THE INTERMEDIATE TYPE OF CERTAIN MODULI SPACES OF CURVES

GAVRIL FARKAS AND ALESSANDRO VERRA

A well-established principle of Mumford asserts that all moduli spaces of curves
of genus g > 2 (with or without marked points or level structure), are varieties of gen-
eral type, except a finite number of cases occurring for relatively small genus, when
these varieties tend to be unirational, or at least uniruled, see [HM]|, [EHT]], [[EL], [[E3],
[Log], [V] for illustrations of this fact. In all known cases, the transition from uniruled-
ness to being of general type is quite sudden and until now no examples were known
of naturally defined moduli spaces of curves of intermediate Kodaira dimension. The
aim of this paper is to discuss the very surprising birational geometry of special moduli
spaces of curves, which in particular have intermediate Kodaira dimension.

The moduli space S, of smooth spin curves parameterizes pairs [C, 7], where
[C] € M, is a curve of genus g and 7 € Pic? !(C) is a theta-characteristic. The map
™ : 8 — M, is an étale covering of degree 229 and S, is a disjoint union of two
connected components S and S, of relative degrees 2971(29 + 1) and 2971(29 — 1)
corresponding to even and odd theta-characteristics respectively. We denote by S, the
Cornalba compactification of S,, that is, the coarse moduli space of the stack of stable
spin curves of genus g, cf. [(]]. The projection 7 : S§; — M, extends to a finite covering

7 : Sy — M, branched along the boundary divisor Aj of M,,. It is known that 3; isa
variety of general type for g > 8 and uniruled for g < 8, cf. [E3]. We show that the only

remaining case, that of 3;, gives rise to a variety of Calabi-Yau type:
Theorem 0.1. The Kodaira dimension of 3; is equal to zero.

We point out that the Kodaira dimension of the odd spin moduli space S, is

known for all genera g, cf. [EV]. Thus 3; is uniruled for g < 11 (even unirational
for g < 9), and of general type for g > 12. In particular, we observe the surprising

phenomenon that Sy is unirational, whereas 3; is of Calabi-Yau type!

The proof of Theorem [ relies on two main ideas: Following [E3], one finds an
explicit effective representative for the canonical divisor K+ as a Q-combination of the
8

divisor O, C 3; of vanishing theta-nulls, the pull-back 7* (ﬂﬁj) of the Brill-Noether

divisor ng on Mj of curves with a g2, and boundary divisor classes corresponding

to spin curves whose underlying stable model is of compact type. Each irreducible

component of this particular representative of K+ is rigid (see Section 1). Then we use
8

in an essential way the existence of a Mukai model of My as a GIT quotient of a bundle
over the Grassmannian G := G(2,6) cf. [M2], in order to prove the following result:
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Proposition 0.2. The uniruled divisor ©,, C Sy is swept by rational curves R C Sy such
that R-© ) = —1and R-7* (ﬂﬁj) = 0. Furthermore R is disjoint from all boundary divisors
A, B C 8y fori=1,... 4.

The pencil R corresponds to spin curves lying on special doubly elliptic K3 sur-
faces S, chosen in such a way that the rank 3 quadric containing the underlying canon-
ical curve C C P7 corresponding to a general point [C,7n] € Oy, lifts to a rank 4
quadric in P® containing the K3 surface S O C. The existence of such K3 extensions
of C follows from a precise description of quadrics containing the Pliicker embedding
of the Grassmannian G C P!* (see Sections 2 and 3). Proposition [ implies that KE;

expressed as a weighted sum of ©,,;, the pull-back W*(ng) and boundary divisors
A;, Biyi=1,...,4,isrigid as well. Equivalently, x(Sg ) = 0.
Our next result concerns the moduli space M, ,, of stable n-pointed curves of
genus g. For a given genus g > 0, we define the numerical invariant
((g) :=min{n € Z>¢ : M, is a variety of general type}.

We think of ((g) as measuring the complexity of the general curve of genus g. From the
definition, it follows that M, , is of general type for n > ((g). Clearly ¢(0) = ¢(1) = oo,
whereas ((g) = 0 for g > 24, cf. [HM], [EHZ]. There exist explicit upper bounds for
((g) for 4 < g < 23, see [Log], [F2] Theorem 1.10. In particular, it is known that My,
is uniruled for n < 9 and of general type for n > 11, that is, ((10) < 11. Similarly, it
is known that ﬂllm is uniruled for g < 10 and of general type for g > 12. Until now,
no example of a space M, ,, (¢ > 2) having intermediate type was known. Perhaps, the
most picturesque finding of our study is the following:

Theorem 0.3. The moduli space ﬂll,ll has Kodaira dimension 19.

Note that dim(Mj;11) = 41. In particular, Theorem determines the value
¢(11) = 12, hence ¢(11) > ¢(10). This explains, in precise terms, that counter-intuitively,
algebraic curves of genus 10 are more complicated than curves of genus 11!

The equality £(Mi;,11) = 19 is related to the existence of the Mukai fibration
q11 - Mu,n -2 ?117

over the 19-dimensional moduli space Fi1 of polarized K3 surfaces of degree 20. The
map ¢y; associates to a general element [C,z1,...,211] € Mi1 11 the unique K3 surface
S containing C, see [M3]]. According to Mukai, S is precisely the “dual” K3 surface to
the non-abelian Brill-Noether locus corresponding to vector bundles of rank 2

SV = SUx(2,K¢,6) :={E € SU-(2,K¢) : h°(C,E) > 7}.

An analysis of the fibration ¢;; shows that, (i) the divisor nDj; is a fixed compo-
nent of the pluri-canonical linear series ’"Kﬂu 11] for all n > 1, and (ii) the difference

Kj o — Dy is essentially the pull-back of an ample class on F;.

The proof of Theorem is similar in spirit to the proof of Theorem An
important role is played by the effective divisor

Dg = {[07;171,. .. ,l'g] S Mg,g : h0(07 OC(xl +- +$g)) 2 2}
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The class of the closure of D, inside M, , is the following, cf. [Log] Theorem 5.4:

l9/2]

g .
=-A+ ;wz — 0+ iy Z Z <’#(T) 2_ Z’ " 1> dir € PiC(ﬂgy).

