
Proceedings of Symposia in Pure Mathematics

The global geometry of the moduli space of curves

Gavril Farkas

1. Introduction

ABSTRACT. We survey the progress made in the last decade in understanding the
birational geometry of the moduli space of stable curves. Topics that are being
discusses include the cones of ample and effective divisors, Kodaira dimension

and minimal models of Mg .

For a complex projective variety X , one way of understanding its birational
geometry is by describing its cones of ample and effective divisors

Ample(X) ⊂ Eff(X) ⊂ N1(X)R.
1

The closure in N1(X)R of Ample(X) is the cone Nef(X) of numerically effective
divisors, i.e. the set of all classes e ∈ N1(X)R such that C · e ≥ 0 for all curves

C ⊂ X . The interior of the closure Eff(X) is the cone of big divisors on X . Loosely

speaking, one can think of the nef cone as parametrizing regular contractions 2 from
X to other projective varieties, whereas the effective cone accounts for rational
contractions ofX . For arbitrary varieties of dimension ≥ 3 there is little connection
between Nef(X) and Eff(X) (for surfaces there is Zariski decomposition which
provides a unique way of writing an effective divisor as a combination of a nef and
a ”negative” part and this relates the two cones, see e.g. [L1]). Most questions in
higher dimensional geometry can be phrased in terms of the ample and effective
cones. For instance, a smooth projective variety X is of general type precisely

when KX ∈ int(Eff(X)).
The question of describing the ample and the effective cone of Mg goes back

to Mumford (see e.g. [M1], [H2]). Moduli spaces of curves with their inductive
structure given by the boundary stratification are good test cases for many prob-
lems coming from higher dimensional birational geometry. The first major result

result on the global geometry of Mg was the celebrated theorem of Harris, Mum-

ford and Eisenbud that Mg is of general type for all g ≥ 24 (cf. [HM], [H1], [EH3]).
This result disproved a famous conjecture of Severi’s who, based on evidence com-

ing from small genus, predicted that Mg is unirational for all g. The space Mg
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being of general type, implies for instance that the general curve of genus g ≥ 24
does not appear in any non-trivial linear system on any non-ruled surface.

The main aim of this paper is to discuss what is currently known about the

ample and the effective cones of Mg,n. Conjecturally, the ample cone has a very
simple description being dual to the cone spanned by the irreducible components

of the locus in Mg,n that consists of curves with 3g−4+n nodes (cf. [GKM]). The
conjecture has been verified in numerous cases and it predicts that for large g, de-

spite being of general type, Mg behaves from the point of view of Mori theory just
like a Fano variety, in the sense that the cone of curves is polyhedral, generated by
rational curves. In the case of the effective cone the situation is more complicated.
In [FP] we showed that the Harris-Morrison Slope Conjecture which singled out

the Brill-Noether divisors on Mg as those of minimal slope, is false. In this pa-

per we describe a very general construction of geometric divisors on Mg which
provide counterexamples to the Slope Conjecture in infinitely many genera (see
Theorem 3.2). Essentially, we construct an effective divisor of exceptionally small

slope on Mg for g = s(2s+ si+ i + 1), where s ≥ 2, i ≥ 0. For s = 1, we recover
the formula for the class of the Brill-Noether divisor first computed by Harris and
Mumford in [HM]. The divisors constructed in [EH3], [FP], [F2] and [Kh] turn out
to be particular cases of this construction.

In spite of all the counterexamples, it still seems reasonable to believe that a

”Weak” Slope Conjecture on Mg should hold, that is, there should be a universal

lower bound on the slopes of all effective divisors on Mg which is independent
of g. This fact would highlight a fundamental difference between Mg and Ag

and would provide a modern solution to the Schottky problem (see Subsection 2.2

for more details). In Section 3 we announce a proof that M22 is of general type

and we describe the Kodaira type of the moduli spaces Mg,n of n-pointed stable
curves.

2. Divisors on Mg,n

For non-negative integers g and n such that 2g − 2 + n > 0 we denote by

Mg,n the moduli stack of n-pointed stable curves of genus g. The stack Mg,n

has a stratification given by topological type, the codimension k strata being the

components of the closure in Mg,n of the locus of curves with k nodes. The 1-
dimensional strata are also called F -curves and it is easy to see that each F -curve

is isomorphic to either M0,4 or to M1,1. It is straightforward to list all F -curves

on a given Mg,n. For instance, F -curves on M0,n are in 1 : 1 correspondence with
partitions (n1, n2, n3, n4) of n, the corresponding F -curve being the image of the

map ν : M0,4 → M0,n which takes a rational 4-pointed curve [R, x1, x2, x3, x4] to
a rational n-pointed curve obtained by attaching a fixed rational (ni + 1)-pointed
curve at the point xi.

