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For a a general smooth projective curve [C] ∈ Mg and an arbitrary line bundle
L ∈ Pic(C), the Gieseker-Petri theorem states that the multiplication map

µ0(L) : H0(C,L) ⊗ H0(C,KC ⊗ L∨) → H0(C,KC)

is injective. The theorem, conjectured by Petri and proved by Gieseker [G] (see [EH3]
for a much simplified proof), lies at the cornerstone of the theory of algebraic curves. It

implies that the variety Gr
d(C) = {(L, V ) : L ∈ Picd(C), V ∈ G(r + 1,H0(L))} of linear

series of degree d and dimension r is smooth and of expected dimension ρ(g, r, d) :=
g− (r+1)(g−d+ r) and that the forgetful map Gr

d(C) → W r
d (C) is a rational resolution

of singularities (see [ACGH] for many other applications). It is an old open problem
to describe the locus GPg ⊂ Mg consisting of curves [C] ∈ Mg such that there exists a
line bundle L on C for which the Gieseker-Petri theorem fails. Obviously GPg breaks
up into irreducible components depending on the numerical types of linear series. For
fixed integers d, r ≥ 1 such that g − d + r ≥ 2, we define the locus GPr

g,d consisting
of curves [C] ∈ Mg such that there exist a pair of linear series (L, V ) ∈ Gr

d(C) and

(KC ⊗ L∨,W ) ∈ Gg−d+r−1
2g−2−d (C) for which the multiplication map

µ0(V,W ) : V ⊗ W → H0(C,KC )

is not injective. Even though certain components of GPg are well-understood, its global
geometry seems exceedingly complicated. If ρ(g, r, d) = −1, then GPr

g,d coincides with
the Brill-Noether divisor Mr

g,d of curves [C] ∈ Mg with Gr
d(C) 6= ∅ which has been

studied by Eisenbud and Harris in [EH2] and used to prove that Mg is of general type
for g ≥ 24. The locus GP1

g,g−1 can be identified with the divisor of curves carrying a
vanishing theta-null and this has been studied by Teixidor (cf. [T]). We proved in [F2]
that for r = 1 and (g + 2)/2 ≤ d ≤ g − 1, the locus GP1

g,d always carries a divisorial
component. It is conjectured that the locus GPg is pure of codimension 1 in Mg and we
go some way towards proving this conjecture. Precisely, we show that GPg is supported
in codimension 1 for every possible numerical type of a linear series:

Theorem 0.1. For any positive integers g, d and r such that ρ(g, r, d) ≥ 0 and g − d + r ≥ 2,
the locus GPr

g,d has a divisorial component in Mg.

The main issue we address in this paper is a detailed intersection theoretic study
of a rational map between two different moduli spaces of curves. We fix g := 2s+1 ≥ 3.
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Since ρ(2s+1, 1, s+2) = 1 we can define a rational map between moduli spaces of curves

φ : M2s+1 −− > M1+ s
s+1(

2s+2

s ), φ([C]) := [W 1
s+2(C)].

The fact that φ is well-defined, as well as a justification for the formula of the genus g′ :=
g(W 1

s+2(C)) of the curve of special divisors of type g1
s+2, is given in Section 3. It is known

that φ is generically injective (cf. [PT], [CHT]). Since φ is the only-known rational map
between two moduli spaces of curves and one of the very few natural examples of a
rational map admitted by Mg, its study is clearly of independent interest. In this paper
we carry out a detailed enumerative study of φ and among other things, we determine
the pull-back map φ∗ : Pic(Mg′) → Pic(Mg) (see Theorem 3.4 for a precise statement).
In particular we have the following formula concerning slopes of divisor classes pulled
back from Mg′ (For the definition of the slope function s : Eff(Mg) → R ∪ {∞} on the
cone of effective divisors we refer to [HMo] or [FP]):

Theorem 0.2. We set g := 2s+1 and g′ := 1+ s
s+1

(2s+2
s

)
. For any divisor class D ∈ Pic(Mg′)

having slope s(D) = c, we have the following formula for the slope of φ∗(D) ∈ Pic(Mg):

s(φ∗(D)) = 6 +
8s3(c − 4) + 5cs2 − 30s2 + 20s − 8cs − 2c + 24

s(s + 2)(cs2 − 4s2 − c − s + 6)
.

We use this formula to describe the cone Mov(Mg) of moving divisors1 inside the

cone Eff(Mg) of effective divisors. The cone Mov(Mg) parameterizes rational maps

from Mg in the projective category while the cone Nef(Mg) of numerically effective di-

visors, parameterizes regular maps from Mg (see [HK] for details on this perspective).

A fundamental question is to estimate the following slope invariants associated to Mg:

s(Mg) := infD∈Eff(Mg) s(D) and s′(Mg) := infD∈Mov(Mg) s(D).

The formula of the class of Brill-Noether divisors M
r
g,d when ρ(g, r, d) = −1 shows that

limg→∞s(Mg) ≤ 6 (cf. [EH2]). In [F1] we provided an infinite sequence of genera of the

form g = a(2a + 1) with a ≥ 2 for which s(Mg) < 6 + 12/(g + 1), thus contradicting the

Slope Conjecture [HMo]. There is no known example of a genus g such that s(Mg) < 6.

Understanding the difference between s(Mg) and s′(Mg) is a subtle question

even for low g. There is a strict inequality s(Mg) < s′(Mg) whenever one can find an

effective divisor D ∈ Eff(Mg) with s(D) = s(Mg), such that there exists a covering
curve R ⊂ D for which R · D < 0. For g < 12 the divisors minimizing the slope
function have a strong geometric characterization in terms of Brill-Noether theory. Thus

computing s′(Mg) becomes a problem in understanding the geometry of Brill-Noether

and Gieseker-Petri divisors on Mg. To illustrate this point we give two examples (see

Section 5 for details): It is known that s(M3) = 9 and the minimum slope is realized by

the locus of hyperelliptic curves M
1
3,2 ≡ 9λ − δ0 − 3δ1. However [M

1
3,2] /∈ Mov(M3),

because M
1
3,2 is swept out by pencils R ⊂ M3 with R · δ/R · λ = 28/3 > s(M

1
3,2).

1Recall that an effective Q-Cartier divisor D on a normal projective variety X is said to be moving, if
the stable base locus

T

n≥1
Bs|OX(nD)| has codimension at least 2 in X.
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In fact, one has equality s′(M3) = 28/3 and the moving divisor on M3 attaining this
bound corresponds to the pull-back of an ample class under the rational map

M3 −− > Q4 := |OP2(4)| //SL(3)

to the GIT quotient of plane quartics which contracts M
1
3,2 to a point (see [HL] for

details on the role of this map in carrying out the Minimal Model Program for M3).

For g = 10, it is known that s(M10) = 7 and this bound is attained by the divisor
K10 of curves lying on K3 surfaces (cf. [FP] Theorems 1.6 and 1.7 for details):

K10 ≡ 7λ − δ0 − 5δ1 − 9δ2 − 12δ3 − 14δ4 − 15δ5.

Furthermore, K10 is swept out by pencils R ⊂ M10 with R · δ/R · λ = 78/11 > s(K10)

(cf. [FP] Proposition 2.2). Therefore [K10] /∈ Mov(M10) and s′(M10) ≥ 78/11.

For g = 2s+1 using the elementary observation that φ∗(Ample(Mg′)) ⊂ Mov(Mg),

Theorem 0.2 provides a uniform upper bound on slopes of moving divisors on Mg:

Corollary 0.3. We set g := 2s + 1 as and g′ := 1 + s
s+1

(2s+2
s

)
as above. Then

s(φ∗(D)) < 6 +
16

g − 1
for every divisor D ∈ Ample(Mg′).

In particular one has the estimate s′(Mg) < 6 + 16/(g − 1), for every odd integer g ≥ 3.

Since we also know that limg→∞s(Mg) ≤ 6, Corollary 0.3 indicates that (at least
asymptotically, for large g) we cannot distinguish between effective and moving divi-
sors on Mg . We ask whether it is true that limg→∞s(Mg) = limg→∞s′(Mg)?

At the heart of the description in codimension 1 of the map φ : Mg − − > Mg′

lies the computation of the cohomology class of the compactified Gieseker-Petri divisor

GP
r
g,d ⊂ Mg in the case when ρ(g, r, d) = 1. Since this calculation is of independent

interest we discuss it in some detail. We denote by Gr
d the stack parameterizing pairs

[C, l] with [C] ∈ Mg and l = (L, V ) ∈ Gr
d(C) and denote by σ : Gr

d → Mg the natural

projection. In [F1] we computed the class of GP
r
g,d in the case ρ(g, r, d) = 0, when

GP
r
g,d can be realized as the push-forward of a determinantal divisor on Gr

d under the
generically finite map σ. In particular, we showed that if we write g = rs + s and
d = rs + r where r ≥ 1 and s ≥ 2 (hence ρ(g, r, d) = 0), then we have the following

formula for the slope of GP
r
g,d (cf. [F1], Theorem 1.6):

s(GP
r
g,d) = 6 +

12

g + 1
+

6(s + r + 1)(rs + s − 2)(rs + s − 1)

s(s + 1)(r + 1)(r + 2)(rs + s + 4)(rs + s + 1)
.

The number 6 + 12/(g + 1) is the slope of all Brill-Noether divisors on Mg, that is

s(GP
r
g,d) = 6 + 12/(g + 1) whenever ρ(g, r, d) = −1 (cf. [EH2], or [F1] Corollary 1.2 for a

different proof, making use of M. Green’s Conjecture on syzygies of canonical curves).

In the technically much-more intricate case ρ(g, r, d) = 1, we can realize GPr
g,d

as the push-forward of a codimension 2 determinantal subvariety of Gr
d and most of

Section 2 is devoted to extending this structure over a partial compactification of Mg

corresponding to tree-like curves. If σ : G̃r
d → M̃g denotes the stack of limit linear series
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gr
d, we construct two locally free sheaves F and N over G̃r

d such that rank(F) = r + 1,
rank(N ) = g − d + r =: s respectively, together with a vector bundle morphism

µ : F ⊗N → σ∗
(
E ⊗OMg

(

[g/2]∑

j=1

(2j − 1) · δj)
)

such that GP
r
g,d is the push-forward of the first degeneration locus of µ:

Theorem 0.4. We fix integers r, s ≥ 1 and we set g := rs + s + 1, d := rs + r + 1 so that

ρ(g, r, d) = 1. Then the class of the compactified Gieseker-Petri divisor GP
r
g,d in Mg is given

by the formula:

GP
r
g,d ≡

Cr+1 (s − 1)r

2(r + s + 1)(s + r)(r + s + 2)(rs + s − 1)

(
aλ − b0δ0 − b1δ1 −

[g/2]∑

j=2

bjδj

)
,

where

Cr+1 :=
(rs + s)! r! (r − 1)! · · · 2! 1!

(s + r)! (s + r − 1)! · · · (s + 1)! s!

a = 2s3(s + 1)r5 + s2(2s3 + 14s2 + 33s + 25)r4 + s(10s4 + 59s3 + 162s2 + 179s + 54)r3+

+(18s5+138s4+387s3+491s2+244s+24)r2+(14s5+145s4+464s3+627s2+378s+72)r+

4s5 + 54s4 + 208s3 + 314s2 + 212s + 48

b0 :=
(r + 2)(s + 1)(s + r + 1)(2rs + 2s + 1)(rs + s + 2)(rs + s + 6)

6

b1 := (r+1)s
(
2s2(s+1)r4+s(2s3+12s2 +23s+9s)r3+(8s4 +39s3 +75s2+46s+10)r2+

+(10s4 + 59s3 + 108s2 + 89s + 26)r + 4s4 + 30s3 + 64s2 + 58s + 12
)
,

and bj ≥ b1 for j ≥ 2 are explicitly determined constants.

Even though the coefficients a and b1 look rather unwieldy, the expression for the

slope of GP
r
g,d has a simpler and much more suggestive expression which we record:

Corollary 0.5. For ρ(g, r, d) = 1, the slope of the Gieseker-Petri divisor GP
r
g,d has the following

expression:

s(GP
r
g,d) = 6 +

12

g + 1
+

24 s(r + 1)(r + s)(s + r + 2)(rs + s − 1)

(r + 2)(s + 1)(s + r + 1)(2rs + 2s + 1)(rs + s + 2)(rs + s + 6)
.

Next we specialize to the case r = 1, thus g = 2s + 1. Using the base point free
pencil trick one can see that the divisor GP1

2s+1,s+2 splits into two irreducible compo-
nents according to whether the pencil for which the Gieseker-Petri theorem fails has a
base point or not. Precisely we have the following equality of codimension 1 cycles

GP
1
2s+1,s+2 = (2s − 2) ·M

1
2s+1,s+1 + GP

1,0
2s+1,s+2,

where GP
1,0
2s+1,s+2 is the closure of the locus of curves [C] ∈ Mg carrying a base point

free pencil L ∈ W 1
s+2(C) such that µ0(L) is not injective. Since we also have the well-

known formula for the class of the Hurwitz divisor (cf. [EH2], Theorem 1)

M
1
2s+1,s+1 ≡

(2s − 2)!

(s + 1)! (s − 1)!

(
6(s + 2)λ − (s + 1)δ0 − 6sδ1 − · · ·

)
,
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we find the following expression for the slope of GP
1,0
2s+1,s+2:

Corollary 0.6. For g = 2s + 1, the slope of the divisor GP
1,0
2s+1,s+2 of curves carrying a base

point free pencil L ∈ W 1
s+2(C) such that µ0(L) is not injective, is given by the formula

s(GP
1,0
2s+1,s+2) = 6 +

12

g + 1
+

2s − 1

(s + 1)(s + 2)
.

We note that for s = 2 and g = 5, the divisor GP
1,0
5,4 is equal to Teixidor’s divisor of

curves [C] ∈ M5 having a vanishing theta-null, that is, a theta-characteristic L⊗2 = KC

with h0(C,L) ≥ 2. In this case Corollary 0.6 specializes to her formula [T] Theorem 3.1:

GP
1,0
5,4 ≡ 4 · (33λ − 4δ0 − 15δ1 − 21δ2) ∈ Pic(M5).

To give another example we specialize to the case r = 1, s = 3 when g = 7. Using

the base point free pencil trick, the divisor GP
1
7,5 can be identified with the closure of

the locus of curves [C] ∈ M7 possessing a linear series l ∈ G2
7(C) such that the plane

model C
l
→ P2 has 8 nodes, of which 7 lie on a conic. Its class is given by the formula:

GP
1
7,5 ≡ 4 · (201λ − 26δ0 − 111δ1 − 177δ2 − 198δ3) ∈ Pic(M7).