=0 TC{L,....9}

Using [FP], as well as the expression of Kz in terms of generators of Pic(M,.,), one

finds an explicit representative of K+ M11 » as an effective combination of the pull-back

to M11,11 of the 6-gonal divisor M11,6 on M, the divisor D;, and certain boundary
classes d;.5. We then construct explicit curves R C M 11 passing through a general
point of D13, such that —R-Dj; > 0 equals precisely the multiplicity of D1, in the above
mentioned expression of K34,,.,,- More generally, we show the following:

Theorem 0.4. For g < 11, the effective divisor 59 c Eff (ﬂg) is extremal and rigid.

In genus 11, using the existence of the above mentioned Mukai fibration, this
eventually leads to the equality k(M1 11) = m(mu,Mhﬁ) = 19, where the last sym-

bol stands for the litaka dimension of the linear system |M1176| generated by the Brill-
Noether divisors on M.

1. Spin curves and the divisor O,

We begin by setting notation and terminology. If M is a Deligne-Mumford stack,
we denote by M its associated coarse moduli space. Let X be a complex Q-factorial
variety. A Q-Weil divisor D on X is said to be movable if codim((,, Bs|mD|, X) > 2,
where the intersection is taken over all m which are sufficiently large and divisible. We
say that D is rigid if |mD| = {mD}, for all m > 1 such that mD is an integral Cartier
divisor. The Kodaira-litaka dimension of a divisor D on X is denoted by (X, D). As
usual, we set (X)) := k(X, Kx).

If D=m1Dy + -+ + mgDg is an effective Q-divisor on X, with irreducible com-
ponents D; C X and m; > Ofori =1,...,s,a (trivial) way of showing that x(X, D) =0
is by exhibiting for each 1 < i < s, a curve I'; C X passing through a general point of
D;,suchthatI’;- D; <Oand I'; - D;j = 0 for i # j.

We recall basic facts about the moduli space g;r of even spin curves of genus g, see
[, [E3] for details. An even spin curve of genus g consists of a triple (X, n, 3), where X
is a genus g quasi-stable curve, 7 € Pic?~!(X) is a line bundle of degree g — 1 such that
ne = Og(1) for every rational component £ C X such that #(E N (X — E)) = 2 (such
a component is called exceptional), and h°(X,n) = 0 mod 2, and finally, 3 : n®? — wy
is a sheaf homomorphism which is generically non-zero along each non-exceptional
component of X. Even spin curves of genus ¢g form a smooth Deligne-Mumford stack
T §;r — M,. At the level of coarse moduli schemes, the morphism 7 : 3:; — M, is
the stabilization map 7([.X, 7, 5]) := [st(X)], which associates to a quasi-stable curve its
stable model.

We explain the boundary structure of g;r: If [X,n,8 € = Y([C U, D]), where
[C,y] € M;1,[D,y] € My_;1and 1 < i < [¢g/2], then necessarily X = C Uy, EU,, D,
where E is an exceptional component such that CNE = {y1} and DN E = {y2}.
Moreover = (n¢,mp,ne = Og(1)) € Pic"!(X), where n2* = K¢, n5? = Kp. The
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condition h°(X, ) = 0 mod 2, implies that the theta-characteristics ¢ and 7p have the
same parity. We denote by A; C 3:; the closure of the locus corresponding to pairs

([Cy,ne), ID,y,mp]) € 87y x 8, 4
and by B; C 3; the closure of the locus corresponding to pairs
([Cyy,mcl, [D,y,mp]) € Sy x Sy_i4
We set a; := [A;] € Pic(g;r),ﬁi = [B;] € Plc(S ), and then one has that
1) T(6i) = i + Bi.

We recall the description of the ramification divisor of the covering 7 : 3; — M,.

For a point [X,n, (] € 3; corresponding to a stable model st(X) = Cy, := C/y ~ ¢,
with [C,y, q] € Mgy_1 2, there are two possibilities depending on whether X possesses
an exceptional component or not. If X = C, (i.e. X has no exceptional component) and
nc = v*(n) where v : C — X denotes the normalization map, then 17%2 = Kc(y + q).
For each choice of ¢ € Pic?"!(C) as above, there is precisely one choice of gluing the

fibres nc(y) and nc(q) such that h%(X, ) = 0 mod 2. We denote by Ay the closure in 3:;

of the locus of spin curves [Cyq, nc € /Kc(y + q)] as above.
fX =C Uty B where E is an exceptional component, then ¢ := n ® O¢ is

a theta-characteristic on C. Since H(X,w) = H°(C,w¢), it follows that [C,nc] € S;_l.

We denote by By C 3:; the closure of the locus of spin curves

[C Uly,q} E, FE= Pl, nc € VKo, ng = OE(l)] S S;_
If ag := [Ao], Bo := [Bo] € Pic(gg), we have the relation, see [C]:
() 7*(do) = ao + 20p.

In particular, By is the ramification divisor of 7. An important effective divisor on g;r
is the locus of vanishing theta-nulls

Onun = {[C, 77] € S;_ : HO(C7 77) # O}
The class of its compactification inside 3+ is given by the formula, cf. [E3]:

- 1 1 9/2
3) Ouul = A= 7200 — 5 Z B € Pic(S

It is also useful to recall the formula for the canonical class of gg :

l9/2]
Kg;r = ﬂ*(Kﬂg) + By = 13X — 29 — 35y — 2 Z(O@ + 6i) — (a1 + B1).
i=1
An argument involving spin curves on certain singular canonical surfaces in P,
implies that for g < 9, the divisor O, is uniruled and a rigid point in the cone of
effective divisors Eff (3;):



Theorem 1.1. For g < 9 the divisor O C 3; is uniruled and rigid. Precisely, through a
general point of O, there passes a rational curve T’ C 3; such that T-O .y < 0. In particular,
if D is an effective divisor on 3; with D = nOyyy for some n > 1, then D = nOpy.

Proof. We assume 7 < g < 9, the other cases being similar and simpler. A general point

[C,nc] € Opun corresponds to a canonical curve C Ilfj\ pI—! lying on a rank 3 quadric
Q C P97! such that C' N Sing(Q) = (. The pencil ¢ is recovered from the ruling of Q.

