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ABSTRACT

ABSTRACT. For a smooth projective curve, the cycles of e-secant k-planes are among
the most studied objects in classical enumerative geometry and there are well-known
formulas due to Castelnuovo, Cayley and MacDonald concerning them. Despite various
attempts, surprisingly little is known about the enumerative validity of such formulas.
The aim of this paper is to clarify this problem in the case of the generic curve C of given
genus. We determine precisely under which conditions the cycle of e-secant k-planes in
non-empty and we compute its dimension. We also precisely determine the dimension
of the variety of linear series on C carrying e-secant k-planes.

For a smooth projective curve C of genus g, we denote by Ce the e-th symmetric
product of C and by Gr

d(C) the variety of linear series of type grd on C, that is,

Gr
d(C) := {(L, V ) : L ∈ Picd(C), V ∈ G(r + 1, H0(L))}.

The main result of Brill-Noether theory states that if [C] ∈ Mg is a general curve then
Gr

d(C) is a smooth variety of dimension equal to ρ(g, r, d) := g − (r + 1)(g − d + r).
For a linear series l = (L, V ) ∈ Gr

d(C) and an effective divisor D ∈ Ce, using the
natural inclusion H0(C,L ⊗ OC(−D)) ⊂ H0(C,L), we can define a new linear series
l(−D) :=

(
L⊗OC(−D), V ∩H0(L⊗OC(−D))

)
. We fix integers 0 ≤ f < e and introduce

the determinantal cycle

V e−f
e (l) := {D ∈ Ce : dim l(−D) ≥ r − e+ f}

of effective divisors of degree e which impose at most e− f independent conditions on

l. If l is very ample and we view C
l
→֒ Pr as an embedded curve, then V e−f

e (l) param-

eterizes e-secant (e − f − 1)-planes to C. Each irreducible component of V e−f
e (l) has

dimension at least e− f(r + 1− e+ f). The cycles V e−f
e (l) have been extensively stud-

ied in classical enumerative geometry. The virtual class [V e−f
e (l)]virt ∈ Af(r+1−e+f)(Ce)

has been computed by MacDonald and its expression is tremendously complicated and
thus of limited practical use (see [ACGH], Chapter VIII). One case when we have a

manageable formula is for e = 2r − 2 and f = r − 1, when [V r−1
2r−2(l)]

virt computes the
(virtual) number of (r − 2)-planes in Pr which are (2r − 2)-secant to C (cf. [Ca]).
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Surprisingly little is known about the validity of these classical enumerative for-
mulas (see [H] and [LB1] for partial results in the case of curves in P3). The aim of this
paper is to clarify this problem for a general curve [C] ∈ Mg. For every linear series

l ∈ Gr
d(C) we determine precisely under which conditions the cycle V e−f

e (l) is non-
empty and has the expected dimension. Then having fixed [C] ∈ Mg, we determine the
dimension of the family of linear series l ∈ Gr

d(C) with an e-secant (e − f − 1)-plane.
For our first result, we use degeneration techniques together with a few facts about the
ample cone of the moduli space M0,g to prove the following:

Theorem 0.1. Let [C] ∈ Mg be a general curve and we fix non-negative integers 0 ≤ f < e, r
and d, such that r − e+ f ≥ 0. Then we have that

dim{l ∈ Gr
d(C) : V e−f

e (l) 6= ∅} ≤ ρ(g, r, d)− f(r + 1− e+ f) + e.

In particular, if ρ(g, r, d)− f(r+1− e+ f) + e < 0, then V e−f
e (l) = ∅, for every l ∈ Gr

d(C).

More precisely, in Section 2 we prove the following dimensionality estimate

dim
{
(D, l) ∈ Ce ×Gr

d(C) : D ∈ V e−f
e (l)

}
≤ ρ(g, r, d)− f(r + 1− e+ f) + e,

which obviously implies Theorem 0.1. This result generalizes the Brill-Noether theo-

rem. Indeed, when l = KC , then V e−f
e (KC) = Cf

e := {D ∈ Ce : h0(OC(D)) ≥ f + 1}.

Since the fibres of the Abel-Jacobi map Cf
e → W f

e (C) are at least f -dimensional, clearly

Gf
e (C) 6= ∅ implies that dim Cf

e ≥ f . Our result reads Gf
e (C) = ∅ when ρ(g, f, e) < 0,

which is the non-existence part of the classical Brill-Noether theorem (cf. [EH1]). More
generally, we have the following result in the case ρ(g, r, d) = 0:

Corollary 0.2. Suppose ρ(g, r, d) = 0 and e < f(r + 1 − e + f). Then for a general curve

[C] ∈ Mg we have that V e−f
e (l) = ∅ for every l ∈ Gr

d(C), that is, no linear series of type grd on
C has any e-secant (e− f − 1)-planes.

An immediate consequence of Theorem 0.1 is a proof of the following conjecture
of Coppens and Martens (cf. [CM2] Theorem 3.3.1, for a proof in the case f = 1):

Corollary 0.3. Let [C] ∈ Mg be a general curve and we fix integers 0 ≤ f < e, d and r
such that r − e + f ≥ 0. Let l be a general linear series of type grd belonging to an irreducible

component of Gr
d(C). Assuming that V e−f

e (l) is not empty, then e − f(r + 1 − e + f) ≥ 0.

Moreover V e−f
e (l) is equidimensional and dim V e−f

e (l) = e− f(r + 1− e+ f).

We note that when f = 1, Theorem 0.1 concerns the higher order very ampleness
of linear series on a general curve. We recall that a linear series l ∈ Gr

d(C) is said to be
(e − 1)-very ample if dim l(−p1 − · · · − pe) = r − e, for any choice of (not necessarily
distinct) e points p1, . . . , pe ∈ C. Thus 0-very ampleness is equivalent to generation by
global sections and 1-very ampleness reduces to the classical notion of very ampleness.

Corollary 0.4. Let [C] ∈ Mg be a general curve and e, r, d be non-negative integers such that
ρ(g, r, d) + 2e− 2− r < 0. Then every linear series l ∈ Gr

d(C) is (e− 1)-very ample.

Theorem 0.1 does not address the issue of existence of linear series with e-secant
(e−f−1)-planes. We prove the following existence result for secant planes correspond-
ing to linear series grd on an arbitrary smooth curve of genus g.
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Theorem 0.5. Let [C] ∈ Mg be a general smooth curve and we fix integers 0 ≤ f < e ≤ g, d
and r, such that f(r + 1− e+ f) ≥ e, d ≥ 2e− f − 1, g − d+ r ≥ 0,

ρ(g, r, d)− f(r + 1− e+ f) + e ≥ 0 and ρ(g, r − e+ f, d− e) ≥ 0.

Assume moreover that we are in one of the following situations:

(i) 2f ≤ e− 1, (ii) e = 2r − 2 and f = r − 1, (iii) e < 2(r + 1− e+ f), or

(iv) ρ(g, r, d) ≥ f(r + 1− e+ f)− (g − d+ r).

Then there exists a linear series l ∈ Gr
d(C) such that V e−f

e (l) 6= ∅. Moreover, one has that the
following dimensionality statement:

dim{(D, l) ∈ Ce ×Gr
d(C) : D ∈ V e−f

e (l)} = ρ(g, r, d)− f(r + 1− e+ f) + e.

The inequalities ρ(g, r − e+ f, d− e) ≥ 0 and ρ(g, r, d) + e− f(r + 1− e+ f) ≥ 0

are obvious necessary conditions for the existence of l ∈ Gr
d(C) with V e−f

e (l) 6= ∅ on a

general curve [C] ∈ Mg. To give an example, an elliptic quartic curve C ⊂ P3 has no
3-secant lines even though ρ(g, r, d)+ e− f(r+1− e+ f) > 0 (note that e = 3 and f = 1
in this case). Theorem 0.5 is stated in the range f(r + 1 − e + f) ≥ e, corresponding

to the case when linear series l ∈ Gr
d(C) with V e−f

e (l) 6= ∅ are expected to be special
in the Brill-Noether cycle Gr

d(C). It is clear though that the methods of this paper can
be applied to the case e ≥ f(r + 1 − e + f) as well. In that range however, when
one expects existence of e-secant (e− f −1)-planes for every l ∈ Gr

d(C), there are nearly
optimal existence results obtained by using positivity for Chern classes of certain vector
bundles in the style of [FL]: For every curve [C] ∈ Mg and l ∈ Gr

d(C), assuming that

d ≥ 2e − 1 and e − f(r + 1 − e + f) ≥ r − e + f , one knows that V e−f
e (l) 6= ∅ (cf.

[CM1], Theorem 1.2). For l ∈ Gr
d(C) such that g − d+ r ≤ 1 (e.g. when l is non-special),

if we keep the assumption e − f(r + 1 − e + f) ≥ 0, it is known that V e−f
e (l) 6= ∅ if

and only if ρ(g, r − e+ f, d − e) ≥ 0 (cf. [ACGH], pg. 356). This appears to be the only
case when MacDonald’s formula displays some positivity features that can be used to

derive existence results on V e−f
e (l). In the case l = KC , one recovers of course the

existence theorem from classical Brill-Noether theory. We finally mention that Theorem
0.5 holds independent of the assumptions (i) − (iii), whenever a certain transversality
condition (18) concerning a general curve [Y, p] ∈ Me,1 is satisfied (see Section 3 for
details). Theorem 0.5 is then proved by verifying this condition (18) in each of the cases
(i)− (iii).

We now specialize to the case when e = f(r + 1 − e + f) which is covered by
Theorem 0.5. One can write r = (u − 1)(f + 1) and e = uf for some u ≥ 1, and we
obtain the following result concerning the classical problem of existence of uf -secant
secant (uf − f − 1)-planes to curves in Pr:

Corollary 0.6. Let C be a smooth curve of genus g. We fix integers d, u, f ≥ 2 and assume that
the inequalities g ≥ uf, d ≥ 2uf−f−1, ρ(g, uf+u−f−1, d) ≥ 0 and ρ(g, u−1, d−uf) ≥ 0

hold. Then there exists an embedding C ⊂ P
(u−1)(f+1) with deg(C) = d, such that C has a

uf -secant (uf − f − 1)-plane. If moreover, [C] ∈ Mg is general in moduli, then the embedded

curve C
l
→֒ P

(u−1)(f+1) corresponding to a general linear series l ∈ G
(u−1)(f+1)
d (C) has only

a finite number of uf -secant (uf − f − 1)-planes.
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If [C] ∈ Mg is suitably general we can prove that the Cayley-Castelnuovo num-
bers predicting the number of (2r − 2)-secant (r − 2)-planes of a curve in C ⊂ Pr have
a precise enumerative meaning:

Theorem 0.7. Let [C] ∈ Mg be a general curve. We fix integers d, r ≥ 3 such that d ≥ 3r−2,

ρ(g, r, d) ≥ ∅ and ρ(g, 1, d− 2r+2) ≥ 0. Then if C
l
→֒ P

r is an embedding corresponding to a
general linear series l ∈ Gr

d(C), then C has only finitely many (2r − 2)-secant (r − 2)-planes.
Their number (counted with multiplicities) is

C(d, g, r) =
r−1∑

i=0

(−1)i

r − i

(
d− r − i+ 1

r − 1− i

)(
d− r − i

r − 1− i

)(
g

i

)
.

A modern proof of the formula for C(d, g, r) is due to MacDonald and appears
in [ACGH] Chapter VIII. The original formula is due to Castelnuovo (cf. [Ca]). When
r = 3, we recover Cayley’s formula for the number of 4-secant lines of a smooth space
curve C ⊂ P3 of degree d (cf. [C]):

C(d, g, 3) =
1

12
(d− 2)(d− 3)2(d− 4)−

g

2
(d2 − 7d+ 13− g).