In Section 5 we shall need a characterization of the k-gonal loci M
1
g,k in terms of

effective divisors of Mg containing them. For instance, it is known that if D ∈ Eff(Mg)

is a divisor such that s(D) < 8 + 4/g, then D contains the hyperelliptic locus M
1
g,2 (see

e.g. [HMo], Corollary 3.30). Similar bounds exist for the trigonal locus: if s(D) < 7+6/g

then D ⊃ M
1
g,3. We have the following extension of this type of result:

Theorem 0.7. 1) Every effective divisor D ∈ Eff(Mg) having slope s(D) < 1
g

[13g+16
2

]
con-

tains the locus M
1
g,4 of 4-gonal curves.

2) Every effective divisor D ∈ Eff(Mg) having slope s(D) < 1
g

(
5g + 9 + 2[g+1

2 ]
)

contains the

locus M
1
g,5 of 5-gonal curves.

The proof uses an explicit unirational parametrization of M
1
g,k that is available

only when k ≤ 5. It is natural to ask whether the subvariety M
1
g,k ⊂ Mg is cut out by

divisors D ∈ Eff(Mg) of slope less than the bound given in Theorem 0.7. Very little
seems to be known about this question even in the hyperelliptic case.

We close by summarizing the structure of the paper. In Section 1 we introduce a
certain stack of pairs of complementary limit linear series which we then use to prove
Theorem 0.1 by induction on the genus. The class of the compactified Gieseker-Petri
divisor is computed in Section 2. This calculation is used in Section 3 to describe maps
between moduli spaces of curves. We then study the geometry of φ in low genus (Sec-
tion 4) with applications to Prym varieties and we finish the paper by computing the
invariant s′(Mg) for g ≤ 11 (Section 5).
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1. DIVISORIAL COMPONENTS OF THE GIESEKER-PETRI LOCUS

Let us fix positive integers g, r and g such that ρ(g, r, d) ≥ 0 and set s := g−d+r ≥
2, hence g = rs + s + j and d = rs + r + j, with j ≥ 0. The case j = 0 corresponds to the
situation ρ(g, r, d) = 0 when we already know that GPr

g,d has a divisorial component in
Mg whose class has been computed (see [F1], Theorem 1.6). We present an inductive
method on j which produces a divisorial component of GPr

g,d ⊂ Mg provided one
knows that GPr

g−1,d−1 has a divisorial component in Mg−1. The method is based on

degeneration to the boundary divisor ∆1 ⊂ Mg and is somewhat similar to the one
used in [F2] for the case r = 1.

We briefly recall a few facts about (degeneration of) multiplication maps on curves.
If L and M are line bundles on a smooth curve C , we denote by

µ0(L,M) : H0(L) ⊗ H0(M) → H0(L ⊗ M)

the usual multiplication map and by

µ1(L,M) : Ker µ0(L,M) → H0(KC ⊗ L ⊗ M), µ1(
∑

i

σi ⊗ τi) :=
∑

i

(dσi) · τi,

the first Gaussian map associated to L and M (see [W]). For any ρ ∈ H0(L) ⊗ H0(M)
and a point p ∈ C , we write that ordp(ρ) ≥ k, if ρ lies in the span of elements of the form
σ ⊗ τ , where σ ∈ H0(L) and τ ∈ H0(M) are such that ordp(σ) + ordp(τ) ≥ k. When
i = 0, 1, the condition ordp(ρ) ≥ i + 1 for a generic point p ∈ C , is clearly equivalent to
ρ ∈ Ker µi(L,M).

If X is a tree-like curve and l is a limit gr
d on X, for an irreducible component

Y ⊂ X we denote by lY = (LY , VY ⊂ H0(LY )) the Y -aspect of l. For p ∈ Y we

denote by {alY
i (p)}i=0...r the vanishing sequence of l at p and by ρ(lY , p) := ρ(g(Y ), r, d)−∑r

i=0(a
lY
i (p) − i) the adjusted Brill-Noether number with respect to the point p (see [EH1]

for a general reference on limit linear series).

We shall repeatedly use the following elementary observation already made in
[EH3] and used in [F2]: Suppose {σi} ⊂ H0(L) and {τj} ⊂ H0(M) are bases of global
sections with the property that ordp(σi) = aL

i (p) and ordp(τj) = aM
j (p) for all i and j.

Then if ρ ∈ Ker µ0(L,M)), there must exist two pairs of integers (i1, j1) 6= (i2, j2) such
that ordp(ρ) = ordp(σi1) + ordp(τj1) = ordp(σi2) + ordp(τj2).

A technical tool in the paper is the stack ν : Ũr
g,d → M̃g of pairs of complementary

limit linear series defined over a partial compactification of Mg which will be defined
below. Then GPr

g,d is the push-forward under ν|ν−1(Mg) of a degeneration locus inside

Ũr
g,d. We denote by Picd the degree d Picard stack over Mg, that is, the étale sheafifica-

tion of the Picard functor, and by E the Hodge bundle over Mg. We consider Gr
d ⊂ Picd

to be the stack parameterizing pairs [C, l] with l = (L, V ) ∈ Gr
d(C) and the projection

σ : Gr
d → Mg .

We set ∆0
0 ⊂ ∆0 ⊂ Mg to be the locus of curves [C/y ∼ q], where [C, q] ∈ Mg−1,1

is Brill-Noether general and y ∈ C is an arbitrary point, as well as their degenerations
[C∪q E∞], where E∞ is a rational nodal curve, that is, j(E∞) = ∞. For 1 ≤ i ≤ [g/2], we
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denote by ∆0
i ⊂ ∆i the open subset consisting of unions [C ∪y D], where [C] ∈ Mi and

[D, y] ∈ Mg−i,1 are Brill-Noether general curves but the point y ∈ C is arbitrary. Then

if we denote by M̃g := Mg ∪
(
∪

[g/2]
i=0 ∆0

i

)
, one can extend the covering σ : Gr

d → Mg to a

proper map σ : G̃r
d → M̃g from the stack G̃r

d of limit linear series gr
d.

We now introduce the stack ν : Ũr
g,d → M̃g of complementary linear series: For

[C] ∈ Mg , the fibre ν−1[C] parameterizes pairs (l,m) where l = (L, V ) ∈ Gr
d(C) and

m = (KC ⊗ L∨,W ) ∈ Gg−d+r−1
2g−2−d (C). If [C = C1 ∪y C2] ∈ M̃g, where [C1, y] ∈ Mi,1

and [C2, y] ∈ Mg−i,1, the fibre ν−1[C] consists of pairs of limit linear series (l,m), where
l = {(LC1

, VC1
), (LC2

, VC2
)} is a limit gr

d on C and

m = {
(
KC1

⊗OC1
(2(g − i) · p) ⊗ L−1

C1
,WC1

)
,
(
KC2

⊗OC2
(2i · p) ⊗ L−1

C2
,WC2

)
}

is a limit g
g−d+r−1
2g−2−d on C which is complementary to l. There is a morphism of stacks

ǫ : Ũr
g,d → G̃r

g,d which forgets the limit g
g−d+r−1
2g−2−d on each curve. Clearly σ ◦ ǫ = ν.

Definition 1.1. For a smooth curve C of genus g, a Gieseker-Petri (gp)r
d-relation consists

of a pair of linear series (L, V ) ∈ Gr
d(C) and (KC ⊗ L∨,W ) ∈ Gg−d+r−1

2g−2−d (C), together

with an element ρ ∈ PKer{µ0(V,W ) : V ⊗ W → H0(KC)}.

If C = C1 ∪p C2 is a curve of compact type with C1 and C2 being smooth curves
with g(C1) = i and g(C2) = g − i respectively, a (gp)r

d-relation on C is a collection

(l,m, ρ1, ρ2), where [C, l,m] ∈ Ũr
g,d, and elements

ρ1 ∈ PKer{VC1
⊗WC1

→ H0
(
KC1

(2(g− i)p)
)
}, ρ2 ∈ PKer{VC2

⊗WC2
→ H0

(
KC2

(2ip)
)
}

satisfying the compatibility relation ordp(ρ1) + ordp(ρ2) ≥ 2g − 2.

For every curve C of compact type, the variety Qr
d(C) of (gp)r

d-relations has an
obvious determinantal scheme structure. One can construct a moduli stack of (gp)r

d-
relations which has a natural determinantal structure over the moduli stack of curves of
compact type. In particular one has a lower bound on the dimension of each irreducible
component of this space and we shall use this feature in order to smooth (gp)r

d-relations
constructed over curves from the divisor ∆1 to nearby smooth curves from Mg. The
proof of the following theorem is very similar to the proof of Theorem 4.3 in [F2] which
dealt with the case r = 1. We omit the details.

Theorem 1.2. We fix integers g, r, d such that ρ(g, r, d) ≥ 0 and a curve [C := C1 ∪y C2] ∈
Mg of compact type. We denote by π : C → B the versal deformation space of C = π−1(0), with
0 ∈ B. Then there exists a quasi-projective variety ν : Qr

d → B, compatible with base change,
such that the fibre over each point b ∈ B parameterizes (gp)r

d-relations over Cb. Moreover, each
irreducible component of Qr

d has dimension at least dim(B) − 1 = 3g − 4.

The dimensional estimate on Qr
d comes from its construction as a determinantal

variety over B. Just like in the case of Ũr
g,d, we denote by ǫ : Qr

d → G̃r
d the forgetful map

such that σ ◦ ǫ = ν. We use the existence of Qr
d to prove the following inductive result:

Theorem 1.3. Fix integers g, r, d such that ρ(g, r, d) ≥ 2 and let us assume that GPr
g,d has a

divisorial component D in Mg such that if [C] ∈ D is a general point, then the variety Qr
d(C)
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has at least one 0-dimensional component corresponding to two complementary base point free

linear series (l,m) ∈ Gr
d(C) × Gg−d+r−1

2g−2−d (C), such that [C, l] ∈ G̃r
d is a smooth point. Then

GPr
g+1,d+1 has a divisorial component D′ in Mg+1 such that a general point [C ′] ∈ D′ enjoys

the same properties, namely that Qr
d+1(C

′) possesses a 0-dimensional component corresponding

to a pair of base point free complementary linear series (l′,m′) ∈ Gr
d+1(C

′) × Gg−d+r−1
2g−1−d (C ′)

such that [C ′, l′] ∈ G̃r
d+1 is a smooth point.

Proof. We choose a general curve [C] ∈ D ⊂ GPr
g,d, a general point p ∈ C and we set

[C0 := C ∪p E] ∈ Mg+1, where E is an elliptic curve. By assumption, there exist base

point free linear series l0 = (L, V ) ∈ Gr
d(C) and m0 = (KC ⊗ L∨,W ) ∈ Gs−1

2g−2−d(C),

together with an element ρ ∈ PKer
(
µ0(V,W )

)
such that dim(l0,m0,ρ)Q

r
d(C) = 0. In

particular, then Ker µ0(V,W ) is 1-dimensional. Let π : C → B be the versal deformation
space of C0 = π−1(0) and ∆ ⊂ B the boundary divisor corresponding to singular
curves. We consider the scheme ν : Qr

d+1 → B parameterizing (gp)r
d+1-relations (cf.

Theorem 1.2). Since [C, l0] ∈ Gr
d is a smooth point and l0 is base point free, Lemma 2.5

from [AC] implies that µ1(V,W ) : Ker µ0(V,W ) → H0(K⊗2
C ) is injective, in particular

µ1(V,W )(ρ) 6= 0. (Here σ0 : Gr
d → Mg denotes the stack of gr

d’s over the moduli space
of curves of genus g). Thus we can assume that ordp(ρ) = 1 for a generic choice of p.

We construct a (gp)r
d+1-relation z = (l,m, ρC , ρE) ∈ Qr

d+1(C0) as follows: the C-
aspect of the limit gr

d+1 denoted by l is obtained by adding p as a base point to (L, V ),

that is lC =
(
LC := L ⊗ OC(p), VC := V ⊂ H0(LC)

)
. The aspect lE is constructed

by adding (d − r) · p as a base locus to |L0
E |, where L0

E ∈ Picr+1(E) is such that L0
E 6=

OE((r + 1) · p) and (L0
E)⊗2 = OE((2r + 2) · p), and where |VE | = (d − r) · p + |L0

E |.
Since p ∈ C is general, we may assume that p is not a ramification point of l0, which
implies that alC (p) = (1, 2, . . . , r + 1). Clearly, alE (p) = (d − r, d − r + 1, · · · , d), hence

l = {lC , lE} is a refined limit gr
d+1 on C0. The C-aspect of the limit gs−1

2g−2−d we denote

by m, is given by mC :=
(
KC ⊗ L∨ ⊗ OC(p),WC := W ⊂ H0(KC ⊗ L∨ ⊗ OC(p))

)
.

