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We discuss the role of K3 surfaces in the context of Mercat’s conjecture in higher rank
Brill–Noether theory. Using liftings of Koszul classes, we show that Mercat’s conjecture
in rank 2 fails for any number of sections and for any gonality stratum along a Noether–
Lefschetz divisor inside the locus of curves lying on K3 surfaces. Then we show that
Mercat’s conjecture in rank 3 fails even for curves lying on K3 surfaces with Picard
number 1. Finally, we provide a detailed proof of Mercat’s conjecture in rank 2 for general
curves of genus 11, and describe explicitly the action of the Fourier–Mukai involution
on the moduli space of curves.
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1. Introduction

The Clifford index Cliff(C) of an algebraic curve C is the second most important
invariant of C after the genus, measuring the complexity of the curve in its moduli
space. Its geometric significance is amply illustrated for instance in the statement

Kp,2(C,KC) = 0 ⇔ p < Cliff(C)

of Green’s Conjecture [6] on syzygies of canonical curves. It has been a long-standing
problem to find an adequate generalization of Cliff(C) for higher rank vector bun-
dles. A definition in this sense has been proposed by Lange and Newstead [13]: If
E ∈ UC(n, d) denotes a semistable vector bundle of rank n and degree d on a curve
C of genus g, one defines its Clifford index as

γ(E) := µ(E) − 2
n
h0(C,E) + 2 ≥ 0,
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and then the higher Clifford indices of C are defined as the quantities

Cliffn(C) := min{γ(E) : E ∈ UC(n, d), d ≤ n(g − 1), h0(C,E) ≥ 2n}.a

Note that Cliff1(C) = Cliff(C) is the classical Clifford index of C. By specializing
to sums of line bundles, it is easy to check that Cliffn(C) ≤ Cliff(C) for all n ≥ 1.
Mercat [18] proposed the following interesting conjecture, which we state in the
form of [13, Conjecture 9.3], linking the newly-defined invariants Cliffn(C) to the
classical geometry of C:

(Mn) : Cliffn(C) = Cliff(C).

Mercat’s conjecture (M2) holds for various classes of curves, in particular general
k-gonal curves of genus g > 4k−4, or arbitrary smooth plane curves, see [13]. In [5,
Theorem 1.7], we have verified (M2) for a general curve [C] ∈ Mg with g ≤ 16. More
generally, the statement (M2) is a consequence of the Maximal Rank Conjecture (see
[5, Conjecture 2.2]), therefore it is expected to be true for a general curve [C] ∈ Mg.
However, for every genus g ≥ 11 there exist curves [C] ∈ Mg with maximal Clifford
index Cliff(C) = [ g−1

2 ] carrying stable rank 2 vector bundles E with h0(C,E) =
4 and γ(E) < Cliff(C), see [5, Theorems 3.6 and 3.7; 15, Theorem 1.1] for an
improvement. For these curves, the inequality Cliff2(C) < Cliff(C) holds.

Obvious questions emerging from this discussion are whether such results are
specific to (i) rank 2 bundles with 4 sections, or to (ii) curves with maximal Clifford
index [ g−1

2 ]. First we prove that under general circumstances, curves on K3 surfaces
carry rank 2 vector bundles E with a prescribed (and exceptionally high) number
of sections invalidating Mercat’s inequality γ(E) ≥ Cliff(C).

Theorem 1.1. We fix integers p≥ 1 and a≥ 2p+ 3. There exists a smooth curve
C of genus 2a+ 1 and Clifford index Cliff(C)= a, lying on a K3 surface C ⊂ S ⊂
P2p+2 with Pic(S) = Z ·C⊕Z ·H, where H2 = 4p+2, H ·C = deg(C) = 2a+2p+1,
as well as a stable rank 2 vector bundle E ∈ SUC(2,OC(H)), such that h0(C,E) =
p+ 3. In particular γ(E) = a− 1

2 < Cliff(C) and Mercat’s conjecture (M2) fails for
C.

It is well-known cf. [20, 24], that a curve [C] ∈ M2a+1 lying on a K3 surface
S possesses a rank 2 vector bundle F ∈ SUC(2,KC) with h0(C,F )= a + 2. In
particular, γ(F )= a≥Cliff(C) (with equality if Pic(S) = Z ·C), hence such bundles
satisfy condition (M2). Let us consider the K3 locus in the moduli space of curves

Kg := {[C] ∈ Mg : C lies on a K3 surface}.

aThe invariant Cliffn(C) is denoted in the paper [13] by γ′
n(C). Since the appearance of [13], it

has become abundantly clear that Cliffn(C), defined as above, is the most relevant Clifford type
invariant for rank n vector bundles on C. Accordingly, the notation Cliffn(C) seems appropriate.
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When g = 11 or g ≥ 13, the variety Kg is irreducible and dim(Kg) = 19 + g, see [2,
Theorem 5]. For integers r, d ≥ 1 such that d2 > 4(r− 1)g and 2r− 2 � d, we define
the Noether–Lefschetz divisor inside the locus of sections of K3 surfaces

NLr
g,d :=

{
[C] ∈ Kg

∣∣∣∣C lies on a K3 surface S,Pic(S) ⊃ Z · C ⊕ Z ·H,
H ∈ Pic(S)is nef, H2 = 2r − 2, C ·H = d, C2 = 2g − 2

}
.

A consequence of Theorem 1.1 can be formulated as follows.

Corollary 1.2. We fix integers p≥ 1 and a≥ 2p+3 and set g := 2a + 1.
Then Mercat’s conjecture (M2) fails generically along the Noether–Lefschetz
locus NL2p+2

g,2a+2p+1 inside Kg, that is, Cliff2(C)<Cliff(C) for a general point

[C]∈NL2p+2
g,2a+2p+1.

It is natural to wonder whether it is necessary to pass to a Noether–Lefschetz
divisor in Kg, or perhaps, all curves [C] ∈ Kg give counterexamples to conjecture
(M2). To see that this is not always the case and all conditions in Theorem 1.1 are
necessary, we study in detail the case g = 11. Mukai [21] proved that a general curve
[C] ∈ M11 lies on a unique K3 surface S with Pic(S) = Z · C, thus, M11 = K11.