To make a historical remark, there have been various attempts to rigorously jus-
tify the so-called functional method that Cayley (1863), Castelnuovo (1889) and Severi
(1900) used to derive their enumerative formulas and to determine their range of appli-
cability (see [LB1], [V]). For instance, Cayley’s formula is shown to hold for an arbitrary
smooth curve in P3, provided that C(d, g, 3) is defined as the degree of a certain 0-cycle
Sec4(C) in G(1, 3) (cf. [LB2]). The drawback of this approach is that it becomes very
difficult to determine when this newly defined invariant is really enumerative. For
instance Le Barz only shows that this happens for very special curves in P3 (rational
curves and generic complete intersections) and one of the aims of this paper is to estab-
lish the validity of such formulas for curves that are general with respect to moduli.

The second topic we study concerns ramification points of powers of linear series
on curves. This question appeared first in a particular case in [F1]. We recall that for
a pointed curve [C, p] ∈ Mg,1 and a linear series l = (L, V ) ∈ Gr

d(C), the vanishing
sequence of l at p

al(p) : al0(p) < . . . < alr(p) ≤ d

is obtained by ordering the set {ordp(σ)}σ∈V . The weight of p with respect to l is defined
as wl(p) :=

∑r
i=0(a

l
i(p) − i). One says that p is a ramification point of l if wl(p) ≥ 1

and we denote by R(l) the finite set of ramification points of l. If [C, p] ∈ Mg,1 and
α : 0 ≤ α0 ≤ . . . ≤ αr ≤ d− r is a Schubert index of type (r, d), the cycle

Gr
d(C, p, α) := {l ∈ Gr

d(C) : ali(p) ≥ αi + i for i = 0 . . . r}

can be realized as a generalized determinantal variety inside Gr
d(C) having virtual di-

mension ρ(g, r, d, α) := ρ(g, r, d) −
∑r

j=0 αj . For a general pointed curve [C, p] ∈ Mg,1,
it is known that the virtual dimension equals the actual dimension, that is,

dim Gr
d(C, p, α) = ρ(g, r, d, α) (cf. [EH2] Theorem 1.1).

We address the following question: suppose l = (L, V ) ∈ Gr
d(C) is a linear series with a

prescribed ramification sequence α at a fixed point p ∈ C. Is then p a ramification point
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of any of the powers L⊗n for n ≥ 2? If so, can we describe the sequence aL
⊗n

(p)? One
certainly expects that under suitable genericity assumptions on C and L, the points in⋃

n≥1R(L⊗n) should be uniformly distributed on C. For example, it is known that for

every C and L ∈ Picd(C), the set
⋃

n≥1R(L⊗n) is dense in C with respect to the classical

topology (cf. [N]). Silverman and Voloch showed that for any L ∈ Picd(C) there exist
finitely many points p ∈ C such that the set {n ≥ 1 : p ∈ R(L⊗n)} is infinite (cf. [SV]).

We prove that on a generic pointed curve [C, p], a linear series (L, V ) and its mul-
tiples L⊗n share no ramification points, that is R(l) and R(L⊗n) are as transverse as they

can be expected to be and moreover, the vanishing sequence aL
⊗n

(p) is close to being
minimal:

Theorem 0.8. We fix a general pointed curve [C, p] ∈ Mg,1, integers r, d ≥ 1, n ≥ 3 and a
Schubert index α : 0 ≤ α0 ≤ . . . ≤ αr ≤ d− r. We also set m := [(n+ 1)/2]. Then for every
linear series l = (L, V ) ∈ Gr

d(C, p, α) and every positive integer

a < nd− ρ(g, r, d, α)− g −
[ g
m

]
,

we have that h0(C,L⊗n(−ap)) = h0(C,L⊗n)−a = nd+1−g−a. In other words, aL
⊗n

i (p) = i
for 0 ≤ i ≤ a− 1.

In the case n = 2, when we compare R(l) and R(L⊗2) our results are sharper:

Theorem 0.9. We fix a general pointed curve [C, p] ∈ Mg,1, integers r, d ≥ 1 and a Schubert
index α : α0 ≤ . . . ≤ αr ≤ d − r. Then for every (L, V ) ∈ Gr

d(C, p, α) and every positive
integer

a < max{2d+ 2− 2g − ρ(g, r, d, α) +
[g − 1

2

]
, 2d+ 2− 2g − 2ρ(g, r, d, α) + 2

[g
3

]
},

we have that h0(C,L⊗2(−ap)) = h0(C,L⊗2)− a = 2d+ 1− g − a.

Comparing the bounds on a given in Theorems 0.8 and 0.9 with the obvious nec-
essary condition a ≤ nd− g + 1 which comes from the Riemann-Roch theorem, we see
that our results are essentially optimal for relatively small values of ρ(g, r, d, α) when
the linear series (L, V ) ∈ Gr

d(C, p, α) have a strong geometric characterization. On the

other hand, if for instance ρ(g, r, d, α) = g, then L ∈ Picd(C) and p ∈ C are arbitrary and
one cannot expect to prove a uniform result about the vanishing of H1(C,L⊗n(−ap)).

Theorems 0.8 and 0.9 concern line bundles L with prescribed ramification at a

given point p ∈ C. Such bundles are of course very special in Picd(C). If instead, we try

to describe
⋃

n≥1R(L⊗n) for a general line bundle L ∈ Picd(C), the answer turns out to
be particularly simple. We give a short proof of the following result:

Theorem 0.10. Let C be a smooth curve of genus g and L ∈ Picd(C) a very general line
bundle.
(1) All the ramification points of the powers L⊗n are ordinary, that is, wL⊗n

(p) ≤ 1 for all
p ∈ C and n ≥ 1.
(2) R(L⊗a) ∩ R(L⊗b) = ∅ for a 6= b, that is, a point p ∈ C can be a ramification point for at
most a single power of L.
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After this paper has been written I have learnt that Theorem 0.10 has also been
proved independently by M. Coppens in [Co]. I would like to thank the referee for a
very careful reading of this paper and for pointing out that the initial proof of Theorem
0.1 was not complete.

1. RAMIFICATION POINTS OF MULTIPLES OF LINEAR SERIES

In this section we use the technique of limit linear series to prove Theorems 0.8
and 0.9. We start by fixing a Schubert index α : 0 ≤ α0 ≤ . . . ≤ αr ≤ d − r and two
integers a ≥ 0, n ≥ 2. We also set m := [(n+ 1)/2].

We assume that for every [C, p] ∈ Mg,1 there exists a linear series l = (L, V ) ∈

Gr
d(C, p, α) such that H0(KC ⊗ L⊗(−n) ⊗OC(ap)) 6= 0. By a degeneration argument we

are going to show that this implies the inequalities

(1) a ≥ nd− g − ρ(g, r, d, α)−
[ g
m

]
, when n ≥ 3,

(2) a ≥ 2d+ 2− 2g − ρ(g, r, d, α) +
[g − 1

2

]
,

and

(3) a ≥ 2d+ 2− 2g − 2ρ(g, r, d, α) + 2
[g
3

]
, when n = 2.

This will prove both Theorems 0.8 and 0.9.

We degenerate [C, p] to a stable curve [X0 := E0∪p1E1∪p2 . . .∪pg−1
Eg−1, p0], where

Ei is a general elliptic curve, pi, pi+1 ∈ Ei are points such that pi+1− pi ∈ Pic0(Ei) is not
a torsion class and moreover Ei ∩ Ei+1 = {pi+1} for 0 ≤ i ≤ g − 2. Thus X0 is a string
of g elliptic curves and the marked point p0 specializes to a general point lying on the
first component E0. We also consider a 1-dimensional family π : X → B together with a
section σ : B → X , such that B = Spec(R) with R being a discrete valuation ring having
uniformizing parameter t. We assume that X is a smooth surface and that there exists
an isomorphism between X0 and π−1(0). Under this isomorphism we also assume that
σ(0) = p0 ∈ X0. Here 0 ∈ B is the point corresponding to the maximal ideal of R
and we denote by η and η the generic and geometric generic point of B respectively.
By assumption, there exists a linear series lη = (Lη, Vη) ∈ Gr

d(Xη, σ(η), α), such that

H0(Xη, ωXη
⊗ L

⊗(−n)
Xη

⊗OXη
(aσ(η))) 6= 0. By possibly blowing up X at the nodes of X0

and thus replacing the central fibre by a curve X obtained from X0 by inserting chains
of smooth rational curves at the points p1, . . . , pg−1, we may assume that lη comes from
a linear series lη = (Lη, Vη) ∈ Gr

d(Xη, σ(η), α) on the generic fibre Xη.

We denote by lEi
= (LEi

, VEi
) ∈ Gr

d(Ei) the Ei-aspect of the limit linear series on

X induced by lη: Precisely, if L is a line bundle on X extending Lη, then LEi
∈ Picd(Ei)

is the restriction to Ei of the unique twist LEi
of L along components of π−1(0) such

that degZ(Li|Z) = 0 for any irreducible component Z 6= Ei of π−1(0) (see also [EH1],

p. 348). Since we gave ourselves the freedom of blowing-up X at the nodes of π−1(0),

we can also assume that {lEi
}g−1
i=0 constitutes a limit grd on X0 which is obtained from a

refined limit grd on X by retaining only the aspects of the elliptic components of X . The
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compatibility relations between the vanishing orders of the lEi
’s imply the following

inequality between Brill-Noether numbers:

(4) ρ(g, r, d, α) ≥ ρ(lE0
, p0, p1)+ρ(lE1

, p1, p2)+ · · ·+ρ(lEg−2
, pg−2, pg−1)+ρ(lEg−1

, pg−1),

where ρ(lEi
, pi, pi+1) := ρ(1, r, d) − wlEi (pi) − wlEi (pi+1). By assumption, there exists

a non-zero section ρη ∈ H0
(
Xη, ωXη ⊗ L

⊗(−n)
η ⊗ OXη(aσ(η))

)
. This implies that if we

denote by L̃i the unique line bundle on the surface X such that (1) L̃i|Xη
= Lη, and (2)

degZ(ωX ⊗L̃i
⊗(−n)

⊗OX(ap0)) = 0, for every component Z of X such that Z 6= Ei, then

H0(Ei, ωX ⊗ L̃
⊗(−n)
i ⊗OX(ap0)⊗OEi

) 6= 0. We set

Mi := ωπ ⊗ L̃
⊗(−n)
i ⊗OX (a σ(B)) ∈ Pic(X ).

Then Mi|Ei
= OEi

(
(a+ 2i) · pi + (2g − 2− 2i) · pi+1 ⊗ L

⊗(−n)
Ei

)
for all 0 ≤ i ≤ g − 1. For

each such i we denote by ni the smallest integer such that ρ̃i := tniρη ∈ π∗(Mi) and we
set

ρi := ρ̃i|Ei
∈ H0(Ei,Mi|Ei

).

Thus 0 6= ρi ∈ H0(Ei,OEi
((a + 2i) · pi + (2g − 2 − 2i) · pi+1 ⊗ L

⊗(−n)
Ei

)) and in a way
similar to [EH1] Proposition 2.2, we can prove that

(5) ordpi(ρi) + ordpi(ρi−1) ≥ 2g − 2− nd+ a = deg(Mi|Ei
).

One also has the inequalities ordpi(ρi) + ordpi+1
(ρi) ≤ 2g − 2 − nd + a (and similar

inequalities when passing through the rational components of X), from which it follows
that one can write down a non-decreasing sequence of vanishing orders

(6) 0 ≤ ordp0(ρ0) ≤ ordp1(ρ1) ≤ . . . ≤ ordpi(ρi) ≤ . . . ≤ ordpg−1
(ρg−1).

