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Abstract

Green’s Conjecture predicts than one can read off special linear series on an algebraic
curve, by looking at the syzygies of its canonical embedding. We extend Voisin’s results
on syzygies of K3 sections, to the case of K3 surfaces with arbitrary Picard lattice.
This, coupled with results of Voisin and Hirschowitz-Ramanan, provides a complete
solution to Green’s Conjecture for smooth curves on arbitrary K3 surfaces.

1. Introduction

Green’s Conjecture on syzygies of canonical curves asserts that one can recognize existence of
special linear series on an algebraic curve, by looking at the syzygies of its canonical embedding.
Precisely, if C is a smooth algebraic curve of genus g, Ki,j(C,KC) denotes the (i, j)-th Koszul
cohomology group of the canonical bundle KC and Cliff(C) is the Clifford index of C, then M.
Green [Gr84] predicted the vanishing statement

Kp,2(C,KC) = 0, for all p < Cliff(C). (1)

In recent years, Voisin [V02], [V05] achieved a major breakthrough by showing that Green’s
Conjecture holds for smooth curves C lying on K3 surfaces S with Pic(S) = Z ·C. In particular,
this establishes Green’s Conjecture for general curves of every genus. Using Voisin’s work, as well
as a degenerate form of [HR98], it has been proved in [Ap05] that Green’s Conjecture holds for
any curve C of genus g of gonality gon(C) = k 6 (g + 2)/2, which satisfies the linear growth
condition

dim W 1
k+n(C) 6 n, for 0 6 n 6 g − 2k + 2. (2)

Thus Green’s Conjecture becomes a question in Brill-Noether theory. In particular, one can check
that condition (2) holds for a general curve [C] ∈ M1

g,k in any gonality stratum of Mg, for all
2 6 k 6 (g + 2)/2. Our main result is the following:

Theorem 1.1. Let S be a K3 surface and C ⊂ S be a smooth curve with g(C) = g and
gon(C) = k. If k 6 (g + 2)/2, then C satisfies Green’s conjecture.

Note that Theorem 1.1 has been established in [V02] when Pic(S) = Z · C. The proof relies
(via [Ap05]) on the case of curves of odd genus of maximal gonality. Precisely, when g(C) = 2k−3

2000 Mathematics Subject Classification 13D02, 14C20

Research of the first author partly supported by a PN-II-ID-PCE-2008-2 grant (cod 1189, contract no 530)
and by a resumption of a Humboldt Research Fellowship. Research of both authors partly supported by the
Sonderforschungsbereich ”Raum-Zeit-Materie”. MA thanks HU Berlin for the kind hospitality and the excellent
atmosphere during the preparation of this work.



Marian Aprodu and Gavril Farkas

and gon(C) = k, Green’s conjecture is due to Voisin [V05] combined with results of Hirschowitz-
Ramanan [HR98]. Putting together these results and Theorem 1.1, we conclude:

Theorem 1.2. Green’s Conjecture holds for every smooth curve C lying on an arbitrary K3
surface S.

In the proof of Theorem 1.1, we distinguish two cases. When Cliff(C) is computed by a
pencil (that is, Cliff(C) = gon(C) − 2), we use a parameter count for spaces of Lazarsfeld-
Mukai bundles [La86], [CP95], in order to find a smooth curve C ′ ∈ |C|, such that C ′ verifies
condition (2). Since Koszul cohomology satisfies the Lefschetz hyperplane principle, one has that
Kp,2(C,KC) ∼= Kp,2(C ′,KC′). This proves Green’s Conjecture for C.

When Cliff(C) is no longer computed by a pencil, it follows from [CP95], [Kn09] that either
C is a smooth plane curve or else, a generalized ELMS example, in the sense that there exist
smooth curves D,Γ ⊂ S, with Γ2 = −2,Γ · D = 1 and D2 > 2, such that C ≡ 2D + Γ
and Cliff(C) = Cliff(OC(D)) = gon(C) − 3. This case requires a separate analysis, similarly to
[ApP08], since condition (2) is no longer satisfied, and we refer to Section 5 for details.

Theorem 1.1 follows by combining results obtained by using the powerful techniques developed
in [V02], [V05], with facts about the effective cone of divisors of Mg. As pointed out in [Ap05],
starting from a k-gonal smooth curve [C] ∈ Mg satisfying the Brill-Noether growth condition
(2), by identifying pairs of general points xi, yi ∈ C for i = 1, . . . , g + 3− 2k one creates a stable
curve [

X := C/x1 ∼ y1, . . . , xg+3−2k ∼ yg+3−2k

]
∈M2g+3−2k

having maximal gonality g + 3 − k, that is, lying outside the closure of the Hurwitz divisor
M1

2g+3−2k,g+3−k consisting of curves with a pencil g1
g+3−k. Since the class of the virtual failure

locus of Green’s Conjecture is a multiple of the Hurwitz divisor M1
2g+3−2k,g+3−k on M2g+3−2k,

see [HR98], Voisin’s theorem can be extended to all irreducible stable curves of genus 2g+ 3−2k
and having maximal gonality, in particular to X as well, and a posteriori to smooth curves of
genus g sitting on K3 surfaces with arbitrary Picard lattice. On the other hand, showing that
condition (2) is satisfied for a curve [C] ∈Mg, is a question of pure Brill-Noether nature.