Theorem 1.3. For a general curve [C] ∈ M11 one has the equality Cliff2(C) =
Cliff(C), that is, Mercat’s conjecture holds generically on M11. Furthermore,
the locus

{[C] ∈ M11 : Cliff2(C) < Cliff(C)}
can be identified with the Noether–Lefschetz divisor NL4

11,13 on M11.

In Sec. 5, we describe in detail the divisor NL4
11,13 and discuss, in connection

with Mercat’s conjecture, the action of the Fourier–Mukai involution FM : F11 →
F11 on the moduli space of polarized K3 surfaces of genus 11. The automorphism
FM acts on the set of Noether–Lefschetz divisors and in particular it (i) fixes the
6-gonal locus M1

11,6 and it maps the divisor NL4
11,13 which corresponds to certain

elliptic K3 surfaces, to the Noether–Lefschetz divisor corresponding to K3 surfaces
carrying a rational curve of degree 3.

Next we turn our attention to the conjecture (Mn) for n ≥ 3. It was observed
in [12] that Mukai’s description [22] of a general curve of genus 9 in terms of linear
sections of a certain rational homogeneous variety, and especially the connection
to rank 3 Brill–Noether theory, can be used to construct, on a general curve [C] ∈
M9, a stable vector bundle E ∈SUC(3,KC) such that h0(C,E)= 6. In particular
γ(E) = 10

3 < Cliff(C), that is, Mercat’s conjecture (M3) fails for a general curve
[C] ∈ M9. A similar construction is provided in [12] for a general curve of genus
11. In what follows we outline a construction illustrating that the results from [12]
are part of a larger picture and curves on K3 surfaces carry vector bundles E of
rank at least 3 with γ(E) < Cliff(C).

Let S be a K3 surface and C ⊂ S a smooth curve of genus g. We choose a linear
series A ∈ W r

d (C) of minimal degree such that the Brill–Noether number ρ(g, r, d)
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is non-negative, that is, d := r+[ r(g+1)
r+1 ]. The Lazarsfeld bundle MA on C is defined

as the kernel of the evaluation map, that is,

0 →MA → H0(C,A) ⊗OC
evC−→ A→ 0.

As usual, we set QA := M∨
A , hence rank(QA) = r and det(QA) = A. Following a

procedure that already appeared in [16, 20, 24], we note that C carries a vector
bundle of rank r + 1 with canonical determinant and unexpectedly many global
sections.

Theorem 1.4. For a curve C ⊂ S and A ∈ W r
d (C) as above there exists a globally

generated vector bundle E on C with rank(E) = r+1 and det(E) = KC , expressible
as an extension

0 → QA → E → KC ⊗A∨ → 0,

satisfying the condition h0(C,E) = h0(C,A) + h0(C,KC ⊗ A∨) = g − d+ 2r + 1.
If moreover r ≤ 2 and Pic(S) = Z · C, then the above extension is nontrivial.

When r = 1 the rank 2 bundle E constructed in Theorem 1.4 is well-known
and plays an essential role in [24]. In this case γ(E) ≥ [ g−1

2 ]. For r = 2 and g = 9
(in which case A ∈ W 2

8 (C)), or for g = 11 (and then A ∈ W 2
10(C)), Theorem 1.4

specializes to the construction in [12]. When rank(E) = 3, we observe by direct
calculation that γ(E) < [ g−1

2 ]. In view of providing counterexamples to Mercat’s
conjecture (M3), it is thus important to determine whether E is stable.

Theorem 1.5. Fix C ⊂ S as above with g = 7, 9 or g ≥ 11 such that Pic(S) =
Z ·C, as well as A ∈ W 2

d (C), where d := [2g+8
3 ]. Then any globally generated rank

3 vector bundle E on C lying nontrivially in the extension

0 → QA → E → KC ⊗A∨ → 0,

and with h0(C,E) = h0(C,A) + h0(C,KC ⊗A∨) = g − d+ 5, is stable.

As a corollary, we note that for sufficiently high genus Mercat’s statement (M3)
fails to hold for any smooth curve of maximal Clifford index lying on a K3 surface.

Corollary 1.6. We fix an integer g = 9 or g ≥ 11 and a curve [C] ∈ Kg. Then
the inequality Cliff3(C) < [ g−1

2 ] holds. In particular, Mercat’s conjecture (M3) fails
generically along Kg.

We close the Introduction by thanking Lange and Newstead for making a num-
ber of very pertinent comments on the first version of this paper.

2. Higher Rank Vector Bundles with Canonical Determinant

In this section we treat Mercat’s conjecture (M3) and prove Theorems 1.4 and 1.5.
We begin with a curve C of genus g lying on a smooth K3 surface S such that
Pic(S) = Z · C, and fix a linear series A ∈ W 2

d (C) of minimal degree d := [2g+8
3 ].
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Under such assumptions both A and KC ⊗A∨ are base-point-free. From the onset,
we point out that the existence of vector bundles of higher rank on C having
exceptional Brill–Noether behavior has been repeatedly used in [16, 20, 24]. Our
aim is to study these bundles from the point of view of Mercat’s conjecture and
discuss their stability.

We define the Lazarsfeld–Mukai sheaf FA via the following exact sequence on S:

0 → FA → H0(C,A) ⊗OS
evS−→ A→ 0.

Since A is base-point-free, FA is locally free. We consider the vector bundle EA :=
F∨

A on S, which by dualizing, sits in an exact sequence

0 → H0(C,A)∨ ⊗OS → EA → KC ⊗A∨ → 0. (2.1)

SinceKC⊗A∨ is assumed to be base-point-free, the bundle EA is globally generated.
It is well-known (and follows from the sequence (2.1), that c1(EA) = OS(C) and
c2(EA) = d.