Since ρg−1 is a non-zero section of a line bundle of degree 2g − 2 − nd + a on Eg−1, we
must have that ordpg−1

(ρg−1) ≤ 2g − 2− nd+ a. This inequality will eventually lead to
the bound on the constant a.

Let us suppose now that we have fixed one of the elliptic components of X , say Ei,
such that ρ(lEi

, pi, pi+1) = 0. By counting dimensions, we see that for every 0 ≤ j ≤ r

there exists a section uj ∈ VEi
such that div(uj) ≥ a

lEi

j (pi) · pi + a
lEi

r−j(pi+1) · pi+1. In

particular, we have that a
lEi

j (pi) + a
lEi

r−j(pi+1) ≤ d. Since pi+1 − pi ∈ Pic0(Ei) is not a

torsion class, it follows that the equality a
lEi

j (pi) + a
lEi

r−j(pi+1) = d can hold for at most

one value 0 ≤ j ≤ r. Because ρ(lEi
, pi, pi+1) = 0, this implies that

a
lEi

j (pi) + a
lEi

r−j(pi+1) ≥ d− 1 for all 0 ≤ j ≤ r,

and there exists precisely one such index j such that a
lEi

j (pi) + a
lEi

r−j(pi+1) = d. In this

case we get that div(uj) = a
lEi

j (pi) · pi + a
lEi

r−j(pi+1) · pi+1, and for degree reasons we

must have that LEi
= OEi

(a
lEi

j (pi) · pi + a
lEi

r−j(pi+1) · pi+1) ∈ Picd(Ei).

To summarize, if ρ(lEi
, pi, pi+1) = 0, then the vanishing sequence alEi+1 (pi+1) of

the Ei+1-aspect of the limit grd on X , is obtained from the vanishing sequence alEi (pi)
by raising all entries by 1, except one single entry which remains unchanged. Thus,

a
lEi

j (pi) = a
lEi+1

j (pi+1) for one index 0 ≤ j ≤ r and a
lEi+1

k (pi+1) = a
lEi

k (pi) + 1 for k 6= j.
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We now study what happens to the non-decreasing sequence (6) as we pass through
a component Ei with ρ(lEi

, pi, pi+1) = 0. Assume that ordpi(ρi) = ordpi+1
(ρi+1) := b.

This implies that ordpi+1
(ρi) = 2g − 2− nd+ a− b and

L⊗n
Ei

= OEi
((a+ 2i− b) · pi + (nd− a+ b− 2i) · pi+1) ∈ Picnd(Ei).

Because ρ(lEi
, pi, pi+1) = 0, as we have seen, LEi

can be represented by an effective
divisor which is supported only at pi and pi+1. Precisely, we can write that LEi

=

OEi

(
a
lEi

j (pi) · pi + a
lEi

r−j(pi+1) · pi+1

)
for a unique 0 ≤ j ≤ r. Since LEi

cannot admit two
different representations by effective divisors supported only at pi and pi+1, we must
have that

(7) LEi
= OEi

(a+ 2i− b

n
· pi +

nd− a+ b− 2i

n
· pi+1

)
.

In particular, we have that (a+ 2i− b)/n ∈ Z and a
lEi

j (pi) = (a+ 2i− b)/n.

We consider a connected subcurve Y ⊂ X containing m + 1 elliptic components
Ei and we measure the increase in (6) as we pass through the components of Y .

Lemma 1.1. We fix m := [(n + 1)/2] and integers i and b such that bm ≤ i ≤ g − 1. We
denote by R(i) := #{0 ≤ l ≤ i−1 : ρ(lEl

, pl, pl+1) ≥ 1}. Then the following inequality holds:

ordpi(ρi) +R(i) ≥ b(m− 1).

Proof. We proceed by induction on b. For b = 0 there is nothing to prove. We set b ≥ 1,
i := (b − 1)m and we assume that ordpi(ρi) + R(i) ≥ (b − 1)(m − 1). We are going to
prove that the following inequality holds:

(8) ordpi+m
(ρi+m)− ordpi(ρi) +R(i+m)−R(i) ≥ m− 1.

Assume this is not the case. Then there exist integers 0 ≤ l < j ≤ m− 1 such that
the following relations hold: (i) ρ(lEi+l

, pi+l, pi+l+1) = ρ(lEi+j
, pi+j , pi+j+1) = 0 and

(ii) ordpi+l
(ρi+l) = ordpi+l+1

(ρi+l+1) := b, ordpi+j
(ρi+j) = ordpi+j+1

(ρi+j+1) := c.

Using (7) this implies that

LEi+l
= OEi+l

(a+ 2i+ 2l − b

n
· pi+l +

nd− a+ b− 2i− 2l

n
· pi+l+1

)
, and

LEi+j
= OEi+j

(a+ 2i+ 2j − c

n
· pi+j +

nd− a+ c− 2i− 2j

n
· pi+j+1

)
.

In particular, (2j − 2l− c+ b)/n ∈ Z, hence we can write c = b− kn+ 2(j − l) for some
k ∈ Z. If k ≥ 1, since c ≥ b, we obtain that m− 1 ≥ j− l ≥ n/2, which is a contradiction.
Therefore we must have that k ≤ 0, and this holds for every pair (j, l) satisfying (i) and
(ii). We choose now the pair 0 ≤ l < j ≤ m − 1 satisfying (i) and (ii) and for which
moreover, the difference j − l is maximal.

For each integer 0 ≤ e ≤ l − 1 we have that either ρ(lEi+e
, pi+e, pi+e+1) ≥ 1 or

ordpi+e+1
(ρi+e+1) > ordpi+e

(ρi+e). This fact leads to the inequality

(9) ordpi+l
(ρi+l)− ordpi(ρi) +R(i+ l)−R(i) ≥ l.

Similarly, by studying the subcurve of Y containing Ei+j+1, . . . , Ei+m−1, we find that

(10) ordpi+m
(ρi+m)− ordpi+j+1

(ρi+j+1) +R(i+m)−R(i+ j + 1) ≥ m− j − 1.
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Finally, we look at the subcurve of X containing Ei+l, . . . , Ei+j and we can write

(11) ordpi+j
(ρi+j)−ordpi+l

(ρi+l)+R(i+ j+1)−R(i+ l) ≥ c− b ≥ 2(j− l) ≥ j− l+1.

By adding (9), (10) and (11) together we obtain (8) which proves the Lemma. �

When n = 2 we have a slightly better estimate than in the general case:

Lemma 1.2. (n = 2) (1) Let i be an integer such that 2b ≤ i ≤ g−1. Then ordpi(ρi)+R(i) ≥ b.
(2) We fix 0 ≤ i ≤ g − 4 and let Y be a connected subcurve of X containing precisely three
elliptic curves Ei, Ei+1 and Ei+2. If R(i+ 3) = R(i), that is,

ρ(lEi
, pi, pi+1) = ρ(lEi+1

, pi+1, pi+2) = ρ(lEi+2
, pi+2, pi+3) = 0,

then we have the inequality ordpi+3
(ρi+3) ≥ ordpi(ρi) + 2.

Proof. We only prove (2), the remaining statement being analogous to Lemma 1.1. We
may assume that ordpi(ρi) = ordpi+1

(ρi+1) := b. Hence (a + 2i − b)/2 ∈ Z and there
exists an index 0 ≤ j ≤ r such that

a
lEi

j (pi) = a
lEi+1

j (pi+1) =
a+ 2i− b

2
, while a

lEi+1

k (pi+1) = a
lEi

k (pi) + 1 for k 6= j.

If ordpi+2
(ρi+2) = ordpi+1

(ρi+1) = b, then (7) implies that (a+2i+2− b)/2 is an entry in

the vanishing sequence alEi+1 (pi+1). But this is impossible, because (a + 2i − b)/2 was

an entry in the sequence alEi (pi), hence we must have that ordpi+2
(ρi+2) ≥ b+ 1. Next,

if ordpi+3
(ρi+3) = b + 1, this implies that ordpi+3

(ρi+3) = ordpi+2
(ρi+2) = b + 1, hence

again
(
a + 2(i + 2) − (b + 1)

)
/2 ∈ Z, which is not possible for parity reasons. Thus we

must have that ordpi+3
(ρi+3) ≥ b+ 2. �

Proof of Theorem 0.8. We complete the proof of our result in the case n ≥ 3. We write
g = bm + c with 0 ≤ c ≤ m − 1 and we set i := bm. From Lemma 1.1 we obtain
that ordpi(ρi) + R(i) ≥ b(m − 1). Using the reasoning of Lemma 1.1 for the connected
subcurve of X which contains Ei, Ei+1, . . . , Ei+c−1 = Eg−1, we get that

(12) ordpg−1
(ρg−1)− ordpi(ρi) +R(g − 1)−R(i) ≥ c− 2.

Using (12), together with the inequality R(g − 1) ≤ ρ(g, r, d, α), we can write that

deg(KC⊗L⊗(−n)⊗OC(ap)) = 2g−2−nd+a ≥ ordpg−1
(ρg−1) ≥ g−

[ g
m

]
−ρ(g, r, d, α)−2,

which finishes the proof of Theorem 0.8. �

Proof of Theorem 0.9. From Lemma 1.2 part (1), we obtain that

ordpg−1
(ρg−1) +R(g − 1) ≥ [(g − 1)/2].

Since R(g − 1) ≤ ρ(g, r, d, α), this leads to the inequality a ≥ 2d+ 2− 2g + [(g − 1)/2]−
ρ(g, r, d, α). To prove (3) we divide X into e := [g/3] + 1 connected subcurves Y1, . . . , Ye
such that Y1, . . . , Ye−1 each contain three elliptic components, #(Yi ∩ Yi+1) = 1 for all

1 ≤ i ≤ e − 2 and Ye := (∪e−1
i=1Yi)

c. The curves Yi fall into two categories: those for
which there exists an elliptic component El ⊂ Yi such that ρ(lEl

, pl, pl+1) ≥ 1 (and there
are at most ρ(g, r, d, α) such Yi’s), and those for which ρ(lEl

, pl, pl+1) = 0 for each elliptic
component El ⊂ Yi. Lemma 1.2 part (2) gives that ordpg−1

(ρg−1) ≥ 2([g/3]−ρ(g, r, d, α)).
This proves (2) and finishes the proof of Theorem 0.9. �



10 G. FARKAS

Remark 1.3. It is natural to ask how close to being optimal are the bounds we obtained
above. For ρ(g, r, d, α) relatively small, when any L ∈ Gr

d(C, p, α) has a strong geometric
characterization, the inequalities (1), (2) and (3) are in fact optimal. To see an example,
we set g = 3, r = 3, d = 6 and ρ(g, r, d, α) = 0. Thus we look at g36’s on a general
[C, p] ∈ M3,1 having ramification at p equal to (0 ≤ α0 ≤ α1 ≤ α2 ≤ α3 ≤ 3), where∑3

i=0 αi = 3. Theorem 0.9 gives us that H0(KC⊗L⊗(−2)⊗OC(a·p)) = 0 for every integer
a ≤ 9. We show that this is optimal by noting that when a = 10 and α = (0, 0, 1, 2), we
have that

H0(KC ⊗ L⊗(−2) ⊗OC(10p)) 6= 0, for every L ∈ G3
6(C, p, α).

Indeed, any such linear series is of the form L = KC ⊗ A∨ ⊗ OC(5p) ∈ W 3
6 (C), where

A ∈ W 1
3 (C) is such that h0(A(−2p)) ≥ 1. A non-hyperelliptic curve of genus 3 has two

such g13’s. Precisely, if z, t ∈ C are the two points the tangent line at p to C
|KC |
→֒ P2 meets

C again, then A = OC(2p + z) or A = OC(2p + t). Say, we choose A = OC(2p + z).

