SZEGO KERNELS AND SCORZA QUARTICS ON THE MODULI
SPACE OF SPIN CURVES
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ABSTRACT. We describe an extension at the level of the moduli space 3; of stable spin
curves of genus g of the map associating to an ineffective spin structure its Scorza curve
(equivalently, the vanishing locus of the Szegd kernel). We compute the class of the Szegd-
Hodge bundle on g;, then find a new interpretation, in terms of theta constants, of the
Scorza quartic associated to an even spin structure. Our results describe the superperiod
map from the moduli space of supersymmetric curves in the neighborhood of the theta-null
divisor and provide a lower bound for the slope of the movable cone of g;r.
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INTRODUCTION

To a smooth projective curve C' of genus g and to an ineffective even spin structure (that
is, a line bundle 7 € Pic/=!(C) with %% =~ we such that h9(C,n) = 0), following [DK], one
can associate the Scorza correspondence S(C,n) defined as the following curve

(1) S(C,n) = {(m,y)erC:HO(C,n(:r—y)) 750}.

Note that S(C,n) has a fixed point free involution interchanging the two factors whose
quotient is an unramified double cover ¢: S(C,n) — T(C,n), where T(C,n) can be viewed
as a curve inside the symmetric product C(2). We denote by g;r the moduli space of stable
even spin curves of genus g constructed by Cornalba [Cor] and by R, the moduli space of
stable Prym curves of genus g parametrizing admissible double covers over stable curves of

genus g, see [Be, FL]. One can show via [DK, FV2] that for a general choice of [C, ] € 3; the
1



2 G. FARKAS AND E. IZADI

curves S(C,n) and T(C,n) are smooth and their genera equal to g(S(C,n)) = 1+3g(g—1)
and g(T(C,n)) = 1+ 3g(g — 1), respectively. At the level of moduli spaces, one has the
following commutative diagram of Deligne-Mumford stacks

—+ 5 —
2) ShoooofLeTRy

(G]d i /

m1+3g(g71)

+29(9—1)

where G¢([C,n]) := [S(C,n)] and £([C,n]) := [S(C,n) L 7(C, n)], whereas x associates
to an admissible double cover the stable model of the source curve. Observe that the
definition of the curves S(C,n) and T(C,n) breaks down when either 7 becomes effective,
that is, h°(C,n) = 2, or when the curve C becomes singular. A main goal of this paper
is to extend in a modular way the definition of the Scorza map Sc¢ to pairs (C,n) where

h(C,n) = 2 and to the boundary of 3;.

The correspondence S(C,n) has been considered classically by Scorza [Scl, Sc2] and used
to prove what in modern terms amounts to say that S is birational to M3. A modern
exposition of Scorza’s work was given by Dolgachev and Kanev [DK]. Scorza’s results were
then used by Mukai [Mu] and Schreyer [Sch] to construct new Fano threefolds.

The Scorza curve S(C,n) turns out to be intimately related to the Szegd kernel sz,
considered in mathematical physics [Fay, HS, TZ], or in superstring theory [DHP, Wi]. For
a spin structure 1 on C' with H°(C,n) = 0, we denote by 6, the function on the Jacobian
JC := Pic’(C) whose zero locus is the translate of the theta divisor

(3) 0, :={Ce JC:h’(C,(®n) # 0}.
Then the Szegd kernel sz, associated to the spin structure [C,n] is the function on C' x C
Oy(z —y)
(4) szp(z,y) 1= —==,
! 0,(0)

The Scorza curve S(C,n) is the vanishing locus of the Szegd kernel, see also (15) for details.!

The Szegd kernel is related to the moduli stack zm; of even supersymmetric curves of
genus g considered in [DHP, DW, Wi]. A point in 9](; corresponds to a super curve Y of
genus g, which determines a smooth algebraic curve C' = ¥,,5 of genus g and an even spin
structure n on C. As explained by D’Hoker and Phong [DHP] and by Witten [Wi, Section
8.3], one can define a super period map

(5) PR} - A,

obtained by integrating the sections of the Berezinian Ber(T%) of the cotangent bundle of
using the Szegé kernel sz,. The period map is undefined along the locus of those [¥] € M,

1Occas.ionally7 a slightly different definition of the Szegé kernel, as an antisymmetric function, is put
forward, e.g., [Fay]. This amounts to dividing sz, (z,y) by the prime form E(z,y), which can be regarded
as the unique section of the bundle Ocxc(A). This does not influence the vanishing locus of sz,.
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where the associated bosonic quotient C satisfies HY(C,n) # 0. Some of our results can be
interpreted as describing this period map P when H°(C,n) # 0.

Inside the spin moduli space S; one considers the theta-null divisor

Opull 1= {[C, nleS; : HC,n) # o}.

It is known [T2] that ©y) is an irreducible divisor and its general point corresponds to a
spin structure  with h°(C, ) = 2. One has furthermore boundary divisors A; and B; on 3:;

and their corresponding divisor classes oy; = [4;] and §; = [B;] € Pic(gg) fori=0,...,|%|
The moduli space g; being a normal variety, the rational map Gc: 3; -— Mngg(g,l)

can be defined along the general point of each divisor in 3; even though the definition (1)
makes no sense when h%(C,7n) > 2, or when C' becomes singular. A priori, this extension
need not be modular.

Our first result describes the limiting Scorza correspondence &¢([C,n]) € ﬂHgg(g,l),

for a general point [C,7n] € Ouu corresponding to a pencil C In} P!. Let CN'T7 —> (' be the
double cover branched over the ramification points z1,...,z454 of |7].

We introduce the trace curve of the pencil ||, that is,
fn = {(:c,y) eCxC: HO(C,n(—x —y)) # 0}.

Observe that fn intersects the diagonal A of C'x C' at the points (z1, 1), ..., (Tag—4, Tag—a).

It is easy to show that fn is a smooth curve of genus (g—1)(3g—8)+1, whereas g(C},) = 4g—3.
One has the following result, where we refer to Theorem 1.4 for a more precise statement.

Theorem 0.1. The limiting Scorza correspondence S(C,n) corresponding to a general van-

ishing theta-null [C,n] € Onun is the transverse union of I'y and the curve C; meeting at
the (49 — 4) diagonal points (x1,21), ..., (Tag—a, Tag—a).

Note that the curve S(C,n) described in Theorem 0.1 is stable. The case g = 3 of Theorem
0.1 has been established before by Grushevsky and Salvati Manni [GS]. In Sections 2 and
3 we determine the limiting Scorza curves S(C,n) and T'(C,n) corresponding to a general
point of each boundary divisor A; or B; of 3;. The most interesting situation occurs along
the divisor B;, where ¢ > 1. We describe our result also in light of the connection pointed
out by Donagi and Witten [DW, 3.6] with the moduli space 9, ; of marked super curves.

A general point of the divisor B; corresponds to a transverse union C'u D of two smooth
pointed curves [C, p| and [ D, q] of genera i and g—i (where the points p and ¢ get identified)
and to two odd spin structures nc and np, respectively. We denote by X, , the unique
Zy-invariant curve inside the linear system |nc(p) K ne(p)(A)| on C x C, and we have a
similar definition for the curve X, , & D x D. We then show that X, , and X, , are
both nodal with a unique singularity at the point (p,p), respectively, (q,q). We denote
by lem,pv respectively, by X7/7qu their normalizations and let {p™,p~} and {¢™, ¢~} be the
inverse images of the two nodes in X, and X, ,, respectively. The limit Scorza curve

has then the following shape (see Theorem 3.6 for the precise statement):
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MexD Cxng

D xnNg NpxC

ng-a X'nc-p
FiGure 1. X/, | ((nc x D) U (C x nD)) U ((D x nc) U (p x 0)) U X!,

Note that ancm meets transversally 2(g — i — 1) copies of D attached at the points in the
support of 7o, and a similar statement holds for component an’q.

The Szeg6-Hodge class on 3;. The Scorza map Gec: g;r -—> ﬂugg(g,l) having been

extended as a morphism of stacks along every divisor in 3;, we can attack any problem
related to divisor classes involving this map. It is natural to consider the pull-back under
this map of the Hodge class \' € Pic(M34(5—1)). We call this class

AszH = Gc*(N)
the Szegd-Hodge class on the spin moduli space. We have the following result:
Theorem 0.2. One has the following formula for the Szegd-Hodge class on 3; :
151

T7g — 25 699 — 21 R
Asa = — A= — -Ozo—i;bi-ﬁieplc(é’g),
where by = 0, fori=1,...,]5].
Note that the coefficients of the boundary classes Gy and «; fori =1,..., [%J are all equal

to zero. Theorem 0.2 can be compared to a number of similar results in the literature. In
El] one finds a computation of the pull-back of the Hodge class under the rational map
M, --» My, associating to a curve C' of odd genus g the Brill-Noether curve W}, (C)

2
consisting of pencils of minimal degree on C. In [KKZ, vdGK2] the pull-backs of Hodge
classes under various Hurwitz-type correspondences are described.

Theorem 0.2 has applications to the slope of the moduli space g;r. For a projective variety
X, we denote by Eff(X) its cone of pseudo-effective divisors and by Mov(X) its subcone of
movable divisors consisting of the classes of those effective Q-divisors D on X whose stable
base locus [),~; Bs|nD| has codimension at least 2 in X. For a rational map f: X --» Y
between normal projective varieties, one has the inclusion f*(Ample(Y)) € Mov(X). For
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an effective divisor D on 3;, we define its slope as the quantity
g
2

s(D) = inf{% € Qoo U (@} ia-A—b-ag—[D] = Y (a; - i +b; - ), where a;,b; = 0}.
=0

f—

In analogy with the much studied case of the moduli space M,, see [CFM] and references
therein, we define the slope, respectively, the movable slope of 3; as the following quantities

©6) s(5)):= inf{s(p) .De Eff(g_;j)} and smov (S ) = inf{s(D) .De Mov(s;)}.

Since S([@null]) = 4, see [F2, Theorem 0.2], it follows that 8(3;—) < 4. On the other

hand, O,y is in general not a movable class, as showed in [FV1, Theorem 4.2]. The class
Asz being obviously movable on 3;, we obtain the following result:

Theorem 0.3. For any g = 3, one has the estimate

—+ 32g — 16
smOV(Sg) <4+ 09— 21"

Question 0.4. Is it true that 3(8+

g) = 4 for every g > 37 Is it true that

liminf, o s (3;) = liminfy, o0 Smov (3;) ?

For the implications in string theory of a positive answer to the first part of Question 0.4
(formulated as a question on M, rather than on 3;), we refer to [MHNS].

The Scorza quartic via Wirtinger duality. The second topic of this paper is an un-
conditional new construction, via Wirtinger duality, of the Scorza quartic hypersurface

F(C,n) e Sym*H(C,wc)

associated to a general pair [C,n] € S; , where g > 3. This quartic has been introduced
implicitly by Scorza in [Sc2] using the theory of apolarity and characterized by the remark-
able property that its second polar with respect to pairs of points (z,y) € S(C,n) is a
double hyperplane, that is, a quadric of rank one, see (8) for the precise statement. To this
day, even the most basic properties of the quartic F'(C,n), like whether it is smooth for a
general [C,n] € S; , or understanding the relation between them for various choices of spin

structures remain wide open.

Remarkably, in genus 3, the Scorza quartic defines a plane quartic, different in moduli
from C, and the assignment [C,n] — [F(C,n)] induces a birational map Sy --» Ms,
introduced by Scorza in [Scl], [Sc2] and discussed in modern terms in [DK]. The inverse
map Mj --+ S associates to a plane quartic curve X € P? = P(HO(X, wX)V) its covariant
plane quartic curve

C:= {a € P(HO(X, wy)) : The polar P,(F) is isomorphic to the Fermat cubic}.

Since dim PGL(3) = dim|Op2(3)| —1, being projectively equivalent to the Fermant cubic is
a divisorial condition on the space of all cubics. Note that C' is endowed with a symmetric
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correspondence Z := {(a,b) € C x C : tk P,,(F) < 1}, and one can show that there exists
a uniquely determined even spin structure n on C' such that = = S(C,n). The assignment
[X] — [C,n] induces a rational morphism of stacks Mg --» S5".

We now explain our interpretation of Scorza’s quartic in arbitary genus. Having fixed a
spin curve [C,n] with h°(C,n) = 0, let ¢c: C — PH?(C,we)Y be the canonical embedding.
For a pair (z,y) € S(C,n), the line bundles n(z — y) and n(y — z) are effective and there
exists a canonical form h,, € H 9(C,wc) whose divisor of zeros is

div(hgy) = div(n(:c — y)) + div(n(y — x)) e 029-2)
We consider the polarization map, see [DK, 1.1]
(7) P: (HO(C', wc)v)®2 ® Sym*H(C,we) — Sym?H®(C, we).