Proof of Theorem 1.4. We write down the following commutative diagram

0 0� �
H0(C,A) ⊗OS(−C) =→ H0(C,A) ⊗OS(−C)� �

0 → FA → H0(C,A) ⊗OS → A → 0� � �=

0 → MA → H0(C,A) ⊗OC → A → 0� �
0 0

from which, if we set FA := FA ⊗ OC and EA := EA ⊗ OC , we obtain the exact
sequence

0 →MA ⊗K∨
C → H0(C,A) ⊗K∨

C → FA →MA → 0

(use that Tor1OS
(MA,OC) = MA ⊗K∨

C). Taking duals, we find the exact sequence

0 → QA → EA → KC ⊗A∨ → 0. (2.2)

Since S is regular, from (2.1) we obtain that h0(S, EA) = h0(C,A)+h0(C,KC ⊗A∨)
while H0(S, EA ⊗OS(−C)) = 0, that is,

h0(S, EA) ≤ h0(C,EA) ≤ h0(C,A) + h0(C,KC ⊗A∨).

Thus the sequence (2.2) is exact on global sections.
We are left with proving that the extension (2.2) is nontrivial. We set r = 2 and

then rank(EA) = 3 and place ourselves in the situation when Pic(S) = Z · C (the
case r = 1 works similarly). By contradiction we assume that EA = QA⊕(KC⊗A∨)
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and denote by s : EA → QA a retract and by s̃ : EA → QA the induced map. We set
M := Ker{EA

s̃→ QA}, hence M can be regarded as an elementary transformation
of the Lazarsfeld–Mukai bundle EA along C. By direct calculation we find that

c1(M) = OS(−C) and c2(M) = 2d− 2g + 2,

hence the discriminant ofM equals ∆(M) := 6c2(M)−2c21(M) = 4(3d−4g+4)< 0.
Thus the sheaf M is OS(C)-unstable. Applying [10, Theorems 7.3.3 and 7.3.4], there
exists a subsheaf M′ ⊂ M such that if ξM,M′ := c1(M′)

rank(M′) − c1(M)
rank(M) ∈ Pic(S)R,

then

(i) ξM,M′ · C > 0 and (ii) ξ2M,M′ ≥ −∆(M)
18

.

Since Pic(S) = Z ·C, we may write c1(M′) = OS(aC) and also set r′ := rank(M′).
The Lazarsfeld–Mukai bundle EA is OS(C)-stable, in particular µC(M′) ≤ µC(EA),
which yields a ≤ 0. Then from (i) we write that 0 ≤ a

r′ + 1
3 ≤ 1

3 , whereas from (ii)
one finds

1
9
≥ 4(g − 1) − 3d

9(g − 1)
⇔ d ≥ g − 1,

which is a contradiction. It follows that the extension (2.2) is nontrivial.

It is natural to ask when is the above constructed bundle EA stable. We give
an affirmative answer under certain generality assumptions, when r < 3.

We fix a K3 surface S such that Pic(S) = Z · C and as before, set d := [2g+8
3 ].

Under these assumptions, it follows from [16] that C satisfies the Brill–Noether
theorem. We prove the stability of every globally generated non-split bundle E

sitting in an extension of the form (2.2) and having a maximal number of sections.

Proof of Theorem 1.5. We first discuss the possibility of a destabilizing sequence

0 → F → E → B → 0,

where F is a vector bundle of rank 2 and deg(F ) ≥ 4
3 (g − 1). Since E is globally

generated, it follows that B is globally generated as well, hence h0(C,B) ≥ 2, in
particular deg(B) ≥ (g+2)/2 and hence deg(F ) ≤ 3

2g−3. Since deg(B) ≤ 2
3 (g−1)

and C is Brill–Noether general, it follows that h0(C,B) = 2, therefore h0(C,F ) ≥
g − d+ 3. There are two cases to distinguish, depending on whether F possesses a
subpencil or not.

Assume first that F has no subpencils. We apply [23, Lemma 3.9] to find that
h0(C, det(F )) ≥ 2h0(C,F ) − 3 ≥ 2g − 2d+ 3. Writing down the inequality

ρ(g, 2g − 2d+ 2, deg(F )) ≥ 0

and using that deg(F ) < 3
2g − 3, we obtain a contradiction. If on the other hand,

F has a subpencil, then as pointed out in [5, Lemma 3.2], γ(F ) ≥ Cliff(C), but
again this is a contradiction. This shows that E cannot have a rank 2 destabilizing
subsheaf.
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We are left with the possibility of a destabilizing short exact sequence

0 → B → E → F → 0,

where B is a line bundle with deg(B) ≥ 2
3 (g − 1) and F is a rank 2 bundle.

The bundle QA is well-known to be stable and based on slope considerations, B
cannot be a subbundle of QA, that is, necessarily H0(C,KC ⊗A∨⊗B∨) 
= 0. Since
the bundle E is not decomposable, it follows that deg(B)≤ deg(KC ⊗ A∨) − 1 =
2g − 3 − d. Furthermore h1(C,B) ≥ 3.

If F is not stable, we reason along the lines of [12, Proposition 3.5] and pull-back
a destabilizing line subbundle of F to obtain a rank 2 subbundle F ′ ⊂ E such that

deg(F ′) ≥ deg(B) +
1
2
(deg(E) − deg(B)) ≥ 4

3
(g − 1),

which is the case we have already ruled out. So we may assume that F is stable.
We write h0(C,B) = a + 1, hence h0(C,F ) ≥ g − d − a + 4. Assume first that F
admits no subpencils. Then from [23, Lemma 3.9] we find the following estimate
for the number of sections of the line bundle det(F ) = KC ⊗ B∨,

h0(C,KC ⊗B∨) ≥ 2h0(C,F ) − 3 ≥ 2g − 2d− 2a+ 5,

which, after applying Riemann–Roch to B, leads to the inequality

3a ≥ g − 2d+ 5 + deg(B).

Combining this estimate with the Brill–Noether inequality ρ(g, a, deg(B)) ≥ 0 and
substituting the actual value of d, we find that 3a + 3 ≥ g. On the other hand
a ≤ h0(C,KC ⊗A∨) − 2 = g − d < g−3

3 , and this is a contradiction.
Finally, if F admits a subpencil, then γ(F ) ≥ Cliff(C). Combining this with the

classical Clifford inequality for B, we find that γ(E) ≥ Cliff(C), which again is a
contradiction. We conclude that the rank 3 bundle E must be stable.