Theorem 1.1 has strong consequences on Koszul cohomology of K3 surfaces. It is known
that for any globally generated line bundle L on a K3 surface S, the Clifford index of any
smooth irreducible curve is constant, equal to, say c, [GL87]. Applying Theorem 1.1, Green’s
hyperplane section theorem, the duality theorem and finally the Green-Lazarsfeld nonvanishing
theorem [Gr84], we obtain a complete description of the distribution of zeros among the Koszul
cohomology groups of S with values in L.

Theorem 1.3. Suppose L2 = 2g− 2 > 2. The Koszul cohomology group Kp,q(S,L) is nonzero if
and only if one of the following cases occur:

(i) q = 0 and p = 0, or

(ii) q = 1, 1 6 p 6 g − c− 2, or

(iii) q = 2 and c 6 p 6 g − 1, or

(iv) q = 3 and p = g − 2.

The analysis of the Brill-Noether loci implies also that the Green-Lazarsfeld Gonality Con-
jecture is satisfied for curves of Clifford dimension one on arbitrary K3 surfaces, general in their
linear systems, see Section 4 for details.
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2. Brill-Noether loci and their dimensions

Throughout this section we fix a K3 surface S and a globally generated line bundle L ∈ Pic(S).
We recall [SD], that the assumption that L be globally generated is equivalent to |L| having no
base components. We denote by |L|s the locus of smooth connected curves in |L|. For integers
r, d > 1, we consider the morphism πS : Wr

d(|L|) → |L|s with fibre over a point C ∈ |L|s
isomorphic to the Brill-Noether locus W r

d (C). The analysis of the Brill-Noether loci W r
d (C) for

a general curve C ∈ |L| in its linear system, is equivalent to the analysis of the restricted maps
πS : W → |L| over irreducible components W of Wr

d(|L|) dominating the linear system. The
main ingredient used to study Wr

d(|L|) is the Lazarsfeld-Mukai bundle [La86] associated to a
complete linear series. To any pair (C,A) consisting of a curve C ∈ |L|s and a base point free
linear series A ∈ W r

d (C) \W r+1
d (C), one associates the Lazarsfeld-Mukai bundle EC,A := F∨C,A

on S, via an elementary transformation along C ⊂ S:

0→ FC,A → H0(C,A)⊗OS
ev→ A→ 0. (3)

Dualizing the sequence (3), we obtain the short exact sequence

0→ H0(C,A)∨ ⊗OS → EC,A → KC ⊗A∨ → 0. (4)

The bundle EC,A comes equipped with a distinguished subspace of sections H0(C,A)∨ ∈
G(r + 1, H0(S,EC,A)). We summarize some characteristics of EC,A:

Proposition 2.1. One has that

(i) det(EC,A) = L.

(ii) c2(EC,A) = d.

(iii) h0(S,EC,A) = h0(C,A) + h1(C,A), h1(S,EC,A) = h2(S,EC,A) = 0.

(iv) χ(S,EC,A ⊗ FC,A) = 2(1− ρ(g, r, d)).
(v) EC,A is globally generated off the base locus of KC ⊗A∨.

In particular, EC,A is globally generated if KC ⊗ A∨ is globally generated. Conversely, if E
is a globally generated bundle on S with rk(E) = r + 1 and det(E) = L, there is a rational
map hE : G(r + 1, H0(S,E)) 99K |L|. defined in the following way. A general subspace Λ ∈
G(r+ 1, H0(S,E)) is mapped to the degeneracy locus of the evaluation map: evΛ : Λ⊗OS → E;
note that, generically, this degeneracy locus cannot be the whole surface. The image hE(Λ) is
a smooth curve CΛ ∈ |L|, and we set Coker(evΛ) := KCΛ

⊗ A∨Λ, where AΛ ∈ Pic(CΛ) and
deg(AΛ) = c2(E).

Remark 2.2. A rank-(r + 1) vector bundle E on S is a Lazarsfeld-Mukai bundle if and only
if H1(S,E) = H2(S,E) = 0 and there exists an (r + 1)-dimensional subspace of sections
Λ ⊂ H0(S,E), such that the the degeneracy locus of the morphism evΛ is a smooth curve.
In particular, being a Lazarsfeld-Mukai vector bundle is an open condition.

Coming back to the original situation when C ∈ |L|s and A ∈ W r
d (C) \W r+1

d (C) is globally
generated, we consider the Petri map

µ0,A : H0(C,A)⊗H0(C,KC ⊗A∨)→ H0(C,KC),

whose kernel can be described in terms of Lazarsfeld-Mukai bundles. Let MA the vector bundle
of rank r on C defined as the kernel of the evaluation map

0→MA → H0(C,A)⊗OC
ev→ A→ 0. (5)
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Twisting (5) with KC ⊗A∨, we obtain that Ker(µ0,A) = H0(C,MA ⊗KC ⊗A∨). Note also that
there is an exact sequence sequence on C

0→ OC → FC,A ⊗KC ⊗A∨ →MA ⊗KC ⊗A∨ → 0,

while from the defining sequence of EC,A one obtains the exact sequence on S

0→ H0(C,A)∨ ⊗ FC,A → EC,A ⊗ FC,A → FC,A ⊗KC ⊗A∨ → 0.