The codimension 1 strata in the topological stratification are the boundary di-

visors on Mg,n which are indexed as follows: For 0 ≤ i ≤ g and S ⊂ {1, . . . , n},
we denote by δi:S the class of the closure of the locus of nodal curves C1 ∪ C2,
where C1 is a smooth curve of genus i, C2 is a smooth curve of genus g − i and
such that the marked points sitting on C1 are precisely those labeled by S. We also
have the class δ0 corresponding to irreducible pointed curves with a single node.
Apart from boundary divisor classes, we also introduce the tautological classes
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{ψi = c1(Li)}n
i=1 corresponding to the n marked points. Here Li is the line bun-

dle over the moduli stack with fibre Li[C, x1, . . . , xn] := Txi
(C)∨ over each point

[C, x1, . . . , xn] ∈ Mg,n. Finally, we have the Hodge class defined as follows: If

π : Mg,1 → Mg is the universal curve, we set λ := c1(E) ∈ Pic(Mg), where

E := π∗(ωπ) is the rank g Hodge bundle on Mg . A result of Harer and Arbarello-
Cornalba (cf. [AC]) says that λ, ψ1, . . . , ψn together with the boundary classes δ0
and δi:S generate Pic(Mg,n). This result has been extended to arbitrary character-

istic by Moriwaki (cf. [Mo2]). When g ≥ 3 these classes form a basis of Pic(Mg,n).

2.1. The ample cone of Mg,n.

In this section we describe the ample cone of Mg,n. Historically speaking, the

study of ample divisors on Mg began when Cornalba and Harris proved that the

Q- class aλ− δ0 − · · · − δ[g/2] is ample on Mg if and only if a > 11 (cf. [CH]). Later,

Faber completely determined Ample(M3): a classD ≡ aλ−b0δ0−b1δ1 ∈ Pic(M3)
is nef if and only if

2b0 − b1 ≥ 0, b1 ≥ 0 and a− 12b0 + b1 ≥ 0 (cf. [Fa]).

He pointed out that the numbers appearing in the left hand side of these inequal-

ities are intersection numbers of D with certain F -curves in M3 thus raising for
the first time the possibility that the F -curves might generate the Mori cone of

curves NE1(Mg,n). The breakthrough in this problem came when Gibney, Keel

and Morrison proved that strikingly, NE1(Mg,n) is the sum of the cone generated

by F -curves and the cone NE1(M0,g+n). In this way, computing the nef cone of

Mg,n for any g > 0 always boils down to a problem in genus 0!

THEOREM 2.1. ([GKM]) If j : M0,g+n → Mg,n is the “flag map” given by attach-
ing fixed elliptic tails to the first g marked points of every (g + n)-pointed stable rational

curve, then a divisorD on Mg,n is nef if and only if j∗(D) is nef on M0,g+n andD·C ≥ 0

for every F -curve C in Mg,n.

This reduction to genus 0 then makes the following conjecture very plausible:

CONJECTURE 2.2. ([GKM]) The Mori cone NE1(Mg,n) is generated by F -

curves. A divisor D on Mg,n is ample if and only if D ·C > 0 for every F -curve C

in Mg,n.

The conjecture reflects the expectation that the extremal rays of Mg,n should
have modular meaning. Since F -curves can be easily listed, this provides an ex-

plicit (conjectural) description of the ample cone. For instance, on Mg , the conjec-

ture predicts that a divisor D ≡ aλ− b0δ0 − · · · − b[g/2]δ[g/2] ∈ Pic(Mg) is ample if
and only if the following inequalities are satisfied:

a− 12b0 + b1 > 0, 2b0 > bi > 0 for all i ≥ 1,

bi + bj > bi+j for all i, j ≥ 1 with i+ j ≤ g − 1

and

bi + bj + bk + bl > bi+j + bi+k + bi+l for all i, j, k, l ≥ 1 with i+ j + k + l = g.

