
THE INTERMEDIATE TYPE OF CERTAIN MODULI SPACES OF CURVES

GAVRIL FARKAS AND ALESSANDRO VERRA

A well-established principle of Mumford asserts that all moduli spaces of curves
of genus g > 2 (with or without marked points or level structure), are varieties of gen-
eral type, except a finite number of cases occurring for relatively small genus, when
these varieties tend to be unirational, or at least uniruled, see [HM], [EH1], [FL], [F3],
[Log], [V] for illustrations of this fact. In all known cases, the transition from uniruled-
ness to being of general type is quite sudden and until now no examples were known
of naturally defined moduli spaces of curves of intermediate Kodaira dimension. The
aim of this paper is to discuss the very surprising birational geometry of special moduli
spaces of curves, which in particular have intermediate Kodaira dimension.

The moduli space Sg of smooth spin curves parameterizes pairs [C, η], where
[C] ∈ Mg is a curve of genus g and η ∈ Picg−1(C) is a theta-characteristic. The map
π : Sg → Mg is an étale covering of degree 22g and Sg is a disjoint union of two
connected components S+

g and S−
g of relative degrees 2g−1(2g + 1) and 2g−1(2g − 1)

corresponding to even and odd theta-characteristics respectively. We denote by Sg the
Cornalba compactification of Sg, that is, the coarse moduli space of the stack of stable
spin curves of genus g, cf. [C]. The projection π : Sg → Mg extends to a finite covering

π : Sg → Mg branched along the boundary divisor ∆0 of Mg. It is known that S
+
g is a

variety of general type for g > 8 and uniruled for g < 8, cf. [F3]. We show that the only

remaining case, that of S
+
8 , gives rise to a variety of Calabi-Yau type:

Theorem 0.1. The Kodaira dimension of S
+
8 is equal to zero.

We point out that the Kodaira dimension of the odd spin moduli space S
−
g is

known for all genera g, cf. [FV]. Thus S
−
g is uniruled for g ≤ 11 (even unirational

for g ≤ 9), and of general type for g ≥ 12. In particular, we observe the surprising

phenomenon that S
−
8 is unirational, whereas S

+
8 is of Calabi-Yau type!

The proof of Theorem 0.1 relies on two main ideas: Following [F3], one finds an
explicit effective representative for the canonical divisor K

S
+

8

as a Q-combination of the

divisor Θnull ⊂ S
+
8 of vanishing theta-nulls, the pull-back π∗(M

2
8,7) of the Brill-Noether

divisor M
2
8,7 on M8 of curves with a g2

7, and boundary divisor classes corresponding
to spin curves whose underlying stable model is of compact type. Each irreducible
component of this particular representative of K

S
+

8

is rigid (see Section 1). Then we use

in an essential way the existence of a Mukai model of M8 as a GIT quotient of a bundle
over the Grassmannian G := G(2, 6) cf. [M2], in order to prove the following result:
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Proposition 0.2. The uniruled divisor Θnull ⊂ S
+
8 is swept by rational curves R ⊂ S

+
8 such

that R ·Θnull = −1 andR ·π∗(M
2
8,7) = 0. Furthermore R is disjoint from all boundary divisors

Ai, Bi ⊂ S
+
8 for i = 1, . . . , 4.

The pencil R corresponds to spin curves lying on special doubly elliptic K3 sur-
faces S, chosen in such a way that the rank 3 quadric containing the underlying canon-
ical curve C ⊂ P7 corresponding to a general point [C, η] ∈ Θnull, lifts to a rank 4
quadric in P8 containing the K3 surface S ⊃ C . The existence of such K3 extensions
of C follows from a precise description of quadrics containing the Plücker embedding
of the Grassmannian G ⊂ P14 (see Sections 2 and 3). Proposition 0.2 implies that K

S
+

8

expressed as a weighted sum of Θnull, the pull-back π∗(M
2
8,7) and boundary divisors

Ai, Bi, i = 1, . . . , 4, is rigid as well. Equivalently, κ(S
+
8 ) = 0.

Our next result concerns the moduli space Mg,n of stable n-pointed curves of
genus g. For a given genus g ≥ 0, we define the numerical invariant

ζ(g) := min{n ∈ Z≥0 : Mg,n is a variety of general type}.

We think of ζ(g) as measuring the complexity of the general curve of genus g. From the
definition, it follows that Mg,n is of general type for n ≥ ζ(g). Clearly ζ(0) = ζ(1) = ∞,
whereas ζ(g) = 0 for g ≥ 24, cf. [HM], [EH2]. There exist explicit upper bounds for
ζ(g) for 4 ≤ g ≤ 23, see [Log], [F2] Theorem 1.10. In particular, it is known that M10,n

is uniruled for n ≤ 9 and of general type for n ≥ 11, that is, ζ(10) ≤ 11. Similarly, it

is known that M11,n is uniruled for g ≤ 10 and of general type for g ≥ 12. Until now,

no example of a space Mg,n (g ≥ 2) having intermediate type was known. Perhaps, the
most picturesque finding of our study is the following:

Theorem 0.3. The moduli space M11,11 has Kodaira dimension 19.

Note that dim(M11,11) = 41. In particular, Theorem 0.3 determines the value
ζ(11) = 12, hence ζ(11) > ζ(10). This explains, in precise terms, that counter-intuitively,
algebraic curves of genus 10 are more complicated than curves of genus 11!

The equality κ(M11,11) = 19 is related to the existence of the Mukai fibration

q11 : M11,11 99K F11,

over the 19-dimensional moduli space F11 of polarized K3 surfaces of degree 20. The
map q11 associates to a general element [C, x1, . . . , x11] ∈ M11,11 the unique K3 surface
S containing C , see [M3]. According to Mukai, S is precisely the ”dual” K3 surface to
the non-abelian Brill-Noether locus corresponding to vector bundles of rank 2

S∨ = SUC(2,KC , 6) := {E ∈ SUC(2,KC ) : h0(C,E) ≥ 7}.

An analysis of the fibration q11 shows that, (i) the divisor nD11 is a fixed compo-
nent of the pluri-canonical linear series |nKM11,11

| for all n ≥ 1, and (ii) the difference

KM11,11
−D11 is essentially the pull-back of an ample class on F11.

The proof of Theorem 0.3 is similar in spirit to the proof of Theorem 0.1. An
important role is played by the effective divisor

Dg := {[C, x1, . . . , xg] ∈ Mg,g : h0
(

C,OC (x1 + · · · + xg)
)

≥ 2}.
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The class of the closure of Dg inside Mg,g is the following, cf. [Log] Theorem 5.4:

Dg ≡ −λ+

g
∑

i=1

ψi − 0 · δirr −

[g/2]
∑

i=0

∑

T⊂{1,...,g}

(

|#(T ) − i| + 1

2

)

δi:T ∈ Pic(Mg,g).

Using [FP], as well as the expression of KMg,n
in terms of generators of Pic(Mg,n), one

finds an explicit representative of KM11,11
as an effective combination of the pull-back

to M11,11 of the 6-gonal divisor M
1
11,6 on M11, the divisor D11, and certain boundary

classes δi:S . We then construct explicit curves R ⊂ M11,11 passing through a general

point of D11, such that −R ·D11 > 0 equals precisely the multiplicity of D11 in the above
mentioned expression of KM11,11

. More generally, we show the following:

Theorem 0.4. For g ≤ 11, the effective divisor Dg ∈ Eff(Mg) is extremal and rigid.