Since h0(C,FC,A) = h1(C,FC,A) = 0, one writes that

H0(C,EC,A ⊗ FC,A) = H0(C,FC,A ⊗KC ⊗A∨). (6)

We shall use the following deformation-theoretic result [Pare95], which is a consequence of
Sard’s theorem applied to the projection πS :Wr

d(|L|)→ |L|.

Lemma 2.3. Suppose W ⊂ Wr
d(|L|) is a dominating component, and (C,A) ∈ W is a general

element such that A is globally generated and h0(C,A) = r + 1. Then the coboundary map
H0(C,MA ⊗KC ⊗A∨)→ H1(C,OC) is zero.

The above analysis can be summarized as follows (compare with [ApP08], Corollary 3.3):

Proposition 2.4. If W ⊂ Wr
d(|L|) is a dominating component, and (C,A) ∈ W is a general

element such that A is globally generated and h0(C,A) = r + 1, then dimAW
r
d (C) 6 ρ(g, r, d) +

h0(C,EC,A ⊗ FC,A)− 1. Moreover, equality holds if W is reduced at (C,A).

In particular, if EC,A is a simple bundle, then µ0,A is injective and W is reduced at (C,A)
of dimension ρ(g, r, d) + g. Thus, the problem of estimating dimAW

r
d (C), when (C,A) ∈ W is

suitably general, can be reduced to the case when EC,A is not a simple bundle.

3. Varieties of pencils on K3 sections

Throughout the remaining sections we mix the additive and the multiplicative notation for
divisors and line bundles. If L is a line bundle on a smooth projective variety X and L ∈ Pic(X)
is a line bundle, we write L > 0 when H0(X,L) 6= 0. If E is a vector bundle on X and L ∈ Pic(X),
we set E(−L) := E ⊗ L∨.

As in the previous section, we fix a K3 surface S together with a globally generated line
bundle L on S. We denote by k the gonality of a general smooth curve in the linear system
|L|, and set g := 1 + L2/2. Suppose that ρ(g, 1, k) 6 0 (this leaves out one single case, namely
g = 2k − 3, when ρ(g, 1, k) = 1). Our aim is to prove the Koszul vanishing statement

Kg−Cliff(C)−1,1(C,KC) = 0,

for any curve C ∈ |L|s. By duality, this is equivalent to Green’s Conjecture for C.
It was proved in [Ap05] that any smooth curve C that satisfies the linear growth condition

(2), verifies both Green’s and Green-Lazarsfeld Gonality Conjecture. By comments made in the
previous section, a general curve C ∈ |L|s satisfies (2), if and only if for any n = 0, . . . , g−2k+2,
and any irreducible component W ⊂ W 1

k+n(C) such that a general element A ∈ W is globally
generated, has h0(C,A) = 2, and the corresponding Lazarsfeld-Mukai bundle EC,A is not simple,
the estimate dim W 6 n, holds.

Condition (2) for curves which are general in their linear system, can be verified either by
applying Proposition 2.4, or by estimating directly the dimension of the corresponding irreducible
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components of the scheme W1
k+n(|L|). In our analysis, we need the following description [DM89]

of non-simple Lazarsfeld-Mukai bundles, see also [CP95] Lemma 2.1:

Lemma 3.1. Let EC,A be a non-simple Lazarsfeld-Mukai bundle. Then there exist line bundles
M,N ∈ Pic(S) such that h0(S,M), h0(S,N) > 2, N is globally generated, and there exists a
zero-dimensional, locally complete intersection subscheme ξ of S such that EC,A is expressed as
an extension

0→M → EC,A → N ⊗ Iξ → 0. (7)

Moreover, if h0(S,M ⊗N∨) = 0, then ξ = ∅ and the extension splits.

We say that (7) is the Donagi-Morrison (DM) extension associated to EC,A.

Lemma 3.2 compare with [ApP08], Lemma 3.6. For any indecomposable non-simple Lazarsfeld-
Mukai bundle E on S, the DM extension (7) is uniquely determined by E.

Proof. We assume that two DM extensions

0→Mj → E → Nj ⊗ Iξj → 0, j = 1, 2,

are given. Observe first that H0(S,N1 ⊗M∨2 ) = H0(S,N2 ⊗M∨1 ) = 0. Indeed, if N1 −M2 > 0,
we use M1 −N1 > 0, M2 −N2 > 0 (we are in the non-split case), and M1 +N1 = M2 +N2 = L
to get a contradiction. Then H0(S, (N1⊗M∨2 )⊗Iξ1) = H0(S, (N2⊗M∨1 )⊗Iξ2) = 0, so we obtain
non-zero maps M1 →M2 and M2 →M1. This implies that M1 = M2.