Let V € G(7,H°(C, K¢)) be a general subspace such that if m, : P9~! --» P(VV)
is the projection, then Q := 7y (Q) is a quadric of rank 3. Let C’ := m/(C) C P(V") be
the projection of the canonical curve C. By counting dimensions we find that

dim{Icr /prvy(2) := Ker{Sym*(V') — H°(C, K&?)}} > 31 — 39 > 4,

that is, the embedded curve C’ C P° lies on at least 4 independent quadrics, namely
the rank 3 quadric Qand Q1,Q2,Qs € | I /p(vvy(2)]- By choosing V' sufficiently general
we make sure that S := Q N Q1 N Q2 N Qs is a canonical surface in P(V") with 8 nodes
corresponding to the intersection ﬂ?;l Qi N Sing(Q) (This transversality statement can
also be checked with Macaulay by representing C' as a section of the corresponding
Mukai variety). From the exact sequence on S,

0 — Os — Og(C) — Oc(C) — 0,

coupled with the adjunction formula O¢(C) = K¢ ® Kg| o = Oc, as well as the fact
HL(S,05) = 0, it follows that dim |C| = 1, that is, C C S moves in its linear system. In
particular, ©,, is a uniruled divisor for g < 9.

We determine the numerical parameters of the family I' C 3:; induced by varying
C C S. Since C? = 0, the pencil |C| is base point free and gives rise to a fibration
f: 8 — P!, where S := Blg(S) is the blow-up of the nodes of S. This in turn induces a
moduli map m : P! — g;r and I' =: m(P'). We have the formulas

L A=m*(A) =x(5,0s)+g—-1=8+g—1=g+7,

and

[-ag+ 2T Gy = m™ (7" (do)) = m" (o) + 2m™(Bo) = ca(5) +4(g — 1).
Noether’s formula gives that c3(S) = 12x(S, Og) — Kg, = 12x(S, Og) — K2 = 80, hence
m*(ag) + 2m*(By) = 4g + 76. The singular fibres corresponding to spin curves lying in
By are those in the fibres over the blown-up nodes and all contribute with multiplicity
1, thatis, I' - By = 8 and then I" - ag = 4g + 60. It follows that I' - O,y = —2 < 0
(independent of g!), which finishes the proof.

To illustrate one of the cases g < 7, we discuss the situation on 3:. We denote
by S = Fy the blow-up of the vertex of a cone Q@ C P? over a conic in P® and write
Pic(S) = Z - F + Z - Cy, where F? = 0, C2 = —2and Cy - F = 1. We choose a
Lefschetz pencil of genus 4 curves in the linear system |3(Cy + 2F)|. By blowing-up
the 18 = 9(Cy + 2F)? base points, we obtain a fibration f : S := Bljg(S) — P! which
induces a family of spin curves m : P! — 8, given by m(t) := [f~1(t), Op-1((F)]. We
have the formulas

m*(A) = x(S,05) +g—1=4, and

5



m*(7*(do)) = m*(ag) + 2m*(Bo) = c2(S) +4(g — 1) = 34.

The singular fibres lying in Bj correspond to curves in the Lefschetz pencil on () passing
through the vertex of the cone, that is, when f ~L(to) splits as Cy + D, where D C S is
the residual curve. Since Cyy - D = 2 and O¢,(F) = O¢,(1), it follows that m(ty) € Bo.
One finds that m*(3y) = 1, hence m*(ap) = 32 and m*(Opy) = —1. Since I' := m(P)
fills-up the divisor ©,,;;, we obtain that [©,,)] € Eff (3:) is rigid. O

2. SPIN CURVES OF GENUS &

The moduli space Mgy carries one Brill-Noether divisor, the locus of plane septics
MZ 7 :={[C] € Mg : G3(C) # 0}

The locus Mﬁj is irreducible and for a known constant c§,7 € Z~q, one has, cf. [EHZ],

1 — _
——Mp 7 = 22X\ — 36y — 146) — 2485 — 3083 — 325, € Pic(My).
g7

In particular, s(ﬂéj) = 6+ 12/(¢g + 1) and this is the minimal slope of an effective
divisor on Mg. The following fact is probably well-known:

Proposition 2.1. Through a general point of ﬂ;i there passes a rational curve R C Mg such
that R - ﬂ;? < 0. In particular, the class Wﬁﬂ € Eff(My) is rigid.

Proof. One takes a Lefschetz pencil of nodal plane septic curves with 7 assigned nodes in
general position (and 21 unassigned base points). After blowing up the 21 unassigned
base points as well as the 7 nodes, we obtain a fibration f : S := Blag(P?) — P!, and the
corresponding moduli map m : P! — My is a covering curve for the irreducible divisor

M;?. The numerical invariants of this pencil are
m*(A) = x(5,0s5) +g—1=8 and m*(dp) = c2(S) +4(g — 1) = 59,
while m*(8;) = 0fori = 1,...,4. We find m*(Ma ;) = ¢ ,(8-22-3-59) = —~2,; < 0. O
Using (@) we find the following explicit representative for the canonical class K38+ :

4

— 1 VL 7o)
(4) Kgr = Tgﬁ” (Mg,7) + 80nun + ;(ai o; +b; Bi),
where a;,b; > 0fori =1,...,4. The multiples of each irreducible component appearing

in @ are rigid divisors on g;, but in principle, their sum could still be a movable class.
Assuming for a moment Proposition [I.2] we explain how this implies Theorem [I.Tt

Proof of Theorem The covering curve R C Oy, constructed in Proposition [1.2] satis-
fies R - Op < OaswellasR-w*(ﬂgj) =0and R -a;=R-3;=0fori=1,...,4. It

follows from (@) that for each n > 1, one has an equality of linear series on 3;{
‘RKE;{‘ = 8n@nu11 + ‘Tl(Kggt — 8@null)"
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Furthermore, from @) one finds constants a} > 0 fori = 1,...,4, such that if

4
D =22\ -3% — Y _a;d; € Pic(Ms),
=1

then the difference 37*(D) — (K5+ — 8O, is still effective on g;. We can thus write
8
_ _ _ 1 _
0< r(Sq) = r(Ss, Kg+ — 80un) < #(Ss 57 (D)) = k(Ss 7 (D)).
We claim that x(Sy , 7*(D)) = 0. Indeed, in the course of the proof of PropositionZT we
have constructed a covering family B C Ms for the divisor ﬂﬁj such that B -ng <0
and B-6; =0fori=1,...,4. Welift B to afamily R C 3; of spin curves by taking

B := B x5, 84 = {[Ct, nc,] € Sx : [Ci] € By, € Pic' (Cy),t € P'} € Sf.