For points z,y € C, we write P,, = P(¢c(x),¢c(y),0), where ¢c(z) and ¢c(y) can
be interpreted by evaluating canonical forms at x, respectively, y. Dolgachev and Kanev
[DK, Theorem 9.3.1], building on [Sc2] and assuming several transversality properties that
were ultimately verified generically in [TZ], showed that there exists a quartic F(C,n) €

Sym*H(C,w¢), uniquely determined up to a constant, such that for any pair (z,y) €
S(C,n), one has

(8) Py (F(C,m)) = b2, € Sym*HO(C, we).

The construction of F'(C,n) remained puzzling, see, e.g., [DK, p. 218|, where the authors
ask: What are these mysterious quartic hypersurfaces of Scorza? Our aim is to shed light
on this matter and present a simple unconditional construction of the Scorza quartic in
terms of theta functions on JC.

We denote by H(JC,20,)o the subspace of H%(JC,20,) consisting of sections vanish-
ing at the origin. To simplify notation, we set © := ©,, for the symmetric theta divisor
associated to n. Since 7 is ineffective, the divisor 20 € ‘2@‘ does not pass through the
origin, in particular the restriction map to © induces an isomorphism
(9) res: HO(JC,20)y —> H°(©,06(20)).

By taking cohomology in the exact sequence

0— Ojc — 0yc(0) — 0a(0) — 0,
we obtain the following identification
(10) H°(©,06(0)) = H(JC,0,¢) =~ H(C,we) = H*(C,we)”,
where the middle isomorphism is induced by the Abel-Jacobi map C — JC.

Furthermore, the difference map ¢: C' x C — JC given by ¢(z,y) := Oc(x —y) contracts
the diagonal A and factors through the blow-up JC' of JC' at the origin Oc € JC'. Denoting

by e: JC — JC the blow-up map, we thus have a morphism ¢: C' x C — JC such that
© = €0, see also [We]. If E denotes the exceptional divisor on JC, then

¢*O55(¢*(20 — E)) = n&n,
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cf. (15). Identifying H°(JC,20)q with H° (J/Z’, 075(20 — E)), we have a pull-back map
(11) ©*: HY(JC,20)g — Sym*H°(C,we).

The map ¢* assigns to a divisor D € |20] passing through 0 € JC, its quadratic tangent
cone at that point. With this preparation, we state our main result on the Scorza quartic.

Theorem 0.5. For a general even spin curve [C,n] € Sng of genus g = 3, the Scorza
quartic F(C,n): Sym?H®(C,wc)Y — Sym?HO(C,we) can be realized via the following
commutative diagram:

Sym2HO(C,we)Y = Sym?2HY(0g(0))

F(Cvﬂ)l lresl
Sym?H°(C, we) H°(JC,20),

H°(©,06(20))

The upper horizontal arrow in this diagram corresponds to multiplication of sections and
uses (10). In order to establish that the map F(C,n): Sym? H(C,wc)Y — Sym?H°(C, w¢)
lies in Sym*H°(C,we) and it gives rise to the Scorza quartic from [DK], we will make es-
sential use of the Wirtinger duality asserting the existence of an isomorphism

w: [20] — |20]¥
having the defining property that for any point a € JC, if ©, := a + ©, then
(O, +O_y) ={D€|20|:ae D}.
In the course of proving Theorem 0.5, we find an explicit description of F(C,7) in terms of
theta constants. Assuming
9n=90+92+94+"' ,

is the Taylor expansion at the origin of the symmetric theta function 6, in terms of the
canonical flat coordinates on JC', we have the following result:

Theorem 0.6. For a general spin curve [C,n] € S;, we have that

92
F(C,n) = 52 — 0 - 04 € Sym*HO(C, we).

The limiting Scorza quartic for a general point [C,n] € Onu equals twice the quadratic
tangent cone to the theta divisor © at the origin 0 € JC.
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1. SCORZA CORRESPONDENCES ASSOCIATED TO SPIN STRUCTURES

We first collect basic facts that will be used throughout the paper.
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1.1. Moduli of spin and Prym curves. We denote by R, the moduli stack of stable
Prym curves of genus g, see [Be, FL] for further background. Recall that an element of R,
corresponds to a triple [ X, ¢, 5], where X is a quasi-stable genus g curve, € is a locally free
sheaf of total degree 0 on X such that ¢z = Og(1) for every smooth rational component

E c X with |[E n X\E| = 2 (such a component being called ezceptional) and 3: €¥? — Ox
is a sheaf morphism that is non-zero along each non-exceptional component of X. There
exists a finite map 7: Ry — M, assigning to a triple [X,n, 8] the stable model of the
curve X. The ramification divisor Af*™ of the map 7 has as its general point a Prym curve
[X,¢€, B8], where X := C ug, 4 E is a quasi-stable curve, with C' being a smooth curve of
genus g — 1 and F being a smooth rational curve meeting C at two distinct points z,y and
e € Pic’(X) satisfies €lp = Og(1) and 6%2 ~ Oc(—z —y).

Let Eg be the moduli space of stable spin curves of genus g. Depending on the parity of
the spin structure, we distinguish two components g;r and 3; of gg, whose geometry has
been studied in detail in [Cor, F2, FV2]. We denote by 9, the moduli space of smooth
supersymmetric (susy) algebraic curves of genus g. It parametrizes smooth supervarieties
of dimension 1|1 endowed with a rank 0|1 maximally non-integrable distribution of their
tangent bundle. It is known [DW, Wi, CV] that 9, is a smooth Deligne-Mumford super-
stack of dimension 3g — 3|2¢g — 2. The bosonic truncation of M1, can be identified with the
moduli stack Sy of smooth spin curves of genus g and we denote by sm; the component of
the susy moduli space such that (fm:{)bos = S;r .
1.2. Tautological line bundles on symmetric squares of curves. We set some no-
tation. We fix a smooth algebraic curve C of genus ¢ and denote the two projections
pr;: C x C — C, for i = 1,2. We denote by C®@ the symmetric square of C' and let
q: C x C - C®@ be the natural projection ramified along the diagonal A € C x C. Let
o€ Pic(C’(Q)) be the line bundle uniquely characterized by the property ¢*(0) = Og2(A).
We also introduce the diagonal of the symmetric product

Z:{Q-p:peC}EC(Z),

therefore ¢*(A) = 2A.
For an effective divisor D = p; + -+ + pg on C we introduce the divisor on the symmetric
square
Cp := (C+p1) + (C+p2) + -+ (C + pa)e Div(C?).
This definition is extended to arbitrary line bundles M = O¢g (D1 — D) € Pic(C), with
Dy and D being effective divisors on C', by setting

(12) L = Oc2) (C’D1 — CDQ) € PiC(C(Q)).

Note that £y can also be characterized as the unique line bundle on C? such that
¢*(Lar) = pri(M)@pry(M) = M ¥ M. Similarly, one defines £, := Lp(—0) as the line
bundle on C?) such that ¢*(£},) = pr¥(M) @ pri(M)(—A). The cohomology of these line
bundles on C® is summarized for instance in [I2, Appendix]:
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(13)  HY(Lyr) = Sym?HY (M), H'(Ly) = H'(M)® H(M), HQ(EM);/Q\Hl(M)

(14) H°(L)) ;/Q\HO(M), HY(Lh,) = HY(M)® H' (M), H?*(Ly,) = Sym?H(M).

In the notation of Donagi and Witten [DW, 3.3], we have that for integers a, c € Z,
Ewga(cé) ~ OCX(;(a,a,C)Jr

1.3. The Scorza correspondence and the Szeg6 kernel. We now fix an even theta-
characteristic 17 on a smooth curve C' of genus g such that h°(C,n) = 0. Following [DK] we
introduce the Scorza correspondence associated to the pair [C, 7], by setting

S(C,n) = {(:c,y) eCxC: hO(C,n(:v —y)) # 0}.
The correspondence S(C,n) being symmetric, it is the inverse under the map ¢ of a curve
T(C,n) on C?| that is,
S(C.n) = ¢*(T(C,n)).

If [C,n] € S \Onun, then, since S(C,n) is disjoint from the diagonal, it follows that the
double cover S(C,n) — T(C,n) is unramified. It has been proved in [FV2, Theorem 4.1]

that, for a general point [C,n] € 3;, the curves S(C,n) and T(C,n) are smooth. In
particular, by the adjunction formula, the genus of S(C,n) equals 1 + 3g(g — 1), whereas
the genus of T(C,n) equals 1 + 3g(g — 1).
The morphism Gc: g; - ﬂmy(g,l) factors through the moduli space ﬁl—i—%g(g—l) of
Prym curves of genus 1 + % g(g — 1) and, following diagram (2), we can write
Se=xo&,
where £([C, 7)) := [S(C,n) = T(C,n)] and x: ﬁ1+%g(971) — M 34(g—1) is the morphism

associating to an admissible double cover the stable model of its source. We refer to [FL,
Proposition 4.1] for a detailed study of this map.

We introduce the difference map
p: CxC—JC,  ox,y) =0c(x—y).

Recalling that ©,, is the symmetric Riemann theta divisor associated to 1 (see (3)), it is
well-known, see [DK, Proposition 7.1.5], or [BZvB, 3.4] that ¢*(O(0,)) = nXn(A), thus

(15) Ocxc(S(Cim)) = pri(n) ®@pri(n) ® Ocxc(A) = nEn(A).

Using the canonical identification n X n(A)a = O¢, we can write down the following
exact sequence on C' x C"

0—nXn — nKnA) — Oc — 0,
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which gives rise to the following exact sequence of cohomology groups:
0 — H(C,n) ® H(C,n) — H°(C x C,nXn(A)) — H(C,Oc¢)
— (HCpeH (Cm) @ (H(C.n) @ H(C.n)).
Therefore, when [C, 7] € S \Opun, that is, when h°(C,n) = 0, we have that
HO(C’ x C,nXn(A)) = HY(C,00).
From (15), we obtain that
(16) Oc) (T(C,m)) = Ly(6).

1.4. From the Scorza curve to the Szeg6 kernel. We now explain how the Scorza
curve S(C,n) can be viewed as the zero locus of the Szegé kernel defined by (4).

Definition 1.1. The (symmetric) Szegd kernel of the pair [C,n] € S \Oyun is defined as
the unique section s, of the line bundle n[x1n(A) on C x C' such that such that s,z = ida.

By definition, s, is a symmetric function on C' x C' and the Scorza scurve S(C,n) is its
vanishing locus.

If h°(C,7n) = 0, then S(C,7n) is a uniquely determined curve in its linear system on C x C,
whereas, when h?(C,n) = 2, we have

W (C x C,nEn(A)) > 4.

The limit of the Scorza correspondence for a general point [C, 7] € Oy, viewed as a curve
in C' x C, belongs to the linear system |n X 7n(A)| which has dimension at least 3. This

limit curve is symmetric, that is, the inverse image of a divisor on C'® which has to be an
element of the linear system |£,(8)| on C®). The following calculation shows that the limit
of the Scorza correspondence when h%(C,n) = 2 exists and it is unique.

Proposition 1.2. If [C,n] € S is such that RO(C,n) < 2, then hY (C(z),ﬁn@)) =1.
Proof. We consider the following exact sequence on C(?)
0 — Ly(=26) — Ly — Ox(Ly) — 0,

noting that Ox(L,) = n®? =~ we. Writing the long exact sequence in cohomology and using
the identifications (13) we obtain the following exact sequence:

(17) 0 — H°(C@, £,(—20)) —> Sym? H(n) =% H(wc) — H'(C?), L£,(~26))

2
(18)  — H()@H' () =5 H'(we) — H*(CP), £,(=26)) — N\ H'(n) — 0,

where the maps ug and U are given by cup-product. By, e.g., [I2, Appendix], we have that
We2) = Ly (—0), therefore by Serre duality we also obtain that

H*(CP), £,(-20)) = HO(C®), Lo, @ Ly (=0 +20))" = HO(C?), £,(6))".
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When h°(C,n) = 0, then clearly H° (C(Q), L,(6))" = H'(C,wc) = C. When, on the other
hand, h°(C,n) = 2, we then observe that the cup product map uj is surjective, because it
is nonzero and h'(C,wc) = 1. Therefore we obtain the canonical identification

H(CP), £,(5))" = /2\H1(C’, n) = C.

We conclude that whenever h°(C, n) < 2, the linear system |£, ()| contains a unique curve,
which is the limit in C'® of the Scorza correspondence. O

1.5. The limit of the Scorza correspondence on S;. The conclusion of Proposition 1.2
offers a way to put forward a definition of the curves T'(C,n) and S(C,n) for every smooth
curve [C,n] € SF. However, this potentially leads to non-stable (or even non-reduced)
curves in C, respectively, in C x C.