In genus 11, using the existence of the above mentioned Mukai fibration, this

eventually leads to the equality κ(M11,11) = κ(M11,M
1
11,6) = 19, where the last sym-

bol stands for the Iitaka dimension of the linear system |M
1
11,6| generated by the Brill-

Noether divisors on M11.

1. Spin curves and the divisor Θnull

We begin by setting notation and terminology. If M is a Deligne-Mumford stack,
we denote by M its associated coarse moduli space. Let X be a complex Q-factorial
variety. A Q-Weil divisor D on X is said to be movable if codim

(
⋂

m Bs|mD|,X
)

≥ 2,
where the intersection is taken over all m which are sufficiently large and divisible. We
say that D is rigid if |mD| = {mD}, for all m ≥ 1 such that mD is an integral Cartier
divisor. The Kodaira-Iitaka dimension of a divisor D on X is denoted by κ(X,D). As
usual, we set κ(X) := κ(X,KX ).

If D = m1D1 + · · · +msDs is an effective Q-divisor on X, with irreducible com-
ponentsDi ⊂ X and mi > 0 for i = 1, . . . , s, a (trivial) way of showing that κ(X,D) = 0
is by exhibiting for each 1 ≤ i ≤ s, a curve Γi ⊂ X passing through a general point of
Di, such that Γi ·Di < 0 and Γi ·Dj = 0 for i 6= j.

We recall basic facts about the moduli space S
+
g of even spin curves of genus g, see

[C], [F3] for details. An even spin curve of genus g consists of a triple (X, η, β), where X
is a genus g quasi-stable curve, η ∈ Picg−1(X) is a line bundle of degree g − 1 such that
ηE = OE(1) for every rational component E ⊂ X such that #(E ∩ (X − E)) = 2 (such
a component is called exceptional), and h0(X, η) ≡ 0 mod 2, and finally, β : η⊗2 → ωX

is a sheaf homomorphism which is generically non-zero along each non-exceptional
component of X. Even spin curves of genus g form a smooth Deligne-Mumford stack

π : S
+
g → Mg. At the level of coarse moduli schemes, the morphism π : S

+
g → Mg is

the stabilization map π([X, η, β]) := [st(X)], which associates to a quasi-stable curve its
stable model.

We explain the boundary structure of S
+
g : If [X, η, β] ∈ π−1([C ∪y D]), where

[C, y] ∈ Mi,1, [D, y] ∈ Mg−i,1 and 1 ≤ i ≤ [g/2], then necessarily X = C ∪y1
E ∪y2

D,
where E is an exceptional component such that C ∩ E = {y1} and D ∩ E = {y2}.

Moreover η =
(

ηC , ηD, ηE = OE(1)
)

∈ Picg−1(X), where η⊗2
C = KC , η

⊗2
D = KD . The
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condition h0(X, η) ≡ 0 mod 2, implies that the theta-characteristics ηC and ηD have the

same parity. We denote by Ai ⊂ S
+
g the closure of the locus corresponding to pairs

([C, y, ηC ], [D, y, ηD]) ∈ S+
i,1 × S+

g−i,1

and by Bi ⊂ S
+
g the closure of the locus corresponding to pairs

([C, y, ηC ], [D, y, ηD ]) ∈ S−
i,1 × S−

g−i,1.

We set αi := [Ai] ∈ Pic(S
+
g ), βi := [Bi] ∈ Pic(S

+
g ), and then one has that

(1) π∗(δi) = αi + βi.

We recall the description of the ramification divisor of the covering π : S
+
g → Mg.

For a point [X, η, β] ∈ S
+
g corresponding to a stable model st(X) = Cyq := C/y ∼ q,

with [C, y, q] ∈ Mg−1,2, there are two possibilities depending on whether X possesses
an exceptional component or not. IfX = Cyq (i.e. X has no exceptional component) and

ηC := ν∗(η) where ν : C → X denotes the normalization map, then η⊗2
C = KC(y + q).

For each choice of ηC ∈ Picg−1(C) as above, there is precisely one choice of gluing the

fibres ηC(y) and ηC(q) such that h0(X, η) ≡ 0 mod 2. We denote byA0 the closure in S
+
g

of the locus of spin curves [Cyq, ηC ∈
√

KC(y + q)] as above.
If X = C ∪{y,q} E, where E is an exceptional component, then ηC := η ⊗ OC is

a theta-characteristic on C . Since H0(X,ω) ∼= H0(C,ωC), it follows that [C, ηC ] ∈ S+
g−1.

We denote by B0 ⊂ S
+
g the closure of the locus of spin curves

[

C ∪{y,q} E, E ∼= P1, ηC ∈
√

KC , ηE = OE(1)
]

∈ S+
g .

If α0 := [A0], β0 := [B0] ∈ Pic(S
+
g ), we have the relation, see [C]:

(2) π∗(δ0) = α0 + 2β0.

In particular, B0 is the ramification divisor of π. An important effective divisor on S
+
g

is the locus of vanishing theta-nulls

Θnull := {[C, η] ∈ S+
g : H0(C, η) 6= 0}.

The class of its compactification inside S
+
g is given by the formula, cf. [F3]:

(3) Θnull ≡
1

4
λ−

1

16
α0 −

1

2

[g/2]
∑

i=1

βi ∈ Pic(S
+
g ).

It is also useful to recall the formula for the canonical class of S
+
g :

K
S

+

g

≡ π∗(KMg
) + β0 ≡ 13λ− 2α0 − 3β0 − 2

[g/2]
∑

i=1

(αi + βi) − (α1 + β1).

An argument involving spin curves on certain singular canonical surfaces in P6,
implies that for g ≤ 9, the divisor Θnull is uniruled and a rigid point in the cone of

effective divisors Eff(S
+
g ):
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Theorem 1.1. For g ≤ 9 the divisor Θnull ⊂ S
+
g is uniruled and rigid. Precisely, through a

general point of Θnull there passes a rational curve Γ ⊂ S
+
g such that Γ·Θnull < 0. In particular,

if D is an effective divisor on S
+
g with D ≡ nΘnull for some n ≥ 1, then D = nΘnull.

Proof. We assume 7 ≤ g ≤ 9, the other cases being similar and simpler. A general point

[C, ηC ] ∈ Θnull corresponds to a canonical curve C
|KC |
→֒ Pg−1 lying on a rank 3 quadric

Q ⊂ Pg−1 such that C ∩ Sing(Q) = ∅. The pencil ηC is recovered from the ruling of Q.
Let V ∈ G

(

7,H0(C,KC)
)

be a general subspace such that if πV : Pg−1
99K P(V ∨)

is the projection, then Q̃ := πV (Q) is a quadric of rank 3. Let C ′ := πV (C) ⊂ P(V ∨) be
the projection of the canonical curve C . By counting dimensions we find that

dim
{

IC′/P(V ∨)(2) := Ker{Sym2(V ) → H0(C,K⊗2
C )}

}

≥ 31 − 3g ≥ 4,

that is, the embedded curve C ′ ⊂ P6 lies on at least 4 independent quadrics, namely

the rank 3 quadric Q̃ and Q1, Q2, Q3 ∈ |IC′/P(V ∨)(2)|. By choosing V sufficiently general

we make sure that S := Q̃ ∩Q1 ∩Q2 ∩Q3 is a canonical surface in P(V ∨) with 8 nodes

corresponding to the intersection
⋂3

i=1Qi ∩ Sing(Q̃) (This transversality statement can
also be checked with Macaulay by representing C as a section of the corresponding
Mukai variety). From the exact sequence on S,

0 −→ OS −→ OS(C) −→ OC(C) −→ 0,

coupled with the adjunction formula OC(C) = KC ⊗ K∨
S|C = OC , as well as the fact

H1(S,OS) = 0, it follows that dim |C| = 1, that is, C ⊂ S moves in its linear system. In

particular, Θnull is a uniruled divisor for g ≤ 9.