One notes that B is disjoint from the boundary divisors A4;, B; C 3;{ fori =1,...,4,
hence B - n*(D) = 2971(29 + 1)(B 'M;?)ﬂs < 0. Thus we write that

4
K(Sg .7 (D)) = k(Sg ., 7" (D — (22A — 360)) = k(S . Y _ aj(a; + B;)) = 0.
=1
0

p— _2 J—
3. A FAMILY OF SPIN CURVES R C Sg WITH R - (Mg 7) = 0 AND R - Oy = —1

The aim of this section is to prove Proposition which is the key ingredient in
the proof of Theorem We begin by reviewing facts about the geometry of Ms, in
particular the construction of general curves of genus 8 as complete intersections in a
rational homogeneous variety, cf. [M2].

We fix V =2 C® and denote by G := G(2,V) C P(A?V) the Grassmannian of lines.
Noting that smooth codimension 7 linear sections of G are canonical curves of genus 8,
one is led to consider the Mukai model of the moduli space of curves of genus 8

Mg == G(8,\*V)//SL(V).

There is a birational map f : Mg --» Mg, whose inverse is given by f “Y(H):=GnH,
for a general H € G(8,A%?V). The map f is constructed as follows: Starting with a
curve [C] € Mg — M3 ;, one notes that C has a finite number of pencils gi. We choose

AeWi(C)andset L := Kc® AY € W§(C). There exists a unique rank 2 vector bundle
E € SUc(2, K¢) (independent of A!), sitting in an extension

0—A—F—L—0,
such that h%(E) = h°(A) + h°(L) = 6. Since FE is globally generated, we define the map
¢p:C — G(2,H°(C,E)), ¢r(p) = E@p)" (— H(C,E)Y),

and let p : G(2, H*(C, E)¥) — P(A2H°(C, E)V) be the Pliicker embedding. The deter-
minant map u : A2HY(E) — H°(K() is surjective, that is, H*(K¢)Y € G(8, \2H°(E)Y),
see [M2] Theorem C. We set

£C)) = [C 228 P(A2HO(E)Y), P(HO(K¢)Y)] mod SL(V) € Ms.
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It follows from [M2] that the exceptional divisors of f are the Brill-Noether locus Hﬁj
and the boundary divisors A1, ..., Ay. The map f~! does not contract any divisors.

Inside the moduli space Fs of polarized K3 surfaces [9, h] of degree h? = 14, we
consider the following Noether-Lefschetz divisor
NE = {[S,05(C1 + C)] € Fg : Pic(S) DZ-C1 BZL-Co, C}=C3=0,C,-Cy =T},

of doubly-elliptic K3 surfaces. For a general element [S, Og(C)] € NE, the embedded

0s(C
surface S 10g &N P? lies on a rank 4 quadric whose rulings induce the elliptic pencils | C1 |

and |Cy| on S. We denote by M&' C ML the open subset corresponding to polarized
surfaces [S, Og(Cy + C3)] such that Pic(S) = Z - C1 @ Z - C5. Then we consider the
P?-bundle U — NE' classifying pairs ([S, Os(Cy + Cs)],C C S), where

C € |H%(S,05(C1)) ® H(S,05(Ca))| € [H(S,05(C1 + Ca))|.

An element of U corresponds to a hyperplane section C' C S C P® of a doubly-elliptic
K3 surface, such that the intersection of ' with the rank 4 quadric induced by the
elliptic pencils, has rank 3. There exists a rational map

q:U --» @nuu, q([S, Os(Cl + CQ)],C) = [C, Oc(Cl) = Oc(CQ)].

Clearly U is irreducible and dim (i) = 21(= 3 + dim(9¢£)). We shall show that the
morphism ¢ is dominant, by explicitly describing its generic fibre. This produces a
parametrization of the divisor ©,,, in particular it provides an explicit covering curve.

We fix a general point [C, 7] € Opun C 3;{, with 7 a vanishing theta-null. Then
CcQcCP =PHC,Kc)Y),
where Q € H°(P",Z, sp7(2)) is the rank 3 quadric such that the ruling of @ cuts out on
C precisely 7. As explained, there exists a linear embedding P" P := P(A2H°(E)")
such that P’ NG = C. The restriction map yields an isomorphism between spaces of
quadrics, cf. [M2],
resc : HY(G, Zg p1s (2)) — H(PT, I, p7(2)).

In particular there is a unique quadric G C Q C P'* such that Q NP7 = Q.

There are three possibilities for the rank of any quadric Q € H°(P', T p1a(2)):
(a) rk(Q) = 15, (b) rk(Q) = 6 and then Q is a Pliicker quadric, or (c) rk(Q) = 10, in which

case () is a sum of two Pliicker quadrics, see [M2].
Proposition 3.1. For a general [C, 7] € O, the quadric Q is smooth, that is, rk(Q) = 15.

Proof. We may assume that dim G}(C) = 0 (in particular C hasno g}’s), and G2(C) = ().
The space P(Ker(u)) C P(A2HY(E)) is identified with the space of hyperplanes H €
(P')V containing the canonical space P".

Claim: If rk(@) < 15, there exists a pencil of 8-dimensional planes P" ¢ = c P, such
that S := GNE is a K3 surface containing C' as a hyperplane section, and

I‘k{QE = Q NE e HO(E,IS/E(Q))} = 3.

The conclusion of the claim contradicts the assumption that [C,n] € Oy is
general. Indeed, we pick such an 8-plane = and corresponding K3 surface S. Since
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Sing(Q) N C = (, where Q= NP7 = Q, it follows that S N Sing(Qx=) is finite. The rul-
ing of Q= cuts out an elliptic pencil |E| on S. Furthermore, S has nodes at the points

S NSing(Qxz). For numerical reasons, #Sing(S) = 7, and then on the surface S obtained
from S by resolving the 7 nodes, one has the linear equivalence

C=2E+T1+---+1T7,
where I'? = —2, I, - E = 1fori = 1,...,7and I'; - T; = 0 for i # j. In particular

rk(Pic(S)) > 8. A standard parameter count, see e.g. [Dol], shows that
dim{(S,C) : C € |Og(2E +T1 +--- +T7)|} <19 — 7+ dim|04(C)| = 20.

Since dim(©,,;1) = 20 and a general curve [C] € Oy lies on infinitely many such K3
surfaces S, one obtains a contradiction.

We are left with proving the claim made in the course of the proof. The key point
is to describe the intersection P(Ker(u)) N Q"Y, where we recall that the linear span QY)
classifies hyperplanes H € (P'*)Y such that rk(Q N H) < rk(Q) — 1. Note also that

dim (Q) = rk(Q) — 2.