Remark 3.3. Similarly, one can prove that a decomposable Lazarsfeld-Mukai bundle E cannot
be expressed as an extension (7) with ξ 6= ∅. Thus a DM extension is always unique, up to a
permutation of factors in the decomposable case. Moreover, E is decomposable if and only if the
corresponding DM extension is trivial.

The size of the space of endomorphisms of a non-simple Lazarsfeld-Mukai bundle can be
explicitly computed from the corresponding DM extension:

Lemma 3.4. Let E be a non-simple Lazarfeld-Mukai bundle on S with det(E) = L, and M and
N the corresponding line bundles from the DM extension. If E is indecomposable, then

h0(S,E ⊗ E∨) = 1 + h0(S,M ⊗N∨).

If E = M ⊕N , then h0(S,E ⊗ E∨) = 2 + h0(S,M ⊗N∨) + h0(S,N ⊗M∨).

Proof. The decomposable case being clear, we treat the indecomposable case. Twisting the DM
extension by E∨ and taking cohomology, we obtain the exact sequence

0→ H0(S,E∨(M))→ H0(S,E ⊗ E∨)→ H0(S,E∨(N)⊗ Iξ).

Since det(E) = L, it follows that E∨(M) ∼= E(−N), and E∨(N) ∼= E(−M). Therefore, one has
that h0(S,E∨(N)⊗Iξ) = h0(S,E(−M)⊗Iξ). Using extension (7), we claim that h0(S,M⊗N∨) =
h0(S,E(−N)). Indeed, if ξ 6= ∅, then h0(S, Iξ) = 0. If ξ = ∅, the image of 1 ∈ H0(S,OS) under
the map H0(S,OS)→ H1(S,M ⊗N∨) is precisely the extension class, hence it is non-zero.

Observe that H0(S,OS) ∼= H0(S,E(−M)), in particular, h0(S,E∨(N) ⊗ Iξ) 6 1. On the
other hand, the morphism H0(S,E ⊗ E∨) → H0(S,E∨(N) ⊗ Iξ) maps idE to the arrow E →
N ⊗ Iξ, hence it is non-zero. It follows that h0(S,E∨(N) ⊗ Iξ) = 1, and moreover, the map
H0(S,E ⊗ E∨)→ H0(S,E∨(N)⊗ Iξ) is surjective.
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In order to parameterize all pairs (C,A) with non-simple Lazarsfeld-Mukai bundles, we
need a global construction. We fix a non-trivial globally generated line bundle N on S with
H0(L(−2N)) 6= 0, and an integer ` > 0. We set M := L(−N) and g := 1 + L2/2. Define P̃N,` to
be the family of vector bundles of rank 2 on S given by non-trivial extensions

0→M → E → N ⊗ Iξ → 0, (8)

where ξ is a zero-dimensional lci subscheme of S of length `, and set

PN,` := {[E] ∈ P̃N,` : h1(S,E) = h2(S,E) = 0}.

Equivalently (by Riemann-Roch), [E] ∈ PN,` if and only if h0(S,E) = g−c2(E)+3 and h1(S,E) =
0. Note that any non-simple Lazarsfeld-Mukai bundle on S with determinant L belongs to some
family PN,`.

Remark 3.5. Using the Cayley-Bacharach property, we observe that P̃N,` 6= ∅ whenever Ext1
S(N⊗

Iξ,M) 6= 0.

Remark 3.6. If PN,` 6= ∅, then h1(S,N) = 0 and h0(S,N⊗Iξ) = h0(S,N)−`. Indeed, we choose
[E] ∈ PN,`. Then

h0(S,E) = h0(S,M) + h0(S,N ⊗ Iξ)− h1(S,M)
> h0(S,M) + h0(S,N)− length(ξ)− h1(S,M)

> χ(S,M) + χ(S,N)− ` = 2 +
1
2
M2 + 2 +

1
2
N2 − `

= 2 +
1
2
L2 −M ·N + 2− ` = g + 3− c2(E).

Since h0(S,E) = g + 3 − c2(E), all the inequalities are actually equalities, hence h1(S,N) = 0
and h0(S,N ⊗ Iξ) = h0(S,N)− `.

The family PN,`, which, a priori, might be the empty set, is an open Zariski subset of a
projective bundle of the Hilbert scheme S[`], as shown below:

Lemma 3.7. If ξ ∈ S[`] and Ext1
S(N ⊗ Iξ,M)) 6= 0, then

dim Ext1
S(N ⊗ Iξ,M) = `+ h1(S,M ⊗N∨)− h2(S,M ⊗N∨).

Proof. Let E be a vector bundle given by a non-trivial extension

0→M → E → N ⊗ Iξ → 0.

Applying HomS( − ,M) to this extension, we obtain the exact sequence

H0(S,OS)→ Ext1
S(N ⊗ Iξ,M)→ H1(S,E∨(M))→ H1(S,OS) = 0.