The aspect mE is constructed by adding (g − r − 1) · p to the complete linear series
|OE((r +1+ s) ·p)⊗ (L0

E)∨|. Since we may also assume that p is not a ramification point
of m0, we find that amC (p) = (1, 2, . . . , s) and amE (p) = (g − r − 1, g − r, . . . , 2g − 2− d),
that is, m = {mC ,mE} is a refined limit gs−1

2g−1−d on C0. Next we construct the elements

ρC and ρE . We choose

ρC = ρ ∈ PKer{µ0(V,W ) : V ⊗ W → H0(KC ⊗OC(2p))},

that is, ρC equals ρ except that we add p as a simple base point to both linear series lC
and mC whose sections get multiplied. Clearly ordp(ρC) = ordp(ρ) + 2 = 3. Then we
construct an element ρE ∈ PKer{VE ⊗ WE → H0(OE(2g · p))} with the property that
ordp(ρE) = 2g − 3

(
= d − 1 + (2g − 2 − d) = d + (2g − 3 − d)

)
. Such an element lies

necessarily in the kernel of the map

H0
(
L0

E ⊗OE(−(r − 1) · p)
)
⊗ H0

(
OE((r + 3) · p) ⊗ (L0

E)∨
)
→ H0(OE(4 · p)),

which by the base point free pencil trick is isomorphic to the 1-dimensional space

H0
(
E,OE((2r + 2) · p) ⊗ (L0

E)⊗(−2)
)
, that is, ρE is uniquely determined by the prop-

erty that ordp(ρE) ≥ 2g − 3.
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Since ordp(ρC) + ordp(ρE) = 2g, we find that z = (l,m, ρC , ρE) ∈ Qr
d+1. The-

orem 1.2 guarantees that any component of Qr
d+1 passing through z has dimension at

least 3g − 1. To prove the existence of a component of Qr
d+1 mapping rationally onto

a divisor D′ ⊂ Mg+1, it suffices to show that z is an isolated point in ν−1([C0]). Sup-
pose that z′ = (l′,m′, ρ′C , ρ′E) ∈ Qr

d+1 is another point lying in the same component of

ν−1([C0]) as z. Since the scheme Qr
d+1 is constructed as a disjoint union over the pos-

sibilities of the vanishing sequences of the limit linear series gr
d+1 and gs−1

2g−1−d, we may

assume that al′
C (p) = alC (p) = (1, 2, . . . , r + 1), am′

C (p) = amC (p) = (1, 2, . . . , s). Sim-

ilarly for the E-aspects, we assume that al′E(p) = alE (p) and am′
E (p) = amE (p). Then

necessarily, ordp(ρ
′
C) = 3(= 1 + 2 = 2 + 1), otherwise we would contradict the as-

sumption µ1(V,W )(ρ) = 0. Moreover, lC = l0 and mC = m0 because of the inductive
assumption on [C]. Using the compatibility relation between ρ′C and ρ′E we then get that
ordp(ρ

′
E) ≥ 2g − 3. The only way this can be satisfied is when the underlying line bun-

dle L′
E of the linear series l′E(−(d− r) ·p) satisfies the relation (L′

E)⊗2 = OE((2r +2) ·p),
which gives a finite number of choices for l′E and then for m′

E . Once l′E is fixed, then as
pointed out before, ρ′E is uniquely determined by the condition ordp(ρ

′
E) ≥ 2g − 3 (and

in fact one must have equality). This shows that z ∈ ν−1([C0]) is an isolated point, thus
z must smooth to (gp)r

d+1 relations on smooth curves filling-up a divisor D′ in Mg+1.

We now prove that [C0, l] ∈ G̃r
d+1 is a smooth point (Recall that σ : G̃r

d+1 → B
denotes the stack of limit gr

d+1’s on the fibres of π). This follows once we show that [C0, l]

is a smooth point of σ∗(∆) and then observe that G̃r
d+1 commutes with base change. By

explicit description, a neighbourhood of [C0, l] ∈ σ∗(∆) is locally isomorphic to an étale
neighbourhood of (Gr

d×Mg Mg,1)×M1,1 around the point
(
[C, l0], [C, y], [E, y]

)
and we

can use our inductive assumption that Gr
d is smooth at the point [C, l0].

Finally, we prove that a generic point [C ′] ∈ D′ corresponds to a pair of base point

free linear series (l′,m′) ∈ Gr
d+1(C

′) × Gs−1
2g−1−d(C

′). Suppose this is not the case and

assume that, say, l′ ∈ Gr
d+1(C

′) has a base point. As [C ′, l′] ∈ G̃r
d+1 specializes to [C0, l0]

the base point of l′ specializes to a point y ∈ (C0)reg (If the base point specialized to the
p ∈ C ∩ E, then necessarily l would be a non-refined limit gr

d+1). If y ∈ C − {p} then
it follows that l0 = lC(−p) ∈ Gr

d(C) has a base point at y, which is a contradiction. If
y ∈ E − {p}, then L0

E must have a base point at y which is manifestly false. �

2. THE CLASS OF THE GIESEKER-PETRI DIVISORS.

In this section we determine the class of the Gieseker-Petri divisor GP
r
g,d. We

start by setting some notation. We fix integers r, s ≥ 1 and set g := rs + s + 1 and
d := rs+r+1, hence ρ(g, r, d) = 1. We denote by M0

g the open substack of Mg consisting

of curves [C] ∈ Mg such that W r+1
d (C) = ∅. Since ρ(g, r + 1, d) = −r − s − 1, it follows

that codim(Mg − M0
g,Mg) ≥ 3. In this section we denote by Gr

d ⊂ Picd the stack

parameterizing pairs [C, l] with [C] ∈ M0
g and l ∈ Gr

d(C) and M̃g := M0
g ∪ (∪

[g/2]
i=0 ∆0

i ).

We have a natural projection σ : Gr
d → M0

g. Furthermore, we denote by π : M0
g,1 → M0

g

the universal curve and by f : M0
g,1 ×M0

g
Gr

d → Gr
d the second projection. Note that the
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forgetful map ǫ : Ur
g,d → Gr

d is an isomorphism over M0
g, and we make the identification

between Ur
g,d and Gr

d (This identification obviously no longer holds over M̃g −M0
g).

From general Brill-Noether theory it follows that there exists a unique component of
Gr

d which maps onto M0
g. Moreover, any irreducible component Z of Gr

d of dimension

> 3g − 3 + ρ(g, r, d) has the property that codim
(
σ(Z),M0

g

)
≥ 2 (see [F1], Corollary 2.5

for a similar statement when ρ(g, r, d) = 0, the proof remains essentially the same in the
case ρ(g, r, d) = 1).

If L is a Poincaré bundle over M0
g,1 ×M0

g
Gr

d (one may have to make an étale

base change Σ → Gr
d to ensure the existence of L, see [Est]), we set F := f∗(L) and

N := R1f∗(L). By Grauert’s theorem, both F and N are vector bundles over Gr
d = Ur

g,d

with rank(F) = r+1 and rank(N ) = s respectively, and there exists a bundle morphism
µ : F ⊗N → σ∗(E), which over each point [C,L] ∈ Gr

d restricts to the Petri map µ0(L).
If U := Zrs+s−1(µ) is the first degeneration locus of µ, then clearly GPr

g,d = σ∗(U).
Each irreducible component of U has codimension at most 2 inside Gr

d. We shall prove
that every such component mapping onto a divisor in Mg is in fact of codimension
2 (see Proposition 2.3), which will enable us to use Porteous’ formula to compute its
class. While the construction of F and N clearly depends on the choice of the Poincaré
bundle L (and of Σ), it is easy to check that the degeneracy class Zrs+s−1(µ) ∈ A2(Gr

d)
is independent of such choices.

Like in [F1], our technique for determining the class of the divisor GP
r
g,d is to

intersect U with pull-backs of test curves sitting in the boundary of Mg: We fix a general
pointed curve [C, q] ∈ Mg−1,1 and a general elliptic curve [E, y] ∈ M1,1. Then we define
the families

C0 := {C/y ∼ q : y ∈ C} ⊂ ∆0 ⊂ Mg and C1 := {C ∪y E : y ∈ C} ⊂ ∆1 ⊂ Mg.

These curves intersect the generators of Pic(Mg) as follows:

C0 · λ = 0, C0 · δ0 = −2g + 2, C0 · δ1 = 1 and C0 · δj = 0 for 2 ≤ j ≤ [g/2], and

C1 · λ = 0, C1 · δ0 = 0, C1 · δ1 = −2g + 4 and C1 · δj = 0 for 2 ≤ j ≤ [g/2].

Next we fix a genus [g/2] ≤ j ≤ g − 2 and general curves [C] ∈ Mj , [D, y] ∈ Mg−j,1.

We define the 1-parameter family Cj := {Cj
y = C ∪y D}y∈C ⊂ ∆j ⊂ Mg. We have the

formulas
Cj · λ = 0, Cj · δj = −2j + 2 and Cj · δi = 0 for i 6= j.

To understand the intersections Cj · GP
r
g,d for 0 ≤ j ≤ [g/2], we shall extend the vector

bundles F and N over the partial compactification Ũr
g,d constructed in Section 1.

The next propositions describe the pull-back surfaces σ∗(Cj) inside G̃r
d:

Proposition 2.1. We set g := rs+s+1 and fix general curves [C] ∈ Mrs+s and [E, y] ∈ M1,1

and consider the associated test curve C1 ⊂ ∆1 ⊂ Mg . Then we have the following equality of

2-cycles in G̃r
d:

σ∗(C1) = X + X1 × X2 + Γ0 × Z0 + n1 · Z1 + n2 · Z2 + n3 · Z3,

where
X := {(y, L) ∈ C × W r

d (C) : h0(C,L ⊗OC(−2y)) = r}
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X1 := {(y, L) ∈ C × W r
d (C) : h0(L ⊗OC(−2 · y)) = r, h0(L ⊗OC(−(r + 2) · y)) = 1}

X2 := {(y, l) ∈ Gr
r+2(E) : al

1(y) ≥ 2, al
r(y) ≥ r + 2} ∼= P

(H0(OE((r + 2) · y))

H0(OE(r · y))

)

Γ0 := {(y,A ⊗OC(y)) : y ∈ C,A ∈ W r
d−1(C)} , Z0 = Gr

r+1(E) = Picr+1(E)

Z1 := {l ∈ Gr
r+3(E) : al

1(y) ≥ 3, al
r(y) ≥ r + 3} ∼= P

(H0(OE((r + 3) · y))

H0(OE(r · y))

)

Z2 := {l ∈ Gr
r+2(E) : al

2(y) ≥ 3, al
r(y) ≥ r + 2} ∼= P

(H0(OE((r + 2) · y))

H0(OE((r − 1) · y))

)

Z3 := {l ∈ Gr
r+2(E) : al

1(y) ≥ 2} =
⋃

z∈E

P

(H0(OE((r + 1) · y + z))

H0(OE((r − 1) · y + z))

)
,

where the constants n1, n2, n3 are explicitly known positive integers.

Proof. Every point in σ∗(C1) corresponds to a limit gr
d, say l = {lC , lE}, on some curve

[C1
y := C ∪y E] ∈ C1. By investigating the possible ways of distributing the Brill-

Noether numbers ρ(lC , y) and ρ(lE , y) in a way such that the inequality 1 = ρ(g, r, d) ≥
ρ(lC , y) + ρ(lE , y) is satisfied, we arrive to the six components in the statement (We
always use the elementary inequality ρ(lE , y) ≥ 0, hence ρ(lC , y) ≤ 1). We mention that
X corresponds to the case when ρ(lC , y) = 1, ρ(lE , y) = 0, the surfaces X1 × X2 and
Γ0 × Z0 correspond to the case ρ(lC , y) = 0, ρ(lE , y) = 0, while Z1, Z2, Z3 appear in the
cases when ρ(lC , y) = −1, ρ(lE , y) = 1. The constants ni for 1 ≤ i ≤ 3 have a clear
enumerative meaning: First, n1 is the number of points y ∈ C for which there exists
L ∈ W r

d (C) such that aL(y) = (0, 2, 3, . . . , r, r + 3). Then n2 is the number of points

y ∈ C for which there exists L ∈ W r
d (C) such that aL(y) = (0, 2, 3, . . . , r− 1, r +1, r +2).

Finally, n3 is the number of points y ∈ C which appear as ramification points for one of
the finitely many linear series A ∈ W r

d−1(C). �

Next we describe σ∗(C0) and we start by fixing more notation. We choose a gen-
eral pointed curve [C, q] ∈ Mrs+s,1 and denote by Y the following surface:

Y := {(y, L) ∈ C × W r
d (C) : h0(C,L ⊗OC(−y − q)) = r}.

Let π1 : Y → C denote the first projection. Inside Y we consider two curves corre-
sponding to gr

d’s with a base point at q:

Γ1 := {(y,A ⊗OC(y)) : y ∈ C,A ∈ W r
d−1(C)} and

Γ2 := {(y,A ⊗OC(q)) : y ∈ C,A ∈ W r
d−1(C)},

intersecting transversally in n0 := #(W r
d−1(C)) points. Note that ρ(g, r − 1, d) = 0 and

W r
d−1(C) is a reduced 0-dimensional cycle. We denote by Y ′ the blow-up of Y at these n0

points and at the points (q,B) ∈ Y where B ∈ W r
d (C) is a linear series with the property

that h0(C,B⊗OC(−(r+2) ·q)) ≥ 1. We denote by EA, EB ⊂ Y ′ the exceptional divisors
corresponding to (q,A ⊗ OC(q)) and (q,B) respectively, by ǫ : Y ′ → Y the projection

and by Γ̃1, Γ̃2 ⊂ Y ′ the strict transforms of Γ1 and Γ2.
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Proposition 2.2. Fix a general curve [C, q] ∈ Mrs+s,1 and consider the associated test curve

C0 ⊂ ∆0 ⊂ Mrs+s+1. Then we have the following equality of 2-cycles in G̃d
r :

σ∗(C0) = Y ′/Γ̃1
∼= Γ̃2,

that is, σ∗(C0) can be naturally identified with the surface obtained from Y ′ by identifying the

disjoint curves Γ̃1 and Γ̃2 over each pair (y,A) ∈ C × W r
d−1(C).

Proof. We fix a point y ∈ C − {q}, denote by [C0
y := C/y ∼ q] ∈ Mg, ν : C → Cy

0

the normalization map, and we investigate the variety W
r
d(C

0
y ) ⊂ Pic

d
(C0

y ) of torsion-

free sheaves L on C0
y with deg(L) = d and h0(C0

y , L) ≥ r + 1. If L ∈ W r
d (C0

y ), that
is, L is locally free, then L is determined by ν∗(L) ∈ W r

d (C) which has the property
that h0(C, ν∗L ⊗ OC(−y − q)) = r. However, the line bundles of type A ⊗ OC(y) or
A ⊗OC(q) with A ∈ W r

d−1(C), do not appear in this association even though they have

this property. They correspond to the situation when L ∈ W
r
d(C

y
0 ) is not locally free,

in which case necessarily L = ν∗(A) for some A ∈ W r
d−1(C). Thus Y ∩ π−1

1 (y) is the

partial normalization of W
r
d(C

0
y ) at the n0 points of the form ν∗(A) with A ∈ W r

d−1(C).

A special analysis is required when y = q, that is, when C0
y degenerates to C ∪q E∞,

where E∞ is a rational nodal cubic. If {lC , lE∞} ∈ σ−1([C ∪q E∞]), then an analysis
along the lines of Theorem 2.1 shows that ρ(lC , q) ≥ 0 and ρ(lE∞ , q) ≤ 1. Then either
lC has a base point at q and then the underlying line bundle of lC is of type A ⊗OC(q)

while lE∞(−(d − r − 1) · q) ∈ W
r
r+1(E∞), or else, alC (q) = (0, 2, 3, . . . , r, r + 2) and then

lE∞(−(d−r−2) ·q) ∈ P
(
H0(OE∞((r+2) ·q))/H0(OE∞(r ·q))

)
∼= EB , where B ∈ W r

d (C)
is the underlying line bundle of lC . �

We now show that every irreducible component of U has the expected dimension:

Proposition 2.3. Every irreducible component X of U having the property that σ(X ) is a
divisor in Mg has codim(X ,Gr

d) = 2.