By direct calculation we obtain that L⊗2 ⊗OC(−10p) = K⊗2
C ⊗A⊗(−2) = OC(2t), hence

h0(KC ⊗ L⊗(−2) ⊗OC(10p)) = 1.

2. VARIETIES OF SECANT PLANES TO THE GENERAL CURVE

We fix a smooth curve [C] ∈ Mg and two integers 0 ≤ f < e. In this section we

study the varieties V e−f
e (l) of e-secant (e−f−1)-planes corresponding to a linear series

l ∈ Gr
d(C). We first define the correspondence

ΣC := {(D, l) ∈ Ce ×Gr
d(C) : dim l(−D) ≥ r − e+ f},

and denote by π1 : ΣC → Ce and π2 : ΣC → Gr
d(C) the two projections. We assume that

ΣC 6= ∅ for the general curve [C] ∈ Mg. Under this assumption, we show that

(13) dim(ΣC) ≤ ρ(g, r, d)− f(r + 1− e+ f) + e.

(We recall that the dimension of a scheme is the maximum of the dimensions of its
irreducible components). Since ΣC is a determinantal subvariety of Ce × Gr

d(C), it fol-
lows that for a general [C] ∈ Mg, if non-empty, the scheme ΣC is equidimensional and
dim(ΣC) = ρ(g, r, d)− f(r + 1− e+ f) + e. Note that this result does not establish the
non-emptiness of ΣC which is an issue that we will deal with in Section 3. In any event,
(13) implies the dimensional estimate

dim{l ∈ Gr
d(C) : V e−f

e (l) 6= ∅} ≤ ρ(g, r, d)− f(r + 1− e+ f) + e.

This will prove Theorem 0.1 as well as Corollaries 0.3 and 0.4.

We start by setting some notation. We denote by j : M0,g → Mg the “flag”

map obtaining by attaching to each stable curve [R, x1, . . . , xg] ∈ M0,g fixed elliptic

tails E1, . . . , Eg at the points x1, . . . , xg respectively. Thus j([R, x1, . . . , xg]) := [R̃] =

[R ∪x1
E1 ∪ . . . ∪xg Eg] and for such a curve, we denote by pR : R̃ → R the projection

onto R, that is, pR(Ei) = {xi} for 1 ≤ i ≤ g. We denote by Cg,n = Mg,n+1 the universal

curve and by π : Cg,n → Mg,n the morphism forgetting the (n+1)-st marked point. We
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write πe : C
e
g,n → Mg,n for the e-fold fibre product of Cg,n over Mg,n and we introduce

a map χ : M0,g ×Mg
C
e
g → C

e
0,g which collapses the elliptic tails. Thus χ is defined by

χ
(
[R, x1, . . . , xg], (y1, . . . , ye)

)
:=

(
[R, x1, . . . , xg], pR(y1), . . . , pR(ye)

)
,

for points y1, . . . , ye ∈ R̃. Let W ⊂ C
e
g be the closure of the locus

{[C, y1, . . . , ye] ∈ Ce
g : ∃l ∈ Gr

d(C) with dim l(−y1 − · · · − ye) ≥ r − e+ f}.

By assumption πe(W ) = Mg and we define the locus U := χ
(
W ∩ (M0,g ×Mg

C
e
g)
)
.

Then πe(U) = M0,g and we denote by e − m the minimal fibre dimension of the map

πe|U : U → M0,g. Thus 0 ≤ m ≤ e and dim(U ∩ π−1
e [R, x1, . . . , xg]) ≥ e −m, for every

[R, x1, . . . , xg], with equality for a general point [R, x1, . . . , xg] ∈ M0,g.

We recall that for every choice of 4 marked points {i, j, k, l} ⊂ {1, . . . , g}, one has
a fibration πijkl : M0,g → M0,4 obtained by forgetting the marked points with labels in
the set {i, j, k, l}c and stabilizing the resulting rational curve. If we single out the first
3 marked points x1, x2, x3 as being 0, 1 and ∞, in this way we obtain a birational map

π123 = (π1234, . . . , π123i, . . . , π123g) : M0,g → M
g−3
0,4 = (P1)g−3 defined by

π123([R, x1, . . . , xg]) :=
(
[R, x1, x2, x3, x4], [R, x1, x2, x3, x5], . . . , [R, x1, x2, x3, xg]

)
.

The map π123 expresses M0,g as a blow-up of (P1)g−3 such that all exceptional divisors

of π123 are boundary divisors of M0,g (cf. [K]). In a similar manner, one has a birational

map f : C
e
0,g → M

g−3+e
0,4 = (P1)g−3+e defined by f

(
[R, x1, . . . , xg], y1, . . . , ye

)
:=

:=
(
[R, x1, x2, x3, x4], . . . , [R, x1, x2, x3, xg], [R, x1, x2, x3, y1], . . . , [R, x1, x2, x3, ye]

)
.

For simplicity, sometimes we write f([R, x1, . . . , xg], y1, . . . , ye) = (x4, . . . , xg, y1, . . . , ye).
The maps f and π123 fit in a commutative diagram, where p1 : (P1)g−3+e → (P1)g−3 is
the projection on the first g − 3 factors:

C
e
0,g

f
−→ (P1)g−3+e = M

g−3+e
0,4yπe

yp1

M0,g
π123−→ (P1)g−3 = M

g−3
0,4

Finally, for 2 ≤ k ≤ e we define the diagonal loci ∆k ⊂ (P1)g−3+e as consisting of those
points (x4, . . . , xg, y1, . . . , ye) for which at least k of the points y1, . . . , ye coincide. We
need the following result concerning existence of sublinear limit linear series of a fixed
limit grd, having prescribed vanishing sequence at a given point:

Lemma 2.1. Let X be a curve of compact type, Y ⊂ X an irreducible component and let p ∈ Y
be a smooth point of X . Assume that l is a (refined) limit grd on X and let (a0 < a1 < . . . < ar)

be the vanishing sequence al(p). We fix a subsequence (aj0 < aj1 < . . . < ajb) of al(p), where

0 ≤ b ≤ r. Then there exists a limit gbd on X , say l′ ⊂ l, such that al
′

(p) = (aj0 , . . . , ajb).

Proof. Let us denote by l := {lZ = (LZ , VZ)}Z⊂X the original limit grd on X . For each
integer 0 ≤ k ≤ b there exists a section σjk ∈ VY such that ordp(σjk) = ajk . We consider
the subspace WY :=< σj0 , . . . , σjb >⊂ VY . Since #{ordp(σ)}σ∈WY

= b + 1, we obtain
that dim(WY ) = b + 1 and we set l′Y := (LY ,WY ) ∈ Gb

d(Y ). Suppose now that Z is
a component of X meeting Y in a point q. We denote by (cj0 < cj1 < . . . < cjb) the
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vanishing sequence al
′
Y (q). Let (ej0 < ej1 < . . . < ejb) be the complementary sequence,

that is, ejk = d−cjb−k
for each 0 ≤ k ≤ b. Then we can choose a section τk ∈ VZ such that

ordq(τk) = ejk . We define WZ :=< τ0, . . . , τb >⊂ VZ . Because all the entries (ejk)
b
k=0

are distinct, we get that dim(WZ) = b + 1 and then set l′Z := (LZ ,WZ) ∈ Gb
d(Z). We

continue inductively, and for each irreducible component Z ′ ⊂ X we obtain an aspect
l′Z′ = (LZ′ ,WZ′) ∈ Gb

d(Z
′). The collection {l′Z}Z⊂X is the desired limit gbd on X . �

Next we explain how the assumption that for every [C] ∈ Mg there exists a linear

series l ∈ Gr
d(C) with V e−f

e (l) 6= ∅, can be used to construct a flag curve R̃ ∈ j(M0,g)

such that all the e points coming from the limit of an effective divisor D ∈ V e−f
e (l)

specialize to a connected subcurve of R̃ having arithmetic genus at most min{g, e}.

Proposition 2.2. Let U ⊂ C
e
0,g be an irreducible component of the closure of the locus of limits

of e-secant divisors with respect to linear series grd on flag curves from Mg. Assuming that
dim(U) = g − 3 + e−m with 0 ≤ m ≤ e, there exists a point ([R, x1, . . . , xg], ỹ1, . . . , ỹe) ∈

W ∩ (M0,g ×Mg
C
e
g) corresponding to a genus g flag curve

R̃ = R ∪x1
E1 ∪ . . . ∪xg Eg and points ỹ1, . . . , ỹe ∈ R̃,

such that either (i) ỹ1 = · · · = ỹe ∈ R − {x1, . . . , xg}, or else, (ii) all the points ỹ1, . . . , ỹe lie

on a connected subcurve Y ⊂ R̃ satisfying pa(Y ) ≤ min{m, g} and #(Y ∩ (R̃− Y )) ≤ 1.

Proof. We start by noting that if m = 0 then U = C
e
0,g and possibility (i) is satisfied. Thus

we may assume that m ≥ 1. First, we claim that dim f(U) = dim U = g − 3 + e − m.
Indeed, since πe(U) = M0,g it follows that p1(f(U)) = (P1)g−3 and we choose a general
point t = (x4, . . . , xg) ∈ (P1 − {0, 1,∞})g−3, such that xi 6= xj for i 6= j. Then π−1

e (t) =

(P1)e and f|π−1
e (t) is an isomorphism onto its image, hence f|U is birational onto its image

as well. Obviously, when m ≥ g we can take Y = R̃. From now on we shall assume
that 1 ≤ m ≤ g − 1.

Let us assume first that f(U) ∩∆e 6= ∅. Then dim
(
f(U) ∩∆e

)
≥ g −m − 2. For

dimension reasons, there must exist a point z = (x4, . . . , xg, y1, . . . , y1) ∈ f(U) ∩ ∆e

such that either (i) at least g − m − 3 of the points xj with 4 ≤ j ≤ g are mutually
distinct and belong to the set P1 − {0, 1,∞, y1} and y1 ∈ P1 − {0, 1,∞}, or (ii) at least
g − m − 2 of the xj ’s (4 ≤ j ≤ g) are mutually distinct and belong to the set P1 −
{0, 1,∞, y1} and then y1 ∈ P1 may, or may not be equal to one of the points 0, 1 or
∞. Suppose we are in situation (i), the remaining case being similar. We fix a point
([R, x1, . . . , xg], y1, . . . , ye) ∈ f−1(z), hence y1, . . . , ye ∈ R. If Z ⊂ R denotes the minimal
connected subcurve of R containing all the points y1, . . . , ye, then x1, x2, x3 ∈ R − Z,
unless y1 = · · · = ye. (In the latter case either y1 ∈ R − {x1, . . . , xg} which corresponds

to the situation when all the points ỹi = yi specialize to the same smooth point of R̃ lying
on the rational spine, or else, if y1 = xj for some 4 ≤ j ≤ g, then we can find a connected

subcurve of R̃ of genus 1 containing ỹ1, . . . , ỹe, where pR(ỹi) = yi for 1 ≤ i ≤ e). Since
at least g−m = 3+(g−m−3) of the points x1, . . . , xg lie on Zc, it follows that ỹ1, . . . , ỹe
lie on a connected subcurve of R̃ of genus ≤ m, which completes the proof in this case.
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We are left with the possibility f(U) ∩ ∆e = ∅ and we denote by k ≤ e − 1
the largest integer for which f(U) ∩ ∆k 6= ∅ and by L an irreducible component of
f(U) ∩ ∆k. Since by definition f(U) ∩ ∆k+1 = ∅, it follows that there exists a point
t0 = (p1, . . . , pe) ∈ (P1)e such that L ⊂ (P1)g−3 × {t0}. In particular, the projection map
p1|L : L → p1(L) is 1 : 1 and then dim p1(L) = dim(L) ≥ g −m + (e − k − 2) ≥ g −m,
unless k = e − 1, when dim p1(L) ≥ g − m − 1. In the first case it follows that there
exists a point (x4, . . . , xg, p1, . . . , pe) ∈ f(U) ∩∆k such that at least g −m of the points
x4, . . . , xg are equal to a fixed point r ∈ P1 − {p1, . . . , pe}. In the second case, that is,
when k = e − 1, since #{pi}

e
i=1 = 2, one of the points 0, 1 or ∞, say 0, does not appear

among the pi’s. Then we can find a point (x4, . . . , xg, p1, . . . , pe) ∈ f(U) ∩∆e−1 with at
least g −m of the xj ’s equal to 0.