Let p: Cy — 8; be the universal smooth even spin curve of genus g, that is, the stack

of triples [C,n,p], where [C,n] € S; and p € C. We denote by CZ — S}

g Y
P2 052) - S;r the relative Cartesian and symmetric powers of the universal curve C; — S; .
The symmetrization morphism q: Cg - Cé2) is ramified along the relative diagonal D, < Cg

and we let d4 be the divisor class on C§2) whose pull-back under ¢ is D,. Let n, be a universal
even spin bundle? over Cy. By definition, the restriction of 1, to the fiber of C;, — S; over

C,n] is the spin bundle 1 € Pic? 1(C). We denote £, the line bundle on ¢t? such that
n n Mg g
(19) q* (ﬁng) = pri (1) ® pr3(ny),

where pr;: C; — C,4 are the two projections.

respectively, by

By Proposition 1.2, the generic fiber of (p2)x(Ly,(04)) is one-dimensional. Hence, since pa
is flat, the push-forward (p2)«(Ly, (64)) is a reflexive sheaf of rank one. Via the Auslander-
Buchsbaum formula, there exists an open subset 8;“’6 of S; whose complement S \S;”ee
has codimension at least 3 such that (p2)«(Ly,(d,)) is locally free over Sgree.

Clearly, 74 is only determined up to the pull-back under p of a line bundle from S; and
we normalize 7, in such a way that

(p2)* (Eng (59)) |S§ree = OS{eree .

Definition 1.3. For any smooth spin curve [C,n] € S;ree, we define the limiting Scorza
correspondence inside the symmetric product C®@ to be the image of the natural map

(p2)« (Lng(5g))|[an] — HY(C?), £,(5)).

Definition 1.3 singles out a one-dimensional subspace of H° (0(2), 57,((5)) for a spin curve
[C,n] € S;ree. The inverse image in C' x C' of the zero scheme of a non-zero element of this
one-dimensional subspace gives a well-defined, possibly non-reduced, curve in C' x C.

2Note that since Sy has the structure of a Zs-gerbe due to the fact that each stable spin curve has a copy
of Z2 in ts automorphism group, the universal line bundle 1, should be viewed as a Zj-twisted line bundle
over Cg4, see also the discussion in [DW, 1.1].
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1.6. The limit of the Scorza correspondence at a general point of ©,,;. In what
follows, we determine the limit of the Scorza correspondence when h%(C,7n) = 2. To that
end, we fix a general point [C,n] € Opu, therefore |n| induces a cover f: C' — P! of degree
g — 1. We may assume that the pencil |n| € ng_l(C') has only simple ramification points.

The ramification divisor SRam of f belongs to the linear system |we ® f*(Op1(2))| = ‘w%Z‘
and consists of 4g — 4 distinct points. We write Ram = x1 + -+ - + 244 4. In particular, the
canonical bundle we induces canonically a double cover

(20) CN'77 —C
branched over the points x1,..., 24 4. Note that g(CN'n) =4g — 3.

We introduce the trace curve
(21) L= {z+ye @ H(Cn(-z—y) #0}

and its double cover fn =gt (Fn) c C x C. Tt is well known, see, e.g., [12, Lemma 2.1]
that

(22) Oc(z) (Fﬂ) >~ ﬁn(—(S).

By the adjunction formula, using again that woe) = Lo, (—0), we find that T';, is a curve
of arithmetic genus g(Fn) = w. Since |n| is simply ramified, using, for instance,
[vdGK2, Lemmas 2.1 and 2.2], we conclude that, for a general choice of [C,n] € Oy, the
curves I';, and f‘n are smooth and irreducible.

Theorem 1.4. We fiz a general vanishing theta-null [C,n] € Opun.
(1) The limiting Scorza correspondence T(C,n) is the transverse union of I'y and the diag-
onal A = C, meeting at the 4g — 4 diagonal points 2-x1,...,2 - x49—4 € c@,

(2) The limiting Scorza correspondence S(C,n) is the transverse union of fn and the curve
C, meeting at the (49 —4) diagonal points (v1,21),. .., (Tag—4, Tag—a).

Proof. We pick a general point [C,7] € Opu. Since I, € ‘En(—é)‘, whereas A € |26],
it follows that that I'y + A € |£,(d)|. Since in Lemma 1.2 we also established that
hY (0(2),£n(5)) = 1, it follows that I'y + A is the only curve in the linear system |L,(n)|.
Note that I'; and A intersect at the 4g — 4 point of the form 2 - z, where z € Ram. Since

o(T) + 9®) + # (0, n F) -1 = ©=D =D + 302D
it also follows that the intersection of the curves I';, and A =~ C is everywhere transverse,
in particular the curve I';, U A is stable and is therefore the limiting Scorza correspondence
T(C,n).

Passing to the cartesian product, the limiting Scorza correspondence as a curve inside
C x C is then the non-reduced curve 2A + fn- The corresponding stable curve S(C,n)
must be an admissible double cover having as target a nodal curve stably equivalent to the
stable curve I';, U A, where we identify A with C. Fori = 1,...,4g — 4, we insert a smooth
rational curve F; =~ P! meeting I';, at the point Z; := 2. x; (viewed as a point of I';)) and A

+g—144(g—-1)=1
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at the point z; := 2-z; (viewed as a point of A). We then consider the following admissible
double cover
(23) f: fnuﬁ’l u...uE4g_4uCN’n—>FnuE1 U...U B4 C,

where f‘ &, C~'7, — (' is the cover described by (20), f\fn: fn — I';, is the cover induced by
the map ¢, whereas for i = 1,...,4g — 4, the restriction f|Ey~: EZ — F; is the double cover
branched over the points Z; and z; .

Note that this is the procedure prescribed by the Stable Reduction Theorem, see , e.g.,
[HMo, p. 125] in order to eliminate the multiple component in the limiting curve 2A + fn'
Indeed, assuming we have a family of curves ¢: X — (T,tg), where T is a smooth 1-
dimensional base such that =1 (¢) is a smooth curve for ¢ € T\ {to}, whereas ©*(0) = 2A+fn,
then the total space X is necessarily singular at the points A - fn‘ Blowing these 4g — 4
points up, making a base change (T,ty) — (T,to9) of order 2 and then normalizing, the
resulting fibration ¢’: X’ — T has central fibre equal to IN“,] +E e+ By 5,7, where

E! is the inverse image of the corresponding exceptional divisor of Blsyy_4(X), whereas CN‘77
is the double cover of A = C' branched over the points A - E!. This finishes the proof. [

=+
2. EXTENSION OF THE SCORZA MAP TO THE BOUNDARY OF S,

We now turn our attention to the limits of the Scorza curves on the boundary of the
moduli space g;r of stable even spin curves of genus g. One has the rational map

Sc: 3:; - M1-‘1-3g(g—1)a 6C([C, 77]) = [S(Ca 7])]7

considered in the Introduction. Since g:; is a normal variety, G¢ is defined outside a set of
codimension at least 2, thus the limit Scorza curves exist generically, as stable curves, on
each boundary component of 3;_ We now describe explicitly a modular extension of Ge,
generically on each boundary component.

For basic facts about the boundary divisors of g;r we refer to [Cor, F2]. The boundary

divisors of 3; are traditionally denoted by A;, B;, where i = 0,...,|5].

2.1. The limit Scorza correspondence over a general point of Ag. We begin with a
general point of the boundary divisor Ag of 3;, corresponding to the following data:

e A general 2-pointed curve [C,p,q] € My_12. We denote by X := C/p ~ ¢ the
stable curve of genus g obtained by identifying p and ¢ and let v: C' — X be the
normalization map with v(p) = v(q) = u e X.

e A line bundle ¢ € Pic?~}(C) such that 7%? = we(p + ¢) and H°(X,7n) = 0, where
we denote by 7 € Pic(X) the locally free sheaf such that v*(n) = nc.

Note that giving n € Pic?™'(X) is equivalent to specifying n¢, as well as a gluing between
the fibres 7, and 7,4

Let v x v: C x C —- X x X be the product map. The limit Scorza correspondence is a
symmetric curve in X x X and we let X be its pull-back under v x v. We have the following
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exact sequence on X:
0—0x —v,0c—C,—0
which, for any z,y € C\{p, ¢} gives us the exact sequence
(24) 0— n(z—y) — vs(nc(z —y)) — C, — 0,
where to simplify notation, we identify v(z) with z and v(y) with y. We denote by

Ozy € HO(Ca ne(r — Z/))
a non-zero section. The limiting Scorza curve S(X, n) corresponding to the point [X,n] € Ay
contains the closure of the set of pairs (z,y) € X x X such that h%(X,n(z —y)) # 0, that
is, the image of 0., is zero in C, in the exact sequence (24). Note that o,y - 0y, €
H(C,n&*) = H(C,wc(p + q)) is a meromorphic differential on C' with non-zero residue
at both p and ¢, unique modulo the image of H°(C,w¢).

Definition 2.1. Given a general spin curve [X = C/p ~ ¢q,n] € Ag as above, we define the
correspondence X as the closure in C' x C of the locus

Lo := {(z.) € (C\[p.a}) x (C\{p,a}) +
Ozy(p) = 0zylq), for 0#o,y€ HO (C, ne(x — y))}

The equality 0, 4(p) = 044(q) is to be understood in terms of the identification of the
fibres no(x — y)), and nc(z — y)|, which is part of the data defining 7. Next we determine
the class of the curve X:

Proposition 2.2. The correspondence X is symmetric of valence g. Furthermore 3 inter-
sects the diagonal A at the points (p,p) and (q,q).

Proof. The symmetry follows from the fact that the image of ¥ in X x X is symmetric.

Since C' is general, we can write ¥ = a(F + F») 4+ bA. To calculate the intersection of
Y with a general fibre F; of the projection C' x C' — C', we choose a point z € C\{p, ¢}.
From Riemann-Roch it follows that H°(X,n(z)) is one-dimensional. Let o, be a generator.
The points y € C such that (z,y) € ¥ are the zeroes of o, which, via the Mayer-Vietoris
sequence, can be considered a nonzero section of a line bundle of degree g = deg(nc) + 1
on C, that is, X - F1 = g.

Assume now that (z,z) € S(X,n). If z € C\{p, ¢}, then, by semicontinuity, we obtain
that h°(X,n) = 1, which is a contradiction. To deal with the case x = p, we construct a
family ¢: X — (B, 0) of spin curves of genus g endowed with two section Z,y: B — X, such
that ¢=1(0) = C U E U E', with E and E’ smooth rational curves such that C' n E' = {p},
C nE ={q} and E n E' is one point that we denote p’. Furthermore,

2(0) =z e E\\{p,p'} and (0) =ye E"\{p,p}
are distinct points on E’. We may also assume that each fibre X, = ¢~1(b) is endowed with
a spin structure 7, € Pic? !(X}) such that h?(Xp, my(2(b) — 3(b))) = 1. Since the limiting
spin structure on the central fibre ¢=1(0) = C' U E is given by that corresponding to the
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curve [X,n] € Ag we started with, it follows that ngc = nc, 1oz = Opr and ngp = OF.
Writing down the Mayer-Vietoris sequence on C'u E' U E, we obtain:

0 — HY(COBUE' o(z—y)) — H*(C,nc)®H (E', Op(z—y))®H(E, O) ™3 C

P
Denoting by o¢ a generator of the vector space H%(C,n¢), it follows that, given z, the point
y € E is uniquely determined by the condition that the unique section o € HY(E', O (z))
that is compatible with oc and with a nowhere vanishing generator o € H°(E,Og)
vanishes at the point y. This shows that (p,p) € ¥ and the same argument yields that
(¢,9) € . O

Proposition 2.3. The genus of ¥ equals g(X) = (g — 1)(3g — 2).

Proof. Use Proposition 2.2 to write ¥ = (¢ — 1)(F} + F>) + A and couple this with the
adjunction formula. O

Note that h°(C,n¢) = 1 and write supp(nc) = {z1,...,74-1}. We may assume that
p,q ¢ supp(nc). By Serre Duality, we find that H°(C,nc(z; — p — q)) # 0, therefore
(zi,p), (xiyq) e X for i =1,...,g — 1. By symmetry, we also have that (p,z;), (¢, x;) € 2.

We are in a position to describe the limiting Scorza curve for a general point of Ag.

Proposition 2.4. The limit Scorza curve S(X,n) corresponding to a general spin curve
[X,n] € Ay is the irreducible stable curve obtained from the smooth curve ¥ € C x C by
identifying the following 2g — 1 pairs of points:

(p:p) ~ (¢,9) and (z;,p) ~ (xi,q), (p, @) ~ (¢, 23) fori=1,...,9—1.
Note that the genus of the resulting curve is, as it should be,
Pa(S(X,m) = g(2) +2(g = 1) +1=1+3g(g — 1).

