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Abstract. We determine when the resolution of a general set of points on a general curve
satisfies the Minimal Resolution property. In particular, we completely determine the shape of
the minimal resolution of general sets of points on a general curve C ⊆ Pr of degree d ≥ 2r.
Our methods also provide a proof (valid in arbitrary characteristic) of the strong version of
Butler’s conjecture on the stability of syzygy bundles on a general curve of every genus g > 2
in projective space, as well as of the strong (Frobenius) semistability in positive characteristic
of the syzygy bundle of a general curve C ⊆ Pr in the range d ≥ 2r.

Nous déterminons quand la résolution d’un ensemble général de points sur une courbe générale
satisfait la propriété de résolution minimale. En particulier, nous déterminons complètement la
forme de la résolution minimale d’ensembles généraux de points sur une courbe générale C dans
Pr de degré d ≥ 2r. Nos méthodes fournissent également une preuve (valable en caractéristique
arbitraire) de la version forte de la conjecture de Butler sur la stabilité des fibrés de syzygies
sur une courbe générale de genre g > 2 quelconque dans l’espace projectif, ainsi que de la
semistabilité forte en caractéristique positive du fibré de syzygies d’une courbe générale C dans
Pr dans l’intervalle d ≥ 2r.

1. Introduction

For an embedded projective variety X ⊆ Pr one can ask whether the minimal free resolution
of a general set of (sufficiently many) points of X is determined by the geometry of X. We shall
provide an essentially complete solution to this question for general curves in projective space.

Setting S := k[x0, . . . , xr], where k is an algebraically closed field of arbitrary characteristic,
we recall that a finitely generated graded S-module M has a minimal free resolution

0←M ← F0 ← · · · ← Fi ← · · · ,

where Fi =
⊕

j>0 S(−i− j)bi,j(M). The graded Betti numbers bi,j(M) = dimkTorSi (M,k)i+j are
uniquely determined and can be computed via Koszul cohomology. The Betti diagram of M is
obtained by placing the entry bi,j(M) in the i-th column and j-th row.

Let X ⊆ Pr be an embedded projective variety and denote by PX(t) its Hilbert polynomial.
We fix a general subset Γ ⊆ X of γ points and require that γ ≥ PX(m), where m = reg(X)
is the Castelnuovo-Mumford regularity of X. If u ≥ reg(X) + 1 is the integer determined by
the condition PX(u − 1) ≤ γ < PX(u), it has been shown in [FMP] that the Betti diagram of
Γ is obtained from the Betti diagram of X by adding two rows indexed by u − 1 and u, that
is, bi,j(Γ) = bi,j(X) for j ≤ u − 2, whereas bi,j(Γ) = 0 for j ≥ u + 1. The Minimal Resolution
property (MRP) for X is the statement

(1) bi,u(Γ) · bi+1,u−1(Γ) = 0,

for all γ ≥ PX
(
reg(X)

)
as described above and for all i ≥ 0, see [Mus], [FMP]. Since the

differences bi,u(Γ) − bi+1,u(Γ) are explicitly determined by the Hilbert polynomial of X, the
Minimal Resolution property for X determines entirely the Betti diagram of Γ and it implies
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that the Betti numbers of Γ are as small as the geometry (that is, the Hilbert polynomial) of X
allows.

The Minimal Resolution property (under the name of Minimal Resolution conjecture) has
been intensely studied when the variety in question is the projective space. In that case, the
resolution of a general set Γ ⊆ Pr of sufficiently many γ points has only two non-trivial rows,
indexed u−1 and u respectively, and MRP implies that the resolution is natural, that is, at each
step only one non-trivial Betti number appears. MRP is known to hold for r ≤ 4, as well as for
a very large number of points in any projective space, due to work of Hirschowitz and Simpson
[HS]. However, counterexamples to MRP in any projective space Pr, where r ≥ 6 and r 6= 9,
have been found by Eisenbud, Schreyer, Popescu and Walter, see [EP], [EPSW]. The question
has also been studied when X ⊆ P3 is a smooth surface of small degree, see [BMMN], or for a
K3 surface in [AFO]. MRP has been proved to hold for all canonical curves, see [FMP], and
linked to important questions on the moduli space of vector bundles on curves.

We now focus on the case when X = C is a smooth curve embedded by a (not necessarily
complete) linear series ` = (L, V ) ∈ Grd(C). Basic Brill–Noether theory ensures that when
ρ(g, r, d) = g − (r + 1)(g − d+ r) ≥ 0 the stack Grd parametrizing such pairs (C, `) has a unique
component dominating the moduli space Mg. A pair [C, `] corresponding to a (general) point
of this component is referred to as a (general) Brill–Noether (BN) curve. It was pointed out in
[FMP] via vector bundle techniques that property (1) fails for every curve C ⊆ Pr for certain
values of i when d is large with respect to g. Common to these counterexamples is that they
occur in the range d < 2r (see also (6) for further explanations). Confirming the expectation,
already formulated in [AFO], that MRP holds outside this range is the main result of this paper.

Theorem 1.1. Let C ⊆ Pr be a general Brill–Noether curve of genus g ≥ 1 and degree d ≥ 2r.
Then the Minimal Resolution property holds for C.

To spell out the statement of Theorem 1.1, if C ⊆ Pr is a general Brill–Noether curve of
degree d ≥ 2r and Γ ⊆ C is a general set of γ ≥ d · reg(C) + 1− g points, setting

u := 1 +
⌊γ + g − 1

d

⌋
,

the Betti diagram of Γ is obtained by adding to the Betti diagram of C precisely the rows
indexed by u− 1 and u respectively. The entries in these rows are explicitly given as follows:

bi,u(Γ) = 0 for i ≤ r
(

1−
{γ + g − 1

d

})
and

bi,u(Γ) = d

(
r

i

)(
i

r
+
{γ + g − 1

d

}
− 1

)
for i > r

(
1−

{γ + g − 1

d

})
.

Here {x} = x− bxc denotes the fractional part of a number x.

1 . . . i i+ 1 . . .
b1,1(C) . . . bi,1(C) bi+1,1(C) . . .
. . . . . . . . . . . . . . .

b1,u−2(C) . . . bi,u−2(C) bi+1,u−2(C) . . .
b1,u−1(Γ) . . . bi,u−1(Γ) bi+1,u−1(Γ) . . .
b1,u(Γ) . . . bi,u(Γ) bi+1,u(Γ) . . .

0 . . . 0 0 . . .

Table 1. The Betti table of a general set Γ ⊆ C of γ � 0 points.
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A version of Theorem 1.1 with a much more restrictive bound for d has been established in
[AFO]. In order to clarify the relevance of the condition d ≥ 2r to MRP, we recall the Koszul-
theoretic interpretation of the Betti numbers of Γ. If ` = (L, V ) ∈ Grd(C) is the linear system
inducing the embedding C ⊆ Pr, the kernel vector bundle MV is constructed via the exact
sequence

0 −→MV −→ V ⊗OC −→ L −→ 0.

Using standard Koszul cohomology arguments [FMP, Proposition 1.6], one finds

(2) bi+1,u−1(Γ) = h0
(
C,

i∧
MV ⊗ IΓ/C(u)

)
and bi,u(Γ) = h1

(
C,

i∧
MV ⊗ IΓ/C(u)

)
.

Since rk(MV ) = r and deg(MV ) = −d, by Riemann–Roch one computes

bi+1,u−1(Γ)− bi,u(Γ) = χ
(
C,

i∧
MV ⊗ IΓ/X(u)

)
=

(
r

i

)(
− id
r

+ du− γ + 1− g
)
,

which explains how the u-th row of the Betti diagram of Γ determines its (u− 1)-st row. Using
(2) it is easy to show that C ⊆ Pr satisfies the Minimal Resolution property if and only if the
kernel bundle MV verifies the following generic vanishing conditions

(3) H0
(
C,

i∧
MV ⊗ ξ

)
= 0,

for each i = 0, . . . , r and for a general line bundle ξ ∈ Picg−1+b id
r
c(C), see also [FMP, Corollary

1.8]. Note that the degree of ξ is chosen maximally in such a way that the vanishing (3) could
possibly hold, thus the statement (3), if true, is sharp. It turns out that (3) is related to a
condition introduced by Raynaud [R] and related to the base locus of the (non-abelian) theta
linear system on the moduli space of semistable vector bundles on C, see Definition 2.1. Proving
Theorem 1.1 amounts to constructing for each d ≥ 2r a Brill–Noether curve C ⊆ Pr of genus
g and degree d which verifies the strong Raynaud condition (3). Note that via the natural
identification TPr|C ∼= M∨V ⊗ L, the condition (3) can be equally well stated in terms of the
restricted tangent bundle TPr|C of the curve.

We now turn to the condition d ≥ 2r in the statement of Theorem 1.1. Using a filtration
argument due to Lazarsfeld [EL], [Laz] further developed in [P1], [Sch], one can show that if Dr−i
is a general effective divisor of degree r − i on C, one has an injection OC(Dr−i) ↪→

∧r−iM∨V .
It follows that Raynaud’s condition (3) implies that H0

(
C,L∨⊗ ξ(Dr−i)

)
= 0, for a general line

bundle ξ of degree g − 1 + b idr c, that is,

(4) L∨ ⊗ ξ /∈ Cg−1+b id
r
c−d+r−i − Cr−i,

where the right hand side denotes the corresponding difference variety inside the Jacobian of C.
In particular, assuming that for a given 0 ≤ i ≤ r both inequalities

(5) g − 1 +
⌊ id
r

⌋
− d+ r − i ≥ 0 and g − 1 +

⌊ id
r

⌋
− d+ r − i+ r − i ≥ g,

are satisfied, the difference variety in (4) covers the entire Jacobian of C and accordingly (4)
cannot hold, therefore the statement (1) fails for every such curve C ⊆ Pr. It turns out that the
inequalities (5) are mutually compatible for some 0 ≤ i ≤ r precisely when

(6) (2r − d)g − r ≥ 0.

Therefore (6) is the range in which MRP definitely fails for every curve C ⊆ Pr of degree d and
genus g. On the other hand, if d ≥ 2r the inequalities in (5) are incompatible and one does not
expect counterexamples to MRP, and indeed in Theorem 1.1 we confirm this expectation.
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The proof of the Minimal Resolution property relies on an induction procedure, where the
most effort is put into establishing the strongest possible version of Theorem 1.1 for elliptic
curves. This statement serves as the base case of the induction argument and is instrumental
in constructing in the range d ≥ 2r Brill–Noether curves verifying the Minimal Resolution
property. The following statement combines Theorem 5.1 and Proposition 5.5 and states that
one can construct elliptic curves of arbitrary degree in projective space, satisfying non-trivial
incidence conditions with respect to rational normal curves and whose restricted tangent bundle
is furthermore generic in the sense of Atiyah’s classification of vector bundles on elliptic curves.