The conclusion in both cases is that there exists a point
(
[R, x1, . . . , xg], y1, . . . , ye

)
∈

W ∩ (M0,g ×Mg
C
e
g) corresponding to the flag curve R̃ = R∪x1

E1∪ . . .∪xg Eg, such that

the points y1, . . . , ye lie on a connected subcurve Y ⊂ R̃ where #(Y ∩ (R̃− Y )) ≤ 1 and
pa(Y ) ≤ m ≤ e. �

Proof of Theorem 0.1. We choose R̃ = R∪x1
E1∪ . . .∪xg Eg as above and denote by Y ⊂ R̃

a connected subcurve onto which the points y1, . . . , ye specialize. We know that either
(a) pa(Y ) = m ≤ min{e, g}, or (b) y1 = · · · = ye ∈ R− {x1, . . . , xg}.

We first deal with case (a) and dispose of (b) at the end using [EH2]. If m < g we

set Z := R̃− Y and {p} := Y ∩Z and we denote by Y ′ and Z ′ the components of Y and
Z respectively, containing the point p. When m = g, then necessarily e ≥ g and Y :=

R̃, Z = ∅ and p ∈ R̃ is a general (smooth) point. By assumption, [R̃, y1, . . . , ye] ∈ W ,
hence there exists a proper flat morphism φ : X → B satisfying the following properties:

• X is a smooth surface, B is a smooth affine curve, 0 ∈ B is a point such that φ−1(0)

is a curve stably equivalent to R̃ and Xt = φ−1(t) is a smooth projective curve of genus
g for t 6= 0. Moreover, there are e sections σi : B → X of φ satisfying the condition
σi(0) = yi ∈ φ−1(0)reg for all 1 ≤ i ≤ e.

• If Xη := X − φ−1(0), then there exists a line bundle Lη ∈ Pic(Xη) of relative degree d
and a subvector bundle Vη ⊂ φ∗(Lη) having rank r+1, such that for t 6= 0 we have that

dim Vt ∩H0
(
Xt, Lt(−

e∑

j=1

σj(t))
)
= r + 1− e+ f.

After possibly making a finite base change and resolving the resulting singularities, the

pair (Lη, Vη) induces a (refined) limit grd on R̃, which we denote by l. The vector bundle

Vη ∩ φ∗

(
Lη ⊗ OXη(−

∑e
j=1 σj(B − {0}))

)
induces a limit linear series g

r−e+f
d−e on φ−1(0)

which we denote by m. For a component A of φ−1(0), if (LA, VA) ∈ Gr
d(A) denotes the

A-aspect of l, then there exists a unique effective divisor DA ∈ Ae supported only at the

points from (A ∩
⋃e

j=1 σj(B))
⋃
(A ∩ φ−1(0)−A) such that the A-aspect of m is of the

form

mA =
(
MA := LA ⊗OA(−DA), WA ⊂ VA ∩H0(MA)

)
∈ Gr−e+f

d−e (A).
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The collection mY := {mA}A⊂Y forms a limit gr−e+f
d−e on Y . We denote by (a0 < . . . < ar)

the vanishing sequence of lY ′ at p, thus {ai}
r
i=0 = {ordp(σ)}σ∈VY ′ and we denote by

(b0 < . . . < br) the vanishing sequence alZ′ (p). By ordering the set {ordp(σ)}σ∈WY ′

we obtain a subsequence (ai0 < . . . < air−e+f
) of alY ′ (p). When we order the entries

in {ai}
r
i=0 − {aik}

r−e+f
k=0 we obtain a new sequence (aj0 < aj1 < . . . < aje−f−1

). Using

Lemma 2.1, we find that there exists a limit linear series l′Y of type g
e−f−1
d on Y with the

property that al
′
Y (p) = (aj0 , aj1 , . . . , aje−f−1

).

Let us assume first that we are in the situation m < g, hence Z 6= ∅. The point p ∈
Y lies on a rational component which implies the following inequality corresponding
to Y (see also [EH2], Theorem 1.1):

(14) V1 := ρ(m, e− f − 1, d)−

e−f−1∑

k=0

ajk +

(
e− f

2

)
≥ 0.

Applying the same principle for the limit linear series mY on Y , we find that the ad-
justed Brill-Noether number with respect to the point p is non-negative:

(15) V2 := ρ(m, r − e+ f, d− e)−

r−e+f∑

k=0

aik +

(
r + 1− e+ f

2

)
≥ 0.

Next we turn our attention to Z and use the fact that the point p ∈ Z does not lie on an
elliptic component, hence [Z, p] satisfies the ”strong” pointed Brill-Noether theorem:

(16) V3 := ρ(g −m, r, d)−
r∑

k=0

bk +

(
r + 1

2

)
≥ 0.

If we add (14), (15) and (16) together and use that
∑r

k=0 bk+
∑r−e+f

k=0 aik +
∑e−f−1

k=0 ajk =
(r + 1)d, we obtain the inequality

ρ(g, r, d)− f(r + 1− e+ f) + e ≥ e−m ≥ 0.

The case m = g, when Y = R̃, is similar but simpler. We add together (14) and
(15) (now there is no (16)) and we write the following inequalities:

ρ(g, r, d) + e− f(r+1− e+ f) =
(
ρ(g, r− e+ f, d− e)−

r−e+f∑

k=0

aik +

(
r + 1− e+ f

2

))
+

+
(
ρ(g, e−f−1, d)−

e−f−1∑

k=0

ajk+

(
e− f

2

))
+

r−e+f∑

k=0

aik+

e−f−1∑

k=0

ajk−

(
r + 1

2

)
+e−g ≥ e−g ≥ 0,

since
∑r−e+f

k=0 aik +
∑e−f−1

k=0 ajk ≥
(
r+1
2

)
. Thus we obtain the same numerical conclusion

as in the case m < g.

Assume now that we are in the case (b) when y1 = · · · = ye ∈ R − {x1, . . . , xg}.

Then reasoning as above, we find a limit grd on R̃ having vanishing sequence at y1 at
least (0, 1, . . . , e− f − 1, e, e+ 1, . . . , r+ f − 1, r+ f). Using once more [EH2], Theorem
1.1, we obtain the inequality

ρ(g, r, d) + e− f(r + 1− e+ f) ≥ ρ(g, r, d)− f(r + 1− e+ f) ≥ 0.
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Using the semicontinuity of the dimension of the fibres, it follows that for a gen-
eral curve [C] ∈ Mg, if π1 : ΣC → Ce is the first projection, then the minimal fibre di-
mension of π1 cannot exceed the dimension of the space of pairs of limit linear series l ⊃

m consisting of a grd ⊃ g
r−e+f
d−e on the flag curve φ−1(0) such that m = l(−De), where De is

a degree e effective divisor on φ−1(0) with the property that supp(De) ⊂ Y ∩ φ−1(0)reg.

Since the map (l ⊃ m,mY , l
′
Y ) 7→ (mY , l

′
Y , lZ) ∈ G̃r−e+f

d−e (Y ) × G̃e−f−1
d (Y ) × G̃r

d(Z) is
injective, it follows that for a general divisor Dgen ∈ π1(ΣC) we have the estimate

dim π−1
1 (Dgen) ≤ V1 + V2 + V3 = ρ(g, r, d)− f(r + 1− e+ f) +m,

hence dim(ΣC) = dim π−1
1 (Dgen)+ e−m ≤ ρ(g, r, d)−f(r+1− e+f)+ e. This finishes

the proof of Theorem 0.1. �

3. EXISTENCE OF LINEAR SERIES WITH SECANT PLANES

We turn our attention to showing existence of linear series which possess e-secant
(e−f−1)-planes. The strategy we pursue is to construct limit linear series grd on a curve

of compact type [Y ∪p Z] ∈ Mg, where (Y, p) and (Z, p) are suitably general smooth
pointed curves of genus e and g − e respectively. These limit grd’s will carry a sublinear

series gr−e+f
d−e = grd(−De), where De is a degree e effective divisor on Y . Like in the proof

of Theorem 0.1, such grd’s are determined by their Z-aspect and by a pair of linear series

(gr−e+f
d−e , ge−f−1

d ) on Y . We determine the dimension of the space of such pairs, which

will enable us to show that the original pair (gr−e+f
d−e , ge−f−1

d ) on Y ∪pZ can be smoothed
to every smooth curve of genus g. This will finish the proof of Theorem 0.5.

We start by choosing two general pointed curves [Y, p] ∈ Me,1 and [Z, p] ∈ Mg−e,1

such that both (Y, p) and (Z, p) satisfy the Brill-Noether theorem with prescribed rami-
fication (cf. [EH2], Theorem 1.1 and Proposition 1.2): If α : 0 ≤ α0 ≤ . . . ≤ αr ≤ d − r
is a Schubert index of type (r, d), then (Y, p) possesses a grd with ramification sequence
≥ α at the point p, if and only if

(17)
r∑

i=0

max{αi + g(Y )− d+ r, 0} ≤ g(Y ).

In case this inequality is satisfied, then dim Gr
d(Y, p, α) = ρ(g, r, d, α) (One obviously

has a similar statement for [Z, p]).

We denote by π : X → (T, 0) the versal deformation space of the stable curve
π−1(0) = X0 := Y ∪p Z. Let ∆ ⊂ T be the boundary divisor corresponding to singular
curves, and we write π−1(∆) = ∆e + ∆g−e, where ∆e (resp. ∆g−e) is the divisor cor-
responding to the marked point lying on the component of genus e (resp. g − e). We
consider the e-fold fibre product U := (X −∆g−e)×T · · · ×T (X −∆g−e), the projection
φ : U → T and the induced curve p2 : X ×T U → U . Then we introduce the stack of
limit linear series of type grd over U

σ : G̃r
d(X ×T U/U) → U , where G̃r

d(p2) = G̃r
d(X ×T U/U) = G̃r

d(π)×T U ,

and we write τ := φ ◦ σ : G̃r
d(p2) → T (see [EH1] Theorem 3.4, for details on the

construction of G̃r
d(π)). The fibre τ−1(t) corresponding to a point t ∈ ∆ (in which case
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one can write π−1(t) = Yt ∪ Zt, with g(Yt) = e, g(Zt) = g − e), parameterizes limit grd’s
on Yt ∪ Zt together with e-tuples (x1, . . . , xe) ∈ (Yt − Yt ∩ Zt)

e. Let us denote by LY a

degree d Poincaré bundle on π2 : X ×T G̃r
d(p2) → G̃r

d(p2) characterized by the property
that its restriction to curves of type Yt ∪ Zt are line bundles of bidegree (d, 0). We also
write VY ⊂ (π2)∗(LY ) for the rank r + 1 tautological bundle whose fibres correspond
to the global sections of the genus e-aspect of each limit grd. Finally, for 1 ≤ j ≤ e, we

denote by Dj ⊂ X ×T G̃r
d(p2) the diagonal divisor corresponding to pulling back the

diagonal under the map X ×T G̃
r
d(p2) → X ×T X which projects onto the j-th factor, that

is, (x, l, x1, . . . , xe) 7→ (x, xj) where x, x1, . . . , xe ∈ π−1(t). There exists an evaluation

vector bundle morphism over G̃r
d(p2)

χ : VY → (π2)∗(LY ⊗O∑e
j=1

Dj
)

and we denote by H the rank e− f degeneracy locus of the map χ. Set-theoretically, H

consists of those points (t, l, x1, . . . , xe) with φ(x1, . . . , xe) = t ∈ T and l ∈ G̃r
d(π

−1(t)),
satisfying the condition that dim l(−x1 − · · · − xe) ≥ r + 1 − e + f . The dimension of
every irreducible component of H is at least ρ(g, r, d) + dim T + e− f(r + 1− e+ f).