3. Rank 2 Bundles and Koszul Classes

The aim of this section is to prove Theorem 1.1. We shall construct rank 2 vector
bundles on curves using a connection between vector bundles on curves and Koszul
cohomology of line bundles, cf. [1, 25]. Let us recall that for a smooth projective
variety X , a sheaf F and a globally generated line bundle L on X , the Koszul
cohomology group Kp,q(X ;F , L) is defined as the cohomology of the complex:

p+1∧
H0(L) ⊗H0(F ⊗ Lq−1)

dp+1,q−1→
p∧
H0(L) ⊗H0(F ⊗ Lq)

dp,q→
p−1∧

H0(L) ⊗H0(F ⊗ Lq+1).

Most of the time F = OX , and then one writes Kp,q(X ;OX , L) := Kp,q(X,L).
A Koszul class [ζ] ∈ Kp,1(X,L) is said to have rank≤n, if there exists a subspace

W ⊂H0(X,L) with dim(W )=n and a representative ζ ∈ ∧p W ⊗H0(X,L). The
smallest number n with this property is the rank of the syzygy [ζ].
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Next we discuss a connection due to Voisin [25] and expanded in [1], between
rank 2 vector bundles on curves and syzygies. Let E be a rank 2 bundle on a smooth
curve C with h0(C,E) ≥ p+ 3 ≥ 4 and set L := det(E). Let

λ : ∧2H0(C,E) → H0(C,L)

be the determinant map, and we assume that there exists linearly independent
sections e1 ∈ H0(C,E) and e2, . . . , ep+3 ∈ H0(C,E), such that the map

λ(e1 ∧ −) : 〈e2, . . . , ep+3〉 → H0(C,L)

in injective onto its image. Such an assumption is automatically satisfied for instance
if E admits no subpencils. We introduce the subspace

W := 〈s2 := λ(e1 ∧ e2), . . . , sp+3 := λ(e1 ∧ ep+3)〉 ⊂ H0(C,L).

By assumption, dim(W ) = p+ 2. Following [1, 25], we define the tensor

ζ(E) :=
∑
i<j

(−1)i+j s2∧· · ·∧ ŝi∧· · ·∧ ŝj ∧· · ·∧sp+3⊗λ(ei∧ej) ∈ ∧pW ⊗H0(C,L).

One checks that dp,1(ζ(E)) = 0, hence [ζ(E)] ∈ Kp,1(C,L) is a nontrivial Koszul
class of rank at most p + 2. Conversely, starting with a nontrivial class [ζ] ∈
Kp,1(C,L) represented by an element ζ of ∧pW ⊗H0(C,L) where dim(W ) = p+2,
Aprodu and Nagel [1, Theorem 3.4] constructed a rank 2 vector bundle E on C

with det(E) = L, h0(C,E) ≥ p+3 and such that [ζ(E)] = [ζ]. This correspondence
sets up a dictionary between the Brill–Noether loci in {E ∈ SUC(2, L) : h0(C,E) ≥
p+ 3} and Koszul classes of rank at most p+ 2 in Kp,1(C,L).

Let us now fix integers p ≥ 1 and a ≥ 2p+3. Using the surjectivity of the period
mapping, see e.g. [11, Theorem 1.1], one can construct a smooth K3 surface S ⊂
P2p+2 of degree 4p+2 containing a smooth curve C ⊂ S of degree d := 2a+2p+1
and genus g := 2a+ 1. The surface S can be chosen with Pic(S) = Z ·H ⊕ Z · C,
where H2 = 4p + 2, H · C = d and C2 = 4a. The smooth curve H ⊂ C is the
hyperplane section of S and has genus g(H) = 2p+ 2. The following observation is
trivial.

Lemma 3.1. Keeping the notation above, we have that H0(S,OS(H − C)) = 0.

Proof. It is enough to notice that H is nef and (H − C) · H = 2p − 2a + 1 < 0.

We consider the decomposable rank 2 bundle KH = A⊕(KH⊗A∨) on H , where
A ∈W 1

p+2(H). Via the Green–Lazarsfeld non-vanishing theorem [7] (or equivalently,
applying [1]), one obtains a nonzero Koszul class of rank p+ 1

β := [ζ(A ⊕ (KH ⊗A∨))] ∈ Kp,1(H,KH).
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Since S is a regular surface, there exist an exact sequence

0 → H0(S,OS) → H0(S,OS(H)) → H0(H,KH) → 0,

which induces an isomorphism [6, Theorem (3.b.7)]

resH : Kp,1(S,OS(H)) ∼= Kp,1(H,KH).

By construction, the nontrivial class α := res−1
H (β) ∈ Kp,1(S,OS(H)) has rank at

most rank(β) + 1 = p+ 2. Using [6, Theorem (3.b.1)], we write the following exact
sequence in Koszul cohomology:

· · · →Kp,1(S;−C,H)→Kp,1(S,H)→Kp,1(C,H ⊗OC)→Kp−1,2(S;−C,H)→ · · · .
Since H0(S,OS(H −C)) = 0, it follows that Kp,1(S;−C,H) = 0, in particular the
nonzero class α ∈ Kp,1(S,H) can be viewed as a Koszul class of rank at most p+ 2
inside the group Kp,1(C,OC(H)). This class corresponds to a stable rank 2 bundle
on C.

Proposition 3.2. Let C ⊂ S ⊂ P2p+2 as above and L := OC(1) ∈ Pic2a+2p+1(C).
Then there exists a stable vector bundle E ∈ SUC(2, L) with h0(C,E) = p+ 3.