Theorem 1.2. If J ⊆ Pr is a general elliptic curve of degree d, let us write d = ad1 and r = ar1

with gcd(d1, r1) = 1. Then

TPr|J ∼=
a⊕
i=1

Ei,

where Ei are stable vector bundles of rank r1 and degree (r + 1)d1, and
(
det(E1), . . . ,det(Ea)

)
is general in Pic(r+1)d1(J)× · · · × Pic(r+1)d1(J). Furthermore, in the range r + 1 ≤ d ≤ 2r − 1,
and for any 0 ≤ g ≤ d+ 1, we may further require that J meets transversally a rational normal
curve R ⊆ Pr at g points.

The proof of Theorem 1.2 relies on degenerating J to a union J0 ∪ L1 ∪ · · · ∪ Ld−r−1 of an
elliptic normal curve J0 ⊆ Pr and 1-secant lines Li ⊆ Pr meeting J0 at a point pi. Furthermore,
we judiciously choose a rational normal curve R ⊆ Pr meeting J0 at r + 2 points n1, . . . , nr+2,
as well as the lines Li at a point qi. This setup is illustrated in the following picture:

J0

R

Li pi qi
ni

The resulting statement for the elliptic normal curve J0 to be proved in order to establish
Theorem 1.2 is then a transversality condition for elementary modifications of the restricted
tangent bundle TPr|J0

. This is established via a specialization argument inside the moduli space
of rational normal curves meeting J0 at the prescribed points n1, . . . , nr+2 (see Proposition 5.3).
We use throughout a slightly unorthodox stability condition introduced in (2.2), which turns
out to be particularly suitable when handling vector bundles on families of nodal curves. Less
sharp statements similar in spirit to Theorem 1.2 exist in the literature, see [BH], though for
our inductive argument to work we need the result precisely in the form stated in Theorem 1.2.

The inductive argument in the proof of Theorem 1.1 has two parts, as we shall discuss now.
One starts with positive integers g, r and d such that d ≥ 2r and ρ(g, r, d) ≥ 0. Assume one has

constructed a BN curve C
|V |
↪→ Pr of degree d and genus g for which the restricted tangent bundle

TPr|C verifies the strong Raynaud condition (3). We attach to C a rational normal curve R ⊆ Pr
meeting C at ε+ 1 points for some ε ≤ r+ 1. The resulting stable curve C ∪R ⊆ Pr has degree
d+r and (arithmetic) genus g+r+1. Note that ρ(g+ε, r, d+r) ≥ ρ(g+r+1, r, d+r) = ρ(g, r, d)
and it is easy to see that C ∪R can be smoothed to a BN curve. Using in an essential way that
the restricted tangent bundle TPr|R ∼= OP1(r + 1)r has integral slope, we conclude via Lemma
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2.3 that a smoothing inside Pr of C ∪ R also satisfies the strong Raynaud condition, therefore
establishing the Minimal Resolution property for the pairs (d′, g′) = (d+r, g+ε) for 0 ≤ ε ≤ r+1.

We are thus left with establishing Theorem 1.1 in the range 2r ≤ d ≤ 3r − 1. In this
case, Theorem 1.2 yields the existence of a smooth elliptic curve J ⊆ Pr such that TPr|J is
semistable (which in genus one implies the strong Raynaud condition even in positive character-
istic). Furthermore, we can arrange that J meets transversally a rational normal curve R ⊆ Pr
at g ≤ d− r+ 1 points, where this last inequality is a consequence of the constraints imposed on
d. Using again that the slope of TPr|R is integral, we conclude that a smoothing of J ∪R inside
Pr is a BN curve of degree d and genus g whose restricted tangent bundle satisfies the strong
Raynaud condition. These two inductive steps cover all the cases stated in Theorem 1.1.

Butler’s conjecture on the stability of kernel bundles.

The strong Raynaud condition (3) necessary to prove the Minimal Resolution property turns
out to be stronger than the stability of the kernel bundle MV of a Brill–Noether general curve
C ⊆ Pr. It has been a long standing conjecture of Butler [Bu] that the kernel bundle MV is
(semi)stable for every g ≥ 3 and a general choice of (C, `). (Note that there is a much studied
version of Butler’s conjecture for coherent systems of higher rank). Bhosle, Brambilla-Paz and
Newstead [BBPN2], building on significant previous work [AFO], [BH], [BBPN1], [EL], [Mi]
involving a large variety of techniques, managed to show that in characteristic zero the kernel
bundle of a BN curve is semistable for every g ≥ 1, and even stable when g ≥ 3, r ≥ 5 and
g ≥ 2r− 4. Using the degeneration methods of this paper we offer a simple uniform proof of the
strongest possible form of Butler’s conjecture for general curves in projective space:

Theorem 1.3. If C ⊆ Pr is a general Brill–Noether curve of genus g ≥ 2, the kernel bundle MV

is always stable, unless g = 2 and d = 2r, where r ≥ 3. In this case, MV is strictly semistable.

We stress that Theorem 1.3 is valid in arbitrary characteristic. This fact and the stability
of the bundle MV in all cases when g ≥ 3 are new. The strict semistability of the kernel

bundle for g = 2 has been observed before, see [BBPN1, Theorem 8.1]. If C
|V |
↪→ Pr is a genus 2

curve of degree 2r embedded by a linear system (L, V ), then by a dimension count we see that
H0(C,MV ⊗ ωC) 6= 0, hence MV appears as an extension

0 −→ ω∨C −→MV −→ Q −→ 0,

and is therefore strictly semistable. Theorem 1.3 shows that it is only this case in genus 2 when
MV fails to be stable.

Strong semistability of kernel bundles in positive characteristic.

Turning to the case of a smooth curve C over a field k of characteristic p > 0, denoting by
F : C → C the absolute Frobenius morphism, it is well known that the pullback under F does
not preserve the stability of vector bundles over C.1 Accordingly, a vector bundle E on C is said
to be strongly (semi)stable if the Frobenius pullback (F e)∗(E) is (semi)stable for every e ≥ 0.

For a smooth embedded curve C
|V |
↪→ Pr of degree d the strong semistability of the syzygy

bundle MV has been related by Brenner [Br] and Trivedi [Tr1] to the Hilbert-Kunz multiplicity
of its coordinate ring. Precisely, for a projective variety X ⊆ Pr having coordinate ring S(X),

1A vivid illustration of this fact is provided by the bundle of locally exact differentials defined in Raynaud’s
paper [R]. The rank p−1 vector bundle B on C defined by the exact sequence 0→ B → F∗ωC → ωC → 0 has been
shown to be stable in [R], but its Frobenius pullback possesses a subbundle B2 ⊆ F ∗B such that F ∗B/B2

∼= ωC .
Since µ(B) = g − 1, this shows that F ∗(B) is unstable for p 6= 2 and g ≥ 2.



6 G. FARKAS AND E. LARSON

one defines the Hilbert-Kunz function of X by setting

N 3 e 7→ HKX(pe) := dimk
S(X)

〈xp
e

0 , . . . , x
pe
r 〉 · S(X)

.

Following Kunz and Monsky [Mon], the Hilbert-Kunz multiplicity eHK(X) of X ⊆ Pr is defined
as the leading coefficient of the function HK(pe), precisely

HKX(pe) = eHK(X) · pe(dim(X)+1) +O
(
pe·dim(X)

)
.

In the case when C ⊆ Pr is a smooth curve, using Langer’s important work [Lan] on strong
Harder-Narasimhan filtrations in positive characteristic, it has been showed in [Br] and [Tr1]
that eHK(C, V ) is a rational number, though its exact value remains hard to compute. However,
it has been observed independently in [Br, Corollary 2.7], [Tr1, Proposition 2.5] that under the
hypothesis that MV is strongly semistable the Hilbert-Kunz multiplicity has the simple formula

eHK(C, V ) =
d(r + 1)

2r
.

Our techniques yield the following result in this direction:

Theorem 1.4. Let C ⊆ Pr be a very general Brill–Noether curve of genus g ≥ 1 and degree
d ≥ 2r over a field of characteristic p > 0. Then MV is strongly semistable, in particular its

Hilbert-Kunz multiplicity equals d(r+1)
2r .

The requirement that C be very general comes from the fact that the locus of curves C ⊆ Pr
with a strongly semistable kernel bundle MV is a countable intersection of open subsets of the
stack Grd. Concerning the strong stability of kernel bundles we have the following results:

Theorem 1.5. Let C ⊆ Pr be a very general Brill–Noether curve of genus g and degree d. Then
MV is strongly stable in the following cases:

(1) If g ≥ r + 1 and d is a multiple of r.
(2) If g ≥ 2 and d ≥ 2r + 1, and r is not a multiple of the characteristic.
(3) If g ≥ r + 2 and d ≥ 3r.

An immediate consequence of Theorem 1.5 is that the kernel bundle MωC of a very general
canonical curve C ⊆ Pg−1 of genus g ≥ 3 is strongly stable. Note that whereas we know that
the kernel bundle MωC of every non-hyperelliptic canonical curve C ⊆ Pg−1 is stable, we cannot
hope for such a result for strong semistability. There are examples of smooth canonical curves
C ⊆ Pg−1 of small genus defined over Q, such that for a Zariski dense set of primes p the mod
p reduction of the kernel bundle MωC is strongly semistable and for another dense set of primes
the reduction mod p of MωC is not strongly semistable, see Remark 8.1.

Key to the proof of both Theorems 1.4 and 1.5 is the fact that for elliptic curve in positive
characteristics semistability, strong semistability and satisfying the strong Raynaud condition
are equivalent properties (see also Lemma 6.1). Using this, the inductive argument used to prove
the Minimal Resolution property can be adapted to establish the strong (semi)stability of MV

in every genus.
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2. Syzygies of points on curves and the Raynaud condition

We set throughout S := k[x0, . . . , xr], where k is an algebraically closed field. For a subscheme
Γ ⊆ Pr, let S(Γ) be its coordinate ring and denote by

bi,j(Z) := dim TorSi
(
S(Γ), k

)
i+j

= dim Ki,j

(
Γ,OΓ(1)

)
the corresponding Betti number of i-th syzygies of weight j > 0. By the very definition of the
Castelnuovo–Mumford regularity of Γ, we have bi,j(Γ) = 0 for j ≥ reg(Γ) + 1.