Since 1 ∈ H0(S,OS) is mapped to the extension class of E which is non-zero, it follows that
dim Ext1

S(N ⊗ Iξ,M) = h1(S,E∨(M)) + 1 = h1(S,E(−N)) + 1. We apply the identification
E∨(M) ∼= E(−N) as well as the Riemann-Roch theorem for E(−N) and M − N - note that
c1(E(−N)) = M−N and c2(E(−N)) = ` (compute the Chern classes from the defining extension
twisted with N∨):

χ(S,E(−N)) = 4 +
1
2
(
M −N

)2 − ` = 2 + χ(S,M −N)− `.

We note that h0(S,E(−N)) = h0(S,M −N). Indeed, if ` > 1 then h0(S, Iξ) = 0, and if ` = 0
use that 1 ∈ H0(S,OS) is mapped to the extension class through H0(S,OS) → H1(S,M −N).
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Moreover, h2(S,E(−N)) = h0(S,E(−M)) = 1, and we write that χ(S,E(−M)) = 2+h0(S,M⊗
N∨)− h1(S,M ⊗N∨)− `, that is,

h1(S,E(−N)) = `− 1 + h1(S,M ⊗N∨)− h2(S,M ⊗N∨).

Assuming that PN,` 6= ∅, we consider the Grassmann bundle GN,` over PN,` classifying pairs
(E,Λ) with [E] ∈ PN,` and Λ ∈ G(2, H0(S,E)). If d := c2(E) we define the rational map
hN,` : GN,` 99K W1

d(|L|), by setting hN,`(E,Λ) := (CΛ, AΛ), where AΛ ∈ Picd(CΛ) is such that
the following exact sequence on S holds:

0→ Λ⊗OS
evΛ→ E → KCΛ

⊗A∨Λ → 0.

Lemma 3.8. If PN,` 6= ∅, then dim GN,` = g + `+ h0(S,M ⊗N∨).

Proof. Let [E] ∈ PN,`. From Proposition 2.1 (ii), it is clear that

dim GN,` = 2`+ dim P
(
Ext1

S(N ⊗ Iξ,M)
)

+ 2(g + 1− c2(E)).

Applying Lemma 3.7, as well as the fact that l = c2(E)−M ·N , we find that

dim GN,` = 2g − 3M ·N + c2(E) + 1 + h1(S,M −N)− h2(S,M −N)

= (g + c2(E)−M ·N) +
(
g − 2M ·N + 1 + h1(S,M −N)− h2(S,M −N)

)
.

From Riemann-Roch, we can write

χ(S,M −N) = 2 +
1
2

(M −N)2 = 2 +
1
2
L2 − 2M ·N = g + 1− 2M ·N.

The conclusion follows.

Lemma 3.9. Assume that PN,` contains a Lazarsfeld-Mukai vector bundle E on S with c2(E) = d,
and let W ⊂ W1

d(|L|) be the closure of the image of the rational map hN,` : GN,` 99K W1
d(|L|).

Then dim W = g + d−M ·N = g + `.

Proof. Clearly W is irreducible, as GN,` is irreducible. If (C,A) ∈ Im(hN,`), then the fibre
h−1
N,`(C,A) is isomorphic to the projectivization of the space of morphisms from EC,A to KC ⊗
A∨. From (6), Hom(EC,A,KC ⊗ A∨) is isomorphic to H0(S,EC,A ⊗ FC,A), and has dimension
h0(S,M ⊗ N∨) + 1, because of Lemma 3.4. Therefore, the general fibre of hN,` has dimension
h0(S,M ⊗N∨). We apply now Lemma 3.8.

Lemma 3.10. Suppose that a smooth curve C ∈ |L| has Clifford dimension one and A is a
globally generated line bundle on C with h0(C,A) = 2 and [EC,A] ∈ PN,`. Then M ·N > gon(C).

Proof. By Lemma 3.1 it follows that M |C contributes to Cliff(C). From the exact sequence
0 → N∨ → M → M |C → 0 and from the observation that h1(S,N) = 0 (see Remark 3.6), we
obtain by direct computation that

Cliff(M |C) = M ·N +M2 − 2h0(S,M) + 2 = M ·N − 2− 2h1(S,M) > k − 2,

that is, M ·N > k + 2h1(S,M) > k.

Remark 3.11. If we drop the condition on the Clifford dimension in the hypothesis of Lemma
3.10, we obtain the inequality M ·N > Cliff(C) + 2.
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So far, we took care of indecomposable non-simple Lazarsfeld-Mukai bundles, and computed
the dimensions of the corresponding parameter spaces. The decomposable case is much sim-
pler. Let E = EC,A = M ⊕ N be a decomposable Lazarsfeld-Mukai bundle. It was proved
in [La89] that the differential of the natural map hE : G(2, H0(S,E)) 99K |L|s at a point
[Λ], with Λ = H0(C,A)∨, coincides with the multiplication map µ0,A. Hence, if the Grass-
mannian G(2, H0(S,E)) dominates the linear system, the multiplication map is surjective at a
general point and the corresponding irreducible components of the Brill-Noether loci are zero-
dimensional. This case can occur only if the Brill-Noether number is non-negative.