We determine the numerical parameters of the family Γ ⊂ S
+
g induced by varying

C ⊂ S. Since C2 = 0, the pencil |C| is base point free and gives rise to a fibration

f : S̃ → P1, where S̃ := Bl8(S) is the blow-up of the nodes of S. This in turn induces a

moduli map m : P1 → S
+
g and Γ =: m(P1). We have the formulas

Γ · λ = m∗(λ) = χ(S,OS) + g − 1 = 8 + g − 1 = g + 7,

and

Γ · α0 + 2Γ · β0 = m∗(π∗(δ0)) = m∗(α0) + 2m∗(β0) = c2(S̃) + 4(g − 1).

Noether’s formula gives that c2(S̃) = 12χ(S̃,OS̃) −K2
S̃

= 12χ(S,OS) −K2
S = 80, hence

m∗(α0) + 2m∗(β0) = 4g + 76. The singular fibres corresponding to spin curves lying in
B0 are those in the fibres over the blown-up nodes and all contribute with multiplicity
1, that is, Γ · β0 = 8 and then Γ · α0 = 4g + 60. It follows that Γ · Θnull = −2 < 0
(independent of g!), which finishes the proof.

To illustrate one of the cases g < 7, we discuss the situation on S
+
4 . We denote

by S = F2 the blow-up of the vertex of a cone Q ⊂ P3 over a conic in P3 and write
Pic(S) = Z · F + Z · C0, where F 2 = 0, C2

0 = −2 and C0 · F = 1. We choose a
Lefschetz pencil of genus 4 curves in the linear system |3(C0 + 2F )|. By blowing-up

the 18 = 9(C0 + 2F )2 base points, we obtain a fibration f : S̃ := Bl18(S) → P1 which

induces a family of spin curves m : P1 → S
+
4 given by m(t) := [f−1(t),Of−1(t)(F )]. We

have the formulas

m∗(λ) = χ(S̃,OS̃) + g − 1 = 4, and
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m∗(π∗(δ0)) = m∗(α0) + 2m∗(β0) = c2(S̃) + 4(g − 1) = 34.

The singular fibres lying inB0 correspond to curves in the Lefschetz pencil onQ passing

through the vertex of the cone, that is, when f−1(t0) splits as C0 + D, where D ⊂ S̃ is
the residual curve. Since C0 · D = 2 and OC0

(F ) = OC0
(1), it follows that m(t0) ∈ B0.

One finds that m∗(β0) = 1, hence m∗(α0) = 32 and m∗(Θnull) = −1. Since Γ := m(P1)

fills-up the divisor Θnull, we obtain that [Θnull] ∈ Eff(S
+
4 ) is rigid. �

2. SPIN CURVES OF GENUS 8

The moduli space M8 carries one Brill-Noether divisor, the locus of plane septics

M2
8,7 := {[C] ∈ M8 : G2

7(C) 6= ∅}.

The locus M
2
8,7 is irreducible and for a known constant c28,7 ∈ Z>0, one has, cf. [EH2],

1

c28,7

M
2
8,7 ≡ 22λ− 3δ0 − 14δ1 − 24δ2 − 30δ3 − 32δ4 ∈ Pic(M8).

In particular, s(M
2
8,7) = 6 + 12/(g + 1) and this is the minimal slope of an effective

divisor on M8. The following fact is probably well-known:

Proposition 2.1. Through a general point of M
2
8,7 there passes a rational curve R ⊂ M8 such

that R ·M
2
8,7 < 0. In particular, the class [M

2
8,7] ∈ Eff(M8) is rigid.

Proof. One takes a Lefschetz pencil of nodal plane septic curves with 7 assigned nodes in
general position (and 21 unassigned base points). After blowing up the 21 unassigned
base points as well as the 7 nodes, we obtain a fibration f : S := Bl28(P

2) → P1, and the
corresponding moduli map m : P1 → M8 is a covering curve for the irreducible divisor

M
2
8,7. The numerical invariants of this pencil are

m∗(λ) = χ(S,OS) + g − 1 = 8 and m∗(δ0) = c2(S) + 4(g − 1) = 59,

whilem∗(δi) = 0 for i = 1, . . . , 4. We findm∗(M
2
8,7) = c28,7(8·22−3·59) = −c28,7 < 0. �

Using (3) we find the following explicit representative for the canonical classK
S

+

8

:

(4) K
S

+

8

≡
1

2c28,7

π∗(M
2
8,7) + 8Θnull +

4
∑

i=1

(ai αi + bi βi),

where ai, bi > 0 for i = 1, . . . , 4. The multiples of each irreducible component appearing

in (4) are rigid divisors on S
+
8 , but in principle, their sum could still be a movable class.

Assuming for a moment Proposition 0.2, we explain how this implies Theorem 0.1:

Proof of Theorem 0.1. The covering curve R ⊂ Θnull constructed in Proposition 0.2, satis-

fies R · Θnull < 0 as well as R · π∗(M
2
8,7) = 0 and R · αi = R · βi = 0 for i = 1, . . . , 4. It

follows from (4) that for each n ≥ 1, one has an equality of linear series on S
+
8

|nK
S

+

8

| = 8nΘnull + |n(K
S

+

8

− 8Θnull)|.
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Furthermore, from (4) one finds constants a′i > 0 for i = 1, . . . , 4, such that if

D ≡ 22λ− 3δ0 −
4

∑

i=1

a′i δi ∈ Pic(M8),

then the difference 1
2π

∗(D) − (K
S

+

8

− 8Θnull) is still effective on S
+
8 . We can thus write

0 ≤ κ(S
+
8 ) = κ

(

S
+
8 ,KS

+

8

− 8Θnull

)

≤ κ
(

S
+
8 ,

1

2
π∗(D)

)

= κ
(

S
+
8 , π

∗(D)
)

.

We claim that κ
(

S
+
8 , π

∗(D)
)

= 0. Indeed, in the course of the proof of Proposition 2.1 we

have constructed a covering family B ⊂ M8 for the divisor M
2
8,7 such thatB ·M

2
8,7 < 0

and B · δi = 0 for i = 1, . . . , 4. We lift B to a family R ⊂ S
+
8 of spin curves by taking

B̃ := B ×M8
S

+
8 = {[Ct, ηCt ] ∈ S

+
8 : [Ct] ∈ B, ηCt ∈ Pic

7
(Ct), t ∈ P1} ⊂ S

+
8 .

One notes that B̃ is disjoint from the boundary divisors Ai, Bi ⊂ S
+
8 for i = 1, . . . , 4,

hence B̃ · π∗(D) = 2g−1(2g + 1)(B · M
2
8,7)M8

< 0. Thus we write that

κ
(

S
+
8 , π

∗(D)
)

= κ
(

S
+
8 , π

∗(D − (22λ − 3δ0)
)

= κ
(

S
+
8 ,

4
∑

i=1

a′i(αi + βi)
)

= 0.

�

3. A FAMILY OF SPIN CURVES R ⊂ S
+
8 WITH R · π∗(M

2
8,7) = 0 AND R · Θnull = −1

The aim of this section is to prove Proposition 0.2, which is the key ingredient in
the proof of Theorem 0.1. We begin by reviewing facts about the geometry of M8, in
particular the construction of general curves of genus 8 as complete intersections in a
rational homogeneous variety, cf. [M2].