Proof. We already explained that (v xv) ™1 (S(X,n)) = X, therefore S(X, n) is obtained from
Y. by possibly identifying pairs of points of the form (z, p) and (x, q) (respectively (p, z) and
(q,z)). Since, by Proposition 2.2, the valence of ¥ equals g and we have already exhibited
g distinct points lying in the fibre of X over the point p € C' (respectively ¢), we find that
S-prit(p) = (p,p) + (P, 1)+ -+ (P, 2g 1) and S-pry(q) = (¢, ¢) + (g, 21) +- -+ (g, 2 1),
respectively. A similar statement holds with respect to the projection pry. It thus follows
that these pairs of points get identified, which brings the proof to an end. O

2.2. The limit Scorza curve for a general point of By. We begin with a general
element [X, 7] of By, corresponding to a nodal curve X := C' Uy, o E, where E is a smooth
rational curve meeting C at p and ¢, as well as to a line bundle n € Picg_l(X ), whose
restrictions to the components of X are an even theta characteristic n¢ := nc on C,
respectively, 7z = Og(1). Note that [C, p, q] € My_12 may be assumed to be general. We
consider the decomposition of the cartesian product

XxX=CxC uCxFE u FExC UFE xE,

where the points p and ¢ are thought of as lying on both C' and E. In C' x C one considers
the Scorza curve S(C,n) which is smooth of genus 1+ 3(g — 1)(g — 2). By semicontinuity,
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S(C,n) appears as a component of the limit Scorza curve. We then consider the pencil
Inc(p + q)| € ng(C) inducing a regular map f: C — E = P! and an embedding

(1,f): C — CxE

whose image we denote by C7. Permuting the factors, we define Co € E x C to be the
image of the map (f,1): C - E x C.

We set S(C,nc)p = {z1,...,24-1} and S(C,nc)y = {#,...,25,_1}. We normalize the
map f in such a way that

(25) flx1) == flxg-1) = f(g) =p€ E and f(a}) ="+ = f(xg1) = f(p) =q€ E.

We identify the points (z;,p) € S(C,nc) and (x;, f(x;)) = (x;,p) € C1, as well as the
points (z},q) € S(C,nc) and, respectively, (2}, f(x})) = (2},q) € Cy fori = 1,...,9 — 1,
where we use (25) throughout. Similarly, we identify the points (p,x;) € S(C nc) and
(f(zi),z;) = (p, ;) € Ca, as well as the pairs of points (¢, z}) € S(C,nc) and (f(x}),x}) =

(q,x}) € Cy for i = 1,...,g — 1, respectively. Therefore S(C,nc) meets transversally both
Ci and C at 2g — 2 points. Finally the points

(26) (f(@),q) = (p,q) € C2,  (f(p),p) = (q,p) € Co
(27) (p, f(p)) = (p,q) € C1, (¢, f(q)) = (¢,p) € Ch

can also be identified in pairs, thus C7 and C meet transversally in two points denoted by
(p, q), respectively, (g,p).

(x)/

F1GURE 2. The Scorza curve corresponding to a general point of By

Proposition 2.5. The Scorza curve corresponding to a general point of By is the stable
curve

S(C, 770) () 01 U CQ,
where its components meet along the identifications described by (25) and (26).
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Proof. Let (gp: X — (B,0), 77;() be a one-dimensional family of stable spin curves with

(tpfl(o), 77X|g0’1(0)) = (C Yip,q} E’”)

as before, and such that Z,y: B — X are sections of ¢ with h°(X,, ny(Z(b) — (b)) = 1 for
each b € B, where n;, := 1 x,. Set T(0) =: z and y(0) =: y.

If z,y € C\{p, ¢}, then using the isomorphism H°(X,n(z —y)) = H°(C,nc(z — y)), we
obtain that (z,y) € S(C,nc), which accounts for this component in Proposition 2.5. Let
us assume now that = € C\{p, ¢} and that y € E\{p,q}. Writing down the Mayer-Vietoris
sequence on X we obtain:

0— H(X,n(z —y)) — H(C,nc(z)) @ H(E,Op(1)(~y)) =23 C2,.

Therefore there exists a section 0 # o € H°(C,nc(x)) and a section o € H°(E, Op(1))
uniquely determined by the conditions og(p) = oc(p) and o0g(q) = oc(q). The point y € E
is the unique zero of o, that is, z determines y. Assume now that x, 2’ € C are two distinct
points such that f(x) = f(a’) € E, that is,

W(Cmelp+q—x—2a)) =h(Conc(z+2' —p—q)) > 1.

We now argue that if y, y’ € E are such that H*(X,n(z—y)) # 0 and H*(X, (2’ —y')) # 0,
then y = ¢/, which will show that C; is the component of the limit Scorza curve lying in
C x E. We may write H° (C, no(x + :c’)) = {(o¢, 0}y, where H° (C, nc(a:)) ~ C-o0¢ and
H%(C,nc(2)) = C- of,. By assumption

[oc(p), ot(p)| = [oc(a),06(q)] € E = P

But this is precisely the condition that the same section or € H° (E, (’)E(l)) glues to both
oc and to oy, at the points p and ¢, thus showing that y = 3. A similar argument shows
that the curve Co € E x C is contained in the limit of the Scorza correspondence.

Via a similar Mayer-Vietoris sequence, one shows that the case when at least one of the
points z,y specializes to E\{p, q} does not occur. When, on the other hand, = specializes
to p and y specializes to ¢, by blowing-up X at the points p and ¢, inserting exceptional
divisors and writing down the Mayer-Vietoris sequence on the resulting central fibre, we
easily concludes that this case is possible and corresponds to the intersection of C'y and Cs
at the points (p,q) and (q,p).

Finally, we discuss the limit Scorza curve along the intersection of C x C' and C' x E
(respectively, E x C'). In this case, we may assume, without loss of generality, that y = p
and z € C\{p, ¢}. We blow-up X at p and denote the exceptional divisor E’. Denoting the
proper transforms of C' and E by the same symbols, we consider the new central fibre

X' =CuEUFE, {p}:=EnE, EnC={q}, EnC={p}

where y € E"\{p,p'} and the spin structure nx- is defined as the pull-back of 7. From the
exact sequence

0— H(nx(z —y)) — H(C,ne(2)) @ HY(E,0p(1)) @ H(E', O (—y)) —> C3

,p',q’
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we obtain that necessarily H° (C, ne(xr — p)) # 0, that is, € {z1,...,24—1}, in which
case the point (z;,p) € S(C,nc) can be identified with the point (x;, f(z;)) = (zi,p) € C1,

where we have used (25). This completes the proof.
(|

2.3. The limit Scorza curve at a general point of A;, when ¢ > 1. The general point
of the boundary divisor A; of g;r corresponds to general 1-pointed curves [C,p] € M,
and [D,q] € Mgy_;1 together with even theta-characteristics nc and np on C and D,
respectively. To this data we associate the even spin curve of genus g

(28) [X=CUEUD,nc=ne, ne=0p(l), np=np|eA,

where E is a smooth rational curve meeting C' at the point p and D at the point g. We fix
such a general point of A;.

We consider the Scorza curves S(C,nc) € C x C and S(D,np) € D x D. Using [FV2,
Theorem 4.1], we may assume that the curves S(C,n¢) and S(D,np) are smooth, and then
of course g(S(C,nc)) =1+ 3i(i —1) and g(S(D,np)) =1+ 3(g —i)(g—i—1).

Using Definition 1.3, it easily turns out that S(C,n¢) (respectively S(D,np)) is the
component of the limit Scorza curve lying in the component C' x C' (respectively D x D) of
the cartesian product of the genus g stable curve given by (28). We are left with determining
the limit Scorza components in C' x D and D x C.

Put {z1,...,2;} := S(C,nc), and, similarly, {y1,...,yg—i} := S(D,np)e. For a general
choice (28) of a point in A; the points {x,};_, and {yx}7_] are pairwise distinct.

¢

Inside C' x D we consider the “vertical” copies {z;} x D, where ¢ = 1,...,i, as well as
the “horizontal” copies C' x {yx} for k = 1,...,g —i. These intersect at the i(g — ¢) points
(ze,yx) € C x D. The point (z,q) of the “vertical copy” {z,} x D € C x D gets identified
with the point (x¢,p) of the curve S(C,nc) € C x C. The point (p,yy) of the “horizontal
copy” C x {yx} gets identified with the point (q,yx) of the curve S(D,np) € D x D.

By symmetry, inside D x C' we consider the “vertical” curves {y;} xC fork =1,...,g9—1,
as well as the “horizontal” curves {x¢} x D for £ = 1,...,4, which intersect in the i(g — 7)
points (yx,z¢) € D x C. The marked point (yg,p) of each component {y;} x C is then
identified with the marked point (yg, q) of the Scorza curve S(D,np). Finally, the marked
point (zy, q) of each component {z,} x D is identified with the marked point (x¢,p) of the
Scorza curve S(C,nc).

We are now in a position to describe the limiting Scorza curve for a general point in A;:

Proposition 2.6. The limit Scorza curve corresponding to a general point (28) of the
boundary divisor A; is the following stable curve:

S(C,ne) U (({xl} X D) U... U ({xz} x D) V) (C’ X {yl}) ..U (C x {yg_i})> U
S(D,np) U ((D x{z1}) u... U (D x {zi}) v ({yi} x C) u ... U ({yg—i} x C’))
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)

pxD k0 N .

T [p2)
- Cx{z}

Dx{x ,,L,,,, |
@x)

S(C.nc) S(D,Mp)

F1GURE 3. The Scorza curve corresponding to a general point of A;

This decomposition corresponds to the components C x C, C x D, D x D and D x C' (in
this order) of the cartesian product.

Remark 2.7. Note that none of the components of the Scorza curve vary in moduli as the
point of attachment p (respectively ¢) varies on either C' (respectively D). Observe also that
the stable curve described in Proposition 2.6 has v := 2 + 2(i + g — i) = 2 + 2g irreducible
components, all smooth. The sum of their genera equals

o= g(S(C.ne)) + g(S(D,mp)) + 2((g — i)i + i(g — 7))
=24 3i(i — 1) +3(g —i)(g — i — 1) + 4i(g — i) = 3g> — 2gi + 2i% — 3g + 2.

These components meet at a total number of § := 2i(g — i) + 2(g — i) + 2i = 2(ig — i* + g)
nodes. It follows that the arithmetic genus of the curve described in Proposition 2.6 equals
pa(S(X,n)) =1+0+06—v=1+3g(g— 1), which provides a numerical verification of the
conclusion of Proposition 2.6.

Proof of Proposition 2.6. To simplify notation, we will identify the marked point p € C' and
q € D, respectively. We consider the curve of compact type C' u, D as above and assume
a pair (z,y) € (C u D) x (C u D) lies in the limiting Scorza correspondence S(X,n). We
may assume that = # y and that p ¢ {z,y}. If 2,y € C (respectively, if z,y € D), we
quickly reach the conclusion that (x,y) € S(C,nc) (respectively, that (z,y) € S(D,np)).
We may assume thus without loss of generality that z € C\{p} and that y € D\{¢q}. The
limiting condition on (z,y) can be stated as saying that there exist a limit linear series of
type 92—1 on C u D (in the sense of [EH]), obtained by twisting the spin structure by the
Cartier divisor x — y on the stable curve C' v D. This means that there exists sections
0#o0ceH(Conc((g—i—1)-p+x)) and op € H*(D,np((i + 1) - ¢ — y)) such that

(29) ordy(oc) +ordyg(op) = g — 1.
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We claim that (x,p) € S(C,n¢), that is, z € {z1,...,z;}, or else (y,q) € S(D,np), that
is, y € {y1,...,Yg—i}. Indeed, if neither of these possibilities is realized, then necessarily
ordy(oc) < g—i—1 and ordy(op) < i—1, thus ordy(o¢)+ord,(op) < g—2, which contradicts
(29). Assuming for instance x = z, € S(C,nc), for £ € {1,...,i}, then ord,(oc) = g — 4,
in which case ord,(cp) =i — 1, which is automatic by Riemann-Roch, showing that y € D
can be chosen arbitrarily. This accounts for the component {z,} x D € C' x D inside the
limiting Scorza curve S(X,n). The remaining components can be explained similarly. ]

3. THE SCORZA CURVE AT A GENERAL POINT OF THE DIVISOR B;, WHEN ¢ > 1

Determining the limit Scorza curve along the boundary divisor B; of 3; turns out to be
more delicate than in the case of the divisor A;. We need some preparation and start with
a smooth pointed curve [C, p] € M, and with an odd theta characteristic on C.

We have the exact sequence in cohomology on C(?)

0— H" (Lo (=0) — H° (L) (9)) ~5 H"(C,Oc(2p)) — H' (Low)(=9)),
where we have used that Ox (L, (6)) = 12 @ w4 (2p) = Oc(2p).