All these intermediate results amount to the following:

Theorem 3.12. Let S be a K3 surface and L a globally generated line bundle on S, such that
general curves in |L| are of Clifford dimension one. Suppose that ρ(g, 1, k) 6 0, where L2 = 2g−2
and k is the (constant) gonality of all curves in |L|s. Then a general curve C ∈ |L| satisfies the
linear growth condition (2), thus Green’s Conjecture is verified for any smooth curve in |L|.

In the case ρ(g, 1, k) = 1, Green’s Conjecture is also verified for smooth curves in |L|, cf.
[V05], [HR98]. To sum up, Green’s Conjecture is verified for any curve of Clifford dimension one
on a K3 surfaces.

Proof. It suffices to estimate the dimension of dominating irreducible componentsW ofW1
k+n(|L|),

with n = 0, . . . , g − k + 2, with general point corresponding to a non-simple indecomposable
Lazarsfeld-Mukai bundle. Lemmas 3.9 and 3.10 yield dim W 6 g+n, which finishes the proof.

Remark 3.13. The proof of Theorem 3.12 shows that for d > g− k+ 2, every dominating com-
ponent of W1

d(|L|) corresponds to simple Lazarsfeld-Mukai bundles. In particular, for a general
curve C ∈ |L|, one has dim W 1

d (C) = ρ(g, 1, d).

Remark 3.14. The problem of deciding whether Lazarsfeld-Mukai bundles appear in a given
space PN,` is a non-trivial one, cf. Remark 2.2.

4. A criterion for the Green-Lazarsfeld Gonality Conjecture

Along with Green’s Conjecture, another statement of similar flavor was proposed by Green and
Lazarsfeld, [GL86].

Conjecture 4.1. (The Gonality Conjecture) For any smooth curve C of gonality d, every non-
special globally generated line bundle L on C of sufficiently high degree satisfiesKh0(L)−d,1(C,L) =
0.

Conjecture 4.1 is equivalent to the seemingly weaker statement that there exists a globally
generated line bundle L ∈ Pic(C) with h1(C,L) = 0 for which the Koszul vanishing holds [Ap02].
On a curve C with the lgc property (2), line bundles of type KC(x + y), where x, y ∈ C are
general points, verify the Gonality Conjecture [Ap05]. In particular, Theorem 3.12 implies the
following:

Corollary 4.2. Let S be a K3 surface and L a globally generated line bundle on S, such
that general curves in |L| are of Clifford dimension one. Then a general curve C ∈ |L| verifies
Conjecture 4.1.

The main result of this short section is a refinement of the main result of [Ap05]:
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Theorem 4.3. Let C be a smooth curve of Clifford dimension one and x, y ∈ C be distinct
points, and denote

Zn := {A ∈W 1
k+n(C) : h0(C,A(−x− y)) > 1}.

Suppose that dim Zn 6 n − 1, for all 0 6 n 6 g − 2k + 2. Then the bundle KC(x + y) verifies
the Gonality Conjecture.

The condition in the statement of Theorem 4.3 means that passing through the points x and
y is a non-trivial condition on any irreducible component of maximal allowed dimension n of the
Brill-Noether locus W 1

k+n(C), for all 0 6 n 6 g − 2k + 2.

Proof. The proof is an almost verbatim copy of the proof of [Ap05] Theorem 2. Define ν :=
g−2k+2. The idea is to show that for any 0 6 n 6 ν, and for (n+1) pairs of distinct general points
x0+y0, x1+y1, . . . , xn+yn ∈ C2, there is no line bundle A ∈W 1

k+n(C) with h0(C,A(−xi−yi)) 6= 0
for all 1 6 i 6 n, such that either h0(C,A(−x− y)) 6= 0 or h0(C,A(−x0 − y0)) 6= 0. To this end,
consider the incidence varieties(

n∏
i=1

C2

)
×Zn ⊃ {(x1 + y1, . . . , xn + yn, A) : h0(A(−xi − yi)) 6= 0, ∀i},

respectively,(
n+1∏
i=1

C2

)
×W 1

k+n(C) ⊃ {(x0 + y0, x1 + y1, . . . , xn + yn, A) : h0(A(−xi − yi)) 6= 0, ∀i}.

The fibres of the projection to Zn are n-dimensional, hence the incidence variety is at most
(2n − 1)-dimensional and it cannot dominate

∏n
i=1C2. Similarly, the second variety is at most

(2n+ 1)-dimensional. Note that the condition to pass through a pair of general points is a non-
trivial condition on every variety of complete pencils. To conclude, apply [Ap05] Proposition
8.

5. Curves of higher Clifford dimension

We analyze the Koszul cohomology of curves of higher Clifford dimension on a K3 surface S.
This case has similarities to [ApP08], where one focused on K3 surfaces with Picard number 2.
Since plane curves are known to verify Green’s Conjecture, the significant cases occur when the
Clifford dimension is at least 3. Note that, unlike the Clifford index, the Clifford dimension is not
semi-continous. An example was given by Donagi-Morrison [DM89]: If ε : S → P2 is a double
sextic and L = ε∗(OP2(3)), then the general element in |L| is isomorphic to a smooth plane sextic,
hence it has Clifford dimension 2, while special points correspond to bielliptic curves and are of
Clifford dimension 1.