Proof. Suppose that X is an irreducible component of U satisfying (1) codim(X ,Gr
d) ≤ 1

and (2) codim(σ(X ),Mg) = 1. We write D := σ(X ) ⊂ Mg for the closure of this divisor

in Mg, and we express its class as D ≡ aλ− b0δ0 − b1δ1 − · · · − b[g/2]δ[g/2] ∈ Pic(Mg). To
reach a contradiction, it suffices to show that a = 0.

Keeping the notation from Propositions 2.1 and 2.2, we are going to show that
C0∩D = C1∩D = ∅ which implies that b0 = b1 = 0. Then we shall show that if R ⊂ Mg

denotes the pencil obtained by attaching to a general pointed curve [C, q] ∈ Mrs+s,1 at
the fixed point q, a pencil of plane cubics (i.e. an elliptic pencil of degree 12), then
R∩D = ∅. This implies the relation a− 12b0 + b1 = 0 which of course yields that a = 0.

We assume by contradiction that C1 ∩ D 6= ∅. Then there exists a point y ∈ C
and a limit gr

d on C1
y := C ∪y E, say l = {lC , lE}, such that if LC ∈ W r

d (C) denotes the
underlying line bundle of lC , then the multiplication map

µ0(LC , y) : H0(LC) ⊗ H0(KC ⊗ L∨
C ⊗OC(2y)) → H0(KC ⊗OC(2y))

is not injective. We claim that this can happen only when ρ(lC , y) = 1 and ρ(lE , y) = 0,
that is, when [C1

y , l] ∈ X (we are still using the notation from Proposition 2.1). Indeed,
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assuming that ρ(lC , y) ≤ 0, there are two cases to consider. Either LC has a base point at
y and then we can write LC = A⊗OC(y) for A ∈ W r

d−1(C) and then we find that µ0(A) is
not injective which contradicts the assumption that [C] ∈ Mrs+s is Petri general. Or y /∈
Bs|LC | and then aLC (y) ≥ (0, 2, 3, . . . , r, r+2). A degeneration argument along the lines
of [F1] Proposition 3.2 shows that [C] can be chosen general enough such that every
LC with this property has µ0(LC , y) injective. Thus we may assume that ρ(lC , y) = 1
and then µ0(LC , y) is not injective for every point (y, LC) belonging to an irreducible

component of the fibre π−1
1 (y) ⊂ X.

On the other hand, whenever one has an irreducible projective variety A ⊂ Gr
d(C)

with dim(A) ≥ 1 and a Schubert index α := (0 ≤ α0 ≤ . . . ≤ αr ≤ d − r) such that
αl(y) ≥ α for all l ∈ A, there exists a Schubert index of the same type β > α, such that

αl0(y) ≥ β for a certain l0 ∈ A. In our case, this implies that µ0(LC , y) is not injective for
a linear series LC ∈ W r

d (C) such that either aLC (y) ≥ (0, 2, . . . , r, r + 2) (and this case
has been dealt with before), or aLC (y) ≥ (1, 2, . . . , r + 1). Then LC = A ⊗ OC(y) for
A ∈ W r

d−1(C) and µ0(A) is not injective. This violates the assumption that [C] ∈ Mrs+s

is Petri general. To prove that C0 ∩ D = ∅ we use the same principle in the context
of the explicit description of σ∗(C0) provided by Proposition 2.2. Finally, to show that
R∩D = ∅ it suffices to show that if [C, q] ∈ Mrs+s,1 is sufficiently general, then µ0(LC , q)

is injective for every (q, LC) ∈ π−1
1 (q). This is the statement of Theorem 2.13. �

We extend F and N as vector bundles over the stack Ũr
g,d of pairs of limit linear

series. Note that every irreducible component of Ũr
g,d which meets one of the test sur-

faces ν∗(Cj) has dimension 3g − 2. This follows from an explicit description of ν∗(Cj)
similar to the one for j = 0, 1 given in Propositions 2.1 and 2.2. Such a description,
although straightforward, is combinatorially involved (see [F1] Proposition 2.4, for the
answer in the case ρ(g, r, d) = 0). Since we are not going to make direct use of it in this

paper, we skip such details. Recall that we denote by ǫ : Ũr
g,d → G̃r

d the forgetful map

and ν = σ ◦ ǫ.

Proposition 2.4. There exist two vector bundles F and N over Ũr
g,d with rank(F) = r+1 and

rank(N ) = s, together with a vector bundle morphism µ : F⊗N → ν∗
(
E⊗

∑[g/2]
j=1 (2j−1)·δj

)
,

such that the following statements hold:

• For a point [C,L] ∈ Gr
d = Ur

g,d we have that F(C,L) = H0(C,L), N (C,L) =

H0(C,KC ⊗ L∨) and µ0(C,L) : H0(C,L) ⊗ H0(C,KC ⊗ L∨) → H0(KC) is the
Petri map.

• For t =
[
C ∪y D, (lC , lD), (mC ,mD)

]
∈ σ−1(∆0

j ), with [g/2] ≤ j ≤ g − 1, [C, y] ∈
Mj,1, [D, y] ∈ Mg−j,1 and

lC = (LC , VC) ∈ Gr
d(C), mC = (KC ⊗ L∨

C ⊗OC(2(g − j) · y),WC) ∈ Gs−1
2g−2−d(C),

we have that F(t) = VC , N (t) = WC and

µ(t) = µ0(VC ,WC) : VC ⊗ WC → H0
(
KC ⊗OC(2(g − j) · y)

)
.

• Fix t = [C0
y := C/y ∼ q, L] ∈ σ−1(∆0

0), with q, y ∈ C and L ∈ W
r
d(C

0
y ) such that

h0(C, ν∗L ⊗OC(−y − q)) = r. Here ν : C → C0
y is the normalization map.
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When L is locally free, F(t) = H0(C, ν∗L), N (t) = H0(C,KC ⊗ ν∗L∨ ⊗OC(y + q))
and φ(t) is the multiplication map

H0(ν∗L) ⊗ H0
(
KC ⊗ ν∗L∨ ⊗OC(y + q)

)
→ H0(KC ⊗OC(y + q)) = H0(C0

y , ωC0
y
).

In the case when L is not locally free, that is, L ∈ W
r
d(C

y
0 )−W r

d (Cy
0 ), then L = ν∗(A),

where A ∈ W r
d−1(C), and

F(t) = H0(A) = H0(ν∗A) and N (t) = H0(KC ⊗ A∨ ⊗OC(y + q)) = H0(ωC0
y
⊗ ν∗A

∨).

Briefly stated, over each curve of compact type, the vector bundle F (resp. N )

retains the sections of the limit gr
d (resp. gs−1

2g−2−d) coming from the component having

the largest genus. The Gieseker-Petri theorem ensures that the vector bundle morphism

µ : F⊗N → ν∗
(
E⊗

∑[g/2]
j=1 (2j−1)·δj

)
is generically non-degenerate. Moreover, ν|ν−1(∆0

0
)

and ν|ν−1(∆0
1
) are also generically-nondegenerate along each irreducible component (see

Theorem 2.13), hence one can write that

ν∗ c1

(
ν∗(E ⊗

[g/2]∑

j=1

(2j − 1) · δj) −F ⊗N
)

= [GP
r
g,d] +

[g/2]∑

j=2

ej · δj ,

where ej ≥ 0. We can compute explicitly the left-hand-side of this formula and show

that the smallest boundary coefficient of ν∗c1

(
ν∗(E⊗

∑[g/2]
j=1 (2j −1) · δj)−F ⊗N

)
is that

corresponding to δ0. Thus s([GP
r
g,d]) = s

(
ν∗ c1(ν

∗(E ⊗
∑[g/2]

j=1 (2j − 1) · δj) −F ⊗N )
)
.

Throughout the paper we use a few facts about intersection theory on Jacobians
which we briefly recall (see [ACGH] for a general reference). We fix integers r, s ≥ 1
and set g := rs + s and d := rs + r + 1. If [C] ∈ Mg is a Brill-Noether general curve,

we denote by P a Poincaré bundle on C × Picd(C) and by π1 : C × Picd(C) → C

and π2 : C × Picd(C) → Picd(C) the projections. We define the cohomology class

η = π∗
1([point]) ∈ H2(C × Picd(C)), and if δ1, . . . , δ2g ∈ H1(C, Z) ∼= H1(Picd(C), Z)

is a symplectic basis, then we set

γ := −

g∑

α=1

(
π∗

1(δα)π∗
2(δg+α) − π∗

1(δg+α)π∗
2(δα)

)
.

We have the formula c1(P) = d · η + γ, corresponding to the Hodge decomposition of

c1(P). We also record that γ3 = γη = 0, η2 = 0 and γ2 = −2ηπ∗
2(θ). Since W r+1

d (C) = ∅,
it follows that W r

d (C) is smooth of dimension ρ(g, r, d) = r + 1. Over W r
d (C) there is

a tautological rank r + 1 vector bundle M := (π2)∗(P|C×W r
d
(C)). The Chern numbers

of M can be computed using the Harris-Tu formula (cf. [HT]) as follows: We write∑r+1
i=0 ci(M

∨) = (1 + x1) · · · (1 + xr+1) and then for every class ζ ∈ H∗(Picd(C), Z) one
has the following formula:

xi1
1 · · · x

ir+1

r+1 ζ = det
( θg+r−d+ij−j+l

(g + r − d + ij − j + l)!

)
1≤j,l≤r+1

ζ.

If we use the expression of the Vandermonde determinant, we get the identity

det
( 1

(aj + l − 1)!

)
1≤j,l≤r+1

=
Πj>l (al − aj)

Πr+1
j=1 (aj + r)!

,
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which quickly leads to the following formula in H2r+2(W r
d (C), Z):

(1) xi1
1 · · · x

ir+1

r+1 · θr+1−i1−···−ir+1 =
Πj>l(il − ij + j − l)

Πr+1
j=1(s + r + ij − j)!

.

By repeatedly applying (1), we get all intersection numbers on W r
d (C) we shall need.

We define the integer

n0 = Cr+1 :=
(rs + s)! r! (r − 1)! · · · 2! 1!

(s + r)! (s + r − 1)! · · · (s + 1)! s!
= #(W r

d−1(C))

and we have the following formulas:

Proposition 2.5. Let C be a general curve of genus rs + s and we set d := rs + r + 1. We
denote by ci := ci(M∨) ∈ H2i(W r

d (C), Z) the Chern classes of the dual of the tautological
bundle on W r

d (C). Then one has the following identities in H∗(W r
d (C), Z):

cr+1 = x1x2 . . . xr+1 = Cr+1, cr · c1 = x1x2 . . . xr+1 + x2
1x2 . . . xr

cr−1 · c2 = x1x2 . . . xr+1 + x2
1x2 . . . xr + x2

1x
2
2x3 . . . xr−1

cr−1 · c
2
1 = x1x2 . . . xr+1 + 2x2

1x2 . . . xr + x2
1x

2
2x3 . . . xr−1 + x3

1x2x3 . . . xr−1

cr · θ = x1x2 . . . xr · θ = (r + 1)s Cr+1, cr−1 · c1 · θ = x1x2 . . . xr · θ + x2
1x2 + . . . xr−1 · θ

cr−2 · c2 · θ = x1x2 . . . xr · θ + x2
1x2 . . . xr−1 · θ + x2

1x
2
2x3 . . . xr−2 · θ

cr−2 · c
2
1 · θ = x1x2 . . . xr · θ + 2x2

1x2 . . . xr−1 · θ + x2
1x

2
2x3 . . . xr−2 · θ + x3

1x2x3 . . . xr−2 · θ

cr−1 · θ
2 = x1x2 . . . xr−1 · θ

2, cr−2 · c1 · θ
2 = x1x2 . . . xr−1 · θ

2 + x2
1x2 . . . xr−2 · θ

2

Next we record the values of the monomials in the xi’s and θ that appeared in
Proposition 2.5. The proof amounts to a systematic application of formula (1):

Proposition 2.6. We set d := rs+r+1 and write ct(M
∨) = (1+x1) · · · (1+xr+1) as above.

Then one has the following identities in H2r+2(W r
d (C), Z):

x1x2 . . . xr+1 = Cr+1, x2
1x

2
2x3 . . . xr−1 =

s(s + 1)(r + 1)2(r − 2)(r + 2)

4(s + r)(s + r + 1)
Cr+1

x2
1x2 . . . xr =

r(r + 2)s

s + r + 1
Cr+1, x3

1x2x3 . . . xr−1 =
r(r − 1)(r + 2)(r + 3)s(s + 1)

4(s + r + 1)(s + r + 2)
Cr+1

x1x2 . . . xr · θ = (r + 1)sCr+1, x2
1x2 . . . xr−1 · θ =

(s + 1)(r − 1)(r + 2)

2(s + r + 1)
x1x2 . . . xr · θ,

x2
1x

2
2x3 . . . xr−2 =

(r − 3)(r + 1)(r + 2)r(s + 1)(s + 2)

12(s + r + 1)(s + r)
x1x2 . . . xr · θ

x3
1x2x3 . . . xr−2 · θ =

(r + 2)(r + 3)(r − 1)(r − 2)(s + 1)(s + 2)

12(s + r + 1)(s + r + 2)
x1x2 . . . xr · θ

x1x2 . . . xr−1 · θ
2 =

r(r + 1)s(s + 1)

s
Cr+1

x2
1x2 . . . xr−2 · θ

2 =
(r + 2)(r − 2)(s + 2)

3(s + r + 1)
x1x2 . . . xr−1 · θ

2

x1x2 . . . xr−2 · θ
3 =

(r + 1)r(r − 1)(s + 2)(s + 1)s

6
Cr+1.
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Proposition 2.7. Let [C, q] ∈ Mrs+s,1 be a general pointed curve. If M denotes the tautologi-
cal vector bundle over W r

d (C) and ci := ci(M
∨), then one has the following relations:

(1) [X] = π∗
2(cr)−6π∗

2(cr−2)ηθ+
(
(4rs+2r+2s)η+2γ

)
π∗

2(cr−1) ∈ H2r(C ×W r
d (C)).

(2) [Y ] = π∗
2(cr) − 2π∗

2(cr−2)ηθ +
(
(rs + r)η + γ)π∗

2(cr−1) ∈ H2r(C × W r
d (C)).