Proof. From [1] we know that there exists a rank 2 vector bundle E on C with
det(E) = L such that [ζ(E)] = α ∈ Kp,1(C,L), in particular h0(C,E) ≥ p+3. Geo-
metrically, E is the restriction to C of the Lazarsfeld–Mukai bundle EA on S cor-
responding to a pencil A ∈ W 1

p+2(H). In particular, E is globally generated, being
the restriction of a globally generated bundle on S. We also know that Cliff(C) = a

(to be proved in Proposition 3.3). Since γ(E) ≤ a − 1
2 < Cliff(C), it follows that

E admits no subpencils (If B ⊂ E is a subpencil, then h0(C,L ⊗B∨) ≥ 2 because
E is globally generated. It is easily verified that both B and L⊗B∨ contribute to
Cliff(C), which brings about a contradiction). Assume now that

0 → B → E → L⊗B∨ → 0

is a destabilizing sequence, where B ∈ Pic(C) has degree at least a+p+1. As already
pointed out, h0(C,B) ≤ 1, hence h0(C,L⊗B∨) ≥ p+2. If h1(C,L⊗B∨) ≤ 1, then
p+ 2 ≤ h0(C,L ⊗B∨) ≤ 1 + deg(L ⊗B∨) − 2a, which leads to a contradiction. If
on the other hand h1(C,L ⊗ B∨) ≥ 2, then Cliff(L ⊗ B∨) ≤ a− p − 2 < a, which
is impossible. Thus E is a stable vector bundle.

We are left with showing that the curve C ⊂ S constructed above has maximal
Clifford index a. Note that the corresponding statement when p = 1 has been
proved in [5, Theorem 3.6].

Proposition 3.3. We fix integers p ≥ 1, a ≥ 2p+3 and a K3 surface S with Picard
lattice Pic(S) = Z ·H ⊕Z ·C where C2 = 4a,H2 = 4p+ 2 and C ·H = 2a+2p+ 1.
Then Cliff(C) = a.
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Proof. First note that C has Clifford dimension 1, for curves C ⊂ S of higher
Clifford dimension have even genus. Observe also that h0(C,OC(1)) = 2p+ 3 and
h1(C,OC(1)) = 2, hence OC(1) contributes to the Clifford index of C and

Cliff(C) ≤ Cliff(C,O(1)) = C ·H − 2(2p+ 2) = 2a− 2p− 3 (≥ a).

Assume by contradiction that Cliff(C) < a. According to [8], there exists an effective
divisor D ≡ mH + nC on S satisfying the conditions

h0(S,OS(D)) ≥ 2, h0(S,OS(C −D)) ≥ 2, C ·D ≤ g − 1, (3.1)

and with Cliff(OC(D)) = Cliff(C). By [17, Lemma 2.2], the dimension
h0(C′,OC′(D)) stays constant for all smooth curves C′ ∈ |C| and its value equals
h0(S,D). We conclude that Cliff(C) = Cliff(OC(D)) = D · C − 2 dim |D|. We
summarize the numerical consequences of the inequalities (3.1):

(i) md+ 2n(g − 1) ≤ g − 1,
(ii) (2p+ 1)m2 +mnd+ n2(g − 1) ≥ 0,
(iii) (4p+ 2)m+ dn > 2.

We claim that for any divisor D ⊂ S verifying (i)–(iii), the following inequality
holds:

Cliff(OC(D)) = D · C −D2 − 2 ≥ H · C −H2 − 2 = 2a− 2p− 3 ≥ a.

This will contradict the assumption Cliff(C) < a. The proof proceeds along the
lines of Theorem 3 in [4], with the difference that we must also consider curves with
D2 = 0, that is, elliptic pencils which we now characterize. By direct calculation,
we note that there are no (−2)-curves in S. Equality holds in (ii) when m = −n or
m = −un with u := 2a/(2p+ 1).

First, we describe the effective divisors D ⊂ S with self-intersection D2 = 0.
Consider the case m = −un. If 2p+1 does not divide a, then D ≡ 2aH− (2p+1)C
and D · C = 2a(2a − 2p − 1) > g − 1, that is, D does not verify condition (i). If
a = k(2p + 1), for k ≥ 2, then D ≡ 2kH − C. Notice that D · C = a(4k − 4) +
2k(2p+ 1) > 2a for k ≥ 2, that is, D does not satisfies (i).

In the case m = −n, the effective divisor D ≡ C −H , satisfies (i)–(iii) and

Cliff(OC(C −H)) = 2a− 2p− 3 ≥ a.

Case n < 0. From (ii) we have either m < −n or m > −un. In the first case, by
using inequality (iii), we obtain 2 < −(4p+ 2)n+ dn = n(2a− 2p− 1), which is a
contradiction since n < 0 and 2a > 2p+ 1. Suppose m > −un > 0. Inequality (i)
implies that

(−n)
2ad

2p+ 1
< −(g − 1)(2n− 1) = −2a(2n− 1),

then (−n)(d − (4p + 2)) < 2p+ 1 and since d > 4p + 2, this yields 2a + 2p + 1 =
d < 6p+ 3 which contradicts the hypothesis a ≥ 2p+ 3.
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Case n > 0. Again, by condition (ii), we have either that m < −un or m > −n.
In the first case, using (iii) we write that

0 < (4p+ 2)m+ dn < n

(
d− (4p+ 2)

2a
2p+ 1

)
,

but one can easily check that d(2p+ 1) < 2a(4p+ 2), which yields a contradiction.
Suppose now −n < m < 0. By (i) we have 2a(2n− 1) ≤ −md < nd, so n < 2a

4a−d =
2a

2a−2p−1 < 2, since a ≥ 2p+ 1. This implies n = 1, therefore for n > 0 there are no
divisors D ⊂ S with D2 > 0 satisfying the inequalities (i)–(iii).

Case n = 0. From (i), one writes m ≤ g−1
d = 2a

2a+2p+1 < 1, but this yields to a
contradiction since by (iii) it follows that m > 0. The proof is thus finished.

4. Curves with Prescribed Gonality and Small Rank 2
Clifford Index

The equality Cliff2(C) = Cliff(C) is known to be valid for arbitrary k-gonal curves
[C] ∈ M1

g,k of genus g > (k−1)(2k−4). It is thus of some interest to study Mercat’s
question for arbitrary curves in a given gonality stratum in Mg and decide how
sharp is this quadratic bound. We shall construct curves C of unbounded genus and
relatively small gonality, carrying a stable rank 2 vector bundle E with h0(C,E) = 4
such that γ(E) < Cliff(C). In order to be able to determine the gonality of C, we
realize it as a section of a K3 surface S in P4 which is special in the sense of
Noether–Lefschetz theory. The pencil computing the gonality is the restriction of
an elliptic pencil on the surface. The constraint of having a Picard lattice of rank
2 containing, apart from the hyperplane class, both an elliptic pencil and a curve
C of prescribed genus, implies that the discriminant of Pic(S) must be a perfect
square. This imposes severe restrictions on the genera for which such a construction
could work.