If Γ is a subscheme of a smooth curve C ⊆ Pr, then its Betti numbers can be described
geometrically as we now explain. Let ` = (L, V ) ∈ Grd(C) be a globally generated linear
system inducing the map f = f` : C → Pr. We consider the kernel bundle (also referred to

as the Lazarsfeld bundle) MV := Ker
{
V ⊗ OC

ev−→ L
}

. Via the Euler sequence, we have the
identification f∗TPr ∼= M∨V ⊗L. The pullback of the tangent bundle f∗TPr = TPr|C is intimately
related to many aspects of the geometry of f , including its deformation theory when the source
curve C is fixed, and the computation of Koszul cohomology groups of C. It is well known that
the pair (C, `) corresponds to a BN curve if H1(C, f∗TPr) = 0.

If η is a line bundle on C, then the Koszul cohomology group Ki,j(C; η, L) is defined as the
cohomology of the following complex:

i+1∧
H0(L)⊗H0(η ⊗ Lj−1)

di+1,j−1−→
i∧
H0(L)⊗H0(η ⊗ Lj)

di,j−→
i−1∧

H0(L)⊗H0(η ⊗ Lj+1),

where di,j denotes the corresponding Koszul differential. Koszul cohomology groups can be
describes as ordinary cohomology groups for (twists of) exterior powers of kernel bundles and
one has the following well-known identifications:

(7) Ki,1(C; η, L) = H0
(
C,

i∧
ML ⊗ L⊗ η

)
and Ki−1,2(C; η, L) = H1

(
C,

i∧
ML ⊗ L⊗ η

)
.

Assume Γ ⊆ C is a subscheme consisting of γ distinct points and we make the assumption

(8) u := 1 +
⌊γ + g − 1

d

⌋
≥ 1 + reg(C).

Then, as explained in [FMP, Proposition 1.6] or [CEFS, Section 2], we have

(9) bi+1,u−1(Γ) = dim Ki,1

(
C;Lu−1(−Γ), L

)
and bi,u(Γ) = dim Ki−1,2

(
C;Lu−1(−Γ), L

)
.

The Minimal Resolution property (MRP) for the embedded curve C
|V |
↪→ Pr is then the state-

ment bi,u(Γ) · bi+1,u−1(Γ) = 0 for all i ≥ 0 and for all integers u satisfying (8), that is, the
resolution of the 0-dimensional scheme Γ is the expected one and the Betti numbers are as small
as the geometry of C allows. We now introduce the following:

Definition 2.1. We say that a vector bundle E on a (possibly singular) curve C satisfies the
weak Raynaud condition if, for any degree d, there exists a line bundle η ∈ Picd(C) with either

(10) H0(C,E ⊗ η) = 0 or H1(C,E ⊗ η) = 0.

We say that E satisfies the strong Raynaud condition if every wedge power
∧iE satisfies the

weak Raynaud condition.

Remark 2.2. If C is irreducible, then Picd(C) is irreducible, so it is equivalent to ask for (10) to
hold for a general line bundle η ∈ Picd(C). We take existence of η in the definition because this
behaves better when C is reducible and our arguments involve degeneration to reducible curves.
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Definition 2.1 goes back to the fundamental work of Raynaud [R]. Let SUC(r, d) be the moduli
space of semistable vector bundles of rank r and fixed determinant of degree d on a smooth curve
C. It is known that if E is a stable vector bundle of rank r and integer slope µ(E) = µ ∈ Z on
C, the point [E] ∈ SUC(r, rµ) is not a base point of the determinant line bundle Θ generating
Pic
(
SUC(r, rµ)

)
if and only if E satisfies the weak Raynaud condition, see [P2].

Via the identifications (7) and (9), we conclude that C
|V |
↪→ Pr satisfies the Minimal Resolution

property if and only if the kernel bundle MV satisfies the strong Raynaud condition, which is
also precisely condition (3) discussed in the introduction.

2.1. The Raynaud condition under degeneration. In this section, our primary goal is to
study the behavior of (semi)stability and the Raynaud condition under degeneration, which will
play a major role in the proof of Theorem 1.1.

Let C → ∆ be a family of nodal curves over the spectrum of a DVR with residue field k and
fraction field K, and E be a vector bundle on C. We assume the total space C to be smooth.
Write C = Ck and C∗ = CK for the special and general fibers respectively. Let E := E|C and
E∗ := E|C∗ .

By inspection, the Raynaud condition is open in families. In other words, if E satisfies
the weak (respectively strong) Raynaud condition, then so does E∗. The condition that E
satisfies the weak (respectively strong) Raynaud condition can in turn be expressed as a separate
condition on each irreducible component of C:

Lemma 2.3. If the restrictions of E to every component of C satisfy the weak (respectively
strong) Raynaud condition, and the slope of E along all but one component of C is integral, then
E satisfies the weak (respectively strong) Raynaud condition.

Proof. Since the conditions of the lemma imply that
∧iE also satisfies the conditions of the

lemma, it suffices to consider the case of the weak Raynaud condition. It suffices to show there
is a line bundle η of any given degree d on C with H0(C,E ⊗ η) = 0 or H1(C,E ⊗ η) = 0. For
this we use induction on the number of components of C; if C is irreducible, the desired result
holds by assumption.

For the inductive step, write C = X ∪Γ Y , where Y is a component on which the slope of
E is integral. Let η be a line bundle on C such that η|Y is a general line bundle of degree
g(Y ) − 1 − µ(E|Y ), and η|X is a line bundle of degree d − g(Y ) + 1 + µ(E|Y ) on X, such that

η|X(−Γ) ∈ Pic(X) satisfies (10) with respect to the vector bundle E|X . Since H0(Y,E|Y ⊗η|Y ) ∼=
H1(Y,E|Y⊗η|Y ) = 0, the long exact sequence in cohomology attached to the short exact sequence

0 −→ E|X ⊗ η|X(−Γ) −→ E ⊗ η −→ E|Y ⊗ η|Y −→ 0

implies H i(C,E ⊗ η) ∼= H i(X,E|X ⊗ η|X(−Γ)) for i = 0, 1, therefore either H0(X,E ⊗ η) = 0 or

H1(X,E ⊗ η) = 0, as desired. �

2.2. Stability conditions for nodal curves. To express that (semi)stability is open, we first
need a good definition of (semi)stability for vector bundles on nodal curves. Let C be a connected

nodal curve, and write ν : C̃ → C for the normalization map. For each node p of C, let p1 and

p2 denote the two points of C̃ lying over C. Given a subbundle F ⊆ ν∗E, we can compare the
subspaces F|p1

and F|p2
inside the fibres E|p1

∼= E|p2
. The following definition, inspired by the

concept of stability for parabolic bundles, appears in [CLV].
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Definition 2.4. Let E be a vector bundle on a connected nodal curve C. For a subbundle
F ⊆ ν∗E having uniform rank, define the adjusted slope µadj via

µadj(F ) := µ(F )− 1

rk(F )

∑
p∈Csing

codimF

(
F|p1
∩ F|p2

)
.

Here, codimF (F|p1
∩ F|p2

) refers to the codimension of F|p1
∩ F|p2

in either F|p1
or F|p2

(which
have the same dimension). Observe that if F is a pull-back of a vector bundle on C, then
µadj(F ) = µ(F ).

We define E to be semistable if, for all subbundles F ⊆ ν∗E,

µadj(F ) ≤ µ(ν∗E) = µ(E),

and to be stable if this inequality is strict for all proper subbundles of uniform rank.

Note that Definition 2.4 recovers the usual definition of (semi)stability if C is a smooth curve.
With this definition, (semi)stability is an open condition.

Lemma 2.5. If E is semistable then so is E∗.

Proof. This is essentially [CLV, Proposition 2.3]. The proof given in [CLV] shows that if E∗ has
a subbundle F∗ of (strictly) smaller slope and rank s, then ν∗E has a subbundle of (strictly)
smaller adjusted slope with the same rank s. �

Moreover, the condition that E is (semi)stable can in turn be expressed as a separate condition
on each irreducible component of C:

Lemma 2.6 (Lemma 4.1 of [CLV]). If the restrictions of E to every component of C are
semistable, then E is semistable. If in addition the restriction to one such component is stable,
then E is stable.

Combined with [CLV, Proposition 2.3], we conclude that E∗ is (semi)stable in Lemma 2.6. In
positive characteristic, we have a similar result for strong semistability:

Corollary 2.7. (char(k) > 0) If the restrictions of E to every component of C are strongly
semistable, then E is strongly semistable. If in addition the restriction to one such component
is strongly stable, then E is strongly stable.

We now consider a variant of this setup, in the simplest case where one component of C fails
to be semistable. In this case, we will relate the semistability of E∗ to the semistability of a
modification of the restriction of E to one component, a notion which we now define:

Definition 2.8. Let E be a vector bundle on a variety X and D ⊆ X be a Cartier divisor. Let
F be a subbundle of the restriction of E to some subscheme of X containing D. We define the
elementary modification

E[D → F ] := ker
{
E →

E|D

F|D

}
.

Lemma 2.9. Suppose that C = Y ∪p P1 is a transverse union of a curve Y and P1 respectively,

meeting at a point p, and E|P1
∼= OP1(a − 1)rkE−1 ⊕ OP1(a). Then E∗ is (semi)stable provided

that the modification

E|Y
[
p→ O(a)|p

]
is (semi)stable.
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Proof. One approach, which is straightforward but requires some casework, is to show that E
is semistable and then apply Lemma 2.5. Alternatively, we can replace E with the modification
E ′ := E [P1 → OP1(a)], which has the same general fiber. Then E ′|D ∼= E|D[p→ O(a)|p], whereas

E ′|P1
∼= OP1(a)rkE is semistable. The desired result follows by combining Lemmas 2.6 and 2.5. �

2.3. General vector bundles on rational and elliptic curves. We shall find it useful to
have a concept of a general vector bundle on a rational or elliptic curve that takes into account
the Birkhoff–Grothendieck and Atiyah classifications for vector bundles on rational and elliptic
curves respectively.

Definition 2.10. (i) We fix positive integers r and d and write d = ra+b, with 0 ≤ b ≤ r−1. A
vector bundle E of rank r and degree d on P1 is said to be general if E ∼= OP1(a)r−b⊕OP1(a+1)b.

(ii) We fix a smooth elliptic curve J and positive integers r and d, then write r = ar1 and
d = ad1, where a = gcd(r, d). A vector bundle E of rank r and degree d on J is said to be
general if E ∼= E1⊕· · ·⊕Ea, where each Ei is a stable vector vector bundle of rank r1 and degree
d1 on J such that

(
det(E1), . . . ,det(Ea)

)
is a general element of Picd1(J)× · · · × Picd1(J).