It was proved in [CP95] and [Kn09] that, except for the Donagi-Morrison example, if a globally
generated linear system |L| on S contains smooth curves of Clifford dimension at least 2, then
L = OS(2D+Γ), where D,Γ ⊂ S are smooth curves, D2 > 2 (hence h0(S,OS(D)) > 2), Γ2 = −2
and D · Γ = 1; the case when L is ample is treated in [CP95], whereas the general case when
L is globally generated is settled in [Kn09]. If the genus of D is r > 3, then the genus of a
smooth curve C ∈ |L| equals 4r− 2 > 10, and gon(C) = 2r, while Cliff(C) = 2r− 3; the Clifford
dimension of C is r. From now on, we assume that we are in this situation.

9
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Green’s hyperplane section theorem implies that the Koszul cohomology is constant in a
linear system. As in [ApP08], we degenerate a smooth curve C ∈ |2D + Γ| to a reducible curve
X + Γ with X ∈ |2D|. In order to be able to carry out this plan, we first analyze the geometry
of the curves in |2D|. Notably, we shall prove:

Theorem 5.1. The hypothesis of Theorem 4.3 are verified for a general curve X ∈ |2D| and the
two points of intersection X · Γ.

The proof of Theorem 5.1 proceeds in several steps. The first result describes the fundamental
invariants of a quadratic complete intersection section of S:

Lemma 5.2. Any smooth curve X ∈ |2D| has genus 4r−3, gonality 2r−2, and Cliff(X) = 2r−4.

Proof. Since Cliff(D|X) = 2r − 4, we obtain Cliff(X) 6 2r − 4 < (g(X)− 1)/2, that is, Cliff(X)
is computed by a line bundle B ∈ Pic(S), cf. [GL87]. Both bundles B and B′ := OS(X) ⊗ B∨
are globally generated, hence B · Γ > 0 and B′ · Γ > 0. Since X · Γ = 2, we can assume that
B · Γ 6 1. We may also assume, cf. [Ma89] Corollary 2.3, that h0(S,B) = h0(X,B|X) and
h0(S,B′) = h0(X,B′|X). Then if C ∈ |L| is smooth as above, we obtain the estimate

Cliff(X) = B ·X − 2h0(S,B) + 2 > B · C − 2h0(C,B|C) + 1 > 2r − 4.

Since X has Clifford dimension 1, it follows that gon(X) = 2r − 2.

It suffices therefore to analyze the structure of the loci W 1
2r−2+n(X) where n 6 3 = g(X) −

2gon(X) + 2, and more precisely those components of dimension n.

Lemma 5.3. We fix a general X ∈ |2D|, viewed as a half-canonical curve X
|D|−→ Pr.

– W 1
2r−2(X) is finite and all minimal pencils g1

2r−2 on X are given by the rulings of quadrics
of rank 4 in H0(Pr, IX/Pr(2)).

– X has no base point free pencils g1
2r−1, that is, W 1

2r−1(X) = X +W 1
2r−2(X).

– For n = 2, 3, if A ∈W 1
2r−2+n(X) is a base point free pencil, then the vector bundle EX,A is

not simple.

In all cases n 6 3, if A belongs to an n-dimensional component of W 1
2r−2+n(X), then the corre-

sponding DM extension

0→M → EX,A → N ⊗ Iξ → 0

verifies length(ξ) = n, M · N = 2r − 2 and M · Γ = N · Γ = 1. When n = 2, 3, we can take
M = N = OX(D).

Proof. We use Accola’s lemma, cf. [ELMS89] Lemma 3.1. If A ∈W 1
2r−2+n(X) is base point free

with n 6 3, then h0(X,OX(D)⊗A∨) > 2−n/2. In particular, when n = 0, 1, we find that A′ :=
OX(D)⊗A∨ is a pencil as well. When n = 1, we find that A′ ∈W 1

2r−3(X), which is impossible,
that is, X carries no base point free pencils g1

2r−1. If n = 0, then deg(A) = deg(A′) = 2r− 2 and
this corresponds to a quadric Q ∈ H0(Pr, IX/Pr(2)) with rk(Q) = 4 and X ∩ Sing(Q) = ∅, such
that the rulings of Q cut out on X, precisely the pencils A and A′ respectively. If n = 2, 3, we find
that h0(X,KX(−2A)) 6= 0, thus the kernel of the Petri map Ker µ0,A = H0(X,KX(−2A)) 6= 0,
and then the Lazarsfeld-Mukai bundle EX,A cannot be simple.