Theorem 4.1. We fix integers a ≥ 3 and b = 4, 5, 6. There exists a smooth curve
C ⊂ P 4 with

deg(C) = 6a+ b, g(C) = 3a2 + ab+ 1 and gonality gon(C) = ab,

such that C lies on a (2, 3) complete intersection K3 surface. In particular
K1,1(C,OC(1)) 
= 0 and conjecture (M2) fails for C.

Before presenting the proof, we discuss the connection between Theorem 4.1
and conjecture (M2). For C ⊂ S ⊂ P4 as above, we construct a vector bundle E
with det(E) = OC(1) and h0(C,E) = 4, lying in an exact sequence

0 → E →W ⊗OC(1) → OC(2) → 0,

where W ∈G(3, H0(C,OC(1)) has the property that the quadric Q∈
Sym2H0(C,OC(1)) induced by S is representable by a tensor in W⊗H0(C,L). This
construction is a particular procedure of associating vector bundles to nontrivial
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syzygies, cf. [1]. The proof that E is stable is standard and proceeds along the lines
of e.g. [9, Theorem 3.2]. Next we compute the Clifford invariant:

γ(E) = 3a+
b

2
< ab− 2 = Cliff(C),

since b ≥ 4, so not only Cliff2(C) < Cliff(C), but the difference Cliff(C)−Cliff2(C)
becomes arbitrarily positive.

Proof. By means of [11, Theorem 6.1], there exist a smooth complete intersection
surface S ⊂ P4 of type (2, 3) such that Pic(S) = Z · H ⊕ Z · C, where H2 = 6,
H ·C = d = 6a+b and C2 = 2(g−1) (Note that such a surface exists when d2 > 12g,
which is satisfied when b ≥ 4). The divisor E := C − aH verifies E2 = 0, E ·H = b

and E ·C = ab. In particular E is effective. The class E is primitive, hence it follows
that h0(S,E) = h0(C,OC(E)) = 2, where the last equality follows by noting that
H1(S,OS(E−C)) = 0 by Kodaira vanishing. Furthermore, h1(C,OC(E)) ≥ 3a2+2,
that is, OC(E) contributes to Cliff(C) and then we write that

gon(C) = Cliff(C) + 2 ≤ Cliff(C,OC(E)) + 2 = ab.

We shall show that OC(E) computes the Clifford index of C.
First, we classify the primitive effective divisors F ≡ mH+nC ⊂ S having self-

intersection zero. By solving the equation (mH + nC)2 = 0, where m,n ∈ Z, we
find the following primitive solutions: E1 ≡ (3a+ b)H − 3C for b 
= 6 (respectively
E2 ≡ (a+2)H−C for b = 6), and E3 = E ≡ C−aH . A simple computation shows
that Ei · C > ab for i = 1, 2.

Since Cliff(C) ≤ ab−2 < [ g−1
2 ], the Clifford index of C is computed by a bundle

defined on S. Following [8], there exists an effective divisor D ≡ mH + nC on S,
satisfying the following numerical conditions:

h0(S,D) = h0(C,OC(D)) ≥ 2, h0(S,C −D) ≥ 2,

D2 ≥ 0 and D · C ≤ g − 1, (4.1)

and such that

f(D) := Cliff(OC(D)) + 2 = D · C −D2 = Cliff(C) + 2.

Furthermore, D can be chosen such that h1(S,D) = 0, cf. [17]. To bound f(D) and
show that f(D) ≥ ab, we distinguish two cases depending on whether D2 > 0 or
D2 = 0.

By a complete classification of curves with self-intersection zero, we have already
seen that for any elliptic pencil |D| satisfying (4.1), one has f(D) ≥ ab = f(E). We
are left with the case D2 > 0 and rewrite the inequalities (4.1):

(i) (6a+ b)m+ (2n− 1)(3a2 + ab) ≤ 0,
(ii) (m+ an)(3an+ 3m+ bn) > 0,
(iii) 6m+ (6a+ b)n > 2,

1250075-12



June 11, 2012 14:17 WSPC/S0129-167X 133-IJM 1250075

Higher Rank Brill–Noether Theory on Sections of K3 Surfaces

where (ii) comes from the assumption D2 > 0 and (iii) from the fact that D ·H > 2.
Furthermore,

f(m,n) := D · C −D2 = −6m2 +m(d− 2nd) + (n− n2)(2g − 2). (4.2)

We prove that for any divisor D satisfying (i)–(iii), the inequality f(m,n) ≥ ab

holds, from which we conclude that Cliff(C) = ab− 2.

Case n < 0. From (iii) we find that m > 0. Then m < −an or 3m > −(3a+ b)n.
When m < −an, from (iii) we have that 2 < 6m + dn < −6an + dn = nb < 0,
which is a contradiction. Suppose (3a + b)n + 3m > 0. For a fixed n the function
f(m,n) reaches its maximum at m0 := d(1−2n)

12 . So when 3m0 + (3a+ b)n ≤ 0, we
have f(m,n) ≥ f( (1−2n)(g−1)

d , n), since by condition (i), m ≤ (1−2n)(g−1)
d . A simple

computation gives that whenever n < 0, one has the inequality:

f

(
(1 − 2n)(g − 1)

d
, n

)
= (2n2 − 2n)(g − 1)

b2

d2
+ (g − 1)

(
1 − 6(g − 1)

d2

)

≥ 4(g − 1)
b2

d2
+
g − 1
d2

(18a2 + b2 + 6ab) ≥ 3a2 + ab

2
≥ ab.

Assume now that 3m0 + (3a + b)n > 0. Since m ∈ (− (3a+b)n
3 , (1−2n)(g−1)

d ],
we have

f(m,n) ≥ min
{
f

(
− (3a+ b)n

3
, n

)
, f

(
(1 − 2n)(g − 1)

d
, n

)}
.