Lemma 3.1. Let [C,p] € Mgy be a smooth pointed curve and fix an odd spin structure n
on C with h°(C,n) = 1 and assume p ¢ supp(n). The natural map

HY(CD, £,,)(8)) -2 HY(C,0c(2p))

above is an isomorphism. In particular, if p € C is not a hyperrelliptic Weierstrass point of
C, then the linear system ‘En(p) (6)‘ contains a unique curve Y, , c®,

When p € supp(n), the map p is zero. However, |£n(p)(5)| still contains exactly one curve

Yy,p S O3,

Proof. We use the identification provided by (13) and write

2
HO(C(Q),En(p)(—é)) -~ /\HO(C,n(p)) and
H' (0(2)7 En(p)(_(s)) = H' (Ca’ﬂ(p)) ® H° (C, 77(19))-

If p ¢ supp(n), then h°(C,n(p)) = 1 and H'(C, n(p)) = 0, therefore H* (C(2>, En(p)(—é)) =0,
for ¢ = 0,1, which establishes the canonical identification

(30) H(C®), £,,(8)) = H*(C,0c(2p)).

If, on the other hand, p € supp(n), then H* (0(2), En(p)(—(S)) > Hom(HO(n(—p)), Ho(n(p))),
hence we conclude that the map H?(C,O¢(2p)) — H'! (0(2), En(p)(—(S)) is injective and p
is 0. Therefore H° (C(Q), Loyp) (6)) = N> H® (C,n(p)) (also see Appendix A.3 of [I2], noting
that one can use Serre Duality and the fact that wee ® (Lyp)(8)) ' = Ly—p)(—26)). In
both cases it follows that the linear system ‘L’n(p)(é)‘ contains a single curve. O
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We denote by X, := ¢ '(Y;,) the inverse image in C' x C' of the curve ;, < C(?
singled out by Lemma 3.1. Observe that Ocxc(Xy,p) = 1n(p) XIn(p)(A). Therefore, by the
adjunction formula, we obtain that p,(X,,) = 3¢> + ¢. Similarly, we obtain that

g
(31) Pa(Ynp) = 5(39 +1).
We will show that in general Y;, ), is a smooth curve. We begin with the following result:

Proposition 3.2. Fiz a general point [C,n,p] € 8;1. Suppose x +y €Y, , with x #y and
none of the points x,y belong to supp(n). Then Y, , is nonsingular at the point x + y.

Proof. It is sufficient to prove that H° (C(Z),I{Qmw}/c@) ® Ly (6)) = 0. We have the

following Koszul resolution of the ideal I{zm ylC®

0 — O (—Cazty) @ Oc) (—Cri2y) —
O (=C2) B Ocer (—Cary) @ Ocnr (=Coy) — I}, , 1 jo) — 0,

which, after twisting by the line bundle £, ,(d), becomes

D)

0— En(pf%fy)(é) (‘D L(p—z—2y) (6) — £n(p7296)(5) (‘D En(pfzfy)(‘s) (‘D En(pry)((S)

(32)
—_ {2x+y}/C(2> ® Ly(p)(d) — 0.

Since p,z and y do not belong to supp(n), by using suitable twists of the exact sequence
0 = Oc»(—20) = Opey — Ox — 0, via the identifications (13), we obtain (also see
Appendix A.3 of [I12])

H° (C(Z)vﬁn(pﬁ:v)(‘s)) =0, H° (C(Q)v ﬁn(pf2y)(5)) =0 and H" (C(Z)?ﬁn(pw*y)(é)) = 0.
We therefore obtain from (32) the following exact sequence

0— H° (I{2z+y}/c(2) ® Ly(p) () — H' (Ln(p-20—y)(9)) © H' (Lo(p—a—24)(9))
— H'! (ﬁn(prm) (5)) S H' (‘Cn(pfxfy) (5)) S H' (‘Cr](pry) (5)) —

which, after applying Serre duality, yields by taking duals the following exact sequence:

o' (En(fpma:) (_25)) ®H' (ﬁn(*zﬂrww) (_25)) @ H' (En(*pﬁy) (_25)) —
H' (Lo praaiy)(=20) @ H' (Ly(praray(—20)) — H (L 00 ® Ly ()" — 0.
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We now consider the following morphism of exact sequences

(33)
Sym®H° (n(—p + 2)) H®(wo(—=2p + 4x)) HY (L pran)(—20))
® @ ®
Sym?HO (n(—p + 2y)) —— HO(C,we(—2p + 4y)) —— HY (L pi2y)(—20))
@ @ @®
Sym*HO(n(—p + = +y)) HO(we(—2p + 2z + 2y)) HY(Ly(—praty)(—20))

I G 5
Sym? HO(5(—p + 22 + y)) —+ HO(we(—2p + 4z + 2y)) —> HY (Lo pransy)(—20))
S S ®
Sym*H®(n(—p + z + 2y)) HY(wo(—2p + 2z + 4y)) HY(Ly(—praiay)(—20))
where p is the direct sum of the corresponding multiplication maps at the level of global

sections, whereas (3 is given componentwise by 3(a, b, c) = (a —¢,b—c). The last horizontal
arrow in diagram (33) is surjective because

H' (0(2)7 ﬁn(—p+2m+y)) =0 and H' (0(2)’ Eﬁ(—p+ﬂf+2y)) =0,

which follows because of our generality assumptions via the identifications (13). To conclude
that the map ~ is surjective it remains to show via (33) that

(34) Im(j) + Im(B) = H(C,wc(—2p + 4z + 2y)) @ H(C,we(—2p + 2 + 4y)).

Since the summands Sym?H®(C,n(—p + 2z + y)) and H°(C,wc(—2p + 4x)) map via
the maps j, respectively, 8 only into the summand H° (C, wo(—2p + 4x + 2y)) (a similar
conclusion holds if we interchange x and y), a sufficient condition for (34) to hold is that

(35) j(SymzHO(C,n(—p—i-%: +y))) +H° (C’, wc(—2p+4m)) = H° (C, wc(—2p+4x+2y))
and
(36) j(SmeHO(C,n(—ererQy))) +H°(C,we(—2p+4y)) = H°(C,we(—2p +4y +21)).

Note that h®(C,wc(—2p + 4x)) = g + 1 and h°(C, we(—2p + 4z + 2y)) = g + 3.

As observed earlier, the assumption that p, x,y do not belong to the support of 1 implies
ho(C,n(—p+2x+y)) = 2, therefore dim Sym?H°(C,n(—p+ 2z +%)) = 3 and (35) amounts
to proving that the intersection

(37) j(Sym2HO(C,n(—p+2x+y))) ﬂHO (C,we(—2p+4x)) € H(C,we(—2p+47+2y))
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is 1-dimensional. Similarly, the equality (36) amounts to the statement obtained from (37)
if we interchange = and y.

Observe that H (C, we(—2p + 41‘)) is the subspace of H° (C, wo(—2p + 4z + 2y)) con-
sisting of sections vanishing with multiplicity at least 2 at y. We choose a basis (o1, 02) of
H°(C,n(—p + 2z + y)), where ord,(c3) > 1 and ord,(c1) = 0. Assume there is a further
element other than j(03) in the intersection (37). Without loss of generality we may assume
it to be j(0? +01-09+03). We obtain ord,(0? + 0y -09+03) > 2, which implies ord, (o) > 1,
that is, h%(C,wc(—p + 22)) = 2, which is a contradiction. This finishes the proof. O

Theorem 3.3. For a general choice of [C,n,p] € ’5;1; the curve Xy, has a unique nodal

singularity at the point (p,p), whereas Yy , is a smooth curve.

Proof. First, we show that X, , is singular at the point (p,p) € C' x C' and, to that end, we
prove that the intersection multiplicity at (p, p) of X, , with both the diagonal A and with
the translated curve C' x {p} is at least two.

We may assume that p € C' is not a hyperelliptic Weierstrass point and p ¢ supp(n). We
have the following exact sequence
0— H" (0(2)71{2~p}/0(2> ® Ly (9) — H° (0(2)7 Ly (9) — HO(0p(2p)).
Using (30) and the fact that since H°(C, O¢(p)) = H°(C, Oc(2p)), the map
H(C,0c(2p)) — H°(0,(2p))
is equal to zero, therefore Y, ,, passes through the point p:=2-p¢€ A.

We consider the embedding ¢: C' < C) given by i(z) := p + = so that Im(:) = C,, (see
Section 1.2). Then * (ﬁn(p)(é)) =n(2p) € ng+1(C’), that is, the intersection cycle C), - Y,
can be regarded as an element of the pencil |n(2p)| that passes through the point p. Since
hO(C,n(p)) = 1, one must have

Cp-Yyp = 2p +supp(n) € C(gﬂ)a

that is, (Yn,p - Cp)p = 2 (since p ¢ supp(n)). It immediately follows that we also have
(Xpp - C x {p})(p,p) = (Xyp - {0} x O) (pp) = 2

Next we determine the intersection of X, , with A. Denoting by j: C — C x C the
embedding j(z) := (z,2), since j*(Ly ) = Oc(2p) and RY(C,Oc(2p)) = 1, it follows that

(A Xnp) oy = 2

Since the curves A and C x {p} have distinct tangents at (p, p), it follows that X, , is singular
at (p,p). On the other hand the curves A and C, are tangent at the point 2 - p € @, so
the above argument only shows that Y}, , is tangent to A at p.

In order to show that Y, , has no other singularity, we specialize to the situation when
p € supp(n), in which case n(p) € ng(C) is a pencil. We consider the trace curve

(38) Ty = {2 +ye C? H(Conlp —z — y)) # 0}
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Then, via [I2, Lemma 2.1], we observe that Og) (I'yp) = Ly;)(—6). Since, via Lemma
3.1, we have that h° (0(2),,/:77(]0)(5)) = 1, it follows that the curve Y , splits into the union
of I'y,y and A. Assuming that 7(p) is simply ramified, the union Y, , u A is transverse.
Furthermore, using again [vdGK2], the curve I'; ) is smooth, therefore the union I'; ) U A
is a stable curve. In particular, Y, ) is a nodal curve for a general choice of [C,n, p].

Assume xg + yo € Y, is a singularity, where xo € supp(n) and yo € C\{zo,p} (see
Proposition 3.2). Considering the embedding j,,: C' — C®? given by Jzo(y) = xo + v,
since j* (Oc@ (Yap)) = n(p + 20), and |n(p + z0)| = [n(zo)| + p, it follows that yo is
one of the ramification points of the pencil n(zy) € ng(C’). Assume first yo ¢ supp(n).

Since (Cy, - anp)mo-&-yo > 2, we obtain that H(C,n(p + yo — 2x9)) # 0. It follows that

HO(C,n(zo — 2yo — p)) # 0, that is, p has to be one of the anti-ramification points® of the
pencil n(zg). Since there are finitely many such pencils, this singles out a finite number of
points p and, for a general choice of p € C, this scenario does not occur. If, on the other
hand yo € supp(n), we obtain that

(39) H(C,n(xo — 2y0) # 0 and  H(C,n(yo — 2x0) # 0.

In this case, n(zg) has yp as a base point, which is impossible for a general [C,n], which
implies that (39) is impossible. It follows that Y}, has no singularities at a point (xo, yo),
where xo € supp(n)\{p}. Combining this with Proposition 3.2, we conclude that the last
possible case to be ruled out is when Y, , has a nodal singularity at the point p. We consider
the cover ¢: X, , = Y, and recall that (p,p) is a nodal singularity of X, ,. Since ¢ is étale
everywhere on X, ,\{(p,p)}, we reach a contradiction with the fact p,(X, ) = 2pa(Y5p),
which finishes the proof. O

Corollary 3.4. Let g > 3. For a general choice of [C,n] € Sy, the curve Yy, is nodal for
every p € C.

Proof. It suffices to combine Proposition 3.2 and Theorem 3.3. It follows that Y, ;, is smooth
when p ¢ supp(n), whereas, when p € supp(n), the curve Y, , is the transverse union of the
smooth trace curve I, defined by (38) and the diagonal A of c®. O
Remark 3.5. The double cover ¢: X, , — Y, ,, is not admissible in the sense of [HM]. We
describe the associated admissible double cover. We take the normalization v: lez,p — X,

and let {p*,p~} := v~ {(p,p)}. We attach a smooth rational curve E to the smooth curve
Y, p at the point p = 2.p €Y, ;. Then the associated double cover is given by

(40) |/ X0, 0B — Yoy G B ST = 7,

where fix; = gov and E' is a smooth rational curve meeting X , at the points p™ and
p~ with fig: E' — E being a double cover mapping the points p* and p~ to p € E.