Proof. We realize the surface X as the degeneracy locus of a vector bundle map over
C × W r

d (C). For each pair (y, L) ∈ C × W r
d (C) there is a natural map

H0(C,L ⊗O2y)
∨ → H0(C,L)∨

which globalizes to a vector bundle morphism ζ : J1(P)∨ → π∗
2(M)∨ over C × W r

d (C)
(Recall that W r

d (C) is a smooth (r +1)-fold). Then we have the identification X = Z1(ζ)
and the Thom-Porteous formula gives that [X] = cr

(
π∗

2(M) − J1(P
∨)

)
. From the usual

exact sequence over C × Picd(C)

0 −→ π∗
1(KC) ⊗P −→ J1(P) −→ P −→ 0,

we can compute the total Chern class of the jet bundle

ct(J1(P)∨) =
(∑

j≥0

(dη+γ)j
)
·
(∑

j≥0

((2g(C)−2+d)η+γ)j
)

= 1−6ηθ+(2d+2g(C)−2)η+2γ,

which quickly leads to the formula for [X]. To compute [Y ] we proceed in a similar

way. We denote by p1, p2 : C × C × Picd(C) → C × Picd(C) the two projections, by

∆ ⊂ C × C × Picd(C) the diagonal and we set Γq := {q} × Picd(C). We introduce the
rank 2 vector bundle B := (p1)∗

(
p∗2(P) ⊗ O∆+p∗

2
(Γq)

)
defined over C × W r

d (C) and we

note that there is a bundle morphism χ : B∨ → (π2)
∗(M)∨ such that Y = Z1(χ). Since

we also have that

ct(B
∨)−1 =

(
1 + (dη + γ) + (dη + γ)2 + · · ·

)
(1 − η),

we immediately obtained the desired expression for [Y ]. �

Remark 2.8. For future reference we also record the following formulas:

(2) cr+1(π
∗
2(M)∨ − J1(P)∨) = π∗

2(cr+1) − 6π∗
2(cr−1)ηθ +

(
(4rs + 2r + 2s)η + 2γ

)
π∗

2(cr)

(3) cr+2(π
∗
2(M)∨ − J1(P)∨) = π∗

2(cr+1)
(
(4rs + 2r + 2s)η + 2γ

)
− 6π∗

2(cr)ηθ.

(4) cr+1(π
∗
2(M)∨ − B∨) = π∗

2(cr+1) − 2π∗
2(cr−1)ηθ +

(
(rs + r)η + γ

)
π∗

2(cr)

and

(5) cr+2(π
∗
2(M)∨ − B∨) = π∗

2(cr+1)
(
(rs + r)η + γ

)
− 2π∗

2(cr)ηθ.

Proposition 2.9. Let [C] ∈ Mrs+s be a Brill-Noether general curve and denote by P the

Poincaré bundle on C × Picd(C). We have the following identities in H∗(Picd(C), Z):

c1

(
R1π2∗(P|C×W r

d
(C))

)
= θ − c1 and c2

(
R1π2∗(P|C×W r

d
(C))

)
=

θ2

2
− θc1 + c2.
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Proof. We recall that in order to obtain a determinantal structure on W r
d (C) one fixes a

divisor D ∈ Ce of degree e >> 0 and considers the morphism

(π2)∗
(
P ⊗O(π∗

1D)
)
→ (π2)∗

(
P ⊗O(π∗

1D|π∗
1
D)

)
.

Then W r
d (C) is the degeneration locus of rank d − g − r + e of this map and there is an

exact sequence of vector bundles over W r
d (C):

0 → M −→ (π2)∗
(
P⊗O(π1

∗D)
)
−→ (π2)∗

(
P⊗O(π∗

1D)|π∗
1
D

)
→ R1π2∗

(
P|C×W r

d
(C)

)
−→ 0.

From this sequence our claim follows if we take into account that (π2)∗
(
P⊗O(π∗

1D)|π∗
1
D

)

is numerically trivial and ct

(
(π2)∗(P ⊗O(π∗

1D))
)

= e−θ. �

Remark 2.10. For future reference we note that Proposition 2.9 provides a quick way
to compute the canonical class KW r

d
(C). Indeed, since TPicd(C) is trivial, we have that

KW r
d
(C) = c1(NW r

d
(C)/Picd(C)). From the realization of W r

d (C) as a determinantal variety,

we obtain that NW r
d
(C) = Hom

(
M, R1π2∗

(
P|C×W r

d
(C)

))
, which leads to the expression:

(6) KW r
d
(C) ≡ (r + 1)θ + (s − r − 2)c1.

We shall also need in Section 3 the expressions for KX and KY . To start with
the surface X, we have that KX ≡ (2rs + 2s − 2)η + KW r

d
(C) + c1(NX/C×W r

d
(C)). Next

we use Proposition 2.7, to express the normal bundle of the determinantal subvariety
X ⊂ C × W r

d (C) as NX/C×W r
d
(C) = Hom(Ker(ζ), Coker(ζ)) which leads to the formula:

(7) KX ≡ (r +1)θ +(r− 1)c1(Ker(ζ)∨)+ (s− r− 1)π2 ∗ (c1)+2γ +(6rs+2r+4s− 2)η.

In a similar manner, using the vector bundle map χ, we find the canonical class of Y :

(8) KY ≡ (r + 1)θ + (r − 1)c1(Ker(χ)∨) + (s − r − 1)π∗
2(c1) + γ + (3rs + r + 2s − 2)η.

As a first step towards computing [GP
r
g,d] we determine the δ1 coefficient in its

expression. For simplicity we set Ẽ := E ⊗OMg

( ∑[g/2]
j=1 (2j − 1) · δj

)
for the twist of the

Hodge bundle.

Theorem 2.11. Let [C] ∈ Mrs+s be a Brill-Noether general curve and denote by C1 ⊂ ∆1

the associated test curve. Then the coefficient of δ1 in the expansion of GP
r
g,d in terms of the

generators of Pic(Mg) is equal to

b1 =
rs(r + 1)(s − 1) Cr+1

2(s + r + 1)(s + r)(s + r + 2)(rs + s − 1)

(
(2s2+2s3)r4+(2s4+12s3+23s2+9s)r3+

+

(8s4+39s3+75s2+46s+10)r2+(10s4+59s3+108s2+89s+26)r+4s4+30s3+64s2+58s+12)
)
.

Proof. We intersect the degeneracy locus of the map F ⊗ N → σ∗(Ẽ) with the surface
σ∗(C1) and use that the vector bundles F and N were defined by retaining the sections
of the genus g−1 aspect of each limit linear series and dropping the information coming

from the elliptic curve. It follows that Zi · c2(σ
∗(Ẽ) − F ⊗ N ) = 0 for 1 ≤ i ≤ 3

because both σ∗Ẽ and F ⊗ N are trivial along the surfaces Zi. Furthermore, we also

have that [X1 × X2] · c2(σ
∗(Ẽ) − F ⊗ N ) = 0, because c2(σ

∗(Ẽ) − F ⊗ N )|X1×X2
is in

fact the pull-back of a codimension 2 class from the 1-dimensional cycle X1, therefore
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the intersection number is 0 for dimensional reasons. We are left with estimating the
contribution coming from X and we write

σ∗(C1)·c2(σ
∗Ẽ−F⊗N ) = c2(σ

∗Ẽ|X)−c1(σ
∗Ẽ|X)·c1(F⊗N|X)+c2

1(F⊗N|X)−c2(F⊗N|X)

and we are going to compute each term in the right-hand-side of this expression.

Since we have a canonical identification Ẽ|C1[C1
y ] = H0(C,KC ⊗OC(2y)) for each

y ∈ C , we obtain that c2(σ
∗Ẽ|X) = 0 and c1(σ

∗Ẽ|X) = −(2g − 4)η. Recall also that we

have set ci(F
∨
|X) = π∗

2(ci) for 0 ≤ i ≤ r + 1, where ci ∈ H2i(W r
d (C), Z).

In Proposition 2.7 we introduced a vector bundle morphism ζ : J1(P)∨ → π∗
2(M)

over C × W r
d (C). We denote by U := Ker(ζ) and we view U as a line bundle over X

with fibre over a point (y, L) ∈ X being the space

U(y, L) =
H1(C,L ⊗OC(−2y))∨

H1(C,L)∨
.

The Chern numbers of U∨ can be computed from the Harris-Tu formula and we find
that for any class ξ ∈ H2(C × W r

d (C)) we have the following (cf. (2)): c1(U
∨) · ξ|X =

= cr+1

(
π∗

2(M)∨−J1(P)∨
)
·ξ|X =

(
π∗

2(cr+1)−6ηθπ∗
2(cr−1)+((4rs+2r+2s)η+2γ)π∗

2(cr)
)
·ξ|X ,

and

c2
1(U

∨) = cr+2

(
π∗

2(M)∨ − J1(P)∨
)

= π∗
2(cr+1)((4rs + 2r + 2s)η + 2γ) − 6π∗

2(cr)ηθ.

The line bundle U is used to evaluate the Chern numbers of N|X via the exact sequence:

(9) 0 −→ π∗
2R

1π2∗

(
P|C×W r

d
(C)

)∨
−→ N|X −→ U −→ 0,

from which we obtain (by also using Proposition 2.9), that c1(N|X) = −θ + c1 − c1(U
∨)

and

c2(N|X) = c2 − θ · c1 +
θ2

2
+ (θ − c1) · c1(U

∨).

Therefore we can write that

σ∗(C1) · c2(σ
∗Ẽ −F ⊗N ) = (2g − 4)η · c1(F ⊗N|X) + c2

1(F ⊗N|X) − c2(F ⊗N|X) =

=

(
r + 2

2

)
c2
1(U

∨)+
(
(r+1)2·θ+2(r+1)(1−s(r+1))·η+((r+1)(s−r−1)+1)·c1

)
c1(U

∨)+· · · ,

where the term we omitted is a quadratic polynomial in θ, η and γ which will be mul-
tiplied by the class [X]. Since we have already computed c1(U

∨) and c2
1(U

∨), we can

write σ∗(C1) · c2(σ
∗(Ẽ) − F ⊗ N ) as a polynomial in the classes π∗

2(ci), η, θ and γ and
the only non-zero terms will be those which contain η. Then we apply Propositions 2.5

and 2.6 and finally compute the coefficient b1 := σ∗(C1) · c2(σ
∗(Ẽ) − F ⊗ N )/(2g − 4)

which finishes the proof.

�

Theorem 2.12. Let [C, q] ∈ Mrs+s,1 be a Brill-Noether general pointed curve and denote by

C0 ⊂ ∆0 the associated test curve. Then the δ0-coefficient of [GP
r
g,d] is given by the formula:

b0 =
r(r + 2)(s − 1)(s + 1)(2rs + 2s + 1)(rs + s + 2)(rs + s + 6)

12(rs + s − 1)(s + r + 2)(s + r)
Cr+1.



RATIONAL MAPS BETWEEN MODULI SPACES OF CURVES AND GIESEKER-PETRI DIVISORS 19

Proof. We look at the virtual degeneracy locus of the morphism F ⊗ N → σ∗(Ẽ) along
the surface σ∗(C0). The first thing to note is that the vector bundles F|σ∗(C0) and N|σ∗(C0)

are both pull-backs of vector bundles on Y . For convenience we denote this vector
bundles also by F and N , hence to use the notation of Proposition 2.2, F|σ∗(C0)) =
ǫ∗(F|Y ) and N|σ∗(C0) = ǫ∗(N|Y ). We find that

σ∗(C0)·c2(σ
∗Ẽ−F⊗N ) = c2(σ

∗Ẽ|Y )−c1(σ
∗Ẽ|Y )·c1(F⊗N|Y )+c2

1(F⊗N|Y )−c2(F⊗N|Y ),

and like in the proof of Theorem 2.11, we are going to compute each term in this ex-
pression. We denote by V := Ker(χ), where χ : B∨ → π∗

2(M)∨ is the bundle morphism
coming from Proposition 2.7. Thus V is a line bundle on Y with fibre

V (y, L) =
H1(C,L ⊗OC(−y − q))∨

H1(C,L)∨

over each point (y, L) ∈ Y . By using again the Harris-Tu Theorem, we find the follow-
ing formulas for the Chern numbers of V ∨ (cf. (4) and (5)):

c1(V
∨)·ξ|Y = cr+1

(
π∗

2(M)∨−B∨
)
·ξ|Y =

(
π∗

2(cr+1)+π∗
2(cr)((d−1)η+γ)−2π∗

2(cr−1)ηθ
)
·ξ|Y ,

for any class ξ ∈ H2(C × W r
d (C)), and

c2
1(V

∨) = cr+2

(
π∗

2(M)∨ −B∨
)

= π∗
2(cr+1)((d − 1)η + γ) − 2π∗

2(cr)ηθ.

To evaluate the Chern numbers of N|Y we fit the line bundle V in the following exact
sequence:

(10) 0 −→ π∗
2R

1π2∗

(
P|C×W r

d
(C)

)∨
−→ N|Y −→ V −→ 0.

This allows us to compute c1(V
∨) and c2

1(V
∨) and then we can write that

σ∗(C0) · c2(σ
∗Ẽ −F ⊗N ) = η · c1(F ⊗N|Y ) + c2

1(F ⊗N|Y ) − c2(F ⊗N|Y ) =

=

(
r + 2

2

)
c2
1(V

∨)+
(
(r+1)2 ·θ+2(r+1)(r+1)·η+((r+1)(s−r−1)+1)·c1

)
c1(V

∨)+· · · ,

where the term we omitted is a quadratic polynomial in θ, η and γ which will be mul-
tiplied by the class [Y ]. Using repeatedly Propositions 2.5 and 2.6, we finally evaluate
all the terms and obtain the stated expression for b0 using the relation (2g − 2)b0 − b1 =

σ∗(C0) · c2(σ
∗Ẽ −F ⊗N ). �

We finish the calculation of s(GP
r
g,d) by proving the following result:

Theorem 2.13. Let [C, q] ∈ Mrs+s,1 be a suitably general pointed curve and L ∈ W r
d (C) any

linear series with a cusp at q. Then the multiplication map

µ0(L, q) : H0(C,L) ⊗ H0(KC ⊗ L∨ ⊗OC(2q)) → H0(C,KC ⊗OC(2q))

is injective. If GP
r
g,d ≡ aλ −

∑[g/2]
j=0 bjδj ∈ Pic(Mg), we have the relation a − 12b0 + b1 = 0.

Proof. We consider again the pencil R ⊂ Mg obtained by attaching to C at the point q a
pencil of plane cubics. It is well-known that R · λ = 1, R · δ0 = 12 and R · δ1 = −1, thus

the relation a − 12b0 + b1 = 0 would be immediate once we show that R ∩ GP
r
g,d = ∅.