For a smooth curve of genus g ≥ 2 a vector bundle E is said to be general if it corresponds
to a general point of the moduli space of stable vector bundles on C of that rank and degree.
With this definition in place, keeping the notation above we have the following:

Lemma 2.11. Suppose that C = Y ∪p1 P1 ∪p2 P1 ∪ · · · ∪pn P1 is the transverse union of a curve
Y with n copies of P1, each meeting Y at a single point pi ∈ Y , with the pi ∈ P1 being mutually
distinct. Assume that the restriction of E to each P1 satisfies

E|P1
∼= OP1(a)rk(E) (respectively E|P1

∼= OP1(a− 1)rk(E)−1 ⊕OP1(a)).

If E|Y (ap1 + · · · + apn) (respectively E|Y
[
p1 → O(a)|p1

]
· · ·
[
pn → O(a)|pn

]
(ap1 + · · · + apn)) is

a general vector bundle on Y , then so is E∗.

Proof. As in the proof of Lemma 2.9, we can reduce the case E|P1
∼= OP1(a− 1)rk(E)−1⊕OP1(a)

to the case E|P1
∼= OP1(a)rk(E) by replacing E with the elementary modification along the divisor

given by the union of all the P1 factors: E [P1 ∪ · · · ∪ P1 → O(a)]. Similarly, we can further
reduce to the case a = 0 by replacing E with E ⊗OC(a(P1 ∪ · · · ∪ P1)), where with the notation
introduced in (2.1), we observe that the union of all the P1 factors may be viewed as a Cartier

divisor on C. It therefore suffices to consider the case when the restrictions E|P1
∼= Ork(E)

P1 are
all trivial.

In this case, E is the pullback of a vector bundle E from the surface C obtained from C by
contracting all of the P1s, which are (−1)-curves. As the central fiber of E is E|Y , the result is
immediate. �

2.4. Elementary modification of kernel bundles. For an embedded curve we will be con-
cerned primarily with modifications of the restricted tangent bundle along certain subbundles
which we define as follows:

Definition 2.12. Let C be a nodal curve and f : C → Pr a morphism. Set Λ ⊆ Pr to be a linear
space not containing the image of any component of C under f , and with Λ∩ f(Csing) = ∅. Let

Tf→Λ|Crf−1(Λ) := f∗TπΛ ⊆ f
∗TPr ,

where πΛ denotes the map of projection with center Λ. We then define the pointing bundle Tf→Λ

to be the unique extension of Tf→Λ|Crf−1(Λ) to a subbundle of f∗TPr .
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For any subschemeX ⊆ Pr, we define the following elementary transformation of the restricted
tangent bundle

f∗TPr [D → X] := f∗TPr [D → Tf→〈X〉],

where 〈X〉 ⊆ Pr denotes the linear span of X.

The pointing bundles Tf→Λ have a transparent interpretation in terms of kernel bundles via a
simple secant construction which we now explain. Set L := f∗OPr(1) and V := f∗H0(Pr,OPr(1)).
Set D := f−1(Λ) viewed as an effective divisor on C. Assuming dim(Λ) = a, write V ′ ⊆ V (−D)
for the (r − a)-dimensional subspace such that one has the canonical identification

Λ ∼= P
(
V/V ′

) ∼= Pa.
Then the kernel bundle MV ′ is naturally a subbundle of MV and the quotient can be identified

up to a twist by L with the pointing bundle Tf→Λ. Precisely, one has the exact sequence on C:

(11) 0 −→ Tf→Λ −→M∨V ⊗ L −→M∨V ′ ⊗ L −→ 0.

Note that rk(Tf→Λ) = a+ 1 = dim(Λ) + 1. From the sequence (11), we derive the following:

Lemma 2.13. Keeping the previous notation, we have det(Tf→Λ) ∼= Ldim(Λ)+1
(
f−1(Λ)

)
.

Similarly, if X ⊆ Pr and dim〈X〉 = a, let V ′ ⊆ V be the (r − a)-dimensional subspace of
hyperplanes containing X. We then have the following exact sequence involving kernel bundles:

(12) 0 −→ f∗TPr [D → X] −→M∨V ⊗ L −→M∨V ′ ⊗ L|D −→ 0.

3. Stability in exact sequences on nodal curves

The basic strategy of our proof of Theorem 1.1 will be to degenerate C in projective space
so that the kernel bundle MV fits into an exact sequence with sub and quotient bundles whose
slopes are sufficiently close. In this section, we study this setup in greater generality. Let

(13) 0 −→ S −→ E −→ Q −→ 0

be a short exact sequence of vector bundles on a nodal curve C of genus g. Our goal is to relate
semistability (respectively the weak Raynaud condition) for E, and for S and Q.

Lemma 3.1. Suppose both vector bundles S and Q satisfy the weak Raynaud condition, and

(14) dµ(S)e ≤ bµ(Q)c+ 1 and dµ(Q)e ≤ bµ(S)c+ 1.

Then E also satisfies the weak Raynaud condition.

Proof. Let η be a suitably general line bundle of degree d on C. Since S satisfies the weak
Raynaud condition, H0(C, S⊗η) = 0 if d ≤ g−1−µ(S), and H1(C, S⊗η) = 0 if d ≥ g−1−µ(S).
The analogous statement holds for Q.

Since d ∈ Z and no integer lies strictly between g−1−µ(S) and g−1−µ(Q) by our assumption
(14), it follows that H0(C, S ⊗ η) = H0(C,Q ⊗ η) = 0 or H1(C, S ⊗ η) = H1(C,Q ⊗ η) = 0.
Tensoring (13) with η, we obtain that either H0(C,E ⊗ η) = 0 or H1(C,E ⊗ η) = 0. In other
words, E satisfies the weak Raynaud condition as claimed. �

Lemma 3.2. Suppose both S and Q are semistable, the degree and rank of Q are coprime, and

µ(Q) = min
{
m ∈ Q : m > µ(E) and denominator(m) < rk(E)

}
.

If the sequence (13) does not split, then E is semistable. Otherwise, (13) splits uniquely and S
is the unique destabilizing quotient of E.
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Proof. Suppose for contradiction, F ⊆ E is a destabilizing subbundle. Write I and K for image
and kernel of the induced map F → Q. Since Q is semistable by assumption, and its degree
and rank are coprime, it is stable; in particular, if I 6= 0, then µ(I) ≤ µ(Q) with equality only
if I = Q. Similarly, if K 6= 0, then µ(K) ≤ µ(S) < µ(Q), because µ(Q) > µ(E) by assumption.

Since µ(F ) ≥ µ(Q) by construction, this is only possible if I = Q and K = 0. In particular,
F ∼= Q is the unique destabilizing subbundle, and the inclusion F ⊆ E gives a splitting. Such a
splitting is unique because Hom(Q,S) = 0. �

The following pair of results will be used several times when establishing inductively the
(semi)stability of kernel bundles under degeneration in projective space.

Lemma 3.3. Let {Eb}b∈B be a family of vector bundles on a nodal curve C, parameterized by a
rational variety B. Assume for two points b1, b2 ∈ B, the restrictions Ebi fit into exact sequences

0 −→ Si −→ Ebi −→ Qi −→ 0

satisfying the assumptions of Lemma 3.2. If det(Q1) � det(Q2), then Eb is semistable for a
general b ∈ B.

Proof. Assume to the contrary that the general vector bundle Eb is unstable and let Fb be a
maximal destabilizing subbundle. Since B is rational, every rational map B 99K Pic(C) is
constant; thus, det(Fb) is constant. However, as we specialize to bi along any arc, Lemma 3.2
implies that F specializes to Si. Thus det(Q1) ∼= det(Q2), which is a contradiction. �

Lemma 3.4. Let {Eb}b∈B be a family of vector bundles on a nodal curve C, parameterized by a
rational variety B. Assume for two points b1, b2 ∈ B, the restrictions Ebi fit into exact sequences

(15) 0 −→ Si −→ Ebi −→ Qi −→ 0,

where Si and Qi are stable bundles with µ(Si) = µ(Qi) = µ(E), which satisfy rk(S1) = rk(S2) = s
and rk(Q1) = rk(Q2) = q. Suppose det(S1) � det(S2). If s = q, suppose furthermore that the
sequences (15) are nonsplit and det(Si) � det(Qi). Then Eb is stable for a general b ∈ B.

Proof. Write µ = µ(E) = µ(Eb), where b ∈ B is a general point. Since semistability is open, Eb is
semistable. Assume to the contrary that Eb is not stable, that is, there exists a proper subbundle
Fb ⊂ Eb satisfying µ(Fb) = µ. Write f = rk(Fb). As we specialize to bi along any arc, Fb limits
to a subbundle of Ebi of slope µ (cf. [CLV, Proposition 2.3]). Using (15), we see that any such
subbundle is isomorphic to Si or Qi (with only Si permitted if s = q by our assumption that
(15) is nonsplit in this case). In particular, we have either f = s or f = q.

Since B is rational, every rational map B 99K Pic(C) is constant, that is, det(Eb) is constant.
If Fb is unique (among subbundles of Eb with rank f and slope µ), then in particular, Fb = Fb
would be the restriction of subbundle F ⊆ E , defined on a dense open subset of B. Using again
that any rational map B 99K Pic(C) is constant, we obtain that det(Fb) is similarly constant.
However, as we specialize to bi along any arc, F would specialize to either Si (if f = s) or Qi (if
f 6= s). Thus det(S1) ∼= det(S2), which contradicts our assumption.

It therefore remains to argue that Fb is unique among all subbundles of Eb having rank f and
slope µ. Assume to the contrary that Fb and F ′b are two proper subbundles of slope µ and rank
f . Dualizing if necessary, we may suppose without loss of generality that f = min{s, q}. Note
that the saturation of Fb+F ′b ⊆ Eb has slope at least (and therefore exactly) µ. If this saturation
is a proper subbundle of Eb, then specializing to bi along any arc, Ebi has a subbundle of slope
µ which is not stable. However, using (15), no such subbundle exists, since the Jordan-Hölder
filtration of Ebi has only two factors.
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Otherwise, if the saturation of Fb+F
′
b equals Eb, then 2f ≥ s+q, forcing f = s = q. Moreover,

the natural morphism F ⊕ F → E is generically injective, therefore everywhere injective, with
cokernel supported at deg(Eb) − deg(Fb ⊕ F ′b) = 0 points. Thus, Eb ∼= Fb ⊕ F ′b. Specializing
to bi along any arc, both Fb and F ′b specialize to Si. Therefore, by taking limits we find
that det(Si) ⊗ det(Qi) ∼= det(Ebi) ∼= det(Si) ⊗ det(Si), which contradicts our assumption that
det(Si) 6= det(Qi). �

4. The Weak Raynaud condition and the Ideal Generation property

In this section we explain an inductive argument that will be helpful in proving both Theo-
rems 1.1 (Minimal Resolution property) and 1.3 (Butler’s conjecture).