With this preparation in place, we now determine the limit Scorza correspondence of
a general point of B; corresponding to pointed curves [C,p] € M;; and [D,q] € My_;1

3For a cover f: C — P!, we say that a point p € C is an anti-ramification point if it lies in a fibre of f
over a branch point of f.
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together with odd theta-characteristics no on C' and np on D. We write supp(nc) =
{z1,..., 21} and supp(np) = {y1,-- -, Ygi}-

The spin structure n = (nC,OE(l),nD) on the curve X := C Upeo E Ugaw D has a
two-dimensional space of global sections. Imposing the simple-minded limit of the condition
hO(X,n(x—y)) > 0 on the pair [ X, 7], we obtain that the limit of the Scorza correspondence
contains several two-dimensional components. We therefore need to once more take into
account that the Scorza correspondence is the inverse image of a curve in the symmetric
product of C' U D.

Consider a one-parameter family of even spin curves (X,ny) — (B,0) with central fiber
(X,n) as above and generic fiber a general element of S; . We choose a point (z,y) of
the central fibre lying in the limiting Scorza curve. Suppose first z,y € C\{p}. As in the
proof of Proposition 2.6, there exist sections 0 # oc € H° (C, ne((g—1)-p+x— y)) and
0+ ope H(D,np(i-q)) such that ord,(cc) + ordg(op) = g — 1. Since p ¢ supp(np), we
obtain that ord,(op) < i, therefore ord,(cc) > g — i — 1, which leads to the condition

HO(C7T/C(p+$ - y)) # 0,

which is automatically satisfied for arbitrary points z,y € C'. However, the component of
the limiting Scorza correspondence lying in C' x C' must also be the pull-back of a curve
in C®, and this curve lies necessarily in ‘Enc(p)((sc)‘v therefore, using Lemma 3.1, it must
be the curve X, ,. A similar argument yields that the component of the limiting Scorza
correspondence lying in D x D is the curve X, 4.

Assume that € C\{p} and y € D\{q}. Then there exist non-zero sections
oc € HO(CWC((Q —i— 1) ‘p+ 1?)), op € HO(Dﬂ?D((Z + 1) "q — y))a
and op e H'(E,Op((g—i—1)-p+ (i+1)-q)),

with ord,(o¢) 4+ ordy(og) = g —1 and ordy(og) +ordg(cp) = g — 1. In this situation either
y € supp(np), leading to ordy(cp) = i and ord,(cc) = g — i — 1 (and o being uniquely
determined up to a constant by the conditions ord,(cg) = i and ordy(cg) = g —i— 1), or
else x € supp(nc). This accounts for the components C' x {y}, respectively, {z;} x D of the
limiting Scorza curve.

A similar calculation shows that the cases x € C\{p}, v € E\{p,q}, or, respectively,
x € D\{q}, y € E\{p, q} do not appear. Finally, we deal with the case when both z # y lie
on E. Then there exist non-zero sections

oc e H(Cyne((g—1) - p), ope H(D,np(i-q))
and o € H*(B,Op(1)((g—i—1)-p+ (i—1) - g+ 2 —y)).

We get ord,(c¢) < g — ¢ and ordg(op) < ¢, therefore div(og) > (1 —1)-p+(g—i—1)-q.

Given z € E, the point y is uniquely determined by the condition that or vanishes at y.
The curves X, , and X, 4 are nodal at the points (p,p) and (g, ¢), which get identified.

We consider their normalizations X;  , and Y, with the points p*,p~ € X, ;, respec-

tively, ¢*, ¢~ € Xy, ¢, as described in Remark 3.7. We join X, , and Xj by identifying

D»q>» nD->q

pT and ¢, respectively, p~ and ¢~.
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Proposition 3.6. The limit Scorza curve at a generic point [C'u D,nc,np| of By is the
transverse union of the following curves in the Cartesian power C?> U C x D u D x C u D?.

X U (o x D)o (Cxnp)) | ((Pxnc)umo <)) | X,

The decomposition corresponds to the components of the Scorza curve in C' x C, C x D,
D x C and D x D (in this order).

Remark 3.7. The curve exhibited in Theorem 3.6 has v =2(i—14+g—i—1)+2=2g—2
irreducible components and § = 2(i —1)(¢g —i — 1) +2(i —1+g—i—1)+2 = 2i(g —7)
nodes. The sum of the genera of its irreducible components equals

o =pa(X).,) +pa(X;, ) +2(i —1)(g— i) +2(g —i— 1)i.

Taking into account that p, (X,’w p) = 3i2+i—1 and p, (X:m,q) = 3(g—i)?+g—i—1, we verify

that the arithmetic genus of the limiting Scorza curve equals 1 + o — v+ =1+ 3g(g — 1).

” -+
4. THE WEIGHT OF THE SZEGO-HODGE CLASS ON Sg

We shall determine the Szeg6-Hodge class on 3;, that is, the pull-back of the Hodge

class under the Scorza map Sec: 3; --» ﬂ1+3g(g_1). We recall that via Diagram (2), the
morphism G¢ factors through the morphism

(41) é: g;_ - ﬁ1+%g(g_1)7 [Cv 77] = [S(C7 77) - T(C7 77)]7

that is, x 0§ = Gc. We denote by X, ¢! the standard generators of Pic(ﬂ1+3g(g_1)), where
i =0,..., [%HJ. Furthermore, let AP* € Pic(ﬁH%g(g_l)) be the Hodge-Prym class

and &), 0( and §5™ be the boundary classes on R corresponding to Prym structures

1+39(g-1)
having an irreducible underlying curve, see [FL, Ex2ample 1.4] for details. In particular op*™
is the class of the ramification divisor AF"™ of the morphism ﬁl 139(g-1) ™ ﬂl +2g(g—1)
and its general point corresponds to an admissible double cover f: Y’ — Y, where Y is an
irreducible stable curve of genus 1 + % g(g — 1) having a single node n € Y, whereas Y’ is an
irreducible stable curve of arithmetic genus 1 + 3g(g — 1) having a single node n’ € Y’ and
such that f=1(n) = {n'}. We write

%
(42) Asan i= Gc* (V) 2 - ai + cg, - ;) € Pic(S,).

In this section we determine the coeflicient ¢y in this expression. We denote by S the
open substack of S consisting of smooth spin curves [C, 7] such that RO(C,m) < 2. Tt is
well known, see [T1, Theorems 2.13, 2.18] that codim(S;\S7,S;) = 5, therefore replacing
S; by S; has no effect on any codimension one calculation on S; . Let p: C; — S be the
(restriction of the) universal spin curve and by 74 € Pic(C;’) the (restriction of the) universal
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spin bundle. Let E be the Hodge bundle on S; and we also introduce the rank 2g —2 vector
bundle on &,

(43)  Ez := ps(w, @ ny), E3‘[C77] ~ H(C,we ®@n) = H(C,n®?), for any [C,n] € S,.

Denoting by E’ the Hodge bundle on ﬂHgg(g,l) and by &¢°: S --» ﬂHgg(g,l) the
restriction of the Scorza map Gec, the Szegé-Hodge bundle is then, by definition, the pull-
back

Esn = (6¢°)"(E).
Slightly abusing the notation, in this proof we consider the restriction £: S§; — R, L3g(g-1)
of the morphism £ to the open substack S;. We shall explicitly describe Eg,p in terms of
a tautological bundle on S defined in terms of the geometry of the symmetric square of
curves.

We denote by EP" T (respectively by EP™~) the invariant (respectively anti-invariant) part
of the Hodge bundle on ﬁ1+%g(971). Using [FL, Proposition 4.1], we obtain

ram Sram
0

0
(44) c1(EPYT) = APT ¢ (EPH ) = \PY — OT and  y*(\) = 2\P" — 2
Furthermore, we introduce the invariant (respectively anti-invariant) part of the Szegd-
Hodge bundle, by setting
(45) Ed =& (EP"T) and Eg,y := ¢*(EP"7)

We shall separately determine the first Chern classes of the bundles EérzH and Eg .

Proposition 4.1. One has c¢; (]EérzH) = 209277)\ € Pic(S;).

Proof. We start with a point [C, 7] € S, Via Definition 1.3, we introduced the double cover
S(C,n) — T(C,n), where T(C,n) is the only curve of the linear system |£, ()| on Cc®. We
have the canonical identification of the fibre of Ed ; over a point [C, 7] € SF

—+ ~ 170
ESZH‘[C,'I}] ~H (T(Ca n)va(C,n))'

By the adjunction formula
wWr(Cm) = Wo(2) (T(C’ U))‘T(Cm) = £W0®7)(_5 + 6)‘T(C,7l) = ‘Cn@s‘T(Cm)'

Twisting by £,e3 the exact sequence

(46) 0— Oce (=T(C,n)) — Oy — Oy — 0,
then taking cohomology, we obtain the following long exact sequence:
0— H°(C®), Lo (=0)) — H(CP), Lyg) — HO(T(C.), wr(c)
— HY(CW, L, (=0)) — H(C?), L,e5) —> 0.
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Using the identifications (13), we obtain the following natural exact sequence:

2
0— /\ H(wo) — Sym*H(wo @) — H(wr(c,y)) — H'(we) @ H'(we) — 0,

which globalizes to the following exact sequence of vector bundles on S:

2
(47) 0— /\]E — Sym’Es — Ed ; — E — 0.

In order to estimate the first Chern class of E3 (which was defined via (43)), we apply
Grothendieck-Riemann-Roch to the universal spin curve p: C; — S§; and write

c1(Es) = c1(pi(w, ®1y)) = p*[<1 +er(w,) + e (ng) + (c1(wp) J;C1(779))2).

C1\W, A(w
(1 _ 1(2 p) + 152,0))]2: %p*(c%(wp)) = ﬂp*(cf(wp)) _ ?)\7

where we have used that 2c;(ny) = ¢1(w,), as well as Mumford’s formula p (c3(w,)) = 12
From the sequence (47), using that ¢; (Syszg) = (29— 1)1 (Eg), we then compute that

A 11, 2097
W) = (By) = A—a (/\E) +c1 (Sym’Es) = )\—(g—l))\+(29—1)?)\ = gT

This completes the proof. ]

A

We can now determine the weight of the Szegé-Hodge bundle on g;r, that is, the A-
coefficient ¢y in the expression (42) of the class Ag,.

Theorem 4.2. Sections of the Szegd-Hodge bundle are Teichmiiller modular forms of weight

779—25 + . _ T7g—25
= on S, that is, ¢y = “4.

Proof. We are going to compute the first Chern class of the vector bundle £* (Epr’*), which,
coupled with Proposition 4.1, via (44), amounts to determining the class £*(6"™). The
essential part in the proof is establishing that

(48) €4 (0™ = 12(g — 1)[Opur] € Pic(SY)-

To that end, we first note that there is a set-theoretic equality £*(AF™) = Opun. Indeed,
given a spin curve [C,n] € S, assuming that {([C,n]) € AF*™, necessarily the associated
cover S(C,n) — T'(C,n) is ramified, in particular S(C, n) intersects the diagonal A, therefore
we obtain h°(C,n) = 2. The converse inclusion has been established in Theorem 1.4. To
complete the proof of the claim, we explicitly describe the pull-back &* (Epr7_).

We denote by Z the subvariety of the universal symmetric product py : (C;)(Q) - 5,

consisting of the triples [C, 7,2 - z] such that h%(C,n) = 2 and H°(C,n(—2x)) # 0. Fur-

thermore, we let T be the effective divisor on (Cg)@) whose fiber at every point [C,n] € Sy
is T(C,n). Clearly Z < T and codim(Z,T) = 2. By slight abuse of notation we denote by
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€ Pic(T). We consider the following

P2 = Pyl 1 : T — &, the universal curve and g := § ‘7’

vector bundle on Sgo
(49)  B:= (p2)a(op, ®0y), with fibres By, = H* (O wr(cp ® ()

The fact that B is locally free and has this description of its fibres follows from Grauert’s
theorem, coupled with Proposition 1.2. Let f: T — T be the blow-up of the subscheme
Z < T and introduce the universal curve

pT—8;, D=p2olf.
We denote by £ the exceptional divisor of f.

We fix a general point [C,7n] € ©Opy as in Theorem 1.4. In particular, we write again
Ram = x1 + - - - + 244—4 for the ramification divisor of the pencil |n|. Considering the curve
I';) introduced in (21), we denote by ; :=2-x; € C®@ the points of intersection of I';, with
the diagonal A. Identifying A with C, the image & ([C, 17]) is then the stable Prym curve

[X =IuEiu...0UEy 4uC, E] Eﬁugg(ng

where each I is a smooth rational curve meeting I';, at Z; and C' at xz; for j = 1,...,49—4
(while being disjoint from the other components of X), whereas ¢ € Pic’(X) is the line
bundle such that €z, = O, (1) for all 4, ¢r, = 5\1“ € Pic2_2g(Fn) and €¢ = wy. We have

the natural fibrewise identification £*(EP"7) ‘[C g = ~ H9(X,wx®e). Since wx®e€ g, = Op, (1)

for all j, the evaluation map eV, i, HY (Ej,wX ® EEj) — C?cj 3 of the Mayer-Vietoris
sequence on X is an isomorphism. Therefore, from the Mayer-Vietoris sequence on X, we

obtain the following canonical identification:
(50) HY(X,wx ®@€) =~ H*(C,w®?) @ H (T, wr, ®9dr, ).