If rk(Q) = 6, then QV is contained in the dual Grassmannian G" := G(2, H(E)),
cf. [M2] Proposition 1.8. Points in the intersection P(Ker(u)) N G correspond to de-
composable tensors s1 A sg, with s, 52 € H(C, E), such that u(s; A s3) = 0. The image

of the morphism OF? 1) 1 is thus a subbundle gi of E and there is a bijection

P(Ker(u)) N G(2, H'(E)) 2 W, (O).

It follows, there are at most finitely many tangent hyperplanes to Q containing the space
P” = (C), and consequently, dim (P(Ker(u)) N <QV>) < 1. Then there exists a codimen-
sion 2 linear space W'2 C P such that rk(Q N W) = 3, which proves the claim (and
much more), in the case rk(Q) = 6.

When rk(Q) = 10, using the explicit description of the dual quadric Q" provided
in [M2] Proposition 1.8, one finds that dim (P(Ker(u)) N (Q")) < 4. Thus there exists
a codimension 5 linear section W c P such that rk(Q N W) = 3, which implies the

claim when rk(Q) = 10 as well.
U

We consider an 8-dimensional linear extension P” ¢ A8 ¢ P!* of the canonical
space P” = (C), such that Sy := A N G is a smooth K3 surface. The restriction map

rescys, © HO(A, Zg, A (2)) — HO(P7710/P7(2))

is an isomorphism, cf. [SD]. Thus there exists a unique quadric Sy C Qa C A with
QaNP" = Q. Since tk(Q) = 3, it follows that 3 < rk(Q,) < 5 and it is easy to see that
for a general A, the corresponding quadric Qa C A is of rank 5. We show however, that
one can find K 3-extensions of the canonical curve C, which lie on quadrics of rank 4:

Proposition 3.2. For a general [C, 1] € Oy, there exists a pencil of 8-dimensional extensions
P(H°(C,K¢)Y) c A c PM

such that rk(Qa) = 4. It follows that there exists a smooth K3 surface Sy C A containing C
as a transversal hyperplane section, such that rk(Qp) = 4.

9



Proof. We pass from projective to vector spaces and view the rank 15 quadric

Q: N’HY(C,E)Y = A’HO(C, F)
as an isomorphism, which by restriction to H%(C, K¢)¥ C A*H(C, E)", induces the
rank 3 quadric Q : H(C, K¢)¥ — H°(C, K¢). Themap uo Q : A*H(E)" — H°(Kc)

being surjective, its kernel Ker(u o @)) is a 7-dimensional vector space containing the
5-dimensional subspace Ker(Q). We choose an arbitrary element

Ker(u o Q)
Ker(Q) >’

inducing a subspace H°(C,K¢)¥ C A := H°(C,K¢)” + Cv € A2HY(C,E)Y, with

the property that Ker(Q,) = Ker(Q), where Qx : A — A is induced from Q by re-

striction and projection. It follows that rk(Qx) = 4. Moreover, we have shown that

dim ¢~ !([C,n]) < 1, in particular g is dominant. O

[0:=v+Ker(Q)] € P(

Now we can begin the proof of Proposition Let C C Q C P be a general
canonical curve endowed with a vanishing theta-null, where Q € H%(P7,I,p7(2)) is

the corresponding rank 3 quadric. We choose a general 8-plane P € A C P'* such that
S := A N G is a smooth K3 surface, and the lift of Q) to A

Qa € H°(A,Zg/0(2))

has rank 4. Moreover, we can assume that S N Sing(Qs) = (. The linear projection
fa : A --» P? with center Sing(Q,), induces a regular map f : S — P? with image
the smooth quadric @y C P?. Then S is endowed with two elliptic pencils |C;| and
|Cy| corresponding to the projections of Qo = P! x P! onto the two factors. Since C' €
|Os(1)|, one has a linear equivalence C' = C; + C, on S. As already pointed out,
deg(f) = Cy - Cy = C?/2 = 7. The condition rk(Qx N P7) = rk(Qx) — 1, implies that the
hyperplane P” € (A) is the pull-back of a hyperplane from P3, that is, P” = f,!(Ilp),
where ITj € (P3)V.

We choose a general line [y C Il and denote by {q1,¢2} := lp N Qo. We consider
the pencil {II; },.p1 C (P?)Y of planes through [y as well as the induced pencil of curves
of genus 8

{Cr = f71 (1) C S}yepr,

each endowed with a vanishing theta-null induced by the pencil f; : C; — Qo N I1,.

This pencil contains precisely two reducible curves, corresponding to the planes
I1;, 15 in P? spanned by the rulings of Q, passing through ¢; and ¢, respectively. Pre-
cisely, if l;, m; C Qo are the rulings passing through ¢; such that l; - ls = m; - mg = 0,
then it follows that for Iy = (I1,ms),Ils = (I3, m1), the fibres f~1(II;) and f~!(IIy)
split into two elliptic curves f~1(l;) and f~!(m;) meeting transversally in 7 points. The
half-canonical g! specializes to a degree 7 admissible covering

S UL my) L umg, i # 5,
such that the 7 points in f~1(l;) N f~(m;) map to l; N m;. To determine the point
in Sy corresponding to the admissible covering (F7H0) U LY my), fip-1aup-1my))s
one must insert 7 exceptional components at all the points of intersection of the two
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components. We denote by R C O, C 3; the pencil of spin curves obtained via this
construction.

Lemma 3.3. Each member C; C S in the above constructed pencil is nodal. Moreover, each
curve Cy different from f=1(11) U f~Y(ms) and f=1(lo) U f~1(my) is irreducible. It follows
that R-oa; =R-3;=0fori=1,...,4.

Proof. This follows since f : S — Q) is a regular morphism and the base line [y C Hj of
the pencil {II; },.p1 is chosen to be general. a

Lemma34. R- W*(M%g) =0.

Proof. We show instead that 7. (R) - ﬂﬁj = 0. From Lemma[B.3, the curve R is disjoint
from the divisors A4;, B; for i = 1,...,4, hence 7,(R) has the numerical characteristics
of a Lefschetz pencil of curves of genus 8 on a fixed K3 surface.

In particular, m.(R) - 0/m(R) - XA = 6 +12/(g + 1) = s(ﬂéj) and m.(R) - 0; = 0 for
i =1,...,4. This implies the statement. O

Lemma3.5. T - O = —1.