Lemma 4.1. Let
(
C, ` = (L, V )

)
be a BN curve of degree d < 2r and genus g. We fix a general

point p ∈ C. If MV (−p) satisfies the weak Raynaud condition, then so does MV .

Proof. Note that if f : C
|V |−→ Pr is the map induced by the linear system ` and fp : C → Pr−1 is

the projection of C from the point f(p), then M∨V (−p)
∼= f∗p (TPr−1) ⊗ L∨(p). We use the exact

sequence

0 −→MV (−p) −→MV −→ OC(−p) −→ 0.

Since −1 = µ(OC(−p)) ≤ 1 + bµ(MV (−p))c = 1 + b−d−1
r−1c, applying Lemma 3.1 we find that MV

satisfies the weak Raynaud condition as desired. �

Remark 4.2. Via Lemma 4.1 we recover by induction on r the well known fact that a rational
normal curve R ⊆ Pr (that is, g = 0 and d = r) satisfies the weak Raynaud condition. In
fact, using the Birkhoff–Grothendieck classification of vector bundles on P1, we obtain that
MOR(1)

∼= OP1(−1)r, that is, R satisfies the Minimal Resolution property as well.

Lemma 4.3. Let C ⊆ Pr be a BN curve of genus g and degree d. Suppose that TPr|C is either
stable, semistable, strongly stable, strongly semistable, satisfies the weak (or the strong) Raynaud
condition. Then for any 0 ≤ ε ≤ r+ 1, the same condition holds for a BN curve of degree d+ r
and genus g+ ε in Pr. If ε = 0, the same is true for the condition of TPr|C being a general vector
bundle.

Proof. Let f : C ∪Γ P1 → Pr be the union of a BN curve C ⊆ Pr of degree d and genus g, and a
rational normal curve f|P1 : P1 → R ⊆ Pr, meeting transversally at a set Γ of ε+ 1 points. Note
that the slope of TPr|R is integral, therefore by Lemma 2.3, or Lemma 2.5 and Lemma 2.6 or
Corollary 2.7, or Lemma 2.11 (in the case ε = 0), in order to conclude it suffices to establish
that f corresponds to a BN curve.

From the Gieseker–Petri theoremH1
(
C, TPr|C

)
= 0 andH1

(
P1, f∗|P1TPr(−Γ)

)
= 0 since f∗|P1TPr

satisfies the weak Raynaud condition as discussed. Using the exact sequence

0 −→ f∗|P1TPr(−Γ) −→ f∗TPr −→ TPr|C −→ 0,

we conclude H1
(
C ∪R, f∗TPr) = 0, and so f is a BN curve. �

As a byproduct, we obtain a simple alternative proof of the Ideal Generation conjecture for
BN curves (which has been established with more complicated methods in [AFO, Theorem 0.3]).

Proposition 4.4. Let C ⊆ Pr be a general BN curve of genus g and degree d, where ρ(g, r, d) ≥
0. Then TPr|C satisfies the weak Raynaud condition.

Proof. We argue by induction on d. The base case d = 1 (which forces r = 1 and g = 0) is clear.
For the inductive step, we apply Lemma 4.1 if d < 2r, and Lemma 4.3 if d ≥ 2r. �
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The statement of Proposition 4.4 goes under the name of the Ideal Generation Property
(IGP) which holds for a BN curve, without any restriction on d. If Γ ⊆ C is a general set of
γ ≥ d · reg(C)− g+ 1 points on C, then IGP yields the exact value of the Betti numbers b1,j(Γ)
and b2,j(Γ) of the generators of the ideal IΓ/Pr , as predicted in the stamement of Theorem 1.1.

5. The Raynaud condition for Elliptic Curves

In this section, we establish that the kernel bundle of a general Brill–Noether elliptic curve is
a general bundle in the sense of Definition 2.10. This is a key fact, a generalization of which will
be needed in the inductive proof of the Minimal Resolution property for general Brill–Noether
curves.

Theorem 5.1. Let J ⊆ Pr be a general Brill–Noether elliptic curve of degree d. Then f∗TPr|J
is a general vector bundle on J as the map f : J ↪→ Pr varies.

We turn to the proof of Theorem 5.1, and of the above-mentioned generalization (stated as
Proposition 5.5 near the end of the section). Our first step is as follows:

Proposition 5.2. Let f : J ↪→ Pr be an elliptic normal curve, and n1, n2, . . . , na ∈ J be general
points, where 1 ≤ a ≤ r − 1. Let x ∈ Λ := 〈n1, n2, . . . , na〉 ∼= Pa−1 be an arbitrary point in
general linear position relative to n1, n2, . . . , na and let R ⊆ Λ be a general rational normal curve
through n1, n2, . . . , na and x. For some 0 ≤ b ≤ a, we choose general points p1, p2, . . . , pb ∈ J
and q1, q2, . . . , qb ∈ R. Then T ′ := Tf→Λ[p1 → q1] · · · [pb → qb] is semistable.

J

x

ni

R

pi

qi

Proof. Note that from the exact sequence (11) we have that Tf→ni
∼= OJ(1)(ni), hence

Tf→Λ =

a⊕
i=1

Tf→ni
∼=

a⊕
i=1

OJ(1)
(
ni
)
,

which is evidently semistable. Thus, for b = 0 the vector bundle T ′ is semistable as well.
Similarly, if b = a, then we may specialize each point qi to ni and then T ′ specializes to

Tf→Λ[p1 → n1] · · · [pa → na] ∼=
a⊕
i=1

OJ(1)(ni − p1 − · · · − p̂i − · · · − pa),

which is again evidently semistable. We may thus suppose 0 < b < a. Let z, w ∈ N such that

(16)
z

w
= min

{
z′

w′
∈ Q :

z′

w′
>
b

a
and w′ < a

}
.

Note that z ≤ b. The space of b-pointed rational normal curves R ⊆ Λ passing through
n1, n2, . . . , na, x is itself a rational variety. We can therefore apply Lemma 3.3 by constructing
certain degenerations of the pointed curve (R, q1, . . . , qb). To that end, let

{x′} := ΛQ∩ΛS ⊆ Λ, where ΛQ = 〈x, n1, n2, . . . , nw〉 and ΛS = 〈nw+1, nw+2, . . . , na〉.
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We then degenerate R to a reducible curve RQ ∪RS , where RQ ⊆ ΛQ is a rational normal curve
(of degree w) passing through n1, n2, . . . , nw, x, x

′ — onto which we specialize q1, q2, . . . , qz — and
RS ⊆ ΛS is a rational normal curve (of degree a−w− 1) passing through nw+1, nw+2, . . . , na, x

′

— onto which we specialize the marked points qz+1, qz+2, . . . , qb:

x′
RQ

RS

For a map h : X → Pr or for a subscheme X ⊆ Pr, write h : X → Pr+w−a respectively
X ⊆ Pr+w−a for the composition of h with the projection having center ΛS ∼= Pa−w−1. This
projection map induces an exact sequence on J

0 −→ Tf→ΛS
−→ Tf→Λ −→ Tf→Λ

(
f−1(ΛS)

)
= Tf→ΛQ

(nw+1 + · · ·+ na) −→ 0.

Upon specializing the points qi to points q◦i as above, the fibers Tf→q◦i |pi are transverse to

Tf→ΛS
|pi for 1 ≤ i ≤ z, and lie in Tf→ΛS

|pi for z+1 ≤ i ≤ b. The above exact sequence therefore
induces an exact sequence of modifications:

(17) 0 −→ Tf→ΛS

(
−p1 − · · · − pz

)
[pz+1 → q◦z+1] · · · [pb → q◦b ] −→ Tf→Λ[p1 → q◦1] · · · [pb → q◦b ]

−→ Tf→ΛQ
(nw+1 + · · ·+ na − pz+1 − · · · − pb)[p1 → q◦1] · · · [pz → q◦z ] −→ 0.

By our inductive hypothesis, both the sub and quotient bundle in the above exact sequence
are semistable; by (16), this sequence satisfies the assumptions of Lemma 3.2. To complete the
proof, it suffices by Lemma 3.3 to observe that

det
(
Tf→ΛQ

(nw+1 + · · ·+ na − pz+1 − · · · − pb)[p1 → q◦1] · · · [pz → q◦z ]
)

∼= OJ
(
wH + n1 + · · ·+ nw − (w − 1)p1 − · · · − (w − 1)pz − wpz+1 − · · · − wpb

)
depends nontrivially on the ordering of the points ni, as 0 < w < a and n1, n2, . . . , na ∈ J are
general. �

Proposition 5.3. Let J ⊆ Pr be an elliptic normal curve, n1, . . . , nr+2 ∈ J be general points
and let R be a general rational normal curve meeting J at n1, n2, . . . , nr+2. If p1, . . . , pm ∈ J
and q1, . . . , qm ∈ R are general points where m ≤ r − 1, then the elementary modification
T := TPr|J [p1 → q1] · · · [pm → qm]

(
2p1 + · · ·+ 2pm

)
is a general vector bundle on J .

J

R
ni

qi
pi
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Proof. For f : J ↪→ Pr, we argue along the lines of the proof of Proposition 5.2.
If m = r−1, we may specialize each point qi to ni for i = 1, . . . , r−1; under this specialization,

denoting by π〈n1,...,nr−1〉 : Pr 99K P1 the projection, T fits into an exact sequence:

0 −→
r−1⊕
i=1

Tf→ni

(
pi +

r−1∑
j=1

pj

)
−→ T

−→
(
π〈n1,...,nr−1〉 ◦ f

)∗
TP1

(r−1∑
j=1

(pj + nj)
)
∼= OJ(2)

(r−1∑
j=1

(pj − nj)
)
−→ 0.

Since Tf→ni
(pi+p1 + · · ·+pr−1) ∼= OJ(1)(ni+pi+p1 + · · ·+pr−1), and OJ(2)

(∑r−1
j=1(pj−nj)

)
,

are in general non-isomorphic line bundles of the same degree 2r + 2, this sequence must split,
that is, T is the direct sum of these line bundles, and is therefore general. We may thus assume
0 < m+ 1 < r.

If gcd(m + 1, r) = 1, then we claim it suffices to show that T is semistable. Indeed, T is of
rank r and degree r(r + 2 −m) + m + 1, which are relatively prime; thus, T would be stable.
Moreover, det(T ) = OJ(r+ 1)

(
(r+ 1)(p1 + · · ·+ pm)

)
is general. We conclude that T would be

general if it were semistable, as claimed. In this case, we define z, w ∈ N such that

(18)
z

w
= min

{
z′

w′
∈ Q :

z′

w′
>
m+ 1

r
and w′ < r

}
.