Assume by contradiction that R∩GP
r
g,d 6= ∅ and then according to Proposition 2.1 there
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exists L ∈ W r
d (C) with h0(L ⊗OC(−2q)) = r such that the multiplication map µ0(L, q)

is not injective.

We degenerate [C, q] to [C0 := E0 ∪p1
E1 ∪p2

E2 ∪ . . . ∪pg−2
Eg−2, p0] ∈ Mg−1,1,

consisting of a string of elliptic curves such that p0 ∈ E0 and the differences pi+1 − pi ∈
Pic0(Ei) for 0 ≤ i ≤ g − 3 = rs + s − 2, are not torsion classes. For each 0 ≤ i ≤ g − 2

we denote by Li ∈ Picd(C0) the unique limit of the line bundles Lt ∈ Picd(Ct) having
the property that deg(Li

|Ej
) = 0 for i 6= j. Here [Ct, pt] ∈ Mg−1,1 is a 1-dimensional

family of smooth pointed curves with the property limt→0[Ct, pt] = [C0, p0] ∈ Mg−1,1

and where we also assume that Ker µ0(Lt, pt) 6= 0 for all t 6= 0.

Similarly, we define M i ∈ Pic2g−2−d(C0) to be the unique limit of the line bundles
KCt ⊗ L∨

t ⊗OCt(2pt) characterized by the property deg(M i
|Ej

) = 0 for i 6= j. We denote

by {(Li
|Ei

, Vi)}
g−2
i=0 and by {(M i

|Ei
,Wi)}

g−2
i=0 the limit linear series on C0 corresponding to

Lt and KCt ⊗ L∨
t ⊗ OCt(2pt) respectively as t → 0. Reasoning along the lines of [EH3]

or [F1] Proposition 3.2, for each 0 ≤ i ≤ g − 2 we find elements

0 6= ρi ∈ Ker{Vi ⊗ Wi → H0(Ei, L
i ⊗ M i

|Ei
)}

satisfying ordpi+1
(ρi+1) ≥ ordpi

(ρi) + 2 for 0 ≤ i ≤ g − 3. Since ordp0
(ρ) ≥ 2, we find

that ordpg−2
(ρg−2) ≥ 2g − 2 = deg(Lg−2 ⊗ Mg−2

|Eg−2
), which is impossible. �

3. MAPS BETWEEN MODULI SPACES OF CURVES

We begin the study of the map φ : Mg − − > Mg′ given by φ([C]) := [W r
d (C)] in

the case ρ(g, r, d) = 1, so that g = rs + s + 1 and d = rs + r + 1. The genus of W r
d (C) for

a general [C] ∈ Mg has been computed in [EH2] Theorem 4, and we have the formula:

(11) g′ = g(W r
d (C)) = 1 + g!

s(r + 1)

s + r + 1

r∏

i=0

i!

(s + i)!
.

We shall describe the pull-back map φ∗ : Pic(Mg′) → Pic(Mg) and to avoid confusion

we denote, as usual, by λ, δ0, . . . , δ[g/2] the generators of Pic(Mg), and by λ′, δ′0, . . . , δ
′
[g′/2]

the generators of Pic(Mg′). We start by describing the map φ over a generic point of

each boundary divisors ∆j for 0 ≤ j ≤ [g/2]. If [Cj
y := C ∪y D] ∈ ∆j is a general

point, then φ([Cj
y ]) is the stable reduction of the variety G

r
d(C

j
y) of limit linear series

gr
d. Our analysis shows that G

r
d(C

j
y) is always a semi-stable curve and this observation

completely determines φ in codimension 1.

Suppose that [C] ∈ Mrs+s is a Brill-Noether-Petri general curve and that [E, y] ∈
M1,1 is a pointed elliptic curve. We recall that we have introduced the smooth surface
X = {(y, L) ∈ C × W r

d (C) : h0(C,L ⊗ OC(−2y)) = r}. For y ∈ C we denote by

Xy := π−1
1 (y) the fibre of the first projection π1 : X → C . For each of the n0 linear

series A ∈ W r
d−1(C) there exists a section σA : C → X given by σA(y) = (y,A ⊗OC(y))

and we set ΣA := Im(σA). From the description given in Proposition 2.1, it follows that
φ([C ∪y E]) is the stable curve of genus g′ obtained by attaching to the spine Xy copies

of E ∼= Picr+1(E) at the points σA(y) for each A ∈ W r
d−1(C).
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Similarly, having fixed a general pointed curve [C, q] ∈ Mrs+s,1, we recall that we
have introduced the surface Y = {(y, L) ∈ C × W r

d (C) : h0(L ⊗ OC(−y − q)) = r}.

(cf. Proposition 2.2). For each y ∈ Y we set Yy := π−1
1 (y). To every A ∈ W r

d−1(C)
correspond two sections uA : C → Y , vA : C → Y given by uA(y) = (y,A ⊗OC(y)) and
vA(y) = (y,A ⊗OC(q)) respectively. If as before, we denote by [C0

y ] := [C/y ∼ q] ∈ ∆0,

then φ([C0
y ]) is the stable curve obtained from Yy by identifying the points vA(y) and

uA(y) for all linear series A ∈ W r
d−1(C).

For 2 ≤ j ≤ [g/2], the irreducible components of φ([Cj
y ]) are indexed by Schubert

indices α := (α0 ≤ . . . ≤ αr) such that there exists limit linear series l = {lC , lD} ∈

G
r
d(C

j
y) with αlC (y) = α, ρ(lC , y) ∈ {0, 1} and ρ(lC , y) + ρ(lD, y) = 1 (a precise list

of such α’s is given in the proof of Theorem 3.4). To describe the pull-backs of the
tautological classes under φ we need a description of the numerical properties of the
push-forwards under φ of the standard test curves R and Cj where 0 ≤ j ≤ [g/2]. We
carry this out in detail only for j = 0, 1 which is sufficient to compute the slopes of
pull-backs φ∗(D′) where [D′] ∈ Pic(Mg′). The case j ≥ 2 is quite similar and again we
skip these details. To keep our formulas relatively simple we only deal with the case
r = 1, when g = 2s + 1 and

φ : M2s+1 −− > M1+ s
s+1(

2s+2

s ).

Proposition 3.1. We fix a general pointed curve [C, q] ∈ M2s,1 and we consider the test

curve R ⊂ M2s+1 obtained by attaching a pencil of plane cubics to C at the fixed point q. If
n0 := #(W 1

s+2(C)), then we have the following relations:

φ∗(R) · λ′ = n0, φ∗(R) · δ′0 = 12n0, φ∗(R) · δ′1 = −n0, and φ∗(R) · δ′j = 0 for j ≥ 2.

Proof. We denote by f : P̃
2

:= Bl9(P
2) → P1 the fibration induced by a pencil of plane

cubics after blowing-up the 9 base points of the pencil. Since f has 9 sections, there is an
isomorphism between f and its Picard fibration Pic2(f) → P1. The curve φ∗(R) ⊂ Mg′

is induced by a fibration of stable curves π : T → P1, where

π−1(t) = Xq

⋃
{∪σA(q)Pic2(f−1(t)) : A ∈ W r

d−1(C)}, for each t ∈ P1.

In other words, π is obtained by attaching to the fixed curve Xq , n0 copies of the elliptic
curve f−1(t) at each of the points σA(q). The claimed formulas are now immediate. �

Proposition 3.2. We fix general curves [C] ∈ M2s and [E, y] ∈ M1,1 and consider the

associated test curve C1 ⊂ ∆1 ⊂ M2s+1. Then we have the formulas

φ∗(C
1) · λ′ = n0

2s(s − 1)(6s2 + 10s + 1)

s + 2
, φ∗(C

1) · δ′0 = C1 · GP
1
2s+1,s+2,

φ∗(C
1) · δ′1 = −n0(4s − 2) and φ∗(C

1) · δ′j = 0 for j ≥ 2.

Proof. The 1-cycle φ∗(C
1) corresponds to a family of curves constructed as follows: We

start with π1 : X → C and consider the sections {σA : C → X}A∈W 1
s+1

(C). We also

consider n0 disjoint copies of the trivial family C × E → C which we glue to π1 along

each of the sections σA. From this description it follows that φ∗(C
1)·δ′0 = C1 ·GP

1
2s+1,s+2

and this equals the number of points y ∈ C (counted with the appropriate multiplicities)
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such that Xy is singular at some point (y, L). This translates into saying that the Petri
map µ0(L, y) : H0(C,L)⊗H0(KC⊗L∨⊗OC(2y)) → H0(C,KC⊗OC(2y)) is not injective.
Also, φ∗(C

1) · δ′j = 0 for j ≥ 2. Using the description of N∆′
1
/Mg′

we have that

φ∗(C
1) · δ′1 =

∑

A∈W 1
s+1

(C)

(ΣA)2 =
∑

A∈W 1
s+1

(C)

(
2g(C) − 2 − ΣA · KX

)
.

To estimate this sum, we recall that we have computed the canonical class of X (cf. (7)):

KX ≡ 2θ + (s − 2) · π∗
2(c1) + 2γ + 10s · η.

By direct computation we obtain that ΣA · θ = σ∗
A(θ) = 2s,ΣA · η = 1 and ΣA · γ = −4s

(all these intersection numbers are being computed on the smooth surface X).

We now compute ΣA · π∗
2(c1) and note that σ∗

Aπ∗
2(M) = (p2)∗

(
µ∗(P|C×W r

d
(C))

)
,

where µ : C × C → C × Picd(C) is defined as µ(x, y) = (x,A ⊗ OC(y)) and p1, p2 :
C × C → C are the two projections. The key observation here is that if the Poincaré
bundle P is chosen in such a way that P|{q}×Picd(C) is trivial for a point q ∈ C , then

µ∗(P) = p∗1(A) ⊗OC×C(∆) ⊗ p∗2(OC(−q)),

hence (p2)∗µ
∗(P) = (p2)∗

(
p∗1A ⊗ OC×C(∆)

)
⊗ OC(−q). Then we note that the vec-

tor bundle (p2)∗
(
p∗1(A) ⊗ OC×C(∆)

)
is trivial, thus it follows that deg

(
σ∗

Aπ∗
2(M

∨)
)

=

rank(M) = h0(A) = 2. Putting these calculations together, we obtain that ΣA · KX =
8s − 4 and then (Σ2

A) = −4s + 2, that is, φ∗(C
1) · δ′1 = −n0(4s − 2).

We are left with the computation of φ∗(C
1) · λ′, which equals the degree of the

Hodge bundle over the family π1 : X → C . From the Mumford relation κ1 = 12λ − δ
we find that

φ∗(C
1) · λ′ =

K2
X/C + δ(π1)

12
=

K2
X/C + C1 · GP

1
2s+1,s+2

12
,

where KX/B = KX −π∗
1(KC) is the relative canonical class. A direct calculation involv-

ing Propositions 2.5 and 2.6 shows that

K2
X/C = (6s3 − 10s2 − 4s)π∗

2(c
2
1) + (24s2 − 32s + 16)π∗

2(c1) · θ + 24s2θ2.

The calculation of [GP
1
2s+1,s+2] (precisely Theorem 2.11), yields that C1 · GP

1
2s+1,s+2 =

4n0s(s−1)(12s2 +23s+8)/(s+2), which leads to the stated formula for φ∗(C
1) ·λ′. �

Proposition 3.3. We fix a general pointed curve [C, q] ∈ M2s,1 and consider the test curve

C0 ⊂ ∆0 ⊂ M2s+1. Then we have the following formulas:

φ∗(C
0) · δ′1 = n0, φ∗(C

0) · δ′0 = C0 · GP
1
2s+1,s+2 − 4n0s,

φ∗(C
0) · λ′ = n0

s(s − 1)(2s2 + 4s + 1)

s + 2
and φ∗(C

0) · δ′j = 0 for j ≥ 2.

Proof. We describe the family of stable curves inducing φ∗(C
0). We start with the family

π1 : Y → C and consider the sections {uA, vA : C → Y }A∈W 1
s+1

(C) with images UA :=

uA(C) and VA := vA(C) respectively. We denote by Y ′ the blow-up of Y at the n0

points of intersections {UA ∩ VA = (q,A ⊗OC(q))}A∈W 1
s+1

(C) (see also Proposition 2.2),
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and we denote by ŨA and ṼA the strict transforms of UA and VA respectively. Then

φ∗(C
1) ⊂ Mg′ is induced by the fibration π : Ỹ → C , where Ỹ = σ∗(C0) is the surface

obtained from Y ′ by identifying the sections ŨA and ṼA for each A ∈ W 1
s+1(C). The

numerical characters of φ∗(C
0) are now easily describable. We have that φ∗(C

0) · δ′j = 0

for j ≥ 2, φ∗(C
0) · δ′1 = n0, and

φ∗(C
0) · δ′0 = C0 · GP

1
2s+1,s+2 +

∑

A∈W 1
s+1

(C)

(
(UA)2 + (VA)2 − 2

)
.

We recall that we have computed the canonical class of Y (cf. (8)):

KY ≡ 2θ + (s − 2)π∗
2(c1) + γ + (5s − 1) · η.

Since u∗
A(θ) = g(C) = 2s, u∗

A(γ) = −4s, u∗
A(η) = 1 and u∗

Aπ∗
2(c1) = 2 (the proof of this

last equality follows from the calculation in Proposition 3.2), we find that KY · UA =
7s − 5, hence by the adjunction formula (UA)2 = −3(s − 1). Similarly, (VA)2 = −s − 1,
therefore (UA)2+(VA)2−2 = −4s, for every A ∈ W 1

s+1(C), which determines φ∗(C
0)·δ′0.

We still have to estimate φ∗(C
0) · λ′. Like in Proposition 3.2, using Mumford’s

relation, this number equals the degree of the Hodge bundle on the family π1 : Y → C :

φ∗(C
0) · λ′ =

K2
Y/C + δ(π1)

12
=

K2
Y/C + C0 · GP

1
2s+1,s+2

12
.

From Theorem 2.11 we know that C0 · GP
1
2s+1,s+2 = 2n0s(s − 1)(4s2 + 9s + 4)/(s + 2).

By direct computation we also obtain that

K2
Y/C = (s3 − s2 − 2s)π∗

2(c
2
1) + (4s2 − 4s + 2)π∗

2(c1) · θ + 4(s − 1)θ2.