We fix V ∼= C6 and denote by G := G(2, V ) ⊂ P(∧2V ) the Grassmannian of lines.
Noting that smooth codimension 7 linear sections of G are canonical curves of genus 8,
one is led to consider the Mukai model of the moduli space of curves of genus 8

M8 := G(8,∧2V )//SL(V ).

There is a birational map f : M8 99K M8, whose inverse is given by f−1(H) := G ∩H ,
for a general H ∈ G(8,∧2V ). The map f is constructed as follows: Starting with a
curve [C] ∈ M8 −M2

8,7, one notes that C has a finite number of pencils g1
5. We choose

A ∈W 1
5 (C) and set L := KC ⊗A∨ ∈W 3

9 (C). There exists a unique rank 2 vector bundle
E ∈ SUC(2,KC) (independent of A!), sitting in an extension

0 −→ A −→ E −→ L −→ 0,

such that h0(E) = h0(A) + h0(L) = 6. Since E is globally generated, we define the map

φE : C → G
(

2,H0(C,E)∨
)

, φE(p) := E(p)∨
(

→֒ H0(C,E)∨
)

,

and let ℘ : G(2,H0(C,E)∨) → P(∧2H0(C,E)∨) be the Plücker embedding. The deter-
minant map u : ∧2H0(E) → H0(KC) is surjective, that is, H0(KC)∨ ∈ G(8,∧2H0(E)∨),
see [M2] Theorem C. We set

f([C]) := [C
℘◦φE−→ P

(

∧2H0(E)∨
)

, P(H0(KC)∨)] mod SL(V ) ∈ M8.
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It follows from [M2] that the exceptional divisors of f are the Brill-Noether locus M
2
8,7

and the boundary divisors ∆1, . . . ,∆4. The map f−1 does not contract any divisors.

Inside the moduli space F8 of polarized K3 surfaces [S, h] of degree h2 = 14, we
consider the following Noether-Lefschetz divisor

NL := {[S,OS(C1 + C2)] ∈ F8 : Pic(S) ⊃ Z · C1 ⊕ Z · C2, C
2
1 = C2

2 = 0, C1 · C2 = 7},

of doubly-elliptic K3 surfaces. For a general element [S,OS(C)] ∈ NL, the embedded

surface S
|OS(C)|
→֒ P8 lies on a rank 4 quadric whose rulings induce the elliptic pencils |C1|

and |C2| on S. We denote by NL′ ⊂ NL the open subset corresponding to polarized
surfaces [S,OS(C1 + C2)] such that Pic(S) = Z · C1 ⊕ Z · C2. Then we consider the
P3-bundle U → NL′ classifying pairs

(

[S,OS(C1 + C2)], C ⊂ S
)

, where

C ∈ |H0(S,OS(C1)) ⊗H0(S,OS(C2))| ⊂ |H0(S,OS(C1 + C2))|.

An element of U corresponds to a hyperplane section C ⊂ S ⊂ P8 of a doubly-elliptic
K3 surface, such that the intersection of C with the rank 4 quadric induced by the
elliptic pencils, has rank 3. There exists a rational map

q : U 99K Θnull, q
(

[S,OS(C1 + C2)], C
)

:= [C,OC (C1) = OC(C2)].

Clearly U is irreducible and dim(U) = 21
(

= 3 + dim(NL)
)

. We shall show that the
morphism q is dominant, by explicitly describing its generic fibre. This produces a
parametrization of the divisor Θnull, in particular it provides an explicit covering curve.

We fix a general point [C, η] ∈ Θnull ⊂ S
+
8 , with η a vanishing theta-null. Then

C ⊂ Q ⊂ P7 := P
(

H0(C,KC )∨
)

,

where Q ∈ H0(P7,IC/P7(2)) is the rank 3 quadric such that the ruling of Q cuts out on

C precisely η. As explained, there exists a linear embedding P7 ⊂ P14 := P
(

∧2H0(E)∨
)

such that P7 ∩ G = C . The restriction map yields an isomorphism between spaces of
quadrics, cf. [M2],

resC : H0(G,IG/P14(2))
∼=

−→ H0(P7,IC/P7(2)).

In particular there is a unique quadric G ⊂ Q̃ ⊂ P14 such that Q̃ ∩ P7 = Q.

There are three possibilities for the rank of any quadric Q̃ ∈ H0(P14,IG/P14(2)):

(a) rk(Q̃) = 15, (b) rk(Q̃) = 6 and then Q̃ is a Plücker quadric, or (c) rk(Q̃) = 10, in which

case Q̃ is a sum of two Plücker quadrics, see [M2].

Proposition 3.1. For a general [C, η] ∈ Θnull, the quadric Q̃ is smooth, that is, rk(Q̃) = 15.

Proof. We may assume that dim G1
5(C) = 0 (in particular C has no g1

4’s), andG2
7(C) = ∅.

The space P(Ker(u)) ⊂ P
(

∧2H0(E)
)

is identified with the space of hyperplanes H ∈

(P14)∨ containing the canonical space P7.

Claim: If rk(Q̃) < 15, there exists a pencil of 8-dimensional planes P7 ⊂ Ξ ⊂ P14, such
that S := G ∩ Ξ is a K3 surface containing C as a hyperplane section, and

rk
{

QΞ := Q̃ ∩ Ξ ∈ H0(Ξ,IS/Ξ(2))
}

= 3.

The conclusion of the claim contradicts the assumption that [C, η] ∈ Θnull is
general. Indeed, we pick such an 8-plane Ξ and corresponding K3 surface S. Since
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Sing(Q) ∩ C = ∅, where QΞ ∩ P7 = Q, it follows that S ∩ Sing(QΞ) is finite. The rul-
ing of QΞ cuts out an elliptic pencil |E| on S. Furthermore, S has nodes at the points

S∩Sing(QΞ). For numerical reasons, #Sing(S) = 7, and then on the surface S̃ obtained
from S by resolving the 7 nodes, one has the linear equivalence

C ≡ 2E + Γ1 + · · · + Γ7,

where Γ2
i = −2, Γi · E = 1 for i = 1, . . . , 7 and Γi · Γj = 0 for i 6= j. In particular

rk(Pic(S̃)) ≥ 8. A standard parameter count, see e.g. [Do], shows that

dim
{

(S,C) : C ∈ |OS(2E + Γ1 + · · · + Γ7)|
}

≤ 19 − 7 + dim|OS̃(C)| = 20.

Since dim(Θnull) = 20 and a general curve [C] ∈ Θnull lies on infinitely many such K3
surfaces S, one obtains a contradiction.

We are left with proving the claim made in the course of the proof. The key point

is to describe the intersection P(Ker(u))∩ Q̃∨, where we recall that the linear span 〈Q̃∨〉

classifies hyperplanes H ∈ (P14)∨ such that rk(Q̃ ∩ H) ≤ rk(Q̃) − 1. Note also that

dim 〈Q̃〉 = rk(Q̃) − 2.

If rk(Q̃) = 6, then Q̃∨ is contained in the dual Grassmannian G∨ := G(2,H0(E)),
cf. [M2] Proposition 1.8. Points in the intersection P(Ker(u)) ∩ G∨ correspond to de-
composable tensors s1 ∧ s2, with s1, s2 ∈ H0(C,E), such that u(s1 ∧ s2) = 0. The image

of the morphism O⊕2
C

(s1,s2)
−→ E is thus a subbundle g1

5 of E and there is a bijection

P(Ker(u)) ∩ G
(

2,H0(E)
)

∼= W 1
5 (C).