Proof. We have already determined that R -\ = m.(R) - A = x(S5, 0 g)+g9—1=9,where
S := Bly,_2(S) is the blow-up of S at the points f~(¢1) U f~!(g2). Moreover,

(5) R-ag+2R- By =m(R) -6 = ca(X)+4(g — 1) = 38 4+ 28 = 66.

To determine R - 3y we study the local structure of 3;{ in a neighbourhood of one of the
two points, say t* € R corresponding to a reducible curve, say f~1(l1) U f~1(ma), the
situation for f~1(I2) U f~1(m1) being of course identical. We set {p} := I N"ms € Qp and
{x1,...,27} == f~(p) € S. We insert exceptional components E, ..., E7 at the nodes
x1,..., 27 of f71(I1) U f~!(m2) and denote by X the resulting quasi-stable curve. If
po fTH ) U me) UBLU . U Br — (1) U f 7~ (me)

is the stabilization morphism, we set {y;, z;} := p~*(2;), where y; € E; N f~(I1) and
zi € E;N f_l(mg) fori=1,...,7. If t* = [X,n, ], then NF-1(1,) = Offl(l1)7 Nf=1(mg) =
Of-1(my), and of course ng, = Op,(1). Moreover, one computes that Aut(X, 7, 3) = Z
and Aut(f~1(l;) U f~(ms)) = {Id}, cf. [(] Lemma 2.2.

If C2972 denote the versal deformation space of [X,n, ] € 3:;, then there are local

parameters (7i,...,734—3), such that for i = 1,...,7, the locus (r; = 0) C C¥3 pa-
rameterizes spin curves for which the exceptional component E; persists. It particular,

the pull-back C7 2973 5 By of the boundary divisor By C S is given by the equation
(11 77 =0) CC¥~ 3 The group Aut(X,7, 3) acts on C29~* by
(7—17 ey T7, T8y o v s 7T3g—3) (_Tl7 ey TT7, T8y -t ,ng_g),

and since an étale neighbourhood of t* € g;r is isomorphic to Clo—3 JAut(X,n, 3), we
find that By is not Cartier around t* (though 2B is Cartier). It follows that the inter-

section multiplicity of R x4 + C¥7? with the locus (7 - -~ 77) = 0 equals 7, that is, the
intersection multiplicity of R N [y at the point t* equals 7/2, hence

R- By = ( 50) L(1)Uf~1(m ( 50) Li)nf=1(ma) —

11

N~
+
N~
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Then using @) we find that R - fy = 66 — 14 = 52, and finally

— 1 1 9 52
R'@null—zR‘)\—l—ﬁR'ao—Z—E——1.

O

Remark 3.6. The final argument in the previous proof, namely that the reducible curve
(1)U f~L(ms) contributes with multiplicity 7/2 to R- 3y, can also be derived by inter-
preting O, as a space of admissible coverings of degree 7 over the versal deformation
space €73 and then making a local analysis similar to the one in [D] pg. 47-50.

4. THE KODAIRA DIMENSION OF My 13

We begin by recalling the notation for boundary divisor classes on the moduli
space M, ,,. For an integer 0 < i < [¢/2] and a set of labels T C {1, ...,n}, we denote by
A;.1 the closure in ﬂg,n of the locus of n-pointed curves [C} U Cy, z1, ..., z,]|, where C}
and C are smooth curves of genera i and g — i respectively, and the marked points lying

on C are precisely those labeled by T'. As usual, we define d;.7 := [A;.7] € Pic(M ).
For0<i<|[g/2]and 0 < ¢ < g, we set

Oiic i= Z di.r-
#

(T)=c

By convention, dp.. := 0, for ¢ < 2. If ¢ : Mg,n — Mg is the morphism forgetting

the marked points, we set A\ := ¢*(\) € Pic(M,,,) and iy := ¢*(0irr) € Pic(Myy),

where 6y, := [Airy] € Pic(M,) denotes the class of the locus of irreducible nodal curves.

Furthermore, 11,...,%, € Pic(M,,) are the cotangent classes corresponding to the
marked points. The canonical class of M, ,, has been computed, cf. [Log] Theorem 2.6:

(6) K7g,, = 13X = 201 + D=2 bir— Y b
i=1

i>0,T T

We show that, at least for small g, the divisor 59 of curves with g marked points moving
in a pencil, is an extremal point in the effective cone of M, ,:

Proposition 4.1. For 3 < g < 11, the irreducible divisor 59 is filled up by rational curves
R C M, g such that R - Dy < 0. It follows that [D,] € Eff(M, ;) is a rigid divisor. Moreover,
when g # 10, one can assume that R - 8,0 = 0foralli > 0and T C {1,...,¢g}.

Proof. We first treat the case g # 10, and start with a general point [C, z1,...,z4] € D,.
We assume that the points z1, ..., 2, € C are distinct and h°(C, K¢(—21—- - —1z,)) = 1.
Let us consider the (g — 2)-dimensional linear space

A = <‘,L'17 ... 7xg> C P(HO(C’ KC)V) — Pg—l'

Since ¢(D,) = M,, we may assume that [C] € M, is a general curve. In particular, C

0s(C
lies on a K3 surface S 195 P9, which admits the canonical curve C' as a hyperplane

section, cf. [MT]]. We intersect S with the pencil of hyperplanes {H) € (PY)"}, p1 such
that A C H,. Since (i) the locus of hyperplanes H € (P9)" such that the intersection
S N H is not nodal has codimension 2 in (P9)", and (ii) the pencil {H)},p: can be
viewed as a general pencil of hyperplanes containing P(H®(C, K¢)¥) as a member, we
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may assume that all the curves H) N S are nodal and that the nodes stay away from the
fixed points z1, ..., z4. In this way we obtain a family in M, ,

R:={[Cy:=H\NS, z1,...,x4] : A C Hy, )\EPI},

inducing a fibration f : S := Bly,_2(S) — P!, obtained by blowing-up the base points
of the pencil, together with g sections given by the exceptional divisors E,, C S corre-
sponding to the base points z1,...,z,. The numerical parameters of R are computed
using, for instance, [[EP] Section 2. Precisely, one writes that

(7) RA:(¢*(R)A)MQZQ+17 R'éirr:(¢*(R)'5irr)ﬂg:6g+187 R-6;.7 =0,

fori > 0and T C {1,...,g}. Finally, from the adjunction formula, R-¢; = —(EZ)g =1
forl < ¢ < g. Thus, R - 59 = —1. Since R is a covering curve for the divisor 5g, it
follows that D, is a rigid divisor on M, ,.