On the other hand, writing down the Mayer-Vietoris sequence on the curve T'(C, n) =T, UA,

taking into account that, via the identification C' >~ A, we have L3 @9 ‘Z ~ w%{ we obtain

the following exact sequence:

49—4 4g9—4
(51) 0 H(wricy @) — HA(C.08) @ H (T, @61, ( ) 7)) » @ Ca.

j=1 Jj=1

The pull-back py 1(@nu11) splits into two components Dr and D4 corresponding to the
decomposition T(C,n) =T, U A given by Theorem 1.4, for a general element [C,n] € @nun

Note that D n D5 = Z. We denote by @p, respectively, by D+ x» the strict transform in T
of Dr, respectively, Dx. We have the following relations:

(52) ﬁ*([ﬁr]'[éﬂ) =0, /7*([5]2) = —8(9—1)[Onun], 5*([5F]2) = —(49—4)[Onun]-



30 G. FARKAS AND E. IZADI

A local analysis relying on (50) and on (52) shows that one has the following canonical
identifications of vector bundles on &)

€ (E7) 2 (5@ 1°(00) (Br) ) and B2 (@ £(5)(Br + £ + Bg) ).
From the exact sequence
0— wp ® f*(dg) — wp ® [*(3g) (D5 +€) — wp @ f*(8)) ® O3, (D5 +&) — 0

on T, we obtain, after tensoring with O%(ﬁr) and pushing forward under p, the following
exact sequence

(53) 0 — £*(EP) — B-% 5, (%@ J*(0) ® 05, ¢(Dr+€ + fvz)).
The image of the morphism ev is then a vector bundle of rank 3¢ — 3 supported on the

divisor Oy, corresponding fiberwise to the image of the map H° (C’, wgz) — @2%24 Cs;
described in (51). Hence, from (53) we conclude that

(54) c1(€*(EP"7)) = c1(B) — (39 — 3)[Onun]-
It remains to determine the class ¢;(B), which is a relatively straightforward task along the
lines of Proposition 4.1.

We tensor the exact sequence (46) on C(® by L,e3(0), take cohomology and then use the
identifications (13), in order to obtain the following long exact sequence:

0 —> Sym?H(w¢c) — Sym?H (L,03(0)) — H° (WT(C,n)®5) — HY(we)®H(we) — 0.
One also has the exact sequence, obtained by tensoring by £,e3(d) and taking cohomology
in the long exact sequence 0 — Op2)(—26) = Op2) = Ox — 0:
0 —> HO(L o3 (—8)) —> H(£y0(8)) —> HOW?) —> H'(Ly00(~8)) —> -+
Observe that via the identifications (13), one has Hl(C(z),ﬁn@a(—&)) = (().) Recalling the
2

notation (19) for the line bundle £, on the universal symmetric product C;~, we introduce
the following vector bundle on S

(55) Egpp = (p2)« (LEP(S,)), with fibres E =~ H°(C?, L,5 ®0) over [C,n] € S;.

31 |

The above sequences being natural, they induce the respective exact sequences of vector
bundles on S;

O—>Sym2E—>E3|1—>B—>E—>O,

2
(56) 0— /\Eg — Egp — p*(wgﬂ) — 0.
Using Mumford’s formula [M2, Theorem 5.10] ¢; (px (w,(om)) = 13\ € Pic(S;), we compute
A 209 -7

c(B) = (E3|1) - (Sym2E) +A=13\+¢; (/\ Es) +A—c1 (SmeE) = 5 A
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We can now conclude, using (54) and (44),

(S (V) = ex (B ) +er (€ (B ) = L3+ e1(8) = (3 — B[Ol
C20g-7. 209—7. 3(g—1), T7g—25
= 7 A+ 5 A— 1 A= 1 A
(|

Remark 4.3. As explained in [DW, Proposition 3.1], the vector bundle E3); described by
(55) is the obstruction bundle determining whether the moduli space 9, of supersymmetric
curves is split, that is, there exists a projection 9, — S; . It is the non-triviality of the
extension class

2
[E3‘1] € Ext! (p* (wgm), /\Eg)

induced by the exact sequence (56) that is responsible for the moduli space 9, being
non-split for g = 5.

P -+
5. THE SZEGO-HODGE CLASS ON THE BOUNDARY OF Sg

In order to determine the boundary coefficients of the Szegé-Hodge class Ag,p1 in (42), we
calculate the intersection of Ag,;r with standard test curves lying in the boundary of g;r.

5.1. Test curves in 3;. For each 2 < i < g — 1, let us fix general curves [C] € M; and
[D,q] € My_;1 and consider the following test curves F; € A; and G; S B; inside 3;.
We fix even (respectively, odd) theta-characteristics 1/, € Pic' '(C) and nj, € Pic? " (D)
(respectively, 1, € Pic' }(C) and np, € Pic? "~ 1(D)).
We define the family F; (respectively G;) as consisting of the following stable spin curves
F; = {t = [C Up—q D, nf, 1] 63; ‘pe C’}
respectively
G; = {t = [C Up=¢ D, 155 np] egz ‘pe C}.
Then we have the following formulas, see also [F2]:
(57) F-A=F-Bi=0, F-a;=2-2i, and G;-A=Gj-a; =0, G; - =2 — 2i.

The intersection numbers of F; and G; with the remaining generators of Pic(S;) equal zero.

The next one-parameter family of spin curves we construct provides a covering curve
for the boundary divisor By < g;. Let us fix a general point [C,p,nc] € S;_Ll. Setting
E ~ P! for an exceptional component, we define

Hy = {[C Uiyg) B nos = Op()] :qe Cf € S
The fibre of Hy over the point ¢ = p € C is the even spin curve
[C U E' Oy E" Oy oy E, mics npr = O (1), np = Op(1),ngr = Opr(—-1)],
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having as stable model [C' U, Ey], where Eg, is the rational nodal curve corresponding
to j = oo. Here E', E” are rational curves, E' n E" = {p'}, En E" = {p”,¢"} and the
stabilization map for C U F U E' U E” contracts the components E’' and E.

We find

(58) Ho-a1 =1, Hy-X=0, Hy-o9g=Hp- 1 = Hp-a; = Hy- 3; =0,
for 2 <1 < [%J Hence Hg-ﬁoz%ﬂ*(Ho)-(S():l—g.

The last test curve we introduce covers the divisor A;. We fix a general pointed curve
[C,p] € Mgy_1,1 and an even theta characteristic nc = 5, on C. Let {[Jt,pt]}tepl — My
be a general pencil of plane cubics and we consider the family of spin curves

GO = {[C Up~p¢ Jtv nc, 77t] M€ PICO(Jt)[Q]\{OJt}7 Le Pl} = g;_
The intersection numbers of Gy with the generators of Pic(g;r) have been computed [F2]:

(59) Go-A=3, Go-Bo=Go-p1=0, Gog-a1=-3, Go-ag=12, Gy- By =12.

The intersection numbers of Gy with the remaining boundary divisors «; and [, where
2 < j < | 4], are manifestly equal to zero.

5.2. The Szeg6-Hodge class along test curves. Using the precise description of the

Scorza curve along the boundary divisors of g;, we determine the intersection numbers of
the test curves introduced above with the Szeg6-Hodge class.

Proposition 5.1. One has Gy - Agzu = 69 —3, Ho-Agg = 0, as well as F; - Ag,g = 0, for
i1=2,...,9—1.

Proof. We write Hy - Mg, = Hp - Sc*(N) = ((‘SC)*(HO) - )\, where we have used that the

rational Scorza map Gc: 3; -—» m1+3g(971) is, as explained in Proposition 2.5, regular
along the image of the test curve Hp. To conclude that (Sc).(Hp) - A = 0, we observe that
as t € Hy varies, applying Proposition 2.5, the moduli of the components of the (stable)
Scorza curve &¢(t) do not vary, only the points where these components are attached to
each other. Similar consideration apply for the intersection number F;-Ag,iq = ((‘5 c) . (Fy)-N,
where we can use Remark 2.7, building directly on Proposition 2.6.

We are left with computing the intersection number Gy - Ag,g = (Gc) .(Go) - X. For each
[t,n:], where t € P!, the curve &c(t) € ﬂHgg(g,l) consists of a copy of C, a copy of the
genus one Scorza curve GC([Jt, nt]), which is a translate by 7; of the elliptic curve J;, two
copies of the fixed curve C' and, finally, (29 — 2) copies of J;. The way these components
meet each other is described in Remark 2.7. In particular, as [t, 7] varies, G¢(t) contains
2g — 1 copies of J; and these are the only components varying in moduli. The degree of the

map 3{1 — M1 being equal to 3, since the A-degree of a pencil of plane cubics in Mj ;
equals 1, we conclude that (GC)*(GO) - X' =3(2g9 — 1), as claimed. O
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Proposition 5.2. In the notation of (42), we have:

Cap = 69917621, cg, =0 andcy, =0, for i= 1,...,[%J.
Proof. This is a direct consequence of Theorems 4.2 and Proposition 5.1. Indeed, via (57),
for each 2 < ¢ < g — 1 we have that 0 = F; - Ag;u = (20 — 2)cq,, therefore ¢,, = 0,
where we recall the convention co, := cqo,_, for i > |§|. Similarly, via (58), we write
0= Hy- Asyu = (9 — 1)cgy, — Cay, from which we conclude that ¢z, = 0. Finally, using (59)
we write that
69 -3 = Go . )\SzH = 36)\ - 126a0 — 12650,

and since ¢\ = via Theorem 4.2), we obtain the claimed formula for c,,. Finally,
in order to conclude that the coeflicient cg, in (42) is non-negative for ¢ > 1, it suffices to
observe that (20 — 2)cg, = G; - &¢*(X) = (6¢)«(G;) - XN = 0. O

77g—25
A

Recall that X', d. denote the standard generators of Pic(ﬂHgg(g,l)). Before we describe
the pull-back of the Scorza map G¢, we point out that there exists an effective divisor D¢ on
S, consisting of ineffective spin curves [C, 7] such that the Scorza curve S(C,n) is singular.
Using [DK, Lemma 7.1.3], this divisor has the following description

Doy = {[Con] € S5+ H(C,m) = 0, 3(x,y) € S(C,m) with

H(Cyn(x —2y)) # 0, and H°(C,n(y —2z)) # O}_,

where the closure is taken inside ;. The task of computing the class [Dse] will be left for
future work.

Proposition 5.3. One has that S¢*(0;) =0, fori=1,..., l%(gfl)] Furthermore
151 - B
Sc*(dp) = (29—1)-ao+(49—2)-Bo+ (2(i9—i2+g)-ai+2¢(9—i)-&)+[©sg]+12(g—1)[@nuu]-
=1
Proof. The fact that &¢*(8)) = 0 for i > 1 follows from Theorem 1.4 and Propositions 2.4,
2.5, 2.6 and 3.6. Precisely, we use that the limit Scorza curve of the general point of each
of the divisors Oy, or the boundary divisors A;, B; has no disconnecting node, therefore
it does not belong to the boundary divisor A/ of My 349—1)- The statement concerning
Sc*(0) is clear set-theoretically. The multiplicities in front of each divisor correspond
to the number of nodes of the limiting Scorza curve in question. This is contained in

(48), concerning the multiplicity of @null], and in Remarks 2.7 and 3.7, concerning the
multiplicities of «y;, B; respectively. O

6. SCORZA QUARTICS VIA WIRTINGER DUALITY

In this section we determine the connection between the Scorza quartic associated to
an ineffective spin curve and theta functions on the Jacobian JC'. The Scorza quartic in
genus 3 was introduced by Scorza [Scl] and rediscovered in [DK] as the inverse map of
the rational morphism Mg --» Sgr , which assigns to a plane quartic its covariant quartic.
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A generalization to arbitrary genus g was put forward in [Sc2]. We shall provide a novel
unconditional treatment of the Scorza quartic without using any classical invariant theory.

We begin by recalling Wirtinger duality for second order theta functions. For g > 3, we fix
a spin curve [C,n] € S with H%(C,n) = 0. We recall that © := ©,, is the symmetric theta

divisor on JC = Pic’(C) associated to 1 (see also (3)) and 6 := 6, is the symmetric theta
function on JC whose zero locus is ©. Fora € JC, let O, := {¢ € JC : HY(C,{+n—a) # 0}
be the corresponding translated theta divisor.

Wirtinger duality [M1, p. 335] is an isomorphism of linear systems
: [20] = |20]",

such that the following diagram commutes:

JC Y |20

BN

120]".