It follows, there are at most finitely many tangent hyperplanes to Q̃ containing the space

P7 = 〈C〉, and consequently, dim
(

P(Ker(u)) ∩ 〈Q̃∨〉
)

≤ 1. Then there exists a codimen-

sion 2 linear space W 12 ⊂ P14 such that rk(Q̃ ∩W ) = 3, which proves the claim (and

much more), in the case rk(Q̃) = 6.

When rk(Q̃) = 10, using the explicit description of the dual quadric Q̃∨ provided

in [M2] Proposition 1.8, one finds that dim
(

P(Ker(u)) ∩ 〈Q̃∨〉
)

≤ 4. Thus there exists

a codimension 5 linear section W 9 ⊂ P14 such that rk(Q̃ ∩W ) = 3, which implies the

claim when rk(Q̃) = 10 as well.
�

We consider an 8-dimensional linear extension P7 ⊂ Λ8 ⊂ P14 of the canonical
space P7 = 〈C〉, such that SΛ := Λ ∩ G is a smooth K3 surface. The restriction map

resC/SΛ
: H0(Λ,ISΛ/Λ(2)) → H0(P7,IC/P7(2))

is an isomorphism, cf. [SD]. Thus there exists a unique quadric SΛ ⊂ QΛ ⊂ Λ with
QΛ ∩ P7 = Q. Since rk(Q) = 3, it follows that 3 ≤ rk(QΛ) ≤ 5 and it is easy to see that
for a general Λ, the corresponding quadric QΛ ⊂ Λ is of rank 5. We show however, that
one can find K3-extensions of the canonical curve C , which lie on quadrics of rank 4:

Proposition 3.2. For a general [C, η] ∈ Θnull, there exists a pencil of 8-dimensional extensions

P(H0(C,KC)∨) ⊂ Λ ⊂ P
14

such that rk(QΛ) = 4. It follows that there exists a smooth K3 surface SΛ ⊂ Λ containing C
as a transversal hyperplane section, such that rk(QΛ) = 4.

9



Proof. We pass from projective to vector spaces and view the rank 15 quadric

Q̃ : ∧2H0(C,E)∨
∼

−→ ∧2H0(C,E)

as an isomorphism, which by restriction to H0(C,KC )∨ ⊂ ∧2H0(C,E)∨, induces the

rank 3 quadric Q : H0(C,KC)∨ → H0(C,KC ). The map u ◦ Q̃ : ∧2H0(E)∨ → H0(KC)

being surjective, its kernel Ker(u ◦ Q̃) is a 7-dimensional vector space containing the
5-dimensional subspace Ker(Q). We choose an arbitrary element

[v̄ := v + Ker(Q)] ∈ P
(Ker(u ◦ Q̃)

Ker(Q)

)

,

inducing a subspace H0(C,KC )∨ ⊂ Λ := H0(C,KC)∨ + Cv ⊂ ∧2H0(C,E)∨, with

the property that Ker(QΛ) = Ker(Q), where QΛ : Λ → Λ∨ is induced from Q̃ by re-
striction and projection. It follows that rk(QΛ) = 4. Moreover, we have shown that
dim q−1([C, η]) ≤ 1, in particular q is dominant. �

Now we can begin the proof of Proposition 0.2. Let C ⊂ Q ⊂ P7 be a general
canonical curve endowed with a vanishing theta-null, where Q ∈ H0

(

P7, IC/P7(2)
)

is

the corresponding rank 3 quadric. We choose a general 8-plane P7 ⊂ Λ ⊂ P14 such that
S := Λ ∩ G is a smooth K3 surface, and the lift of Q to Λ

QΛ ∈ H0
(

Λ,IS/Λ(2)
)

has rank 4. Moreover, we can assume that S ∩ Sing(QΛ) = ∅. The linear projection
fΛ : Λ 99K P3 with center Sing(QΛ), induces a regular map f : S → P3 with image
the smooth quadric Q0 ⊂ P3. Then S is endowed with two elliptic pencils |C1| and
|C2| corresponding to the projections of Q0

∼= P1 × P1 onto the two factors. Since C ∈
|OS(1)|, one has a linear equivalence C ≡ C1 + C2, on S. As already pointed out,
deg(f) = C1 ·C2 = C2/2 = 7. The condition rk(QΛ ∩ P7) = rk(QΛ)− 1, implies that the

hyperplane P7 ∈ (Λ)∨ is the pull-back of a hyperplane from P3, that is, P7 = f−1
Λ (Π0),

where Π0 ∈ (P3)∨.
We choose a general line l0 ⊂ Π0 and denote by {q1, q2} := l0 ∩ Q0. We consider

the pencil {Πt}t∈P1 ⊂ (P3)∨ of planes through l0 as well as the induced pencil of curves
of genus 8

{Ct := f−1(Πt) ⊂ S}t∈P1 ,

each endowed with a vanishing theta-null induced by the pencil ft : Ct → Q0 ∩ Πt.

This pencil contains precisely two reducible curves, corresponding to the planes
Π1,Π2 in P3 spanned by the rulings of Q0 passing through q1 and q2 respectively. Pre-
cisely, if li,mi ⊂ Q0 are the rulings passing through qi such that l1 · l2 = m1 ·m2 = 0,
then it follows that for Π1 = 〈l1,m2〉,Π2 = 〈l2,m1〉, the fibres f−1(Π1) and f−1(Π2)
split into two elliptic curves f−1(li) and f−1(mj) meeting transversally in 7 points. The
half-canonical g1

7 specializes to a degree 7 admissible covering

f−1(li) ∪ f
−1(mj)

f
→ li ∪mj, i 6= j,

such that the 7 points in f−1(li) ∩ f−1(mj) map to li ∩ mj . To determine the point

in S
+
8 corresponding to the admissible covering

(

f−1(li) ∪ f
−1(mj), f|f−1(li)∪f−1(mj)

)

,
one must insert 7 exceptional components at all the points of intersection of the two
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components. We denote by R ⊂ Θnull ⊂ S
+
8 the pencil of spin curves obtained via this

construction.

Lemma 3.3. Each member Ct ⊂ S in the above constructed pencil is nodal. Moreover, each
curve Ct different from f−1(l1) ∪ f−1(m2) and f−1(l2) ∪ f−1(m1) is irreducible. It follows
that R · αi = R · βi = 0 for i = 1, . . . , 4.

Proof. This follows since f : S → Q0 is a regular morphism and the base line l0 ⊂ H0 of
the pencil {Πt}t∈P1 is chosen to be general. �

Lemma 3.4. R · π∗(M
2
7,8) = 0.

Proof. We show instead that π∗(R) · M
2
8,7 = 0. From Lemma 3.3, the curve R is disjoint

from the divisors Ai, Bi for i = 1, . . . , 4, hence π∗(R) has the numerical characteristics
of a Lefschetz pencil of curves of genus 8 on a fixed K3 surface.

In particular, π∗(R) · δ/π∗(R) · λ = 6 + 12/(g + 1) = s(M
2
8,7) and π∗(R) · δi = 0 for

i = 1, . . . , 4. This implies the statement. �

Lemma 3.5. T · Θnull = −1.

Proof. We have already determined that R ·λ = π∗(R) ·λ = χ(S̃,OS̃)+ g− 1 = 9, where

S̃ := Bl2g−2(S) is the blow-up of S at the points f−1(q1) ∪ f
−1(q2). Moreover,

(5) R · α0 + 2R · β0 = π∗(R) · δ0 = c2(X̃) + 4(g − 1) = 38 + 28 = 66.