Moreover, π∗
2(c

2
1) = n0(4s + 2)/(s + 2), π∗

2(c1) · θ = 2n0s and θ2 = n0s(s + 1) (all these
intersection numbers are being computed on Y using Proposition 2.5). This completes
the calculation of φ∗(C

0) · λ′. �

We are in a position to describe pull-backs of divisors classes under the map φ:

Theorem 3.4. We consider the rational map φ : Mg −− > Mg′ , φ[C] = [W 1
s+2(C)], where

g := 2s + 1 and g′ := 1 +
s

s + 1

(
2s + 2

s

)
.

We then have the following description of the map φ∗ : Pic(Mg′) → Pic(Mg):

φ∗(λ′) = n0

(6s4 + 20s3 − s2 − 20s − 2

(s + 2)(2s − 1)
λ−

s(s2 − 1)

2s − 1
δ0−

2s(s − 1)(6s2 + 10s + 1)

(s + 2)(4s − 2)
δ1−

[g′/2]∑

i=2

biδi

)
,

where bi ≥
s(s2−1)
2s−1 for 2 ≤ i ≤ [g/2],

φ∗(δ′0) = n0 · δ0 + [GP
1
2s+1,s+2], φ∗(δ′1) = n0 · δ1 and φ∗(δ′j) = 0 for 2 ≤ j ≤ [g′/2].

Proof. The formulas involving φ∗(λ′), φ∗(δ′0) and φ∗(δ′1) are consequences of Proposi-
tions 3.2 and 3.3 via the push-pull formula. To prove that φ∗(δ′j) = 0 for 2 ≤ j ≤ [g′/2],

we show that φ∗(Mg) ∩ ∆′
j = ∅. This follows once we note that (i) the generic point of
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every component of GP
1
2s+1,s+2 corresponds to a curve [C] ∈ M2s+1 for which W 1

s+2(C)

is irreducible with precisely one node, and that (ii) φ∗(∆j) ⊂ Mg′ −
⋃[g′/2]

i≥2 ∆′
i for every

2 ≤ j ≤ [g/2]. Indeed, let us fix a general point [Cj
y := C ∪y D] ∈ ∆j where [C, y] ∈ Mj,1

and [D, y] ∈ Mg−j,1 are Brill-Noether general pointed curves. For a real number t we
introduce the notation t+ := max{t, 0}. The irreducible components of the stable curve

φ([Cj
y ]) are indexed by the set Pj of Schubert indices

α :=
(
0 ≤ α0 ≤ . . . . . . ≤ αr ≤ rs + 1

)

satisfying the conditions (cf. [EH2], Proposition 1.2):

(12)
r∑

i=0

(αi+j−rs−1) ∈ {j−1, j},
r∑

i=0

(αi+j−rs−1)+ ≤ j and
r∑

i=0

(g−j−αi)+ ≤ g−j.

For α ∈ Pj we consider the (non-empty) variety G
r
d(X)α := {l ∈ G

r
d(X) : αlC (y) ≥ α}

which is a disjoint union of irreducible components of φ([X]). When j ≥ 2, we claim

that the stable curve φ([Cj
y ]) is not of compact type. Using (12) one checks that for every

α ∈ Pj there are at least two partitions β1, β2 ∈ Pj such that G
r
d(X)α ∩ G

r
d(X)βk

6= ∅ for

k = 1, 2. Thus for every component Z of φ([Cj
y ]) we have that #

(
Z ∩ φ([Cj

y ]) − Z
)
≥ 2,

which proves our claim. �

Theorem 3.4 contains enough information to encode the slope of the pull-backs
φ∗(D) for all classes D ∈ Pic(Mg′) and thus to prove Theorem 0.2: If s(D) = c, then we

have the following formula for the slope of φ∗(D) ∈ Pic(Mg):

s(φ∗(D)) = 6 +
8s3(c − 4) + 5cs2 − 30s2 + 20s − 8cs − 2c + 24

s(s + 2)(cs2 − 4s2 − c − s + 6)
.

4. THE MAP φ IN SMALL GENUS AND APPLICATIONS TO PRYM VARIETIES

In this section we denote by Rg the stack of étale double covers of smooth curves

of genus g and by Rg its compactification by means of Beauville admissible double

covers, cf. [B]. It is proved in [BCF] that Rg is isomorphic to the stack parameterizing
Prym curves of genus g, that is, data of the form (X,L, β), where X is a quasi-stable
curve with pa(X) = g, L ∈ Pic0(X) is a line bundle such that L|R = OR(1) for every

destabilizing rational component R ⊂ X with #(R ∩ (X − R)) = 2, and β : L⊗2 → OX

is a sheaf homomorphism whose restriction to the generic point of each component of
X is non-zero. One has a finite branched cover π : Rg → Mg and a regular morphism

χ : Rg → M2g−1 which assigns to an admissible double cover the stable model of its

source curve. We set λ := π∗(λ) ∈ Pic(Rg) and define the following three irreducible

boundary divisors in Rg:

• ∆
′

0, with generic point being a Prym curve t := [C0
y := C/y ∼ q, L], where [C, y, q] ∈

Mg−1,2 and L ∈ Pic0(C0
y )[2] is a line bundle such that if ν : C0

y → C denotes the

normalization map, then ν∗(L) 6= OC . If C̃ → C is the étale 2 : 1 cover induced by ν∗(L)

and yi, qi(i = 1, 2) are the inverse images of y and q, then χ(t) = [C̃/y1 ∼ q1, y2 ∼ q2].
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• ∆
′′

0 , with generic point corresponding to t := [C0
y , L] as above, but where ν∗(L) = OC .

In this case χ(t) consists of two copies [Ci, y1, qi] (i = 1, 2) of [C, y, q], where we identify
y1 with q2 and y2 and q1 respectively.

• ∆r
0, with generic point corresponding to a Prym curve t := [X := C ∪{y,q} P1, L], with

[C, y, q] ∈ Mg−1,2 and L ∈ Pic(C) is a line bundle such that L⊗2 = OC(−y − q). In

this case, if C̃ → C is the double cover induced by L|C and branched at y and q and if

ỹ, q̃ ∈ C̃ are the ramification points above y and q respectively, then χ(t) = [C̃/ỹ ∼ q̃].

For a straightforward dictionary between Beauville covers and Prym curves we

refer to [D]. Note that π∗(∆0) = ∆′
0 + ∆

′′

0 + 2∆r
0 and ∆r

0 is the ramification locus of π.

As usual, we set δ
′

0 := [∆
′

0], δ
′′

0 := [∆
′′

0 ] and δr
0 := [∆r

0] ∈ Pic(Rg). We also denote by

p : C → Rg the universal curve and by L the line bundle over C whose restriction to
each fibre of p is the underlying line bundle corresponding to a Prym curve. In [F3], for
each i ≥ 1 we introduce the tautological vector bundles Ei := p∗(ωp ⊗L⊗i) over Rg and
we show that

(13) c1(Ei) =

(
i

2

)
π∗(κ1) + λ −

i2

4
δr
0.

We discuss the geometry of the rational map φ : Mg − − > Mg′ for small values

of g = 2s + 1. When s = 1, then g = g′ = 3 and the map φ : M3 → M3 is simply
the identity. Indeed, for a smooth curve [C] ∈ M3, we have a natural isomorphism
C ∼= W 1

3 (C) given by C ∋ y 7→ KC ⊗OC(−y) (Note that this isomorphism extends over
the hyperelliptic locus as well, when W 1

3 (C) = C + W 1
2 (C)).

The first truly interesting case is s = 2, when we have a map φ : M5 −− > M11

φ([C]) := [W 1
4 (C)] = [Sing(ΘC)].

By duality there is an involution τ : W 1
4 (C) → W 1

4 (C) given by τ(L) = KC ⊗ L∨. For
[C] ∈ M5 − GP1

5,4 (that is, when C is not trigonal and possesses no vanishing theta-

nulls), τ has no fixed points and it induces an étale 2 : 1 cover f : W 1
4 (C) → Γ, where

[Γ] ∈ M6. Therefore φ factors to give a map ν : M5 − − > R6. Moreover, there is an
isomorphism of principally polarized abelian varieties of dimension 5:

(
Prym(W 1

4 (C)/Γ),Ξ
)
∼=

(
Jac(C),ΘC

)

(see [ACGH] pg. 296-301 or [DS] for details on this classically understood situation).
The genus 6 curve Γ is identified with the locus of rank 4 quadrics containing the canon-
ical curve C ⊂ P4, and if Q ∈ Γ is such a quadric, then f−1(Q) consists of the g1

4’s deter-
mined by the two rulings on Q. If [C] ∈ M5 − GP1

5,4 then Γ is a smooth plane quintic.

When [C] ∈ GP1,0
5,4, the curve Γ has nodes at the points corresponding to quadrics of

rank 3. We have the following result which completely determines φ in codimension 1:

Proposition 4.1. The image of the rational map φ : M5 − − > M11 given by φ([C]) =

[W 1
4 (C)] equals the closure MQ

+
of the locus of genus 11 curves which are even étale double

covers of smooth plane quintic curves.

• For a trigonal curve [C] ∈ M1
5,3, if A ∈ W 1

3 (C) denotes the unique g1
3, then φ([C]) consists

of two copies of C joined together at two points x, y ∈ C such that x + y = |KC ⊗ A⊗(−2)|.
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• For a curve [C ∪y E] ∈ ∆1 ⊂ M5 where g(C) = 4 and g(E) = 1, φ([C ∪y E]) is a stable
curve of compact type consisting of a genus 9 spine {L ∈ W 1

4 (C) : h0(L ⊗ OC(−2y)) ≥ 1}
and two elliptic tails isomorphic to E attached at the points A ⊗OC(y) where A ∈ W 1

3 (C).

• For a curve [C/y ∼ q] ∈ ∆0 ⊂ M5 where [C, y, q] ∈ M4,2, φ([C/y ∼ q]) is the irreducible
stable curve obtained from the smooth genus 9 curve {L ∈ W 1

4 (C) : h0(L⊗OC(−y− q)) ≥ 1}
by identifying the two pairs of points A ⊗OC(y) and A ⊗OC(q) for every A ∈ W 1

3 (C).

• For a curve [C ∪y D] ∈ ∆2 ⊂ M5 where g(C) = 3 and g(D) = 2, φ([C ∪y D]) is a stable
curve of genus 11 consisting of two disjoint copies Y1 and Y2 of C and two disjoint copies D1

and D2 of D, such that Yi ∩ Dj = {yij} for i, j = 1, 2. The set {y1i, y2i} ⊂ Di consists of
y ∈ D and its hyperelliptic conjugate for each i = 1, 2. The set {y1i, y2i} ⊂ Yi for i = 1, 2,
consists of the pairs of points lying on the tangent line to the smooth plane quartic model of C
which passes through the point y.

Proof. The only case which requires explanation is that when [C ∪y D] ∈ ∆2, when

φ([C ∪y D]) is the stable reduction of the variety G
1
4(C ∪y D) of limit g1

4’s on C ∪y D.

Components of G
1
4(C ∪y D) are indexed by numerical possibilities for the ramification

sequences of a limit linear series l such that ρ(lC , y)+ρ(lD, y) = 1 and ρ(lC , y), ρ(lD, y) ≥
0. When ρ(lC , y) = 1 and ρ(lD, y) = 0, we have two numerical possibilities:
(1) alD(y) = (1, 4), hence lD = l1D := y + |OD(3y)| and alC (y) ≥ (0, 3). Then the curve
Y1 := {l ∈ G1

4(C) : al(y) ≥ (0, 3)} × {l1D} is an irreducible component of φ([C ∪y D]).

(2) alD(y) = (2, 3), hence lD = l2D := 2y + g1
2 ∈ G1

4(D) and alC (y) ≥ (1, 2). Then
Y2 := {l ∈ G1

4(C) : al(y) ≥ (1, 2)}×{l2D} is another irreducible component of φ([C∪yD]).

Before we deal with the remaining case when ρ(lC , y) = 0 and ρ(lD, y) = 1, we
note that for a general [C, y] ∈ M3,1, there are two linear series l1C , l2C ∈ G1

4(C) such that

ali
C (y) ≥ (1, 3). If ρ(lC , y) = 0, then necessarily alC (y) = (1, 3), hence lC ∈ {l1C , l2C}.

We introduce the curves D1 := {l1C} × {l ∈ G1
4(D) : al(y) ≥ (1, 3)} and D2 :=

{l2C}×{l ∈ G1
4(D) : al(y) ≥ (1, 3)} which are the remaining two irreducible components

of φ([C ∪y D]). We single out the points y11 = (l1C , l1D) ∈ Y1 ∩ D1, y12 = (l2C , l1D) ∈
Y1 ∩ D2, y21 = (l1C , l2D) ∈ Y2 ∩ D1 and y22 = (l2C , l2D) ∈ Y2 ∩ D2 and then φ([C ∪y D]) is
the stable curve of genus 11 having irreducible components Y1, Y2,D1 and D2 meeting
at the points y11, y12, y21 and y22. �

Proposition 4.1 coupled with Theorem 3.4 allows us to completely describe the
pull-back map of divisor classes ν∗ : Pic(R6) → Pic(M5).

Proposition 4.2. For ν : M5 −− > R6 given by [C] 7→ [W 1
4 (C)/Γ], we have the formulas:

ν∗(λ) = 34λ − 4δ0 − 15δ1 − (?)δ2, ν∗(δr
0) = [GP

1,0
5,4] = 4(33λ − 4δ0 − 15δ1 − 21δ2),

ν∗(δ′0) = δ0, ν∗(δ
′′

0 ) = [M
1
5,3] = 8λ − δ0 − 4δ1 − 6δ2.