We turn to the case g = 10, when the previous argument breaks down because
the general curve [C] € My no longer lies on a K3 surface. More generally, we fix
g < 11,9 # 9 and pick a general point [C, z1,...,z4] € Dy. We denote by X := Cj;
the nodal curve obtained from C by identifying z; and z;, where 1 < i < j < g.
Since [X] € A¢g C M, is a general 1-nodal curve of genus g + 1, using e.g. [FKPS],
there exists a smooth K3 surface S containing X. We denoteby v : C' — X C S the
normalization map and set v(z;) = v(x;) = p. The linear system |Og(X)| embeds S in
P9t and v*(05(X)) = Ko(x; + x;). Lete : S’ := Bl,(S) — S be the blow-up of S at
pand E C S’ the exceptional divisor. Note that C' viewed as an embedded curve in S’
belongs to the linear system |¢*Og(1) ® Og/(—2FE)| and C - E = z; + z;. Let Z C S’ the
reduced 0-dimensional scheme consisting of marked points of C with support {z;, z; }°.

Since h%(C,Oc(z1 + --- + x4)) = 2, we find that Z together with the tangent
plane T,(X) = T,(S) span a (g — 1)-dimensional linear space A C P9"!. We obtain a
1-dimensional family in D, by taking the normalization of the intersection curves on S
with hyperplanes H € (P9*1)V passing through A. Equivalently, we note that

KOS, Ty)5(C)) = h(S', Og) + hOC, K~y — -+ — ) = 2,

that is, |Z;,s/(C)| is a pencil of curves on S’. We denote by € : S = Bly,_4(S") — S’ the
blow-up of S’ at the (¢*(H) — 2E)? = 2g — 4 base points of |Z,5/(C)|, by f : S — P! the
induced fibration with (g — 2) sections corresponding to the points of Z, as well as with
a 2-section given by the divisor E := ¢ 1(E). Since deg(fr) = 2, there are precisely two
fibres of f, say C; and C5, which are tangent to E. We make a base change or order 2
via the morphism fg : E — P!, and consider the fibration

q':Y’:zSXP1E—>E.

Thus p : Y’ — S is the double cover branched along C; + Cy. Clearly ¢’ admits two
sections F1, Fs C Y’ such that p*(F) = Ey + E and E; - E5 = 2. By direct calculation,
it follows that E? = E2 = —3. To separate the sections E; and E», we blow-up the two
points of intersection E; N Ey and we denote by ¢ : Y := Bly(Y’) — E the resulting
fibration, which possesses everywhere distinct sections o; : E — Y/ for1 < i < g,
given by the proper transforms of F; and FE» as well as the proper transforms of the
exceptional divisors corresponding to the points in Z. The numerical characters of the
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family I';; := {[¢g71(t),01(t),...,04(t)] : t € E} C M, are computed as follows:
Fij A= 2(9 + 1)7 Fij ' 5irr = 2(69 + 17)7 Fij : ¢l =2forl € {i>j}cy
Pij . 1/JZ = Fij . ¢j = —(Eiz)y/ +2= 5, Pij . (50;@' = 2, Pij . 5l:T =0forl > O,T C {Z,j}c
We take the &4-orbit of the 1-cycle I';; with respect to permuting the marked points,
1 —
= ——""--=> I'ije NE1(My,),
g(g—l); J 1( gvg)

and note that I'- D, = —1. Each component I';; fills-up D,, which finishes the proof. [

We now specialize to the case of genus 11: On M;; there exist two divisors of
Brill-Noether type, namely the closure of the locus of 6-gonal curves

M= {[C] € Mi1 : Gg(C) # 0}
and the closure of the locus M%l,g = {[C] € M11 : G3(C) # 0}. The divisors M}m and

Mfl,g are irreducible, distinct, and their classes are proportional, cf. [EH2]. Precisely,
there are explicit constants cj; 4, ¢7; g € Zso, such that

1 — 1 _
bnqyp = I Mil,ﬁ =5 Mil,g =T7A—0p— 501 — 90y — 1203 — 1404 — 1565 € PiC(MH).
€116 €11,9

By interpolating, we find the following explicit canonical divisor:

5 11
®) Kxqy, , =Du 429 (bnn) + )Y dic Sies
i=0 c=0
where
do:c = 02++_4 fore>2, di..=7+ (’C_ ;‘ +1>, da.c = 16 + <‘C_§! +1>’
dg.c = 22+ (’6_2‘ +1>, dy.c = 26 + <‘c_§’ H), ds.c = 28 + (’c_‘;” +1>.

One already knows that multiples of Dy are non-moving divisors on My 11. We show
that D, does not move in any multiple of the canonical linear system on My 11.

Proposition 4.2. For each integer n > 1 one has an isomorphism
H° (MH’H’ Oﬂu,u (nKmu,u )) = H (Mll’n’ Omu,u (nKmu,u o nﬁll)) ’
In particular, k(Mi111) = “(ﬂllvlhKﬂn,u —Dyy).

Proof. Using the notation and results from Proposition LT} we recall that we have con-
structed a curve R C Mj;,1; moving in a family which fills-up the divisor Dy;, such
that R-Dy; = —land R-d;5 = 0, foralli > 0and T C {1,...,g}. All points in R
correspond to nodal curves lying on a fixed K3 surface S, which by the generality as-
sumptions, can be chosen such that Pic(S) = Z. Applying [LaZ], all underlying genus
11 curves corresponding to points in R satisfy the Brill-Noether theorem, in particular
R - ¢*(bnyy) = 0, thatis, R - Kﬂu,n = R-Dy; = —1. It follows that for any effective
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divisor E on ﬂ11711 such that £ = nKM11 .., one has that R - £ = —n, thus the class
E — nDy, is still effective and then InK; =nDq + In K4 —nD11]. O

11,11 | 11,11

We are in a position to complete the proof of Theorem [I.3

Theorem 4.3. We have that (M1 11, 2 ¢*(bni1) + D dice- Si.c) = 19. It follows that the
Kodaira dimension of M1 11 equals 19.