To determineR · β0 we study the local structure of S
+
8 in a neighbourhood of one of the

two points, say t∗ ∈ R corresponding to a reducible curve, say f−1(l1) ∪ f
−1(m2), the

situation for f−1(l2)∪f
−1(m1) being of course identical. We set {p} := l1∩m2 ∈ Q0 and

{x1, . . . , x7} := f−1(p) ∈ S. We insert exceptional components E1, . . . , E7 at the nodes
x1, . . . , x7 of f−1(l1) ∪ f

−1(m2) and denote by X the resulting quasi-stable curve. If

µ : f−1(l1) ∪ f
−1(m2) ∪E1 ∪ . . . ∪ E7 → f−1(l1) ∪ f

−1(m2)

is the stabilization morphism, we set {yi, zi} := µ−1(xi), where yi ∈ Ei ∩ f
−1(l1) and

zi ∈ Ei ∩ f
−1(m2) for i = 1, . . . , 7. If t∗ = [X, η, β], then ηf−1(l1) = Of−1(l1), ηf−1(m2) =

Of−1(m2), and of course ηEi
= OEi

(1). Moreover, one computes that Aut(X, η, β) = Z2

and Aut(f−1(l1) ∪ f
−1(m2)) = {Id}, cf. [C] Lemma 2.2.

If C
3g−3
τ denote the versal deformation space of [X, η, β] ∈ S

+
g , then there are local

parameters (τ1, . . . , τ3g−3), such that for i = 1, . . . , 7, the locus
(

τi = 0
)

⊂ C
3g−3
τ pa-

rameterizes spin curves for which the exceptional component Ei persists. It particular,

the pull-back C
3g−3
τ ×

S
+

g
B0 of the boundary divisor B0 ⊂ S

+
g is given by the equation

(

τ1 · · · τ7 = 0
)

⊂ C
3g−3
τ . The group Aut(X, η, β) acts on C

3g−3
τ by

(τ1, . . . , τ7, τ8, . . . , τ3g−3) 7→ (−τ1, . . . ,−τ7, τ8, . . . , τ3g−3),

and since an étale neighbourhood of t∗ ∈ S
+
g is isomorphic to C

3g−3
τ /Aut(X, η, β), we

find that B0 is not Cartier around t∗ (though 2B0 is Cartier). It follows that the inter-

section multiplicity of R ×
S

+

g

C
3g−3
τ with the locus (τ1 · · · τ7) = 0 equals 7, that is, the

intersection multiplicity of R ∩ β0 at the point t∗ equals 7/2, hence

R · β0 =
(

R · β0

)

f−1(l1)∪f−1(m2)
+

(

R · β0

)

f−1(l2)∩f−1(m1)
=

7

2
+

7

2
= 7.
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Then using (5) we find that R · β0 = 66 − 14 = 52, and finally

R · Θnull =
1

4
R · λ−

1

16
R · α0 =

9

4
−

52

16
= −1.

�

Remark 3.6. The final argument in the previous proof, namely that the reducible curve
f−1(l1)∪f

−1(m2) contributes with multiplicity 7/2 toR·β0, can also be derived by inter-
preting Θnull as a space of admissible coverings of degree 7 over the versal deformation

space C
3g−3
τ and then making a local analysis similar to the one in [D] pg. 47-50.

4. THE KODAIRA DIMENSION OF M11,11

We begin by recalling the notation for boundary divisor classes on the moduli

space Mg,n. For an integer 0 ≤ i ≤ [g/2] and a set of labels T ⊂ {1, . . . , n}, we denote by

∆i:T the closure in Mg,n of the locus of n-pointed curves [C1 ∪C2, x1, . . . , xn], where C1

andC2 are smooth curves of genera i and g−i respectively, and the marked points lying
on C1 are precisely those labeled by T . As usual, we define δi:T := [∆i:T ] ∈ Pic(Mg,n).
For 0 ≤ i ≤ [g/2] and 0 ≤ c ≤ g, we set

δi:c :=
∑

#(T )=c

δi:T .

By convention, δ0:c := ∅, for c < 2. If φ : Mg,n → Mg is the morphism forgetting

the marked points, we set λ := φ∗(λ) ∈ Pic(Mg,n) and δirr := φ∗(δirr) ∈ Pic(Mg,n),

where δirr := [∆irr] ∈ Pic(Mg) denotes the class of the locus of irreducible nodal curves.

Furthermore, ψ1, . . . , ψn ∈ Pic(Mg,n) are the cotangent classes corresponding to the

marked points. The canonical class of Mg,n has been computed, cf. [Log] Theorem 2.6:

(6) KMg,n
≡ 13λ− 2δirr +

n
∑

i=1

ψi − 2
∑

i≥0,T

δi:T −
∑

T

δ1:T .

We show that, at least for small g, the divisor Dg of curves with g marked points moving

in a pencil, is an extremal point in the effective cone of Mg,g:

Proposition 4.1. For 3 ≤ g ≤ 11, the irreducible divisor Dg is filled up by rational curves

R ⊂ Mg,g such that R · Dg < 0. It follows that [Dg] ∈ Eff(Mg,g) is a rigid divisor. Moreover,
when g 6= 10, one can assume that R · δi:T = 0 for all i ≥ 0 and T ⊂ {1, . . . , g}.

Proof. We first treat the case g 6= 10, and start with a general point [C, x1, . . . , xg] ∈ Dg.
We assume that the points x1, . . . , xg ∈ C are distinct and h0(C,KC(−x1−· · ·−xg)) = 1.
Let us consider the (g − 2)-dimensional linear space

Λ := 〈x1, . . . , xg〉 ⊂ P
(

H0(C,KC)∨
)

= Pg−1.

Since φ(Dg) = Mg , we may assume that [C] ∈ Mg is a general curve. In particular, C

lies on a K3 surface S
|OS(C)|
→֒ Pg, which admits the canonical curve C as a hyperplane

section, cf. [M1]. We intersect S with the pencil of hyperplanes {Hλ ∈ (Pg)∨}λ∈P1 such
that Λ ⊂ Hλ. Since (i) the locus of hyperplanes H ∈ (Pg)∨ such that the intersection
S ∩ H is not nodal has codimension 2 in (Pg)∨, and (ii) the pencil {Hλ}λ∈P1 can be

viewed as a general pencil of hyperplanes containing P
(

H0(C,KC )∨
)

as a member, we
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may assume that all the curves Hλ ∩S are nodal and that the nodes stay away from the
fixed points x1, . . . , xg . In this way we obtain a family in Mg,g

R := {[Cλ := Hλ ∩ S, x1, . . . , xg] : Λ ⊂ Hλ, λ ∈ P1},

inducing a fibration f : S̃ := Bl2g−2(S) → P1, obtained by blowing-up the base points

of the pencil, together with g sections given by the exceptional divisors Exi
⊂ S̃ corre-

sponding to the base points x1, . . . , xg . The numerical parameters of R are computed
using, for instance, [FP] Section 2. Precisely, one writes that

(7) R · λ = (φ∗(R) · λ)Mg
= g + 1, R · δirr = (φ∗(R) · δirr)Mg

= 6g + 18, R · δi:T = 0,

for i ≥ 0 and T ⊂ {1, . . . , g}. Finally, from the adjunction formula, R ·ψi = −(E2
xi

)S̃ = 1

for 1 ≤ i ≤ g. Thus, R · Dg = −1. Since R is a covering curve for the divisor Dg, it

follows that Dg is a rigid divisor on Mg,g.

