. Given [C] ∈ Mg

and a linear series l = (L, V ) ∈ Gr
d(C), we say that the divisor Γ := x1 + · · · + xn is an

n-fold point for C and l if dim
(
V ∩H0(L⊗OC(−Γ))

)
≥ r.

Definition 4.8. Fix integers g, r, d, n ≥ 1 such that ρ(g, r, d) − r(n− 1) = −1. We define
the locus of n-fold points inMg,n

Nfoldr
g,d := {[C, x1, . . . , xn] ∈ Mg,n : ∃L ∈W r

d (C) with dim H0(L(−x1−· · ·−xn)) = r}.

We have computed the class ofNfoldr
g,d in the case r = 1. The calculation is along

the same lines as that of the class of Lin
r
d in Theorem 4.6:

Theorem 4.9. Fix integers g ≥ 1 and n ≥ 0 such that d := (g + n)/2 ∈ Z. The class of the
compactification of the divisorNfold1

g,d of n-fold points onMg,n is given by the formula:

Nfold
1
g,d ≡

( 10n

g − 2

(
g − 2

d− 1

)
− n

g

(
g

d

))
λ+

n− 1

g − 1

(
g − 1

d− 1

) n∑

j=1

ψj −
n

g − 2

(
g − 2

d− 1

)
δirr−
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−
∑

t≥2

t(n2 − g + tgn− tn)

2(g − 1)(g − d)

(
g − 1

d

) ∑

|S|=t

δ0:S − · · · .

Proof. The coefficients of λ, δirr and ψj (1 ≤ j ≤ n) in the expansion of Nfold
1
g,d equal

the coefficients of λ, δirr and ψ respectively in the expansion of the divisor Nfold
1
g,d(1)

onMg,1 obtained from Nfold
1
g,d by letting the points x1, . . . , xn ∈ C coalesce. Clearly,

Nfold1
g,d(1) := {[C, x] ∈ Mg,1 : ∃L ∈W 1

d (C) with h0(C,L(−n · x)) ≥ 1},
and this is a ”pointed” Brill-Noether divisor onMg,1 in the sense of [EH2]. To compute

the class of its compactification in Mg,1 once again we use [EH2], Theorem 4.1 and

writeNfold
1
g,d(1) ≡ µ ·BN + ν · W , where the divisor classes BN andW have the same

significance as in the proof of Theorem 4.6. By applying [Log], Theorem 4.5, we find
that

µ =
6n

(g + 1)(g − 2)

(
g − 2

d− 1

)
and ν =

n(n− 1)(n+ 1)

g(g − 1)(g + 1)

(
g

d

)
.

The remaining coefficients of [Nfold
1
g,d] are determined by intersecting the locusNfold

1
g,d

with the fibral test curves lying entirely in the boundary divisors ofMg,n. The calcula-
tion is straightforward and relies on Section 3 from [Log]. We skip these details. �

5. THE KODAIRA DIMENSION OFMg,n

In this section we prove Theorem 1.10. We treat each case individually but for
each g we only work out the case of the minimal n = n(g) for which our methods show
thatMg,n(g) is of general type. From this it follows automatically thatMg,n is of general
type for all g ≥ g(n) (see [Log], Theorem 2.4).

Proof of Theorem 1.10. [M4,16] and [M6,16]. We consider the divisor Mrc24,0 onM4,15

introduced in Theorem 4.2. We have seen thatMrc
2
4,0 ≡ −37λ + 3

∑1
j=1 5ψj + 3δirr −

7
∑

|S|=2 δ0:S − · · · . We consider the maps πj : M4,16 → M4,15 obtained by forgetting

the marked point labeled by 1 ≤ j ≤ 16. Then there exists a constant α > 0 such that

16∑

j=1

(πj)
∗(Mrc

2
4,0) ≡ α(−37λ+

45

16

1∑

j=1

6ψj + 3δirr −
13

2

∑

|S|=2

δ0:S − · · · ).

The class of the Petri divisor on M4 being (up to a > 0 constant) 17λ − 2δirr − · · · ,
we obtain that KM4,16

is big, being a positive combination of
∑16

j=1(πj)
∗(Mrc

2
4:0), the

pull-back of the Petri class, an ample class and boundary divisors. The same argument

works in the case ofM6,16 except that we start with the divisorMrc
1
6,0 onM6,15 which

is pulled back toM6,16 in all possible ways.

[M5,15]. OnM5,12 we have the identity of divisor classes

Mrc
1
5,0 ≡ −13λ+ 2

1∑

j=1

2ψj + δirr − 5
∑

|S|=2

δ0:S − · · · .
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Pulling this class back toM5,15 in all possible ways by forgetting sets of three marked

points, we obtain that the class −66λ + 42
5

∑15
j=1 ψj + 5δirr − · · · is effective onM5,15.

Using the Brill-Noether class 8λ− δirr − · · · onM5, we get thatKM5,15
is a big class.

[M18,9]. We use our divisor Lin
8
24: there is a positive constant α such that

αLin
8
24 ≡ 290λ+ 24

9∑

j=1

ψj − 45δirr − · · · .

On the other hand the class of the multiple of the Petri divisor GP8
18,24 onM18 is equal

to 302
45 λ − δ0 − ∑9

j=1 bjδj , where bj > 1 for j ≥ 1. It follows that we can write KM18,9

as a positive combination of multiples of Lin
8
24, π

∗(GP8
18,24), boundary divisors and an

ample class onM18,9.

[M19,7] and [M14,10]. In these cases we use the divisors of n-fold points, Nfold
1
19,13

on M19,7 and Nfold
1
14,12 on M14,10 respectively. Using Theorem 4.9 we see that the

canonical bundle ofMg,n can be written as a positive combination of these divisors, the

pull-back of the Brill-Noether divisor fromM19 andM14 respectively, a suitable ample
class and boundary divisors.

[M15,10]. We use a slightly different technique. OnM15,11we have the divisorNfold
1
15,13

of points [C, x1, . . . , x11] such that x1 + · · ·+x11 appears in a fibre of a g1
13 on C. We push

this divisor down toM15,10 by letting two of the points xj ∈ C coalesce, that is, we de-
fine

E :=
1

11

10∑

j=1

(πj)∗(Nfold
1
15,13 · δ0:j,11),

where πj : M15,11 → M15,10 forgets the marked point labeled by j. It is easy to check
using Theorem 4.9 that

E ≡ 33λ+
396

5

10∑

j=1

ψj −11δirr −· · ·
(
use that (πj)∗(ψj · δ0:j,11) = (πj)∗(ψ11 · δ0:j,11) = 0

)
.

It turns out thatKM15,11
is in the span of E, π∗(M3

15,14), an ample class and boundaries.

[M20,6]. From [Log] Theorem 5.4, one knows that the class −λ+ 22
3

∑6
j=1 ψj−0·δirr−· · ·

is effective onM20,6. Next, if χi,j : M20,6 → M21 denotes the map which associates to
a 6-pointed curve of genus 20 a nodal curve of genus 21 obtained by identifying the
marked points labeled i and j, we also get that the class

∑

i<j

χ∗
i,j(Z21,0) ≡ c(

2459

377
λ+

1

3

6∑

j=1

ψj − δirr − · · · ),

with c > 0, is also effective onM20,6. The conclusion now follows easily.
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