In order to show that τ : H → T is dominant, it suffices to prove that τ−1(0) has at
least one irreducible component of dimension ρ(g, r, d)+e−f(r+1−e+f). This in fact
will prove the stronger statement that ΣC 6= ∅ for every [C] ∈ Mg. Indeed, even though

τ : G̃r
d(p2) → T is not a proper morphism, the restriction ττ−1(T−∆) : τ

−1(T−∆) → T−∆
is proper, hence there exists an irreducible component of H which maps onto T − ∆.
Since π : X → (T, 0) can be chosen in such a way that there exists a point t ∈ T with
π−1(t) ∼= C, this proves our contention. We set the integer

α0 :=
[ρ(e, r − e+ f, d− e)

r + 1− e+ f

]
=

[ e

r + 1− e+ f

]
+ d− r − f − e,

thus we can write ρ(e, r− e+ f, d− e) = α0 · (r+1− e+ f)+ c, where 0 ≤ c ≤ r− e+ f .
Then there exists a unique Schubert index of type (r − e+ f, d− e),

α : 0 ≤ α0 ≤ α1 ≤ . . . ≤ αr−e+f ≤ d− r − f,

with αr−e+f −α0 ≤ 1, such that
∑r−e+f

j=0 αj = ρ(e, r− e+f, d− e). We have that αj = α0

for 0 ≤ j ≤ r−e+f−c and αj = α0+1 for r−e+f−c+1 ≤ j ≤ r−e+f . Note that since
α0+ g(Y )− (d− e)+ r− e+f = [e/(r+1− e+f)] ≥ 0, condition (17) is verified and the

variety Gr−e+f
d−e (Y, p, α) is non-empty of dimension ρ(e, r−e+f, d−e)−

∑r−e+f
j=0 αj = 0.

Next we set β0 := [e/(e−f)] and write e = β0 ·(e−f)+ c̃, where 0 ≤ c̃ ≤ e−f−1.
Then there exists a unique Schubert index of type (e− f − 1, 2e− f − 1)

β : 0 ≤ β0 ≤ β1 ≤ . . . ≤ βe−f−1 ≤ e,

such that βe−f+1−β0 ≤ 1 and
∑e−f−1

j=0 βj = e. Precisely, βj = β0 for 0 ≤ j ≤ e−f− c̃−1

and βj = β0 + 1 for e − f − c̃ ≤ j ≤ e − f − 1. By (17), the variety Ge−f−1
2e−f−1(Y, p, β) is

non-empty and of dimension e−
∑e−f−1

j=0 βj = 0.

First we are going to prove Theorem 0.5 under the assumption that there exist

two linear series (A,WA) ∈ Gr−e+f
d−e (Y, p, α) and (L,WL) ∈ Ge−f−1

2e−f−1(Y, p, β) satisfying
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the condition

(18) H0
(
Y, L⊗A∨ ⊗OY ((d+ f − 2e) · p)

)
= 0.

Note that deg
(
L⊗A∨ ⊗OY ((d+ f − 2e) · p

)
= g(Y )− 1, and (18) states that a suitable

translate of at least one of the finitely many line bundles of type L⊗A∨ lies outside the
theta divisor of Y .

Remark 3.1. Condition (18) is a subtle statement concerning [Y, p]. It is not true that (18)

holds for every choice of (A,WA) ∈ Gr−e+f
d−e (Y, p, α) and (L,WL) ∈ Ge−f−1

2e−f−1(Y, p, β). For

instance, in the case e = 2r − 2 and f = r − 1, corresponding to (2r − 2)-secant (r − 2)-
planes which every curve Y ⊂ Pr is expected to possess in finite number, we obtain

that A = B ⊗ OY ((d − 3r + 2) · p), where B ∈ W 1
r (Y ) and L ⊗ OY (−2p) ∈ W r−2

3r−6(Y ).

By Riemann-Roch, we can write that L = KY ⊗OY (2 · p)⊗ B̃∨, where B̃ ∈ W 1
r (Y ) and

then (18) translates into the vanishing statement H0(Y,B ⊗ B̃ ⊗ OY (−3 · p)) = 0. The

curve Y has (2r−2)!
r!(r−1)! pencils g1r . If we choose B 6= B̃ ∈ W 1

r (Y ), then h0(Y,B⊗B̃) ≥ 4 and

(18) has no chance of being satisfied. If B = B̃, then the Gieseker-Petri theorem implies
that the map H0(Y,B) ⊗ H0(Y,KY ⊗ B∨) → H0(Y,KY ) is an isomorphism, whence
h0(Y,B⊗2) = 3. Choosing p ∈ Y outside the set of ramification points of the finitely
many line bundles B⊗2 where B ∈ W 1

r (Y ), we obtain that H0(B⊗2 ⊗ OY (−3 · p)) = 0.
Therefore in this case, condition (18) is equivalent to the Gieseker-Petri theorem.

We shall study when (18) is actually satisfied. We note that by the Riemann-Roch
theorem, (18) also implies that h0

(
Y, L⊗A∨ ⊗OY ((d+ f − 2e+ 1) · p)

)
= 1. Assuming

that (A,WA) ∈ Gr−e+f
d−e (Y, p, α) and (L,WL) ∈ Ge−f−1

2e−f−1(Y, p, β) satisfy (18), it follows

from Riemann-Roch that there exists a unique effective divisor of degree e

D ∈ |L⊗OY ((d− 2e+ f + 1) · p)⊗A∨|,

and moreover p /∈ supp(D). We introduce the space of sections

VY := WA +WL ⊂ H0
(
Y, L⊗OY ((d− 2e+ f + 1) · p)

)
, where we view

WA ⊂ H0
(
L⊗OY ((d−2e+f+1)·p−D)

)
and WL ⊂ H0(L) ⊂ H0

(
L⊗OY ((d−2e+f+1)·p)

)
.

We claim that dim(VY ) = r+1, hence lY = (L⊗OY ((d−2e+f+1)·p), VY ) ∈ Gr
d(Y ).

Moreover, lY has the following vanishing sequence at p:
(19)
alY (p) = (α0, . . . , αr−e+f+r−e+f, β0+d−2e+f+1, β1+d−2e+f+2, . . . , βe−f−1+d−e).

Indeed, our original assumption f(r + 1 − e + f) ≥ e is equivalent with the inequality
αr−e+f + r − e+ f < d− 2e+ f + 1, which shows that the sequence (19) contains r + 1
distinct entries. Since p /∈ supp(D), we obtain that the vanishing orders of the sections
from WA ⊂ H0(L⊗OY ((d− 2e+ f + 1) · p)) are precisely

α0, α1 + 1, . . . , αr−e+f + r − e+ f,

while those of the sections from WL ⊂ H0(L⊗OY ((d− 2e+ f + 1) · p)) are precisely

β0+d−2e+f+1, β1+d−2e+f+2, . . . , βe−f−1+e−f−1+d−2e+f+1 = βe−f−1+d−e.

We have found r + 1 sections from VY having distinct vanishing orders at the point p,
hence dim(VY ) = r + 1. Moreover, alY (p) is equal to the sequence (19).
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Next we choose a linear series lZ ∈ Gr
d(Z, p) such that {lY , lZ} is a refined limit grd.

Then the ramification sequence of lZ at the point p must be equal to

αlZ (p) = γ := (e−βe−f−1, e−βe−f−2, . . . , e−β0, d−r−αr−e+f , . . . , d−r−α1, d−r−α0).

We claim that condition (17) is satisfied for Z and that the variety Gr
d(Z, p, γ) is non-

empty and of dimension ρ(g − e, r, d, γ) = ρ(g, r, d) + e − f(r + 1 − e + f). For this to
happen, one has to check that the following inequality holds:

(20)
r∑

j=0

max{αlZ
j (p) + g − e− d+ r, 0} ≤ g − e.

There are two things to notice: First, that by direct computation we have that

αlZ
e−f (p) + g − e− d+ r = g − e− αr−e+f = (g − d+ r) +

[
f −

e

r + 1− e+ f

]
≥ 0,

hence αlZ
j (p)+g−e−d+r ≥ 0 for all e−f ≤ j ≤ r. Second, that since 0 ≤ βe−f−1−β0 ≤ 1,

in order to estimate the sum of the first e− f terms in the sum (20), there are two cases

to consider. Either αlZ
0 (p) + g − e− d+ r ≥ 0, in which case we find that

r∑

j=0

max{αlZ
j (p) + g − e− d+ r, 0} =

r∑

j=0

(αlZ
j (p) + g − e− d+ r) =

= g − e− ρ(g − e, r, d, γ) = g − e−
(
ρ(g, r, d) + e− f(r + 1− e+ f)

)
≤ g − e.

Else, if αlZ
0 (p)+g−e−d+r ≤ −1, then also αlZ

j (p)+g−e−d+r ≤ 0 for 0 ≤ j ≤ e−f−1

and the left hand side of (20) equals

r∑

j=e−f

(αlZ
j (p)+g−e−d+r) = (r+1−e+f)(g−e)−

r−e+f∑

i=0

αi = g−e−ρ(g, r−e+f, d−e) ≤ g−e.

In both cases the inequality (17) is satisfied which proves our claim.

Since the chosen (A,WA) ∈ Gr−e+f
d−e (Y, p, α) and (L,WL) ∈ Ge−f−1

2e−f−1(Y, p, β) are

isolated points in their corresponding varieties of linear series on Y , it follows that limit
grd’s on X0 constructed in the way we just described, fill-up a component of τ−1(0) ⊂ H.

Indeed, suppose (nY , nZ , D̃) ∈ H is a point lying in the same irreducible com-

ponent of τ−1(0) as (lY , lZ , D). Here, nY ∈ Gr
d(Y ), nZ ∈ Gr

d(Z, p, γ) and D̃ ∈ Ye is a

divisor such that p /∈ supp(D̃). Then anY (p) = alY (p) which is given by (19), therefore

nY (−(d − 2e + f + 1) · p) ∈ G2e−f−1
e−f−1 (Y, p, β) which is a reduced 0-dimensional variety.

This implies that nY (−(d − 2e + f + 1) · p) = (L,WL). Next, we consider the linear

series nY (−D̃) ∈ Gr−e+f
d−e (Y ). Since p /∈ supp(D̃), the vanishing sequence of this linear

series is a subsequence of length r+1−e+f of alY (p). Necessarily, αnY (−D̃)(p) ≥ α and

because ρ(e, r− e+ f, d− e, α) = 0, we must have that nY (−D̃) ∈ Gr−e+f
d−e (Y, p, α) which

is a discrete set, hence nY (−D̃) = (A,WA) and D̃ = D ∈ Ye. This shows that nY = lY
and every point of this component of τ−1(0) is determined by the nZ . The dimension of
this component is thus equal to

ρ(e, r−e+f, d−e, α)+ρ(g−e, r, d, γ)+ρ(e, e−f−1, 2e−f−1, β) = ρ(g, r, d)−f(r+1−e+f)+e,
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which finishes the proof of Theorem 0.5, subject to proving assumption (18).