We turn to the case g = 10, when the previous argument breaks down because
the general curve [C] ∈ M10 no longer lies on a K3 surface. More generally, we fix
g < 11, g 6= 9 and pick a general point [C, x1, . . . , xg] ∈ Dg. We denote by X := Cij

the nodal curve obtained from C by identifying xi and xj , where 1 ≤ i < j ≤ g.

Since [X] ∈ ∆0 ⊂ Mg+1 is a general 1-nodal curve of genus g + 1, using e.g. [FKPS],
there exists a smooth K3 surface S containing X. We denote by ν : C → X ⊂ S the
normalization map and set ν(xi) = ν(xj) = p. The linear system |OS(X)| embeds S in
Pg+1 and ν∗(OS(X)) = KC(xi + xj). Let ǫ : S′ := Blp(S) → S be the blow-up of S at
p and E ⊂ S′ the exceptional divisor. Note that C viewed as an embedded curve in S′

belongs to the linear system |ǫ∗OS(1) ⊗OS′(−2E)| and C · E = xi + xj . Let Z ⊂ S′ the
reduced 0-dimensional scheme consisting of marked points of C with support {xi, xj}

c.
Since h0(C,OC(x1 + · · · + xg)) = 2, we find that Z together with the tangent

plane Tp(X) = Tp(S) span a (g − 1)-dimensional linear space Λ ⊂ Pg+1. We obtain a

1-dimensional family in Dg by taking the normalization of the intersection curves on S
with hyperplanesH ∈ (Pg+1)∨ passing through Λ. Equivalently, we note that

h0(S′,IZ/S′(C)) = h0(S′,OS′) + h0(C,KC(−x1 − · · · − xg)) = 2,

that is, |IZ/S′(C)| is a pencil of curves on S′. We denote by ǫ̃ : S̃ := Bl2g−4(S
′) → S′ the

blow-up of S′ at the (ǫ∗(H)− 2E)2 = 2g− 4 base points of |IZ/S′(C)|, by f : S̃ → P1 the
induced fibration with (g− 2) sections corresponding to the points of Z , as well as with
a 2-section given by the divisor E := ǫ̃−1(E). Since deg(fE) = 2, there are precisely two
fibres of f , say C1 and C2, which are tangent to E. We make a base change or order 2
via the morphism fE : E → P1, and consider the fibration

q′ : Y ′ := S̃ ×P1 E → E.

Thus p : Y ′ → S̃ is the double cover branched along C1 + C2. Clearly q′ admits two
sections E1, E2 ⊂ Y ′ such that p∗(E) = E1 + E2 and E1 · E2 = 2. By direct calculation,
it follows that E2

1 = E2
2 = −3. To separate the sections E1 and E2, we blow-up the two

points of intersection E1 ∩ E2 and we denote by q : Y := Bl2(Y
′) → E the resulting

fibration, which possesses everywhere distinct sections σi : E → Y ′ for 1 ≤ i ≤ g,
given by the proper transforms of E1 and E2 as well as the proper transforms of the
exceptional divisors corresponding to the points in Z . The numerical characters of the
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family Γij := {[q−1(t), σ1(t), . . . , σg(t)] : t ∈ E} ⊂ Mg,g are computed as follows:

Γij · λ = 2(g + 1), Γij · δirr = 2(6g + 17), Γij · ψl = 2 for l ∈ {i, j}c,

Γij · ψi = Γij · ψj = −(E2
i )Y ′ + 2 = 5, Γij · δ0:ij = 2, Γij · δl:T = 0 for l ≥ 0, T ⊂ {i, j}c.

We take the Sg-orbit of the 1-cycle Γij with respect to permuting the marked points,

Γ :=
1

g(g − 1)

∑

i<j

Γij ∈ NE1(Mg,g),

and note that Γ ·Dg = −1. Each component Γij fills-up Dg, which finishes the proof. �

We now specialize to the case of genus 11: On M11 there exist two divisors of
Brill-Noether type, namely the closure of the locus of 6-gonal curves

M1
11,6 := {[C] ∈ M11 : G1

6(C) 6= ∅}

and the closure of the locus M2
11,9 := {[C] ∈ M11 : G2

9(C) 6= ∅}. The divisors M
1
11,6 and

M
2
11,9 are irreducible, distinct, and their classes are proportional, cf. [EH2]. Precisely,

there are explicit constants c111,6, c
2
11,9 ∈ Z>0, such that

bn11 :≡
1

c111,6

M
1
11,6 ≡

1

c211,9

M
2
11,9 ≡ 7λ− δ0−5δ1 −9δ2 −12δ3 −14δ4 −15δ5 ∈ Pic(M11).

By interpolating, we find the following explicit canonical divisor:

(8) KM11,11
≡ D11 + 2 · φ∗(bn11) +

5
∑

i=0

11
∑

c=0

di:c δi:c,

where

d0:c =
c2 + c− 4

2
for c ≥ 2, d1:c = 7 +

(

|c− 1| + 1

2

)

, d2:c = 16 +

(

|c− 2| + 1

2

)

,

d3:c = 22 +

(

|c− 3| + 1

2

)

, d4:c = 26 +

(

|c− 4| + 1

2

)

, d5:c = 28 +

(

|c− 5| + 1

2

)

.

One already knows that multiples of D11 are non-moving divisors on M11,11. We show

that D11 does not move in any multiple of the canonical linear system on M11,11.

Proposition 4.2. For each integer n ≥ 1 one has an isomorphism

H0
(

M11,11,OM11,11
(nKM11,11

)
)

∼= H0
(

M11,11,OM11,11
(nKM11,11

− nD11)
)

.

In particular, κ
(

M11,11

)

= κ
(

M11,11,KM11,11
−D11

)

.

Proof. Using the notation and results from Proposition 4.1, we recall that we have con-
structed a curve R ⊂ M11,11 moving in a family which fills-up the divisor D11, such

that R · D11 = −1 and R · δi:S = 0, for all i ≥ 0 and T ⊂ {1, . . . , g}. All points in R
correspond to nodal curves lying on a fixed K3 surface S, which by the generality as-
sumptions, can be chosen such that Pic(S) = Z. Applying [Laz], all underlying genus
11 curves corresponding to points in R satisfy the Brill-Noether theorem, in particular

R · φ∗(bn11) = 0, that is, R · KM11,11
= R · D11 = −1. It follows that for any effective
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divisor E on M11,11 such that E ≡ nKM11,11
, one has that R · E = −n, thus the class

E − nD11 is still effective and then |nKM11,11
| = nD11 + |nKM11,11

− nD11|. �

We are in a position to complete the proof of Theorem 0.3:

Theorem 4.3. We have that κ
(

M11,11, 2 · φ∗(bn11) +
∑

i,c di:c · δi:c
)

= 19. It follows that the

Kodaira dimension of M11,11 equals 19.

Proof. To simplify the proof, we define a few divisors classes on M11,11:

A := 2 · φ∗(bn11) +
∑

i≥0,c

di:c δi:c ≡ KM11,11
−D11 and A′ := A−

11
∑

c=2

d0:c δ0:c,

as well as, B := bn11 + 4δ3 + 7δ4 + 8δ5 ∈ Pic(M11).
We claim that for all integers n ≥ 1 one has isomorphisms,

H0
(

M11,11,OM11,11
(nA)

)

∼= H0
(

M11,11,OM11,11
(nA′)

)

.