A direct computation yields

f

(
− (3a+ b)n

3
, n

)
= −n

(
ab+

b2

3

)
≥ ab+

b2

3
≥ ab.

Case n > 0. If m ≥ 0 we get a contradiction to (i). Suppose m < 0, then we have
either 3m + (3a + b)n < 0, or else m > −an. The first case contradicts (iii), so it
does not appear. Suppose m > −an. Reasoning as before, observe that m0 < (1 −
2n)(g−1)/d, where m0 is the maximum of f(m,n) for a fixed n, and m takes values
in the interval

(−an, (1−2n)(g−1)
d

]
. If −an ≥ m0, then f(m,n) ≥ f

( (1−2n)(g−1)
d , n

)
.

Since we are assuming −an < (1−2n)(g−1)
d , we have that n < 3a

b + 1. We use this
bound to directly show, like in the previous case, that f

( (1−2n)(g−1)
d , n

) ≥ ab.
When −an < m0 we have that

f(m,n) ≥ min
{
f(−an, n), f

(
(1 − 2n)(g − 1)

d
, n

)}
.

In this case it is enough to note that f(−an, n) = nab ≥ ab.

Case n = 0. From inequalities (i) and (iii) with n = 0, we have 1 ≤ m ≤ g−1
d .

Note that f(m, 0) = −6m2+md reaches its maximum at d
12 . So, since g−1

d ≤ d
12 , we

conclude that f(m, 0) ≥ f(1, 0) = 6a+b−6. Finally, we observe that 6a+b−6 ≥ ab

if and only if b ≤ 6. This finishes the proof.
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5. The Fourier–Mukai Involution on F11

The aim of this section is to provide a detailed proof of Mercat’s conjecture (M2)
in one nontrivial case, that of genus 11, and discuss the connection to Mukai’s work
[19, 21]. We denote as usual by Fg the moduli space parametrizing pairs [S, �],
where S is a smooth K3 surface and � ∈ Pic(S) is a primitive nef line bundle with
�2 = 2g − 2. Furthermore, we introduce the parameter space

Pg := {[S,C] : S is a smooth K3 surface, C ⊂ S is a smooth curve,

[S,OS(C)] ∈ Fg}
and denote by π : Pg → Fg the projection map [S,C] �→ [S,OS(C)]. If S is a K3
surface, following [19], we set H̃(S,Z) := H0(S,Z) ⊕H2(S,Z) ⊕H4(S,Z) and

ÑS(S) := H0(S,Z) ⊕NS(S) ⊕H4(S,Z).

We recall the definition of the Mukai pairing on H̃(S,Z):

(α0, α2, α4) · (β0, β2, β4) := α2 ∪ β2 − α4 ∪ β0 − α0 ∪ β4 ∈ H4(S,Z) = Z.

Let now r, s ≥ 1 be relatively prime integers such that g = 1 + rs. For a polarized
K3 surface [S, �] ∈ Fg one defines the Fourier–Mukai dual Ŝ := MS(r, �, s), where

MS(r, �, s) = {E : E is an �− stable sheaf on S, rk(E)

= r, c1(E) = �, χ(S,E) = r + s}.
Setting v := (r, �, s) ∈ H̃(S,Z), there is a Hodge isometry, see [19] Theorem 1.4:

ψ : H2(MS(r, �, s),Z)
∼=→ v⊥/Zv.

We observe that �̂ := ψ−1((0, �, 2s)) is a nef primitive vector with (�̂)2 = 2g−2, and
in this way the pair (Ŝ, �̂) becomes a polarized K3 surface of genus g. The Fourier–
Mukai involution is the morphism FM : Fg → Fg defined by FM([S, �]) := [Ŝ, �̂].

We turn to the case g = 11, when we set r = 2 and s = 5. For a general curve
[C] ∈ M11, the Lagrangian Brill–Noether locus

SUC(2,KC , 7) := {E ∈ UC(2, 20) : det(E) = KC , h
0(C,E) = 7}

is a smooth K3 surface. The main result of [21] can be summarized as saying a
general [C] ∈ M11 lies on a unique K3 surface which moreover can be realized as

̂SUC(2,KC , 7). Furthermore, there is a birational isomorphism

φ11 : M11 ��� P11, φ11([C]) := [ ̂SUC(2,KC , 7), C]

and we set q11 := π ◦ φ11 : M11 ��� F11. On the moduli space M11 there exist two
distinct irreducible Brill–Noether divisors

M1
11,6 := {[C] ∈ M11 : W 1

6 (C) 
= ∅} and M2
11,9 := {[C] ∈ M11 : W 2

9 (C) 
= ∅}.
Via the residuation morphism W 1

6 (C) � L �→ KC ⊗ L∨ ∈ W 5
14(C), the Hur-

witz divisor is the pull-back of a Noether–Lefschetz divisor on F11, that is,
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M1
11,6 = q∗11(D

1
6) where

D1
6 := {[S, �] ∈ F11 : ∃H ∈ Pic(S), H2 = 8, H · � = 14}.

Similarly, via the residuation map W 2
9 (C) � L �→ KC ⊗ L∨ ∈W 3

11(C), one has the
equality of divisors M2

11,9 = q∗11(D
2
9), where

D2
9 := {[S, �] ∈ F11 : ∃H ∈ Pic(S), H2 = 4, H · � = 11}.

Next we establish Mercat’s conjecture for general curves of genus 11.

Theorem 5.1. The equality Cliff2(C) = Cliff(C) holds for a general curve
[C] ∈ M11.