Otherwise, write m + 1 = ka and r = kb, with k = gcd(m + 1, r) and set z := (k − 1)a and
w := (k − 1)b.

Note that the space of m-pointed rational curves through n1, n2, . . . , nr+2 is itself rational. If
gcd(m + 1, r) = 1, we can therefore apply Lemma 3.3 by constructing certain degenerations of
(R, q1, . . . , qm), which will also imply the desired result when gcd(m + 1, r) 6= 1. To construct
these degenerations, let

{x′} = ΛQ ∩ ΛS , where ΛQ = 〈n1, n2, . . . , nw+2〉 and ΛS = 〈nw+3, . . . , nr+2〉.

We then degenerate R to a reducible curve RQ∪RS , where RQ is a rational normal curve in ΛQ
of degree w + 1 passing through the points n1, n2, . . . , nw+2, x

′ — onto which we specialize the
marked points q1, q2, . . . , qz−1 — and RS is a rational normal curve in ΛS of degree r − w − 1
passing through nw+3, . . . , nr+2, x

′ — onto which we specialize the marked points qz, . . . , qm.

x′

RS RQ
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Keeping the notation introduced in the proof of Proposition 5.2, upon the specialization of
the points qi = q◦i as described above, setting

S := Tf→ΛS

(
p1 + · · ·+ pz−1 + 2pz + · · ·+ 2pm

)
[pz → q◦z ] · · · [pm → q◦m] and

Q := f
∗
TPw

(
nw+3 + · · ·+ nr+2 + 2p1 + · · ·+ 2pz−1 + pz + · · ·+ pm

)[
p1 → q◦1

]
· · ·
[
pz−1 → q◦z−1

]
,

we obtain the following exact sequence on J

(19) 0 −→ S −→ T −→ Q −→ 0.

By Proposition 5.2, S is semistable, whereas by our inductive hypothesis, Q is a twist of a
general vector bundle, and thus semistable. Moreover, writing

H = f
∗OPw(1) = OJ(1)

(
−nw+3 − · · · − nr+2

)
,

we have by direct computation

det(S) = (r − w)(H + p1 + · · ·+ pz−1) + (r − w + 1)(nw+3 + · · ·+ nr+2 + pz + · · ·+ pm),

det(Q) = (w + 1)(H + p1 + · · ·+ pz−1) + w(nw+3 + · · ·+ nr+2 + pz + · · ·+ pm).

We distinguish two cases. If gcd(r,m + 1) = 1, via (18), the sequence (19) satisfies the
assumptions of Lemma 3.2. To complete the proof, it suffices, by Lemma 3.3, to observe that
det(Q) depends nontrivially on the ordering of the ni.

If gcd(r,m + 1) 6= 1, by our inductive hypothesis Q is a twist of the general vector bundle

Q′ = f
∗
TPw(2p1 + · · ·+ 2pz−1)[p1 → q◦1] · · · [pz−1 → q◦z−1]. Since S is semistable, with rank and

degree that are relatively prime, and µ(S) = µ(Q), it suffices to observe that (i) det(S) and
det(Q) are independently general, and (ii) once det(S) and det(Q) are fixed, the parameters
p1, q

◦
1, . . . , pz−1, q

◦
z−1 and H that determine Q′ remain general subject only to the divisorial

constraint that H + p1 + · · · + pz−1 is a fixed general divisor class. This constraint determines
det(Q′), and so Q′ remains general subject only to the constraint that det(Q′) is fixed. �

Consider the union f : J ′ = J0 ∪ L1 ∪ · · · ∪ Ld−r−1 → Pr, of an elliptic normal curve J0 ⊆ Pr
with 1-secant lines Li ⊆ Pr meeting J0 at pi, such that J0 meets R at r+2 points n1, n2, . . . , nr+2,
and each Li meets R at one point qi. This setup was illustrated in the picture in the introduction.

Lemma 5.4. We have H1
(
J ′, f∗TPr(−n1 − · · · − nr+2 − q1 − · · · − qd−r−1)

)
= 0. In particular,

we may smooth any subset of the nodes of J ′ while requiring that f(J ′) meet R exactly in
{n1, n2, . . . , nr+2, q1, q2, . . . , qg−r−2}.

Proof. We use the following exact sequence on J ′

0 −→
d−r−1⊕
i=1

TPr|Li
(−pi − qi) −→ f∗TPr

(
−
r+2∑
i=1

ni −
d−r−1∑
j=1

qj

)
−→ TPr|J0

(
−
r+2∑
i=1

ni

)
−→ 0.

Note that TPr|Li
∼= OLi(1)r−1 ⊕OLi(2), and so H1

(
Li, TPr|Li

(−pi − qi)
)

= 0.

It remains to showH1
(
J0, TPr|J0

(−
∑r+2

i=1 ni)
)

= 0. SinceOJ0(n1+n2+· · ·+nr+2) ∈ Picr+2(J0)

is general and µ(TPr|J0
) = (r+1)2

r > r+2, it suffices to show that TPr|J0
satisfies the weak Raynaud

condition. This is a consequence of a special case (m = 0) of Proposition 5.3. �

Proposition 5.5. For each r+ 1 ≤ d ≤ 2r− 1 and 0 ≤ g ≤ d+ 1, there exists a smooth elliptic
curve J ⊆ Pr of degree d, meeting a rational normal curve R at a set Γ of g points, for which
TPr|J is a general vector bundle on J .



18 G. FARKAS AND E. LARSON

Proof. Applying Lemma 5.4, we may degenerate J → Pr to f : J ′ = J0∪L1∪· · ·∪Ld−r−1 → Pr.
Applying Lemma 2.11, we thus reduce Proposition 5.5 to Proposition 5.3. �

Proof of Theorem 5.1. By Lemma 4.3 (applied when ε = 0), it suffices to consider the cases
r + 1 ≤ d ≤ 2r − 1. This follows from Proposition 5.5. �

6. The proof of the Minimal Resolution Property

In this section, we prove Theorem 1.1. Via (3) we have establish that this amounts to the
statement that if C ⊆ Pr is a general Brill–Noether curve of genus g and degree d then the
kernel bundle MV (or equivalently, the restricted tangent bundle TPr|C = M∨V ⊗ L) satisfies the
strong Raynaud condition. Our argument will use that certain vector bundles on elliptic curves
were shown to be general (and thus semistable) in the previous section. This implies the strong
Raynaud condition (in arbitrary characteristic):

Lemma 6.1. (char(k) ≥ 0) A semistable vector bundle on an elliptic curve is strongly semistable
and satisfies the strong Raynaud condition.

Proof. Since indecomposable vector bundles on an elliptic curve are semistable, via [O, Theorem
2.16] it follows that semistable vector bundles on an elliptic curve are strongly semistable.
Therefore, by [Mor, Corollary 7.3], the tensor product of semistable vector bundles on an elliptic
curve is semistable. Consequently, a wedge power of a semistable vector bundle on an elliptic
curve is semistable. Since semistable vector bundles on elliptic curves satisfy the weak Raynaud
condition, they therefore satisfy the strong Raynaud condition. �

6.1. The proof of Theorem 1.1, respectively Theorem 1.4. .
We fix g, r and d such that g ≥ 1, d ≥ 2r, and ρ(g, r, d) ≥ 0. We have to construct a BN

curve C ⊆ Pr of degree d and genus g for which TPr|C satisfies the strong Raynaud condition,
respectively is strongly semistable. Using the identity ρ(g, r, d) = ρ(g−r−1, r, d−r), by applying
Lemma 4.3, we immediately reduce to the cases 2r+ 1 ≤ d ≤ 3r− 1 (if d = 2r we reduce to the
strong Raynaud condition, respectively strong semistability, for a rational normal curve).

Since d ≤ 3r − 1, we have

r(d− r + 1− g) = ρ(g, r, d) + (3r − 1− d) + 1− r ≥ 1− r,

which implies g ≤ d − r + 1. The key input in these cases is Proposition 5.5, which implies
that there exists a smooth elliptic curve J ⊆ Pr of degree d − r, meeting a rational normal
curve R at g ≤ d − r + 1 points p1, p2, . . . , pg, for which TPr|J is semistable (and thus satisfies
the strong Raynaud condition, respectively is strongly semistable, by Lemma 6.1). This implies
that H1

(
J, TPr|J(−p1 − · · · − pg)

)
= 0.

Applying Lemma 2.3, it suffices to show that the resulting curve

f : J ∪{p1,p2,...,pg} R ↪→ Pr

satisfies H1(J ∪R, f∗TPr) = 0 and is thus a BN curve. For this, we use the exact sequence

0 −→ TPr|J(−p1 − · · · − pg) −→ f∗TPr −→ TPr|R −→ 0.

Since H1
(
J, TPr|J(−p1 − · · · − pg)

)
= 0, as well as H1(R, TPr|R) ∼= H1

(
P1,OP1(r + 1)

)r
= 0, we

conclude that H1
(
J ∪R, f∗TPr

)
= 0, as desired. �
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7. Butler’s Conjecture

In this section we prove Theorem 1.3 (Butler’s conjecture) asserting that the kernel bundle
MV (or equivalently, the restricted tangent bundle TPr|C) of a BN curve C ⊆ Pr of genus g ≥ 3
is stable, respectively semistable when g = 2. We proceed by induction on g. Our argument will
assume semistability for genus g − 1 in order to derive stability for genus g; we may therefore
use g = 1 as a base case, since semistability has already been established in that case (cf.
Theorem 5.1). We assume g ≥ 2.

Applying Lemma 4.3, we reduce to the cases d ≤ 2r, plus the case (d, g) = (3r, 2). The cases
where d = 2r + 1 reduce to (d, g) = (r + 1, 1), when TPr|C is stable by Theorem 5.1. The case
(d, g) = (3r, 2) would reduce to (d, g) = (2r, 2) via Lemma 4.3, but Theorem 1.3 asserts that
TPr|C is strictly semistable if (d, g) = (2r, 2), and only in this case.

7.1. Corank 1 subbundles of the kernel bundle for d ≤ 2r. We fix a BN curve C
|V |
↪→ Pr

of genus g and degree d and set L := OC(1). First we consider corank 1 subbundles F ⊆ TPr|C .
We establish:

Proposition 7.1. Suppose that d ≤ 2r and g ≥ 2 and r ≥ 2. Then there exists a subbundle
F ⊆ TPr|C of corank 1 with µ(F ) ≥ µ(TPr|C) if and only if g = 2 and d = 2r. Moreover, if g = 2
and d = 2r, then for any such subbundle, f∗TPr/F ∼= ωC ⊗ L.