Remark 3.2. A slight variation of the argument described above, enables us to prove
Theorem 0.5 even in some cases when we cannot establish (18). We start with a linear

series (A,WA) ∈ Gr−e+f
d−e (Y, p, α) and assume that the following condition holds:

(21) H0
(
Y,OY ((d− 1) · p)⊗A∨

)
= 0.

There exists a unique divisor D ∈ |OY (d·p)⊗A∨)| and (21) guarantees that p /∈ supp(D).
We define the space of sections

VY := H0(OY (2e− f − 1) · p) +WA ⊂ H0(OY (d · p)), where WA ⊂ H0(OY (d · p−D)).

Reasoning along the same lines as in the previous case, since p /∈ supp(D) we find that
dim(VY ) = r + 1, hence lY = (OY (d · p), VY ) ∈ Gr

d(Y ). Moreover, we can check that

alY (p) = (α0, α1+1, . . . , αr−e+f + r−e+f, d−2e+f +1, d−2e+f +2, . . . , d−e−1, d).

Like in the previous situation, we choose a linear series lZ ∈ Gr
d(Z, p) such that {lY , lZ}

is a refined limit grd. Thus we must have the following ramification sequence at p:

αlZ (p) = γ := (0, e, . . . , e, d− r − αr−e+f , . . . , d− r − α1, d− r − α0).

Condition (17) which guarantees the existence of lZ is satisfied if and only if

ρ(g, r, d) ≥ f(r + 1− e+ f)− (g − d+ r), in the case g − d+ r < e

and

ρ(g, r, d) ≥ f(r + 1− e+ f)− e, in the case g − d+ r ≥ e.

Since we are always working under the hypothesis ρ(g, r, d)− f(r + 1− e+ f) + e ≥ 0,
we see that the previous condition holds whenever g − d + r ≥ e, and that, in general,
lZ ∈ Gr

d(Z, p, γ) exists if and only if

(22) ρ(g, r, d) ≥ f(r + 1− e+ f)− (g − d+ r).

Assuming (22), the variety Gr
d(Z, p, γ) is non-empty of dimension ρ(g − e, d, r, γ) =

ρ(g, r, d)−f(r+1− e+f)+ e. The same argument as before shows that limit grd’s on X0

constructed in such a way, fill-up a component of τ−1(0) ⊂ H of expected dimension
ρ(g, r, d)− f(r + 1− e+ f) + e, which finishes the proof.

Now we complete the proof of Theorem 0.5 by discussing under which assump-
tions we can establish (18):

Proof of Theorem 0.5. We retain the notation introduced above and show that there exist

two linear series (A,WA) ∈ Gr−e+f
d−e (Y, p, α) and (L,WL) ∈ Ge−f−1

2e−f−1(Y, p, β) satisfying

(18) whenever one of the following conditions is satisfied:

(i) 2f ≤ e− 1, (ii) e = 2r − 2 and f = r − 1, (iii) e < 2(r + 1− e+ f).

As we already explained, (18) in case (ii) is a consequence of the Gieseker-Petri theorem.

We now treat case (i) when β0 = 1 and c̃ = f ≤ e − f − 1. By Riemann-Roch we
find that L = KY ⊗ OY ((e − 2f + 2) · p) ⊗ B∨, where B ∈ W 1

e−f+1(Y ) is a pencil such

that h0
(
Y,B⊗OY (−(e− 2f +1) · p)

)
≥ 1 (There are finitely many such B ∈ W 1

e−f+1(Y )
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for a generic choice of [Y, p] ∈ Me,1). Applying the base-point-free pencil trick, (18) is
equivalent to the injectivity of the multiplication map

µB,M : H0(Y,B)⊗H0(Y,M) → H0(Y,B ⊗M),

where M := KY ⊗ A∨ ⊗OY ((d− f − e+ 2) · p) ∈ W e−f
2e−f (Y ) is a complete linear series

with vanishing sequence at p equal to

(23) aM (p) = (0, 1, . . . , e− f − a− 1, e− f − a+ c, r − a+ 2, r − a+ 3, . . . , r, r + 1).

Here we have set a := [e/(r+1−e+f)], hence we can write e = a·(r+1−e+f)+c, where
0 ≤ c ≤ r− e+ f . By assumption we have that e− 2a > c and clearly ρ(M,αM (p)) = 0,

that is, there are finitely many M ∈ W e−f
2e−f (Y ) satisfying (23).

To prove that µB,M is injective, we degenerate [Y, p] ∈ Me,1 to a particular stable
curve: [Y0, p0] := [E0 ∪p1 E1 ∪ . . . ∪ Ee−2a−1 ∪pe−2a T, p0], where E0, . . . , Ee−2a−1 are
elliptic curves, [T = Ee−2a, pe−2a] ∈ M2a,1 is a Petri general smooth pointed curve
and the points pi, pi+1 ∈ Ei are such that pi+1 − pi ∈ Pic0(Ei) is not a torsion class for
0 ≤ i ≤ e − 2a − 1. Note that p0 lies on the first component E0. By contradiction,
we assume that µB,M is not injective for every [Y, p] ∈ Me,1 and for each of the finitely

many linear series M ∈ W e−f
2e−f (Y ) satisfying (23) and each B ∈ G1

e−f+1

(
Y, p, (0, e−2f)

)
.

We construct a limit g
e−f
2e−f on [Y0, p0], say m = {(MEi

, Vi) ∈ Ge−f
2e−f (Ei)}

e−2a
i=0 ,

which satisfies condition (23) with respect to p0, by specifying the vanishing sequences
amEi (pi) for 0 ≤ i ≤ e−2a. For 0 ≤ i ≤ c−1, the sequence amEi+1 (pi+1) is obtained from
amEi (pi) by raising all entries by 1, except for the term

a
mEi+1

e−f−a(pi+1) = a
mEi

e−f−a(pi) = e− f − a+ c.

After c steps we arrive at the following vanishing sequence on Ec with respect to pc:

amEc (pc) = (c, c+1, . . . , e−f−a+c−1, e−f−a+c, r−a+2+c, r−a+3+c, . . . , r+c+1).

For an index c ≤ i ≤ e−2a−1 which we write as i = c+a ·β+ j, with 0 ≤ j ≤ a−1 and
0 ≤ β ≤ r − 2 − e + f , we choose amEi+1 (pi+1) to be obtained from amEi (pi) by raising
all entries by 1, except for the term

a
mEi+1

e−f−a+j+1(pi+1) = a
mEi

e−f−a+j+1(pi) = r − a+ 2 + c+ (a− 1) · β + 2j.

In this way m ∈ G̃e−f
2e−f (Y0) becomes a (refined) limit linear series which smooths to a

complete linear series M ∈ Ge−f
2e−f (Y ) on every smooth pointed curve [Y, p] ∈ Me,1 such

that the ramification condition (23) with respect to p is satisfied.

Next we construct a limit g1e−f+1 on [Y0, p0], say b = {(BEi
,Wi) ∈ G1

e−f+1(Ei)}
e−2a
i=0

such that ab(p0) = (0, e − 2f + 1). For 0 ≤ i ≤ e − 2f we set abEi (pi) = (i, e − 2f + 1).
For an index of type i = e − 2f + 2k − 1 where 0 ≤ k ≤ f − a, we choose abEi (pi) =

(e − 2f + k − 1, e − 2f + k + 1). If i = e − 2f + 2k, we choose the sequence abEi (pi) =

(e − 2f + k, e − 2f + k + 1). It is clear that each sequence abEi (pi) is obtained from

abEi−1 (pi−1) by raising one entry by 1 while keeping the other fixed, hence b is a limit
g1e−f+1 which smooths to a pencil B ∈ G1

e−f+1(Y, p, (0, e− 2f)) on every nearby smooth



HIGHER RAMIFICATION AND VARIETIES OF SECANT DIVISORS ON THE GENERIC CURVE 21

curve [Y, p]. For each 0 ≤ i ≤ e − 2a − 1, there exists a section (unique up to scal-
ing) σi ∈ Wi such that ordpi(σi) + ordpi+1

(σi) = deg(BEi
). We denote by σc

i ∈ Wi a

complementary section such that {ordpi(σi), ordpi(σ
c
i )} = {a

bEi

0 (pi), a
bEi

1 (pi)}.

Using the set-up developed in [EH3] and [F2] for studying degenerations of mul-
tiplication maps, we find that the assumption that µB,M is not injective implies the
existence elements 0 6= ρi ∈ Ker{Wi⊗Vi → H0(Ei, BEi

⊗MEi
)} for each 0 ≤ i ≤ e− 2a,

satisfying the property that ordpi+1
(ρi+1) ≥ ordpi(ρi)+1, for all i (see e.g. [F2] Section 4,

for an explanation of how to obtain the ρi’s). Moreover, if ordpi+1
(ρi+1) = ordpi(ρi) + 1,

then if τi ∈ Vi is the section (unique up to scaling) such that ordpi(τi) + ordpi+1
(τi) =

deg(MEi
), then we must have that

ordpi(ρi) = ordpi(τi) + ordpi(σ
c
i ) = ordpi(σi) + ordpi(τ

′
i),

where τ ′i ∈ Vi is another section such that ordpi(τ
′
i) 6= ordpi(τi). In particular, since we

have explicitly described all the sequences abEi (pi) and amEi (pi), the assumption that
ordpi+1

(ρi+1) ≤ ordpi(ρi) + 1 uniquely determines ordpi(ρi).

Since abE0 (p0) = (0, e − 2f + 1) and µBE0
,ME0

(ρ0) = 0, the non-zero section ρ0
must involve both sections σ0 and σc

0 and then clearly ordp0(ρ0) ≥ e− 2f +1. We prove
inductively that for all integers 0 ≤ i ≤ e− 2a we have the inequality

(24) ordpi(ρi) ≥ e− 2f + 1 + 2i.

Assuming (24) for i ≤ e− 2a− 1, since ordpi+1
(ρi+1) ≥ ordpi(ρi) + 1, the only way (24)

can fail for i + 1 is when ordpi(ρi) = e − 2f + 2i + 1 and ordpi+1
(ρi+1) = ordpi(ρi) + 1.

As explained above, this implies that ordpi(ρi) = ordpi(τi) + ordpi(σ
c
i ).

Writing i = c+ a · β+ j as above, then ordpi(τi) = r− a+2+ c+(a− 1) · β+2j if
i ≥ c, while ordpi(τi) = e− f − a+ c, for 0 ≤ i ≤ c− 1. We deal only with the case i ≥ c,
the case 0 ≤ i ≤ c − 1 being analogous. To determine ordpi(σ

c
i ) we must distinguish

between two cases: When i = e−2f+2k−1 with k ≥ 1, then ordpi(σ
c
i ) = e−2f +k−1.

Otherwise, we write i = e− 2f + 2k in which case ordpi(σ
c
i ) = e− 2f + k + 1. Suppose

we are in the former case. Then we obtain the equality

e− 2f + 2i+ 1 = ordpi(ρi) =
(
r − a+ 2 + c+ (a− 1) · β + 2j

)
+ (e− 2f + k − 1),

which ultimately leads to the relation (a+ 2)(r − e+ f − β) = a− j − 1. But j ≤ a− 1
and β ≤ r − e + f − 1, hence we have reached a contradiction. The case when one can
write i = e − 2f + 2k is dealt with similarly. All in all, we may assume that we have
proved the inequality ordpe−2a(ρe−2a) ≥ e−2f+1+2(e−2a). We note that on the curve

[T, q] = [Ee−2a, pe−2a] we have that abT (pe−2a) = (e− f − a, e− f − a+ 1), while

amT (pe−2a) = (e− 2a, e− 2a+ 1, . . . , 2e− f − 3a, 2e− f − 3a+ 3, . . . , 2e− f − 2a+ 2).