Proof. We fix a curve [C] ∈ M11 such that (i) W 1
7 (C) is a smooth curve,

(ii) W 2
9 (C) = ∅ (in particular, any Petri general curve will satisfy these conditions)

and (iii) the rank 2 Brill-Noether locus SUC(2,KC , 7) is a smooth K3 surface of
Picard number 1. As discussed in both [12, Proposition 4.5; 5, Question 3.5], in order
to verify (M2), it suffices to show that C possesses no bundles E ∈ UC(2, 13) with
h0(C,E) = 4. Suppose E is such a vector bundle. Then L := det(E) ∈W 4

13(C) is a
linear series such that the multiplication map ν2(L) : Sym2H0(C,L) → H0(C,L⊗2)
is not injective. For each extension class

e ∈ PL := P(Coker ν2(L))∨ ⊂ P(H0(C,L⊗2))∨ = PExt1(L,KC ⊗ L∨),

one obtains a rank 2 vector bundle F on C sitting in an exact sequence

0 → KC ⊗ L∨ → F → L→ 0, (5.1)

such that h0(C,F ) = h0(C,L) + h0(C,KC ⊗L∨) = 7. We claim that any non-split
vector bundle F with h0(C,F ) = 7 and which sits in an exact sequence (5.1), is
semistable. Indeed, let us assume by contradiction that M ⊂ F is a destabilizing
line subbundle with deg(M) ≥ 11. Since deg(M) > deg(KC ⊗ L∨), the composite
morphism M → L is nonzero, hence we can write that M = L(−D), where D is an
effective divisor of degree 1 or 2. Because W 2

9 (C) = ∅, one finds that h0(C,KC ⊗
L∨(D)) = 2 and L must be very ample, that is, h0(C,L(−D)) = h0(C,L)−deg(D).
We obtain that

h0(L) + h0(KC ⊗ L∨) = h0(F ) ≤ h0(M) + h0(KC ⊗M∨)

= h0(L) − deg(D) + h0(KC ⊗ L∨),

a contradiction. Thus one obtains an induced morphism u : PL → SUC(2,KC , 7).
Since SUC(2,KC , 7) is a K3 surface, this also implies that Coker ν2(L) is two-
dimensional, hence PL = P1.

We claim that u is an embedding. Setting A := KC ⊗L∨ ∈W 1
7 (C), we write the

exact sequence 0 → H0(C,OC) → H0(C,F∨⊗L) → H0(C,KC⊗A⊗(−2)), and note
that the last vector space is the kernel of the Petri map H0(C,A) ⊗ H0(C,L) →
H0(C,KC), which is injective, hence h0(C,F∨ ⊗ L) = 1. This implies that u is an
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embedding. But this contradicts the fact that Pic SUC(2,KC , 7) = Z, in particular
SUC(2,KC , 7) contains no (−2)-curves. We conclude that ν2(L) is injective for
every L ∈W 4

13(C).

This proof also shows that the failure locus of statement (M2) on M11 is equal
to the Koszul divisor

Syz411,13 := {[C] ∈ M11 : ∃ L ∈W 4
13(C) such that K1,1(C,L) 
= 0}.

Suppose now that [C] ∈ Syz411,13 is a general point corresponding to an embedding

C
|L|
↪→ P4 such that C lies on a (2, 3) complete intersection K3 surface S ⊂ P4.

Then S = ̂SUC(2,KC , 7) and ρ(S) = 2 and furthermore Pic(S) = Z · C ⊕ Z · H ,
where H2 = 6, C ·H = 13 and C2 = 20. In particular we note that S contains no
(−2)-curves, hence S and Ŝ are not isomorphic.

Let us define the Noether–Lefschetz divisor

D4
13 := {[S, �] ∈ F11 : ∃ H ∈ Pic(S), H2 = 6, H · � = 13},

therefore Syz411,13 = q∗11(D4
13).

Proposition 5.2. The action of the Fourier–Mukai involution FM : F11 → F11

on the three distinguished Noether–Lefschetz divisors is described as follows:

(i) FM (D1
6) = D1

6.
(ii) FM (D2

9) = {[S, �] ∈ F11 : ∃ R ∈ Pic(S) such that R2 = −2, R · � = 1}.
(iii) FM (D4

13) = {[S, �] ∈ F11 : ∃ R ∈ Pic(S) such that R2 = −2, R · � = 3}.

Proof. For [S, �] ∈ F11, we set v := (2, �, 5) ∈ H̃(S,Z) and �̂ := (0, �, 10) ∈ H̃(S,Z)
for the class giving the genus 11 polarization. We describe the lattice ψ(NS(Ŝ)) ⊂
ÑS(S).

In the case of a general point of D1
6 with lattice NS(S) = Z · �⊕Z ·H , by direct

calculation we find that ψ(NS(Ŝ)) is generated by the vectors �̂ and (2, �+H, 12).
Furthermore, (2, �+H, 12)2 = 8 and (2, H+ �, 12) · �̂ = 14, that is, Pic(Ŝ) ∼= Pic(S),
hence D1

6 is a fixed divisor for the automorphism FM .
A similar reasoning for a general point of the divisor D2

9 shows that the Neron–
Severi groups ψ

(
NS(Ŝ)

)
is generated by �̂ and (−1, H − �,−2), where (−1, H − �,

−2)2 = −2 and (−1, H − �,−2) · �̂ = 1. In other words, the class (−1, H − �,−2)

corresponds to a line in the embedding Ŝ
|�̂|
↪→ P11. Finally, for a general point of

D4
13 corresponding to a lattice Z · �⊕Z ·H , the Picard lattice of the Fourier–Mukai

partner is spanned by the vectors �̂ and (−1, H−�,−1), where (−1, H−�,−1)2 = −2
and (−1, H − �,−1) · �̂ = 3.

Remark 5.3. The fact that the divisor D1
6 is fixed by the automorphism FM is

already observed and proved with geometric methods in [21, Theorem 3].
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Remark 5.4. It is instructive to point out the difference between a general element
of D4

13 and its Fourier–Mukai partner. As a polarized K3 surface, SUC(2,KC , 7) is
characterized by the existence of a degree 3 rational curve u(PL) ⊂ SUC(2,KC , 7).

On the other hand, the complete intersection surface S ⊂ P4 containing C
|L|
↪→ P4,

where L ∈ W 4
13(C), carries no smooth rational curves. It contains however elliptic

curves in the linear system |OS(C −H)|. Thus the involution FM assigns to a K3
surface with a degree 7 elliptic pencil, a K3 surface containing a (−2)-curve. Since
S = ̂SUC(2,KC , 7), it also follows that the complete intersection S is a smooth K3
surface, which a priori is not at all obvious.
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