Proof. To simplify the proof, we define a few divisors classes on M 11:

11

A:=2 bn11 Z dz c 52 e = M11 " 511 and A/ = A - Z d():C (50;0,
1>0,c c=2

as well as, B := bnyy + 493 + 784 + 865 € Pic(M1;).
We claim that for all integers n > 1 one has isomorphisms,

HO (mll,n, Omll,ll (TLA)) = HO (mlml, Omll,ll (TLA/)) .
Indeed, we fix a set of labels 7" C {1, ...,11} such that #(7") > 2 and consider a pencil
{[Cy,mi(t),p(t) i € TC]}tepl C M1 19— (1)

of (12 — #(T))-pointed curves of genus 11 on a general K3 surface S, with marked
points being labeled by elements in 7 as well by another label p(t). The pencil is in-
duced by a fibration obtained from a Lefschetz pencil of genus 11 curves on S, with
regular sections given by (12 — #(T")) of the exceptional divisors obtained by blowing-
up S at the (29 — 2) base points of the pencil. To each element in this pencil, we attach at
the marked point labeled by p(t), a fixed copy of P! together with fixed marked points
z; € P! — {0}, fori € T. The gluing identifies the point p(t) € C; with co € PL. If
Ry C M 11 denotes the resulting family, we compute:

Rp-\ = g+1, Rp-6iy = 6(g+3), Rp-do.r = —1, Rpp; =1fori € T¢, Rp1p; =0forieT.

Moreover, Ry is disjoint from all remaining boundary divisors of Mi;1;. One finds
that Ry - ¢*(bny;1) = 0. Thus for any effective divisor £ C m11711 such that £ = nA, we
find that Ry - E = —nd07c.

Since for all T', the pencil RT fills-up the divisor Ag.7, we can deform the curves
Ry C Ag.r, to find that £ — Z _o nd.c - 9o s still an effective class, that is,

11
‘nA‘ = Z ndO:c : AO:c + ‘TlA/‘,
c=2

which proves the claim. Next, by direct calculation we observe that the class A’ —2¢*(B)
is effective. Zariski’s Main Theorem gives that ¢.¢*Ox;  (B) = Oxy, (B), thus

(M1, A') > k(Mi1,¢*(B)) = k(Mir, B) = 19.

The last equality comes from [EP] Proposition 6.2: The class B contains the pull-back of
an ample class under the Mukai map [M3]]

11 1M11,11 --+ F11, C,z1,...,z11] — [S D C, O5(C)],

to a compactification of the moduli space of polarized K3 surfaces of degree 20.
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On the other hand, since ¢*(6;) = > g 0i:5 for 1 <4 <5, there is a divisor class on
Mj; of type B’ := 2 - bny + Z?Zl a;6; € Pic(My1), with a; > 0, such that ¢*(B’) — A’ is
an effective divisor. It follows that
k(Miar, AY) < k(Mia, ¢%(B')) = (M, B).

If Ry; C My is the family corresponding to a Lefschetz pencil of curves of genus 11
on a fixed K3 surface, then Ry; - B = 0. The pencil R;; moves in a 11-dimensional
family inside M1; which is contracted to a point by any linear series |nB’| on M;; with
n > 1 (in fact a general curve Ry is disjoint from the base locus of [nB’|). One finds that
k(Mi1, B') <19, which completes the proof. O

5. THE UNIRULEDNESS OF M, ,,

We formulate a general principle, somewhat similar to the one used in the proof
of Theorem [T} which we use in proving the uniruledness of some moduli spaces M, .

Proposition 5.1. Let X be a projective Q-factorial variety and suppose D1, Dy C X are irre-
ducible effective Q-divisors such that there exist covering curves I'; C D;, with I'; - D; < 0 for
i = 1,2 (in particular both D; € Eff(X) are non-movable divisors). Assume furthermore that
(Fl Dg)(rg Dl) — (FQ DQ)(Fl Dl) 2 0 and (Fl Kx)(rg Dl) — (Fg KX)(Fl Dl) < 0.
Then X is uniruled.
Proof. According to [BDPP] it suffices to prove that Kx is not pseudo-effective. By
contradiction, we choose a, 5 € R>o maximal such that Kx — aD; — Dy € Eff(X).
Then we can write down the inequalities

I'i - Kx > a(P1 . Dl) + 5(F1 . Dg) and 'y - Kx > a(P2 . Dl) + 5(F2 . Dg).
Eliminating o, the resulting inequality contradicts the assumption 3 > 0. O

Theorem 5.2. The moduli spaces Mz ,, and Mg, are uniruled for n < 12. In particular
C(7),¢(8) € {13, 14}.
Proof. We start with the genus 8 case and apply Proposition Bl when

1 -2 _

D1 = 62—(25 (M&?) =22\ — 35irr — e, D2 = Airr S EH(M87H),

8,7
where we refer to Section 2 for the definition of the constant ¢§ ;. To construct a covering
curve I'y C Dy, we lift to My ,, a Lefschetz pencil of 7-nodal plane septics. We note that
the fibration f : Blag(P?) — P! constructed in the course of proving Proposition I]1]
carries n sections given by the exceptional divisors corresponding to n unassigned base
points. If T’y C Mg, denotes the resulting family of n-pointed curves, then

P1~)\:¢*(F1)-A:8, Pl-éirr:¢*(l“1)-5irr:59, waizlfori:l,...,n,

and I'y - §;.p = 0. It follows thatT'y - Dy = —1/3, T'; - Ky, =n—14and 'y - Dy = 59.
We construct a covering curve I'y C Dj and start with a general pointed curve
[C,z1,...,Znt1] € M7 pi+1. We identify z,,+1 with a moving point y € C, that is, take

(X1, .. Tn] 1y € C}C Mgy,
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It is easy to compute that 'y - A = 0, T'y - iy = —2¢(C) = =14, T - 619 =1, Ta - ¢ =
1, fori = 1,...,n,and I's - 6;;7 = 0 for (i, T) # (1,0). Therefore I'y - D; = 28/3 and
[y - Ky, = 25+ n. The conditions of PropositionB.Jlare satisfied precisely for n < 12.

In the case M7, we take Dy = ¢* (ﬂ; 4) to be the pull-back of the 4-gonal locus
and Dy = Aj;;. The covering curve I'ys C Dy is constructed as above starting with a fixed
general pointed curve [C,z1,...,2p41] € M&n_l,_l and identifying x4 with a moving
point y € C. The curve I'y C Dj is the lift to M7, of a Lefschetz pencil of plane septics
having one triple point and 5 nodes. O

Remark 5.3. The results of Theorem B2 are close to optimal. It is known cf. [Log] that
M&M is of general type and m(ﬂzm) > 0. The Kodaira dimension of ﬂmg and ﬂg,lg
is still unknown. Note that it was already known that My, and Ms ,, is unirational for
n < 11, cf. [CH], [Log].
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