Proof. Most of this follows directly by comparing Proposition 4.1 with the description

of the classes δ
′

0, δ
′′

0 and δr
0. Then we use that the generic point of the Teixidor divisor

GP
1,0
5,4 corresponds to a curve [C] ∈ M5 having precisely one vanishing theta-null (that
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is, quadric of rank 3 containing the canonical image of C ⊂ P4). In such a case the curve
of singular quadrics [Γ ⊂ |IC/P4(2)|] ∈ M6 is 1-nodal, the node corresponding precisely

to the vanishing theta-null. This implies that ν∗(δr
0) = [GP

1,0
5,4]. Showing that ν∗(δ

′

0) = δ0

and ν∗(δ
′′

0 ) = [M
1
5,3] proceeds along similar lines. Finally, we write that

35λ − 4δ0 − 15δ1 − · · · = φ∗(λ) = ν∗(χ∗(λ)) = ν∗
(
2λ −

1

4
δr
0

)
= 2ν∗(λ) −

1

4
[GP

1,0
5,4],

which yields the formula for ν∗(λ). �

The main result of [DS] is that the Prym map Prym : R6 → A5 is generically
finite, of degree 27. We denote by D the ramification divisor of R6 → A5 and by D its
closure in R6. It is proved in [B] that the codifferential of the Prym map

P∗ : TPrym[C,L]

(
A5

)∨
→ T[C,L]

(
R6

)∨

can be identified with the multiplication map Sym2H0(C,KC⊗L) → H0(C,K⊗2
C ) (Note

that L⊗2 = OC). Thus [C,L] ∈ D if and only if C
|KC⊗L|
−→ P4 lies on a quadric. An

immediate application of Proposition 4.2 gives the following characterization of covers
of plane quintics which fail the local Torelli theorem for Pryms:

Theorem 4.3. For the map ν : M5−− > R6 given by [C] 7→ [W 1
4 (C)/Γ], we have the scheme

theoretic equality ν∗(D) = 4 · M
1
5,3. Thus the abelian variety Prym(W 1

4 (C)/Γ) fails the local
Torelli theorem if and only if the curve [C] ∈ M5 is trigonal.

Proof. We use (13) to compute the class of the compactification D in R6 of the ramifi-
cation locus of Prym : R6 → A5 (see [F3] for more details and examples). Precisely,
there is a generically non-degenerate morphism between vector bundles of the same
rank α : Sym2(E1) → E2 over Rg and D = Z1(α) ∩ Rg. From (13) we find that

c1(E2 − Sym2(E1)) = 7λ − δ
′

0 − δ
′′

0 − 3
2δr

0 − · · · . By direct computation it follows that

ν∗(D) ≡ 4 · (8λ − δ0 − a1δ1 − a2δ2), where a1, a2 > 1, that is, s(ν∗(D)) = 8. The only
irreducible effective divisor on M5 having slope ≤ 8 = 6 + 12/(g + 1) is the trigonal

locus M
1
5,3, hence we must have the equality of divisors ν∗(D) = 4 · M

1
5,3. �

Remark 4.4. Theorem 4.3 is certainly not surprising. Beauville proves using relatively

elementary methods that for any smooth curve [C] ∈ M5 − (M1
5,3 ∪ GP1,0

5,4), the variety

Prym(W 1
4 (C)/Γ) satisfies local Torelli (cf. [B], Proposition 6.4).

5. THE MOVING SLOPE OF Mg

We introduce a fundamental invariant of Mg which carries information about all

rational maps from Mg to other projective varieties. If Mov(Mg) ⊂ Pic(Mg) ⊗ R is the

cone of moving effective divisors, we define the moving slope of Mg by the formula

s′(Mg) := infD∈Mov(Mg) s(D) ≥ s(Mg).

Any non-trivial rational map f : Mg − − > PN provides an upper bound for s′(Mg)

because one has the obvious inequality s′(Mg) ≤ s
(
f∗(OPN (1))

)
. This observation is
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not so useful for large g when there are very few known examples of rational maps ad-
mitted by Mg. For low g, in the range where Mg is unirational, there are several explicit

examples of such maps which allows us to determine s′(Mg). Parts of the next theorem

are certainly known to experts. The slopes s(Mg) for g ≤ 11 have been computed in
[FP], [HMo], [Ta] and we record them in the following table for comparison purposes.

Theorem 5.1. For integers 3 ≤ g ≤ 11 we have the following table concerning the slope and
the moving slope of Mg respectively:

g 3 4 5 6 7 8 9 10 11

s(Mg) 9 17
2 8 47

6
15
2

22
3

36
5 7 7

s′(Mg)
28
3 [172 , 44

5 ] [415 , 33
4 ] [476 , 65

8 ] [537 , 201
26 ] [598 , 149

20 ] (36
5 , 95

13 ] [7811 , 36
5 ] 7

In the proof of Theorem 5.1 we use a result, of independent interest, concerning
the slopes of curves in Mg which cover the k-gonal loci M1

g,k for k ≤ 5. It is a theorem of

Tan that if D ∈ Eff(Mg) is an effective divisor such that s(D) < 7 + 6/g then D ⊃ M
1
g,3

(cf. [T]). It is also well-known that if s(D) < 8 + 4/g then D ⊃ M
1
g,2 (use that the family

arising from a Lefschetz pencil of curves of type (2, g +1) on P1 ×P1 is a covering curve

for M
1
g,2). Next we prove a similar result for the locus of 4 and 5-gonal curves:

Proof of Theorem 0.7. We begin by recalling that if f : X → P1 is a pencil of semi-stable
curves of genus g with X a smooth surface such that there are no (−1)-curves in the
fibres of f , if m : P1 → Mg denotes the corresponding moduli map, then the numerical
characters of f are computed as follows:

deg m∗(λ) = χ(OX) + g − 1 and deg m∗(δ) = c2(X) + 4(g − 1).

Of course, these invariants are related by the Noether formula 12χ(OX ) = K2
X + c2(X).

The idea of the proof is to use Beniamino Segre’s theorem [S]: A general k-gonal
curve [C] ∈ M1

g,k has a plane model Γ ⊂ P2 of degree n ≥ (g + k + 2)/2 having one

(n − k)-fold point p and

δ =

(
n − 1

2

)
−

(
n − k

2

)
− g

nodes as the remaining singularities. The pencil g1
k on C is recovered by projecting Γ

from p. We denote by S := Blδ+1(P
2) the blow-up of the plane at δ + 1 general points

p0, . . . , pδ ∈ P2 and consider the linear system on S

|L| = |n · h − (n − k) · Ep0
− 2 ·

δ∑

i=1

Epi
|

where h ∈ Pic(S) is the class of a line. It is known that |L| is base point free whenever

virt-dim(|L|) =
n(n + 3)

2
−

(
n − k + 1

2

)
− 3δ ≥ 0

(cf. [AC2]). This inequality is compatible with the Segre condition precisely when k ≤ 5,
that is, in this range the nodes and the (n−k)-fold point of the Segre plane model Γ can
be chosen to be general points in P2.
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A covering curve for M
1
g,k is obtained by blowing-up the n2 − (n − k)2 − 4δ base

points of a Lefschetz pencil in the linear system |L| (see [AC2], Theorem 5.3 for the fact

that one can recover the general curve [C] ∈ M1
g,k in this way). If F ⊂ M

1
g,k denotes the

induced family, then we have the formulas

F · λ = g, F · δ0 =
k(k + 3)

2
+ 7g + (3 − n)k − 3 and F · δi = 0 for all i ≥ 1

(For 3 ≤ k ≤ 5 one checks that there are no (−1)-curves in the fibres of F , which is not
the case for k = 2). Choosing n = [(g + k + 3)/2] (that is, minimal such that Segre’s

inequality is satisfied), we find that F · D < 0 implies the inclusion M
1
g,k ⊂ D which

finishes the proof. Note that for k = 3 we find that F · δ = 7g + 6 (independent of n),
hence F · δ/F · λ = 7 + 6/g and this gives a different proof of Tan’s result [T]. �

Corollary 5.2. There exists no non-trivial rational map f : Mg − − > X in the projective

category such that the indeterminacy locus of f is contained in M
1
g,k−1 and which contracts the

variety M
1
g,k(k = 4, 5) to a point.

Proof. By Theorem 0.7 we can find two different covering curves F and F ′ for M
1
g,k

according to different choice of n ≥ (g + k +2)/2 such that F · δ/F ·λ 6= F ′ · δ/F ′ ·λ. �

Remark 5.3. This last result is in contrast with the situation in the case of the hyper-

elliptic locus. For instance, the rational map f : M3 − − > Q3 := |OP2(4)|//SL(3) to

the GIT quotient of plane quartics blows down M
1
3,2 to the point corresponding to the

double conic. Moreover, we have that f∗(A) ≡ 28λ − 3δ − 8δ1, where A ∈ Ample(Q3).

Proof of Theorem 5.1. (i) g = 4. The Petri divisor GP
1
4,3 is the closure in M4 of the locus

of curves [C] ∈ M4 for which the canonical model of C
|KC |
−→ P3 lies on a quadric cone.

One knows that GP
1
4,3 ≡ 34λ − 4δ0 − 14δ1 − 18δ2. By taking a Lefschetz pencil R ⊂ M4

of curves of type (3, 3) on a smooth quadric in P3, we find that R · λ = 4, R · δ0 = 34

which implies that s(M4) = 34/4. If R is chosen generically then R ∩ GP
1
4,3 = ∅. Next

we construct a covering curve F ⊂ GP
1
4,3 for the Gieseker-Petri divisor. We take the

Hirzebruch surface F2 viewed as the blow-up of the cone Λ ⊂ P3 over a conic. We
denote as usual, Pic(F2) = Z · [C0] ⊕ Z · f , where f2 = 0, C2

0 = −2 and C0 · f = 1,

and F2
|C0+2f |
−→ P3. Then we consider a Lefschetz pencil in the linear system |3C0 + 6f |

corresponding to intersections of Λ with a pencil of cubic surfaces. We blow-up F2 in
18 = (3C0 + 6f)2 base points and denote by f : X = Bl18(F2) → P1 the resulting
family of semistable curves. Note that f has precisely one fibre of the form C0 + D with
D ∈ |2C0 + 6f |, where C0 · D = 2. By blowing-down the (−2)-curve C0 we obtain a
map ν : X → X ′ and a family of stable genus 4 curves f ′ : X ′ → P1, where X ′ has

one surface double point and f = f ′ ◦ ν. If F ⊂ GP
1
4,3 is the curve in the moduli space

induced by f ′, then F is a covering curve for GP
1
4,3. Since ωf = ν∗(ωf ′), the λ- degree

of F can be computed directly on X, that is, F · λ = χ(OX) + g − 1 = 4. Then, we can
write F · δ = degν∗([Z]), where Z ⊂ X is the 0-cycle of nodes in the fibres of f , hence

F · δ = 12χ(OX ) − K2
X + 4(g − 1) = 34.
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Since F and R have the same numerical invariants, it follows that there is no rational

contraction M4 − − > X having indeterminacy locus contained in M
1
4,2, which blows

the divisor GP
1
4,3 down to a point. The upper bound on s′(M4) is obtained by consid-

ering the irreducible divisor

D4 := {[C] ∈ M4 : ∃p ∈ C with h0(C,OC (3p)) ≥ 2}

introduced by S. Diaz. It is known that s(D4) = 44/5 (cf. [Di]) , hence s′(M4) ≤ s(D4).

(ii) g = 5. We construct a covering curve for GP
1
5,3 = M

1
5,3 as follows: On F1 = Bl1(P

2)

we denote by C0 and f respectively, the generators of the Picard group where f2 =

0, C2
0 = −1, f · C0 = 1. Then we consider the family of genus 5 curves F ⊂ M5

obtained by blowing-up the base points of a Lefschetz pencil inside the ample linear
system |3C0 + 5f | on F1. By direct computation we find F · λ = 5, F · δ = 41, hence

F ·M
1
5,3 = −1. This implies that [M

1
5,3] /∈ Mov(M5) and that s′(M5) ≥ 41/5. The upper

bound on s′(M5) uses the Teixidor divisor GP
1,0
5,4 which has slope s(GP

1,0
5,4) = 33/4.

(iii) g = 6. We use that s(GP
1
6,4) = s(M6) = 47/6 and s(GP

1
6,5) = 65/8, hence

s(GP
1
6,4) ≤ s′(M6) ≤ s(GP

1
6,5).

(iv) g = 7. We consider the tetragonal divisor M
1
7,4 ≡ 15λ− 2δ0 − 9δ1 − 15δ2 − 18δ3 and

we construct a covering curve for M
1
7,4 using Theorem 0.7: A general [C] ∈ M1

7,4 has

a septic plane model with one triple point and 5 nodes. A covering curve F ⊂ M
1
7,4 is

obtained by blowing up P2 at 26 = 1 + 5 + 20 points, corresponding to the triple point,
the assigned nodes and the unassigned base points of a Lefschetz pencil in the linear

system |7 ·h−3 ·Ep0
−2 ·

∑5
i=1 Epi

|. We find that F ·λ = 7, F ·δ = 53, hence F ·M
1
7,4 < 0.

We obtain that [M
1
7,4] /∈ Mov(M7) and s′(M7) ≥ F · δ/F · λ = 53/7.

(v) g = 8. In this case we consider the Brill-Noether divisor M
2
8,7 corresponding to

septic plane curves with 7 nodes. To obtain a covering curve F ⊂ M
2
8,7 one has to

blow-up P2 in the 28 = 21 + 7 base points of a Lefschetz pencil of 7-nodal septics. It

easily follows that F · λ = 8, F · δ = 59, hence F · GP
2
8,7 < 0, that is [M

2
8,7] /∈ Mov(M8)

and s′(M8) ≥ 59/8. Moreover, s′(M8) ≤ s(GP
1
8,5) = 149/20 (cf. [F1]).

(vi) g = 9. The smallest known slopes of effective divisors on M9 are s(M
1
9,5) = 36/5

and s(GP
2
9,8) = 95/13 respectively (cf. [F1], Theorem 1.5). It follows that a multiple of

the linear system |GP
2
9,8| contains a moving divisor on M9.

(vii) g = 10. We use the results from [FP] and denote by K10 the closure of the locus
of curves [C] ∈ M10 lying on a K3 surface, hence s(K10) = 7. If F ⊂ K10 is the 1-
dimensional family obtained from a Lefschetz pencil of curves of genus 10 lying on a
general K3 surface, then F · δ/F · λ = 78/11, hence s′(M10) ≥ 78/11 > s(K10) and

moreover [K10] /∈ Mov(M10). Since s(GP
1
10,6) = 36/5 (cf. [F1], Proposition 1.6), we

obtain the estimate 78/11 ≤ s′(M10) ≤ 36/5.
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(viii) g = 11. This is also a consequence of [FP], Proposition 6.2. If Fg is the Baily-
Borel compactification of the moduli space of polarized K3 surfaces of degree 2g − 2,
then there is a rational map f : M11 − − > F11 given by f([C]) = [S,C], where S

is the unique K3 surface containing C . If F ⊂ M11 is a Lefschetz pencil of curves
corresponding to a general choice of [S,C] ∈ F11, then F ·λ = g +1 = 12 and F · δ = 84.
The map f contracts the pencil F , hence for each divisor A ∈ Ample(F11), we must
have that s(f∗(A)) = 7, that is, s′(M11) ≤ 7. Since F is a covering curve for M11 one
also has that s(M11) ≥ F · δ/F · λ = 7, hence s(M11) = s′(M11) = 7. �
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