Proof. Equivalently, we must show that there exists a quotient line bundle TPr|C � B with
µ(B) ≤ µ(f∗TPr) if and only if g = 2 and d = 2r, and that in this case, B ∼= ωC ⊗ L.

The key point is that M∨V
∼= TPr|C(−1) is globally generated. Therefore, if such a quotient

line bundle B existed, then B ⊗ L∨ is a globally generated line bundle of degree at most
µ
(
M∨V

)
= d

r ≤ 2. No such line bundle exists on a general curve C of genus g ≥ 3, and
the only such line bundle on a curve of genus g = 2 is ωC . It remains only to observe that
Hom(f∗TPr , ωC ⊗L) 6= 0, or equivalently by Serre duality, that H1(C,M∨V ) 6= 0. To see this, we
observe h0(C,M∨V ) ≥ dim(V ) = r + 1 > r = χ(C,M∨V ). �

7.2. Main inductive argument: d ≤ 2r and (d, g) 6= (2r, r + 1). Here we give our main
inductive argument, which applies when d ≤ 2r but (d, g) 6= (2r, r + 1). Note that in this case
ρ(g − 1, r, d − 1) ≥ 0. We may start with a BN curve C ⊆ Pr of degree d − 1 and genus g − 1
such that TPr|C is semistable, and let L1 be a 2-secant line meeting C at general points p and
q. We denote by f : C ∪{p,q} L1 → Pr the map inducing the corresponding embedding. Set

L := OC(1) ∈W r
d−1(C) and V := f∗|CH

0(Pr,OPr(1)) ⊆ H0(C,L).

Write ν : C t L1 → C ∪ L1 for the normalization map, and let F ⊂ ν∗f∗TPr ∼= TPr|C ⊕ TPr|L1

be any proper subbundle of uniform rank s, with 1 ≤ s ≤ r− 2. Note that the case s = r− 1 is
covered by Proposition 7.1. Our goal is to show that µadj(F ) < µ(f∗TPr).

Write p1 and q1, respectively p2 and q2, for the points on L1, respectively C, lying above p
and q. Since TPr|L1

∼= OL1(2)⊕OL1(1)r−1, we have by inspection

(20) µ(F|L1
) ≤ 1 +

1

s
,

therefore,

(21) µ(F|L1
)− 1

s
·
[

codimF

(
F|p1
∩ F|p2

)
+ codimF

(
F|q1 ∩ F|q2

) ]
≤ 1 +

1

s
.

We now split into cases as follows.
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7.2.1. If inequality (21) is strict. Since µ
(
F|L1

)
∈ 1

s · Z, we obtain

µ(F|L1
)− 1

s
·
[

codimF

(
F|p1
∩ F|p2

)
+ codimF

(
F|q1 ∩ F|q2

) ]
≤ 1 =⇒ µadj(F ) ≤ µ(F|C) + 1.

By induction, TPr|C is semistable. Thus, as desired

µadj(F ) ≤ µ(F|C) + 1 ≤ µ(TPr|C) + 1 =
(r + 1)(d− 1)

r
+ 1 <

(r + 1)d

r
= µ(f∗TPr).

7.2.2. If (21) is an equality. We first rephrase both this condition, and our desired conclusion,
in terms of C alone. The desired conclusion µadj(F ) < µ(f∗TPr) is equivalent to

(22) µ(F|C) = µadj(F )− 1− 1

s
< µ(f∗TPr)− 1− 1

s
=

(r + 1)d

r
− 1− 1

s
.

To rephrase the condition that (21) is an equality, we first note that since F|C ⊆ TPr|C , for
any point x ∈ C, there is a unique s-plane Λx 3 f(x) with F|x = Tf(x)Λx. Similarly, for any

point y ∈ L1, we may associate an s-plane ΛL1
y . Since F|L1

∼= OL1(2) ⊕ Os−1
L1

, the s-plane ΛL1
y

is constant as y ∈ L1 varies. The condition that (21) is an equality, translates into F|p1
= F|p2

,
respectively F|q1 = F|q2 . We conclude that Λp = Λq. Note that this can be rephrased in terms
of a canonical identification of the fibres over the points p and q(TPr|C

F|C

)∨
⊗ L|p =

(TPr|C
F|C

)∨
⊗ L|q ⊆ V.

Claim: The assumption Λp = Λq implies the inequality (22).

Let u be the maximal integer such that F|C contains the subbundle Tf|C→u·p of TPr|C . Similarly,
let v be the maximal integer such that F|C contains Tf |C→v·q. In the language of kernel bundles,

u and v are chosen maximally such that one has the inclusions
(
TPr |C
F|C

)∨
⊗ L ⊆ MV (−u·p)

respectively
(
TPr |C
F|C

)∨
⊗ L ⊆ MV (−v·q), where both MV (−u·p) and MV (−v·q) are regarded as

subbundles of MV .

Write t = u+ v. Note that by the definition of u and v we have(TPr|C
F|C

)∨
⊗L|p =

(TPr|C
F|C

)∨
⊗L|q ⊆ V

(
−(u+1)·p

)
∩V
(
−(v+1)·q

)
= V

(
−(u+1)·p−(v+1)·q

)
,

in particular, we obtain t = u+ v ≤ s− 1 ≤ r − 3.

Let f : C → Pr−t−2 be the composition of f with the projection from
〈
(u+ 1) · p+ (v+ 1) · q

〉
,

and let K and I be the kernel and the image of the quotient morphism

(23) F|C −→ f
∗
TPr−t−2

(
(u+ 1) · p+ (v + 1) · q

)
.

Let I be the saturation of I. By induction, we may assume f
∗
TPr−t−2 to be semistable, so

(24) µ(I) ≤ µ(f
∗
TPr−t−2) + t+ 2 =

rd− dt− r − d− 1

r − t− 2
.

By construction, K injects into Tf |C→(u+1)·p⊕ Tf |C→(v+1)·q and contains Tf |C→u·p⊕ Tf |C→v·q.
Write K ′ ⊆ Tf |C→(u+1)·p/Tf |C→u·p ⊕ Tf |C→(v+1)·q/Tf |C→v·q

∼= L(p) ⊕ L(q) for the quotient. By
construction, K ′ is either zero or a line bundle not containing either of the factors.
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(i) If K ′ is a line bundle, it does not contain either factor and since L(p) 6∼= L(q), we find
deg(K ′) ≤ d− 1. Therefore, using µ(I) ≤ µ(I) in combination with (24), we obtain

µ(F|C) ≤ t

s
· µ
(
Tf |C→u·p ⊕ Tf |C→v·q

)
+

1

s
· µ(K ′) +

s− t− 1

s
· µ(I)

≤ t

s
· d+

1

s
· (d− 1) +

s− t− 1

s
· rd− dt− r − d− 1

r − t− 2

=
(r + 1)d

r
− 1− 1

s
− r(t+ 1)(r − 1− s) + (d− 2r)(rt− ts− 2s+ r)

sr(r − 2− t)
.

Comparing to (22), all that remains is to verify P1(d, r, s, t) > 0, where

P1(d, r, s, t) = r(t+ 1)(r − 1− s) + (d− 2r)(rt− ts− 2s+ r).

But evidently, P1(2r, r, s, t) > 0, and P1(r, r, s, t) = r(s − 1 − t) ≥ 0. Since r < d ≤ 2r, and P1

is linear in d, we conclude that P1(d, r, s, t) > 0, as desired.

(ii) If K ′ = 0, then the morphism (23), and therefore I → I, drops rank at both points p and
q. Therefore, using inequality (24),

µ(F|C) ≤ t

s
· µ
(
Tf |C→u·p ⊕ Tf |C→v·q

)
+
s− t
s
·
(
µ(I)− 2

s− t

)
≤ t

s
· d+

s− t
s
·
(
rd− dt− r − d− 1

r − t− 2
− 2

s− t

)
=

(r + 1)d

r
− 1− 1

s
− r(t+ 1)(r − 2− s) + (d− 2r)(rt− ts− 2s)

sr(r − 2− t)
.

Comparing to (22), we are done if P0(d, r, s, t) > 0, where

P0(d, r, s, t) = r(t+ 1)(r − 2− s) + (d− 2r)(rt− ts− 2s).

But evidently, P0(2r, r, s, t) ≥ 0 with equality only if s = r − 2. Moreover,

P0(r, r, s, t) = r(r + s− 2− 2t) ≥ r(r + s− 2− 2(s− 1)) = r(r − s) > 0.

Since r < d ≤ 2r, and P0 is linear in d, we conclude that P0(d, r, s, t) ≥ 0, with equality only
when d = 2r and s = r − 2.

It therefore remains only to show that it is impossible, when d = 2r and s = r − 2, to have
equality everywhere in the above argument. Assume to the contrary that this occurs. Then,

deg
(TPr |C
F|C

)
= 4r + 2. Moreover, the natural map L(p) ∼= Tf |C→(u+1)·p/Tf |C→u·p →

TPr |C
F|C

drops

rank at q, so we obtain a map L(p + q) → TPr |C
F|C

. Exchanging the roles of p and q, we obtain

another such map. Combining these, we obtain a map

(25) L(p+ q)⊕2 −→
TPr|C

F|C
.

Away from {p, q}, the kernel of (25) coincides with K ′ by definition. Since K ′ = 0 in case (ii)
by assumption, and the kernel of (25) is a priori torsion-free, (25) is necessarily an injection.
Recalling that deg(L) = d − 1 = 2r − 1, we observe that both sides of (25) are rank 2 vector
bundles of degree 4r + 2, hence (25) is an isomorphism. In particular,

dim Hom
(
TPr|C , L(p+ q)

)
≥ 2⇔ h0

(
C,MV (p+ q)

)
≥ 2.

Consequently, for general points x1, x2, . . . , xg−2 ∈ C, setting η := OC(p+ q + x1 + · · ·+ xg−2)
we have h0

(
C,MV ⊗η) ≥ 2. Since χ

(
C,MV ⊗η) < 0 and the line bundle η ∈ Picg(C) is general,
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this contradicts that MV satisfies the weak Raynaud condition (cf. Proposition 4.4), providing
the desired contradiction.

7.3. The case of canonical curves (d, g) = (2r, r + 1). In this case C ⊆ Pr is a general
canonical curve and the stability of the restricted tangent bundle TPr|C is well known for every
non-hyperelliptic smooth curve, see [PR], [EL]. However, this case will also be treated in Section
8 with our methods — and we obtain not just stability, but strong stability of MωC , something
the methods of [PR], [EL] do not seem to lead to.