Here ¢: J — |20 sends a € J to the divisor ©, + ©_, and p2g: J — PHO(J, OJ(Q@))V is
the map induced by the linear system [20|. Hence, via Wirtinger Duality, the image of the
origin 0 = O¢ € J corresponds to the divisor 20 € |20)].

Let |20|g € |206| be the sublinear system of divisors passing through 0 € JC. Then the
map to induces an isomorphism of 20|y with the polar of 20, that is, the span (20) of the
divisor 20 in the space 20| =~ P?~l. Via the surjective restriction map

H(JC,0,0(20)) — H'(0,06(20)),

the span (20) € |20|¥ can be identified with the subspace ‘26‘@‘v =PH"(0,06(20))"
of hyperplanes in |20| passing through the point 20. So Wirtinger Duality also induces an
isomorphism
w: [20)) = 206"
Since we assumed that H°(C,n) = 0, we have 0 ¢ O, therefore the divisor 20 does
not belong to 20|y and the restriction map induces the isomorphism described in the
Introduction in (9)

res: HO(JC,20), = H°(©,06(20)).
Consequently, we also have an induced isomorphism of projective spaces

(60) 0 =tores ': 200| = ‘26‘@‘\/.

Next, we observe that if p: C' x C — JC is the difference map (x,y) — Oc(x — y), then
©*(050(20)) = we Hwe(24),

and the pull-back on global sections induces the map *: HO(JC,20)y — Sym? H’(C,wc)
described by (11) in the Introduction. As explained in [We, 4.5], the map ¢* assigns
to a second order theta function vanishing at the origin the quadratic term of its Taylor
expansion around that point.
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We now construct a natural map
Sym?H'(JC, 0 c) — H°(©, 0s(20))
defined as follows. From the cohomology of the short exact sequence
0— Ojc — Oj0(0) — 0p(O) — 0,
since H'(JC,0,;¢(0)) = 0, we obtain the isomorphism
HY(JC,0;¢) = H*(0,06(0)).

To make this identification explicit, we use [BD1, 0.3]. The Abel-Jacobi map C — JC
induces an isomorphism H(JC,0;c) > HY(C,0¢) = Ty(JC). Since O is the vanishing

locus of the function 6 on JC, given a vector v € Ty(JC'), the restriction to © of the function
df.v = 0,(0g) can be regarded as an element of H°(©,0e(0)), whose zero locus we de-

note by 3,0. The multiplication map of sections Sym?H° (0, 0g(0)) — H° (0, 06 (20))
induces via this identification the natural map

(61) p: Sym*H(JC,0,c) — H°(0,06(20)).
Our first result concerning this map is the following:

Lemma 6.1. One has the following commutative diagram of projectivized linear maps:

(62) 1200 v 20/6|"

T b

P Sym? HY(C,wc)

Proof. We choose dual bases (01, ...,0,) and (w1, ...,w,) of HY(C,0¢) = Ty(JC) and of
HY(C,we)Y = To(JC)Y, respectively. Denoting by (21, .., z,) the coordinates correspond-
ing to the canonical flat structure on JC' giving the identification Tp(JC) = CY9, we have
00 00
Given a point a € ©, Wirtinger Duality sends the divisor O, + ©_, to the hyperplane of
divisors of |2@|9| which pass through a. The transpose map ‘1 of the map p introduced in
(61) maps this onto the hyperplane H, consisting of elements >3, ¢;;0; - 0; € Sym?Ty(JC),

such that g
00 00
Z 0“'571-(“) : sz(a) =0.
i,7=1

The equation of the quadric tangent cone at the origin to the divisor ©, + ©_, equals
(329_, 8:0(a) -w;)? € Sym?H°(C,wc). This takes the value Y ¢;;0;0(a)-8;0(a) on 3 ¢;;0; - 0;,
hence defines the hyperplane H,, which proves the commutativity of the diagram. ]

1(0; - 0;) = 6,0 - 0,60 = e H(0,00(20)).

Keeping the notation of Lemma 6.1 and recalling that (21, ..., z4) are local coordinates on
Ty (JC) corresponding to a choice of basis of H!(C, O¢), we consider the Taylor expansion
at the origin

0=0p+60;+04+---
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of the (even) section = 6(z1, ..., z5) of O;c(©). Therefore, 6y = 0(0), 62 € Sym* H(C, we)
and 64 € Sym* H(C,wc), respectively. We have the following fundamental result:

Theorem 6.2. The composition map

B: Sym2H(C, O¢) 5 H(6,06(20)) 2 H'(0,06(20))" ~5 Sym?H'(C, 05¢)"

is fully symmetric, that is, it is induced by a quartic polynomial F(C,n). Furthermore, this
quartic equals

1
F(C,n) = 59% —bp-0s€ Sym4H0(C, we)-

Proof. First observe that, via Lemma 6.1, the map [ defined above coincides with the map
in the statement of Theorem 0.5.

Let F € Sym? (SmeH Y, wc)) be the multilinear form representing 5. We evaluate F’
on a four-tuple of vectors (v1, ve, v3,v4) from Ty (JC).

The image of (v1,v2) by the map p is the section d,,0 - 0,0 € H°(0,0o(20)), where
0v,0 € H°(©,06(0)). We need to identify the element of |20y whose restriction to the
divisor © is the divisor of zeros of d,,0 - 0,,0.

For a fixed v € Tp(JC), we denote by 60, the function on JC given by u — 6(u + v),
Consider the section G(u,v) := 0(u + v)8(u — v) on JC x JC, where u,v € Ty(JC) = CY.
For any fixed v € Ty(JC), this is a second order theta function on JC', whose zero locus is
the divisor 6, + ©_, € [20|. We denote by 0_, - 0,0, — 0, - 0,,0_, the partial derivative of
f(u + v)f8(u — v) with respect to the variable v in the direction of v;. As a function of w,
this is still a second order theta function on JC, see [BD2] or [I1]. The second derivative

Our 80y (G) = 0y - Dy Py Oy — By O - B0y — D01y BBy + O - By D0

is also a second order theta function. At v = 0, this second derivative, viewed as a function
of u, is equal to

Dy 0y (G) (1, 0) = 26 - 3y, 0y0 — 20,0 - 0,0,

and, when restricted to ©, equals the section —20,,6 - 0,0 € H°(0,0g(20)). To ob-
tain a section of H°(JC,20)¢ which restricts to d,,0 - 0y,0, we add the multiple a - 62 to
— 300,00, (G) (u, 0), where a = % + Oy O, 0(0).

To evaluate this element under ¢*, we compute the equation of the quadric tangent at 0
to the divisor of —10y, 0y, (G)(u,0) +a-62. Choosing elements vs, v4 € Ty(JC), we find that
o* (a . 02) (v3,v4) = 2000 - Oy 0,0 = 20y, 01y 0 - Oy 00, 0,

and
1
6" (=500 002 G(1,0) ) (v3,01) = =00 - oy Doy 00,0 + 00y g0 - Dy Pus6+
Opy Oy 0+ Oy Oys 0 — Oy On, 0 + Oy, Oy 0.

Combining these, we find
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1
B(Ula V2, V3, U4) = ¢* (_§av1602G(Ua 0) +a- 92) (/U37 /U4) = avlavge : av26v4‘9+
1
Opy Oy 0 + Oy 030 4 0y 0,0 - Oy Oy — 6o + Oy, Oy Oy Oy @ = Oy, Oy Oy Oy (293 — - 94) ,
which finishes the proof. ([

It remains to show that the quartic form F(C,n) of Theorem 6.2 is precisely the Scorza
quartic considered in [DK]. Recalling that ¢c: C — PH?(C,w¢)Y is the canonical embed-
ding of C, for a point = € C, let ¢c(x) € H(we)Y = To(JC) be the image corresponding
to evaluating canonical forms on C' at the point z. Let 6,0 € H° (@, (9@(@)) be the corre-

sponding section under the isomorphism H(C,0¢) > H° (0,06(0)).
We consider the Abel-Jacobi map

p: CO=D) 50, D p(D):=n"(D).

It is well-known [K] that p is a rational resolution of singularities. Having fixed the point
z € C, we introduce the following effective divisors on €9~

cl=2) .= {D'—i—:c eclb.pe C(972)}, E, = {D e Clo=) . pf (C,we(—z—D)) > 0}.
It is easily seen that for any distinct points x,y € C|
p*(0,—y-0) =CYU™D L B,

Indeed, if D € p*(0_y - ©), then H(C, D(y — z)) # 0, which implies that either D — z
is an effective divisor, that is, D € ngg_m, or else hY (C’,(’)(D + y)) > 2, or equivalently
HO (C’, wo(—x — D)) # 0, in which case D € E,. Furthermore, this set-theoretic equality is
in fact an equality of divisors on C=1D see also [We, p.6]. Furthermore, one also has the
equality
p*(0,0) = CY¥=2 + E,,

which follows from previous considerations after regarding 0,0 as the limit of the divisor
©; 4+ O on O, when the points x and y coalesce. We summarize this discussion as follows:

Lemma 6.3. Suppose z,y € C are distinct points. Then we have the following equality of
divisors on ©

(Or—y +Oy_2) -0 =0,0+0,0.

In what follows, we complete the proof of Theorem 0.5. We keep the notation from
Theorem 6.2.

Proof of Theorem 0.5. Let 8: Sym?H%(C,we)Y — Sym? H%(C,wc) be as before and fix a
point (z,y) € S(C,n). Since h%(C,n) = 0, the linear systems |n(z — y)| and |n(y — )| each
contain exactly one effective divisor and the sum of these two divisors is a canonical divisor
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D,y = div(n(z — y)) + div(n(y — x)). We choose a canonical form h,y, € H(C,wc) such
that div(hy,y) = Dsy. We shall show that up to a non-zero constant, one has

B(¢C(x)a ¢C(y)) = h?z,y € SmeHO(C’ WC)'

This will imply that the quartic F(C,n) € Sym*H(C,w¢) is indeed the Scorza quartic
considered in [DK].

By definition, one has that ,u(qﬁc(x),qﬁo(y)) =0,0-0,0 € HY (@, (9@(2@)). We apply
Lemma 6.3 and obtain

div p(pc(z) - ¢c(y)) = div(0 -0y + 0 - 0y_,).
It follows that

div(res ' o 1) (¢pc(x) - pc(y)) = Ouy + Oy, € |20),.

Since (x,y) € S(C,n), the divisors ©,_, and ©,_, both contain the origin 0 € JC.
Furthermore, the divisors ©,_, and ©,_, have the same projectivized tangent space at 0,
namely, the span of the canonical divisor D, ,. Hence the tangent cone at 0 to ©,_, +60,_,
is the quadric of rank one ¢y, = 2(D5 ;). So, up to a non-zero constant 8(pc(x) - pc(y)) =
hz.,, for all (z,y) € S(C,n). O
6.1. The Scorza quartic hypersurfaces for vanishing theta-nulls. We now observe
that Theorem 6.2 allows us to define the limit of the Scorza quartic F(C,n) for a general
point of the divisor ©,,. We pick a general point [C,n] € Onuy, so that h°(C,n) = 2. In
this case the theta function 6 vanishes at the origin, hence 6y = 0 and, from Theorem 6.2,
we expect that F(C,n) = %9% In fact we can make this expectation precise and argue that
the map £ in Theorem 6.2 can still be defined in this case.

First observe that the map p: Sym*H%(C,O¢) — H°(©,00(20)) defined by (61)
remains unchanged, and sends an element »; ¢;;0;0; € Sym?HY(C,O¢) to Y. ¢;j0;0-0;0. The
map res: H(JC,20)y — H" (0, 0o (20)) has a one-dimensional kernel and therefore is no
longer surjective. However, Im(res) < Im(u), therefore )} ¢;;0;(0) - 0;(0) is the restriction
of a pencil of divisors in |20y which contains the element 20. Since multy(20) = 4, for
each of these pencils, the map sending a divisor to its quadric tangent cone at 0 is either
undefined or constant. Since h°(C,n) = 2, for 2,y € C, the quadric tangent cone at 0 to
0,0 + 0,0 is again ¢, ,. Therefore, on a non-empty open subset of pencils, the quadric cone
map is well-defined and constant and the map

G P(SmeHl(C', Oc)) = P(SmeHO(C, wc))

is well-defined as a rational map. For a general pair (x,y) € C, the divisor D, , is the sum
of the two divisors of the pencil |n| containing x and y. Hence the symmetric quadrilinear
form associated to the Scorza quartic (that is, to the map () vanishes on all quadruples of
the form (z,y, 21, 22), where 21, 2o are arbitrary points of (D, ,). From this, it follows:

Theorem 6.4. The limiting Scorza quartic F(C,n) € Sym*H°(C,we) of a general point
[C,n] € Onun s well-defined and equals twice the quadratic tangent cone to © at 0.
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