Equivalently bT = |B|+(e−f−a) ·q, where B ∈ W 1
a+1(T ), while mT = (e−2a) ·q+ |N |,

where N ∈ Pice−f+2a(T ) has the property that h0
(
T,N(−(e − f − a + 3) · q)

)
≥ a.

Remembering that ordq(ρe−2a) ≥ (e − 2f + 1) + 2(e − 2a), after subtracting the base
locus supported at q, we find an element

0 6= ρT ∈ Ker{H0(B)⊗H0(N) → H0(B ⊗N)}
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such that ordq(ρT ) ≥ e− f − a+ 1. Equivalently, the multiplication map

µB,N : H0(B)⊗H0
(
N(−(e− f − a+ 3) · q)

)
→ H0

(
B ⊗N(−(e− f − a+ 3) · q)

)

is not injective. By using Riemann-Roch we find that N(−(e−f −a+3) · q) = KT ⊗ B̃∨,

where B̃ ∈ W 1
a+1(T ). Choosing B̃ = B ∈ W 1

a+1(T ), we notice that µB,N can be identified

with the Petri map H0(B) ⊗H0(KT ⊗ B∨) → H0(KT ) which is injective because [T ] ∈
M2a was chosen to be Petri general. Thus we have reached a contradiction by reducing
(18) to the Gieseker-Petri theorem which completes the proof in the case (i).

Next we turn to case (iii) when [e/(r + 1 − e + f)] < 2. Since the argument is
similar to the one for (i), we only outline the main steps. If e ≤ r − e+ f , that is, when

α0 = d − r − f − e, we can easily determine a linear series (A,WA) ∈ Gr−e+f
d−e (Y, p, α).

Precisely, one can see that A = KY ⊗OY ((d− 3e+ 2) · p) and

|WA| = (d− r − f − e) · p+ |KY ⊗OY

(
(r + f − 2e+ 2) · p

)
|.

In this case we have that |Gr−e+f
d−e (Y, p, α)| = 1. Condition (18) translates into saying

that for a generic (L,WL) ∈ Ge−f−1
2e−f−1(Y, p, β) we have the vanishing statement

(25) H0
(
Y, L⊗K∨

Y ((e+ f − 2) · p)
)
= 0 ⇔ H0

(
Y,K⊗2

Y ⊗ L∨(−(e+ f − 2) · p)
)
= 0.

One can prove (25) by degenerating Y to a generic string of elliptic curves and we skip
the details. Finally, if [e/(r + 1− e+ f)] = 1, then c = 2e− r − f − 1 and condition (18)
boils down to showing that one can find a pencil B ∈ G1

e−c+1

(
Y, p, (0, r− e+ f − c+1)

)

and a linear series L ∈ Ge−f−1
2e−f−1(Y, p, β), such that the multiplication map

H0(B)⊗H0
(
K⊗2

Y ⊗ L∨(−(2e− 4− r) · p)
)
→ H0(K⊗2

Y ⊗B ⊗ L∨(−(2e− 4− r) · p)
)

is injective. This situation is handled along the lines of (i) and we omit the details. �

Finally, we prove Theorem 0.5 assuming that condition (22) is satisfied. This case
is not covered by cases (i)− (iii) above:

Proposition 3.3. Let [Y, p] ∈ Me,1 be a general pointed curve. Then there exists a linear series

(A,WA) ∈ Gr−e+f
d−e (Y, p, α) such that H0

(
Y,OY ((d− 1) · p⊗A∨)

)
= 0.

Proof. By contradiction, we assume that H0(OY ((d− 1) · p)⊗A∨) 6= 0 for every [Y, p] ∈

Me,1 and for every linear series (A, VA) ∈ Gr−e+f
d−e (Y, p, α). We let [Y, p] degenerate to

the stable curve [Y0 := E0 ∪p1 E1 ∪p2 . . . ∪pe−3
Ee−3 ∪pe−2

B, p0], where E0, . . . , Ee−3 are

elliptic curves, the points pi, pi+1 ∈ Ei are such that pi − pi+1 ∈ Pic0(Ei) is not a torsion
class, and [B, pe−2] ∈ M2,1 is such that pe−2 ∈ B is not a Weierstrass point. For all
integers 0 ≤ i ≤ e− 3 we find that there exist sections

0 6= τi ∈ H0
(
OEi

((d− 1) · pi)⊗A∨
Ei

)
and 0 6= τB = τe−2 ∈ H0

(
OB((d− 1) · pe−2)⊗A∨

B

)

such that

0 ≤ ordp0(τ0) ≤ ordp1(τ1) ≤ . . . ≤ ordpe−3
(τe−3) ≤ ordpe−2

(τB).

Moreover, we have that ordpi(τi) ≥ i for 0 ≤ i ≤ e−2. In particular, ordpe−2
(τB) ≥ e−2.

Since ρ(e, r − e+ f, d− e, α) = 0, limit gr−e+f
d−e on E0 ∪ . . . ∪Ee−3 ∪B are smoothable to

every curve of genus g. These finitely many limit gr−e+f
d−e are in bijective correspondence
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with possibilities of choosing the vanishing sequences {alEi (pi)}0≤i≤e−3 and alB (pe−2)

in such a way that for all 0 ≤ i ≤ e − 3, the sequence alEi+1 (pi+1) is obtained from

alEi (pi) by raising all entries by 1 except a single entry which remains unchanged. To

finish the proof it suffices to exhibit a single limit gr−e+f
d−e on E0∪. . .∪Ee−3∪B having the

property that if (AB, VB) denotes its B-aspect, then H0(OB((d−e+1) ·pe−2)⊗A∨
B) = 0.

We describe such a g
r−e+f
d−e explicitly by specifying the sequences {αlEi (pi)}0≤i≤e−3

and αlB (pe−2). Clearly, αlE0 (p0) equals (α0, . . . , α0, α
lE0

r−e+f+1−c(p0) = α0+1, . . . , α0+1).

For 1 ≤ i ≤ c, αlEi (pi) is obtained from αlEi−1 (pi−1) by increasing all entries by 1, ex-

cept for α
lEi

r−e+f+i−c(pi) = α
lEi−1

r−e+f+i−c(pi−1). Thus αlEc (pc) = (α0 + c, . . . , α0 + c). Next,

for an index i such that c + β(r + 1 − e + f) < i ≤ c + (β + 1)(r + 1 − e + f), where
0 ≤ β ≤ [e/(r+1−e+f)], if we write i ≡ j+ c mod r+1−e+f , with 1 ≤ j ≤ r−e+f ,

the sequence αlEi (pi) is obtained from αlEi−1 (pi−1) by raising all entries by 1, except for

α
lEi

j−1(pi) = α
lEi−1

j−1 (pi−1). Switching from ramification to vanishing sequences we obtain

alB (pe−2) = (d− r − f − 2, d− r − f − 3, . . . , d− e− 5, d− e− 4, d− e− 2, d− e− 1),

that is, AB = OB((d− e− 2) · pe−2)⊗ g12, and then

H0(OB((d− e+ 1) · pe−2)⊗A∨
B) = H0(OB(3 · pe−2)⊗ (g12)

∨) = 0.

This contradicts the fact ordpe−2
(τB) ≥ e− 2 which completes the proof. �

4. HIGHER RAMIFICATION POINTS OF A GENERAL LINE BUNDLE

In this section we prove Theorem 0.10. We fix an arbitrary smooth curve C of

genus g and for n ≥ 1 we denote by [n]C : Picd(C) → Picnd(C) the multiplication by
n map, [n]C(L) := L⊗n. It is an immediate consequence of Riemann-Roch that for a

general L ∈ Picd(C), we have that h0(L⊗n) = max{nd+ 1− g, 0}.

First we show that for a very general L ∈ Picd(C) we have that wL⊗n
(p) ≤ 1 for

all p ∈ C and n ≥ 1. Indeed, let us assume that wL⊗n
(p) ≥ 2, where n is chosen such

that nd ≥ g, so that h0(C,L⊗n) = nd+ 1− g. Then there are two possibilities:

(i) h0
(
C,L⊗n(−(nd+ 2− g) · p)

)
≥ 1 or (ii) h0

(
C,L⊗n(−(nd− g) · p)

)
≥ 2.

In case (i) we consider the map C×Cg−2 → Picnd(C), (p,E) 7→ OC

(
(nd+2−g) ·p+E

)

and we denote by Σn its image which is a divisor on Picnd(C). Then (i) is equivalent to

L ∈ [n]∗C(Σn) which is a divisorial condition on Picd(C) for each n.

In case (ii) we look at the map C ×C1
g → Picnd(C), (p,E) 7→ OC

(
(nd− g) · p+E

)

and we denote by Vn its image. Since C1
g is generically a P1-bundle over Cg−2, it follows

that Vn is a divisor on Picnd(C) and then possibility (ii) is equivalent to L ∈ [n]∗C(Vn).

Thus we see that for L ∈ Picd(C)−
⋃

n≥1[n]
∗
C(Σn + Vn) all the ramification points of all

powers L⊗n with n ≥ 1, are ordinary. This proves the first part of Theorem 0.10. To
prove the second part we start with the following:



24 G. FARKAS

Proposition 4.1. We fix a point p ∈ C and integers n and d such that nd ≥ g. Then the locus

Dn := {L ∈ Picd(C) : h0
(
C,L⊗n(−(nd+ 1− g) · p)

)
≥ 1}

is an irreducible divisor on Picd(C) and [Dn] = n2θ.

Proof. We set a := max{0, 2g − 1 − nd} and define two vector bundles En and Fn

on Picd(C) of the same rank and having fibres En(L) = H0(C,L⊗n ⊗ OC(a · p)) and

Fn(L) = H0(C,L⊗n ⊗ O(a+nd+1−g)·p(a · p)) over each point L ∈ Picd(C). Then Dn

is the degeneracy locus of the morphism En → Fn obtained by evaluation sections
of L⊗n ⊗ OC(a · p) along (a + nd + 1 − g) · p. The Picard bundle En is negative (i.e.
E∨
n is ample), because En is the pull-back under the finite map [n]C of a negative bun-

dle on Picd(C) (cf. [ACGH], pg. 310). Moreover, Fn is algebraically equivalent to a
trivial bundle, hence E∨

n ⊗Fn is ample too. Applying the Fulton-Lazarsfeld connected-
ness theorem (see [FL] or [ACGH] pg. 311), we conclude that Dn is connected. Since
Dn is also smooth in codimension 2 we obtain that Dn must be irreducible. Finally,
[Dn] = c1(Fn − En) = [n]∗C(θ) = n2θ. �

End of the proof of Theorem 0.10. We fix integers 1 ≤ a < b and consider the variety

Σab := {(p, L) ∈ C×Picd(C) : p ∈ R(L⊗a)∩R(L⊗b)} and we denote by φ1 : Σab → C and

φ2 : Σab → Picd(C) the two projections. For a fixed p ∈ C, the fibre φ−1
1 (p) is identified

with the intersection of the two irreducible divisors Da and Db. Since [Da] 6= [Db]

for a 6= b, it follows that Da ∩ Db is of pure codimension 2 inside Picd(C), therefore

dim(Σab) = g − 1. We obtain that a line bundle L ∈ Picd(C) −
⋃

a<b φ2(Σab) will enjoy

the property that R(L⊗a) ∩R(L⊗b) = ∅ for a < b. �
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