Indeed, we fix a set of labels T ⊂ {1, . . . , 11} such that #(T ) ≥ 2 and consider a pencil
{

[Ct, xi(t), p(t) : i ∈ T c]
}

t∈P1 ⊂ M11,12−#(T ),

of (12 − #(T ))-pointed curves of genus 11 on a general K3 surface S, with marked
points being labeled by elements in T c as well by another label p(t). The pencil is in-
duced by a fibration obtained from a Lefschetz pencil of genus 11 curves on S, with
regular sections given by (12 − #(T )) of the exceptional divisors obtained by blowing-
up S at the (2g−2) base points of the pencil. To each element in this pencil, we attach at
the marked point labeled by p(t), a fixed copy of P1 together with fixed marked points
xi ∈ P1 − {∞}, for i ∈ T . The gluing identifies the point p(t) ∈ Ct with ∞ ∈ P1. If
RT ⊂ M11,11 denotes the resulting family, we compute:

RT ·λ = g+1, RT ·δirr = 6(g+3), RT ·δ0:T = −1, RT ·ψi = 1 for i ∈ T c, RT ·ψi = 0 for i ∈ T.

Moreover, RT is disjoint from all remaining boundary divisors of M11,11. One finds

that RT · φ∗(bn11) = 0. Thus for any effective divisor E ⊂ M11,11 such that E ≡ nA, we
find that RT ·E = −nd0,c.

Since for all T , the pencil RT fills-up the divisor ∆0:T , we can deform the curves

RT ⊂ ∆0:T , to find that E −
∑11

c=2 nd0:c · δ0:c is still an effective class, that is,

|nA| =

11
∑

c=2

nd0:c · ∆0:c + |nA′|,

which proves the claim. Next, by direct calculation we observe that the classA′−2φ∗(B)
is effective. Zariski’s Main Theorem gives that φ∗φ

∗OM11
(B) = OM11

(B), thus

κ
(

M11,11, A
′
)

≥ κ
(

M11,11, φ
∗(B)

)

= κ(M11, B) = 19.

The last equality comes from [FP] Proposition 6.2: The class B contains the pull-back of
an ample class under the Mukai map [M3]

q11 : M11,11 99K F11, [C, x1, . . . , x11] 7→ [S ⊃ C, OS(C)],

to a compactification of the moduli space of polarized K3 surfaces of degree 20.
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On the other hand, since φ∗(δi) =
∑

S δi:S for 1 ≤ i ≤ 5, there is a divisor class on

M11 of type B′ := 2 · bn11 +
∑5

i=1 aiδi ∈ Pic(M11), with ai ≥ 0, such that φ∗(B′)−A′ is
an effective divisor. It follows that

κ
(

M11,11, A
′
)

≤ κ
(

M11,11, φ
∗(B′)

)

= κ(M11, B
′).

If R11 ⊂ M11 is the family corresponding to a Lefschetz pencil of curves of genus 11
on a fixed K3 surface, then R11 · B′ = 0. The pencil R11 moves in a 11-dimensional
family inside M11 which is contracted to a point by any linear series |nB′| on M11 with
n ≥ 1 (in fact a general curve R11 is disjoint from the base locus of |nB′|). One finds that
κ(M11, B

′) ≤ 19, which completes the proof. �

5. THE UNIRULEDNESS OF Mg,n

We formulate a general principle, somewhat similar to the one used in the proof
of Theorem 0.1, which we use in proving the uniruledness of some moduli spaces Mg,n.

Proposition 5.1. Let X be a projective Q-factorial variety and suppose D1,D2 ⊂ X are irre-
ducible effective Q-divisors such that there exist covering curves Γi ⊂ Di, with Γi ·Di < 0 for
i = 1, 2 (in particular both Di ∈ Eff(X) are non-movable divisors). Assume furthermore that

(Γ1 ·D2)(Γ2 ·D1)− (Γ2 ·D2)(Γ1 ·D1) ≥ 0 and (Γ1 ·KX)(Γ2 ·D1)− (Γ2 ·KX)(Γ1 ·D1) < 0.

Then X is uniruled.

Proof. According to [BDPP] it suffices to prove that KX is not pseudo-effective. By

contradiction, we choose α, β ∈ R≥0 maximal such that KX − αD1 − βD2 ∈ Eff(X).
Then we can write down the inequalities

Γ1 ·KX ≥ α(Γ1 ·D1) + β(Γ1 ·D2) and Γ2 ·KX ≥ α(Γ2 ·D1) + β(Γ2 ·D2).

Eliminating α, the resulting inequality contradicts the assumption β ≥ 0. �

Theorem 5.2. The moduli spaces M7,n and M8,n are uniruled for n ≤ 12. In particular
ζ(7), ζ(8) ∈ {13, 14}.

Proof. We start with the genus 8 case and apply Proposition 5.1 when

D1 =
1

c28,7

φ∗(M
2
8,7) ≡ 22λ− 3δirr − · · · , D2 = ∆irr ∈ Eff(M8,n),

where we refer to Section 2 for the definition of the constant c28,7. To construct a covering

curve Γ1 ⊂ D1, we lift to M8,n a Lefschetz pencil of 7-nodal plane septics. We note that
the fibration f : Bl28(P

2) → P1 constructed in the course of proving Proposition 2.1,
carries n sections given by the exceptional divisors corresponding to n unassigned base
points. If Γ1 ⊂ M8,n denotes the resulting family of n-pointed curves, then

Γ1 · λ = φ∗(Γ1) · λ = 8, Γ1 · δirr = φ∗(Γ1) · δirr = 59, Γ1 · ψi = 1 for i = 1, . . . , n,

and Γ1 · δi:T = 0. It follows that Γ1 ·D1 = −1/3, Γ1 ·KM8,n
= n− 14 and Γ1 ·D2 = 59.

We construct a covering curve Γ2 ⊂ D2 and start with a general pointed curve

[C, x1, . . . , xn+1] ∈ M7,n+1. We identify xn+1 with a moving point y ∈ C , that is, take

Γ2 :=
{[ C

y ∼ xn+1
, x1, . . . , xn

]

: y ∈ C
}

⊂ M8,n.
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It is easy to compute that Γ2 · λ = 0, Γ2 · δirr = −2g(C) = −14, Γ2 · δ1:∅ = 1, Γ2 · ψi =
1, for i = 1, . . . , n, and Γ2 · δi:T = 0 for (i, T ) 6= (1, ∅). Therefore Γ2 · D1 = 28/3 and
Γ2 ·KM8,n

= 25 +n. The conditions of Proposition 5.1 are satisfied precisely for n ≤ 12.

In the case M7,n we take D1 = φ∗(M
1
7,4) to be the pull-back of the 4-gonal locus

andD2 = ∆irr. The covering curve Γ2 ⊂ D2 is constructed as above starting with a fixed
general pointed curve [C, x1, . . . , xn+1] ∈ M6,n+1 and identifying xn+1 with a moving

point y ∈ C . The curve Γ1 ⊂ D1 is the lift to M7,n of a Lefschetz pencil of plane septics
having one triple point and 5 nodes. �

Remark 5.3. The results of Theorem 5.2 are close to optimal. It is known cf. [Log] that
M8,14 is of general type and κ(M7,14) ≥ 0. The Kodaira dimension of M7,13 and M8,13

is still unknown. Note that it was already known that M7,n and M8,n is unirational for
n ≤ 11, cf. [CF], [Log].
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UNIVERSITÁ ROMA TRE, DIPARTIMENTI DI MATEMATICA, LARGO SAN LEONARDO MURIALDO

1-0046 ROMA, ITALY

E-mail address: verra@mat.unirom3.it

18


	1. Spin curves and the divisor null
	2. Spin curves of genus 8
	3. A family of spin curves R S+8 with R *(M8,72) = 0 and R null= -1
	4. The Kodaira dimension of M11, 11
	5. The uniruledness of Mg, n
	References