7.4. The case (d, g) = (3r, 2). Finally, we consider the case g = 2 and d = 3r. In this case,
we prove the semistability of TPr|C by induction on r. The base case r = 1 being trivial, we
suppose for the inductive step that r ≥ 2.

We degenerate to a reducible curve f : C ∪p1 L1 ∪p2 L2 → Pr, where C ⊆ Pr is a BN curve of
genus 2 and degree 3r − 2 and L1, L2 are 1-secant lines meeting C at p1, p2 respectively. Write
L := OC(1) ∈W r

3r−2(C) and V := f∗|CH
0(Pr,OPr(1)). Choose furthermore points qi ∈ Lir{pi}.

Applying Lemma 2.9, it suffices to show the stability of TPr|C [p1 → q1][p2 → q2]. After further
specializing q1 and q2 to a common general point q ∈ Pr, it suffices to establish the stability
of TPr|C [p1 + p2 → q]. We apply Lemma 3.4 to this family of vector bundles, having the base
B = Pr r {p1, p2} parameterizing the position of q. If q ∈ C, we have the exact sequence

(26) 0 −→ L(q) ∼= Tf |C→q −→ TPr|C [p1 + p2 → q] −→M∨V (−q) ⊗ L(−p1 − p2) −→ 0.

As desired, deg
(
L(q)

)
= 3r− 1 = µ

(
M∨V (−q)⊗L(−p1− p2)

)
, and M∨V (−q)⊗L(−p1− p2) is stable

by induction, which completes the proof unless r = 2. In this case, we must also show that L(q)
� MV (−q) ⊗ L(−p1 − p2), which is immediate and that the extension (26) is nonsplit. To that

end, it suffices to check that Hom
(
L2(−q − p1 − p2), TPr|C [p1 + p2 → q]

)
= 0, which holds since

TPr|C satisfies the weak Raynaud condition and L−2(q + p1 + p2) ∈ Pic−5(C) is general. �

8. Strong stability of kernel bundles in positive characteristic.

We now work over an algebraically closed field k of characteristic p > 0 and finally prove
Theorem 1.5. Fix g, r and d satisfying one of the three cases of Theorem 1.5. We seek to
construct a general Brill–Noether curve C ⊆ Pr of degree d and genus g for which TPr|C is
strongly stable.

Case (1): Applying Lemma 4.3, we reduce to the case d = 2r, g = r + 1 of canonical curves.

We degenerate to a map from a reducible curve f : R′∪ΓR
′′ → Pr, where R′ and R′′ are smooth

rational curves meeting a set Γ = {p1, p2, . . . , pr+2} of r + 2 general points. We consider an
iterate F e of the Frobenius morphism, and write ν : R′tR′′ → R′∪R′′ for the normalization map.
Consider any subbundle of uniform rank F ⊆ (F e)∗ν∗TPr|R′∪R′′ ∼= (F e)∗

(
TPr|R′

)
⊕(F e)∗

(
TPr|R′′

)
.

Our goal is to show that µadj(F) < µ
(
(F e)∗TPr|R′∪R′′

)
.

Since TPr|R′ is perfectly balanced, the corresponding projective bundle PTPr|R′ is trivial. Note

that µ(F|R′) ≤ µ
(
(F e)∗TPr|R′

)
, with equality if and only if F|R′ is perfectly balanced. A similar

statement holds for FR′′ . Thus µ(F) ≤ µ
(
(F e)∗TPr|R′∪R′′

)
, with equality only when both F|R′

and F|R′′ are perfectly balanced. Write p′i, respectively p′′i , for the points lying above pi on

R′, respectively on R′′. Then µadj(F) ≤ µ(F), with equality only when F|p′i = F|p′′i for i =

1, . . . , r + 2. Putting these together, we have µadj(F) ≤ µ
(
(F e)∗TPr|R′∪R′′

)
, with equality only

if F|R′ and F|R′′ are both perfectly balanced and F|p′i = F|p′′i for every i.
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To express this in a more convenient way, the triviality of the bundles PTPr|R′ and PTPr|R′′
give rise to two sets of canonical isomorphisms:

ϕ′ij : PTpi(P
r) ∼= PTpj (P

r) and ϕ′′ij : PTpi(P
r) ∼= PTpj (P

r).

If such a subbundle F exists, then Λi = PF|p′i = PF|p′′i would define a collection of proper

subspaces Λi ⊆ PTpi(Pr) carried into each other by both the ϕ′ij and the ϕ′′ij . Our task is to
show that no such collection of proper subspaces Λi exist, as long the rational normal curves
R′, R′′ and the points p1, . . . , pr+2 are chosen generically.

For a point x ∈ R, we have TR→x ∼= OP1(r + 1); thus ϕ′ij carries PTR′→x|pi to PTR′→x|pj .
Therefore, denoting by −−−→pi, pj ∈ PTpi(Pr) the tangent direction determined by 〈pi, pj〉, we obtain

(27) ϕ′12(−−−→p1, pj) =

{−−−→p2, pj if j = 3, . . . , r + 2,

PTp2R
′ if j = 2.

In particular, we see that −−−→p1, pj are eigenspaces for ϕ′21◦ϕ′′12 for j = 3, . . . , r+2, hence ϕ′21◦ϕ′′12

is diagonalizable. Note that the space of reducible curves f : R′ ∪ R′′ → Pr equipped with an
ordering of the marked points pi is irreducible, so by monodromy considerations, if some two
eigenvalues of ϕ′21 ◦ϕ′′12 are equal, then any two eigenvalues are equal. Therefore, ϕ′21 ◦ϕ′′12 must
either be be the identity or have distinct eigenvalues. However, the former case is ruled out by
applying (27) for j = 2, since Tp2R

′ 6= Tp2R
′′. Thus ϕ′21 ◦ ϕ′′12 is diagonalizable with distinct

eigenvalues.
In particular, for any collection of proper subspaces Λi ⊆ PTpi(Pr) carried into each other by

both the ϕ′ij and the ϕ′′ij , the subspace Λ1 must be a span of eigenvectors of ϕ′21 ◦ ϕ′′12, that is,

Λ1 = P
(
Tp1〈p1, pi1 , . . . , pis〉

)
⊆ PTp1(Pr), for i1, . . . , is 6= 2

Since rk(F) < r, such a representation is unique. Since the ordering of the points was arbitrary,
we must therefore have i1, . . . , is 6= n for every n = 2, . . . , r + 2, which is impossible. Therefore
no such collection of subspaces Λi exists, as desired.

Case (2): We begin by applying Lemma 4.3 to reduce to the cases 2r + 1 ≤ d ≤ 3r. If
d ≤ 3r − 1, then as in Section 6.1, we have g ≤ d − r + 1. But if d = 3r, then we may further
assume g ≤ r ≤ d − r + 1, since otherwise we fall into case (1). Therefore we may suppose
g ≤ d− r + 1 regardless.

By Proposition 5.5, there is a smooth elliptic curve J ⊆ Pr of degree d − r − 1, meeting a
rational normal curve R at g − 1 ≤ d − r points p1, p2, . . . , pg−1, for which TPr|J is semistable

and thus strongly semistable. This implies that H1
(
J, TPr|J(−p1 − · · · − pg−1)

)
= 0.

Let L1 be a 2-secant line to R. Then R ∪ L1 can be smoothed to a general elliptic curve J ′

of degree r + 1. Since H1
(
J, TPr|J(−p1 − · · · − pg−1)

)
= 0, we may lift this deformation to a

deformation of J that continues to meet J ′ at g − 1 points. Applying Proposition 5.5 again,
TPr|J ′ is a general vector bundle on J ′, and therefore strongly semistable. Since both its degree
and the characteristic are prime to its rank, TPr|J ′ must be strongly stable. Therefore, applying
Lemma 2.7, it suffices to show that the resulting stable curve of genus g and degree d

f : J ∪{p1,p2,...,pg−1} J
′ ↪→ Pr

satisfies H1(J ∪ J ′, f∗TPr) = 0 and is thus a BN curve. For this, we use the exact sequence

0 −→ TPr|J(−p1 − · · · − pg−1) −→ f∗TPr −→ TPr|J ′ −→ 0.

Since H1
(
J, TPr|J(−p1 − · · · − pg−1)

)
= H1(J ′, TPr|J ′) = 0, we have H1

(
J ∪ J ′, f∗TPr

)
= 0, as

desired.
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Case (3): We begin by applying Lemma 4.3 to reduce to the cases 3r ≤ d ≤ 4r − 1. As in
Section 6.1, we have g ≤ d− r + 2.

By Proposition 5.5, there is a smooth elliptic curve J ⊆ Pr of degree d−2r, meeting a rational
normal curve R at g − r− 1 ≤ d− 2r+ 1 points p1, p2, . . . , pg−r−1, for which TPr|J is semistable

and thus strongly semistable. This implies that H1
(
J, TPr|J(−p1 − · · · − pg−r−1)

)
= 0.

Let R′ be another rational normal curve, meeting R in exactly r+2 points. As in the previous
case, we may smooth R ∪R′ to a general canonical curve C ′, while deforming J so it continues
to meet J ′ at g − r − 1 points. From Section 7.3, we know TPr|C′ is strongly stable. Therefore,
applying Lemma 2.7, we can complete the proof by arguing, as in the previous case, that the
resulting curve

f : J ∪{p1,p2,...,pg−r−1} C
′ ↪→ Pr

satisfies H1(J ∪ C ′, f∗TPr) = 0 and is thus a BN curve. �

Remark 8.1. For those values of g and d appearing in the statement of Theorem 1.4, its con-
clusions are optimal even in the case of canonical curves. For instance, in genus 3, that is,
for smooth quartics C ⊆ P2, the kernel bundle MωC is always semistable [Tr1, Corollary 3.5].
However, for the Fermat curve C : (x4 + y4 + z4 = 0) putting together results of Han–Monsky
[HM] and [Tr2], for characteristic p ≥ 17, when p ≡ ±1 mod 8, then MωC is strongly semistable
(thus eHK(C) = 3), whereas if p ≡ ±3 mod 8, then F ∗(MωC ) is not semistable, in which case
eHK(C) = 3 + 1

p2 . Similar results exist for the Klein quartic C : (x3y+ y3z+ z3x = 0), see [Tr2].

For a characteristic p ≥ 17, when p ≡ ±1 mod 7, then MωC is strongly semistable, whereas for
p ≡ ±2 mod 7, the second Frobenius pullback (F 2)∗

(
MωC

)
is not semistable. We expect such

phenomena to propagate throughout when studying individual canonical curves of higher genus.
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