The vector bundle E = EX,A is thus expressible as a DM extension

0→M → EX,A → N ⊗ Iξ → 0,

10
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and we recall that N is globally generated with h1(S,N) = 0. Suppose first that n 6= 0, thus
n ∈ {2, 3}. Then h0(S,M ⊗ N∨) 6= 0, for otherwise ξ = ∅, the extension is split, and the split
case only produces zero-dimensional components of the Brill-Noether loci, whilst we are in the
higher dimensional case. From the exact sequence defining EX,A coupled with Accola’s Lemma,
we obtain the isomorphisms

H0(S,E(−D)) ∼= H0(X,KX(−A)⊗OX(−D)) = H0(X,OX(D −A)) 6= 0,

therefore H0(S,M(−D)) ∼= H0(S,E(−D)) 6= 0. Choose an effective divisor F ∈ |M(−D)| and
then F ∈ |OS(D)(−N)| as well. From Lemmas 3.9 and 3.10 and the generality assumption on
X, we find that length(ξ) = n, M ·N = gon(X) = 2r − 2 and h1(S,M) = 0. Furthermore, one
computes that F 2 = 0. Since, by degree reasons, h0(S,OS(F )) = h0(X,OX(D − A)) = 1 one
obtains that F ≡ 0, that is, M = N = OX(D).

If n = 0, then in the associated DM extension, ξ = 0, and M,N ∈ Pic(S) are globally
generated, M · N = 2r − 2 and h0(M) = h0(M |X) and h0(N) = h0(N |X). The intersection
of Γ with one of the bundles M or N is 6 1; suppose M · Γ 6 1. We choose a smooth curve
C ∈ |2D + Γ|, and compute

Cliff(M |C) = M · C − 2h0(M |C) + 2 6 M ·X − 2h0(M) + 2 + 1 = Cliff(X) + 1,

hence M computes Cliff(C) and M · Γ = N · Γ = 1.

Lemma 5.4. Let X ∈ |2D| be any smooth curve, and x, y ∈ X · Γ. For any integer n > 0, and
any base point free pencil A ∈W 1

2r−2+n(X), the following are equivalent:

(i) h0(X,A(−x− y)) 6= 0;

(ii) EX,A|Γ ∼= OΓ ⊕OΓ(2).

Proof. The non-vanishing of H0(X,A(−x− y)) is equivalent to

h0(X,A(−x− y)) = 1. (9)

Twisting the defining exact sequence of EX,A by OS(Γ), we obtain

0→ H0(X,A)∨ ⊗OS(Γ)→ EX,A ⊗OS(Γ)→ KX ⊗A∨(x+ y)→ 0. (10)

By Riemann-Roch, H1(S,OS(Γ)) = 0. By taking cohomology, h0(C,A(−x− y)) = 1 if and only
if h0(S,EX,A⊗OS(Γ)) = 2r+3−n. On the other hand, h0(S,EX,A) = 2+h1(X,A) = 2r+2−n.
Consider the (twisted) exact sequence defining Γ:

0→ EX,A → EX,A ⊗OS(Γ)→ EX,A|Γ(−2)→ 0.

We find by taking cohomology that x, y ∈ C lie in the same fibre of |A| if and only if h0(Γ, EX,A|Γ(−2)) =
1. Expressing EX,A|Γ = OΓ(a) ⊕ OΓ(b), with a + b = 2, condition (9) becomes equivalent to
EX,A|Γ ∼= OΓ ⊕OΓ(2).

Proof of Theorem 5.1. For a base point free A ∈W 1
2r−2+n(X) with n = 0, 2, 3, the vector bundle

E := EX,A appears as an extension

0→M → E → N ⊗ Iξ → 0,

with length(ξ) = n, and M ·Γ = N ·Γ = 1. Recall that being a Lazarsfeld-Mukai bundle is an open
condition in any flat family of bundles, Remark 2.2. Hence, LM bundles in a parameter space
PN,n correspond to general cycles ξ ∈ S[n]. For n = 0, we see immediately that E|Γ = OΓ(1)⊕2.
For n = 2, 3 the same is true for ξ such that ξ ∩ Γ = ∅. To conclude, we apply Lemma 5.4. 2
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Remark 5.5. The variety W1
2r−2(|2D|) is birationally equivalent to the parameter space of

pairs (Q,Π), where Q ∈ |OPr(2)| is a quadric of rank 4 and Π ⊂ Q is a ruling. In particular,
W1

2r−2(|2D|) is irreducible (and of dimension g).

Theorem 5.1 and Theorem 4.3 imply the following:

Corollary 5.6. For a general curve X ∈ |2D|, we have K2r,1(X,KX ⊗OS(Γ)) = 0.

The main result of this section is (compare to [ApP08]):

Theorem 5.7. Smooth curves of Clifford dimension at least three on K3 surfaces satisfy Green’s
Conjecture.

Proof. As in [ApP08, Section 4.1], for all p > 1, we have isomorphisms

Kp,1(X + Γ, ωX+Γ) ∼= Kp,1(X,KX(Γ)).

Corollary 5.6 shows that K2r,1(X + Γ, ωX+Γ) = 0, implying the vanishing of K2r,1(S,L), via
Green’s hyperplane section theorem. Using the hyperplane section theorem again, we obtain
K2r,1(C,KC) = 0, for any smooth curve C ∈ |L|, that is, the vanishing predicted by Green’s
Conjecture for C.

Theorems 3.12 and 5.7, altogether complete the proof of Theorem 1.1.
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