Here we have the usual convention bi = bg−i. Conjecture 2.2 has been checked on

Mg for all g ≤ 24 in [KMc], [FG] and [G]. In fact, Gibney has reduced the con-

jecture on a given Mg to an entirely combinatorial question which can be checked
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by computer. Recently, Coskun, Harris and Starr have reduced the calculation of

the ample cone of the moduli space of stable maps M0,n(Pr, d) to Conjecture 2.2

for M0,n+d (cf. [CHS]). In [GKM] it is also pointed out that Conjecture 2.2 would

be implied by an older conjecture of Fulton motivated by the fact that M0,n has
many of the geometric features of a toric variety (without being a toric variety, of
course):

CONJECTURE 2.3. Any divisor class D on M0,n satisfying C · D ≥ 0 for all

F -curves C in M0,n can be expressed as an effective combination of boundary
classes.

Fulton’s conjecture is true on M0,n for n ≤ 6 (cf. [FG]). Note that it is not

true that every effective divisor on M0,n is equivalent to an effective combina-

tion of boundary divisors (cf. [Ve]): If ξ : M0,6 → M3 denotes the map which
identifies three pairs of marked points on a genus 0 curve, then the pull-back of

the hyperelliptic locus ξ∗(M
1

3,2) is an effective divisor on M0,6 for which there

exists an explicit curve R ⊂ M0,6 not contained in the boundary of M0,6 such

that R · ξ∗(M
1

3,2) < 0. Thus ξ∗(M0,6) is not an effective combination of boundary
divisors.

REMARK 2.4. In low genus one can show that Ample(Mg) is “tiny” inside

the much bigger cone Eff(Mg) which underlies the fact that regular contractions

of Mg do not capture the rich birational geometry of Mg (For instance, the only

divisorial contraction of Mg,n with relative Picard number 1 is the blow-down
of the elliptic tails, see [GKM]). The difference between the two cones can be

vividly illustrated on M3: we have seen that Nef(M3) is generated by the classes

λ, 12λ − δ0 and 10λ − δ0 − 2δ1 (cf. [Fa]), whereas it is easy to show that Eff(M3)
is much larger, being spanned by δ0, δ1 and the class of the hyperelliptic locus
h = 9λ− δ0 − 3δ1.

Theorem 2.1 has a number of important applications to the study of regular

morphisms from Mg,n to other projective varieties. For instance it is known that

for g ≥ 2, Mg has no non-trivial fibrations (that is, morphisms with connected

fibres to lower dimensional varieties). Any fibration of Mg,n must factor through

one of the forgetful maps Mg,n → Mg,i for some i < n (see [GKM], Corollary

0.10). If f : Mg,n → X is a birational morphism to a projective variety, it is

known that the exceptional locus Exc(f) is contained in the boundary of Mg,n.
In particular such a projective variety X is a new compactification of Mg. (The
use of such a result is limited however by the fact that there are very few known

examples of regular morphism from Mg,n). Theorem 2.1 can be directly applied

to show that many types of divisors D on Mg,n which non-negatively meet all
F -curves are actually nef. For instance one has the following result (cf. [GKM],
Proposition 6.1):

THEOREM 2.5. If D ≡ aλ−
∑[g/2]

i=0 biδi is a divisor on Mg such that bi ≥ b0 for all
1 ≤ i ≤ [g/2] and C ·D ≥ 0 for any F -curve C, then D is nef.

REMARK 2.6. Since any regular morphism f : Mg,n → X to a projective vari-
ety is responsible for a semi-ample line bundle L := f∗(OX(1)) rather than a nef
one, it is a very interesting question to try to characterize semi-ample line bundles
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on Mg,n. Surprisingly, this question is easier to handle in positive characteristic
due to the following result of Keel (cf. [K], Theorem 0.2): IfL is a nef line bundle on
a projective variety X over a field of positive characteristic, then L is semi-ample
if and only if the restriction of L to its exceptional locus Exc(L) is semi-ample. Recall
that if L is a nef line bundle on X , then

Exc(L) :=
⋃

{Z ⊂ X : Z is an irreducible subvariety with Ldim(Z) · Z = 0}.

An easy application of Keel’s Theorem is that the tautological class ψ ∈ Pic(Mg,1)
is semi-ample in positive characteristic but fails to be so in characteristic 0 (see

[K], Corollary 3.1). No example of a nef line bundle on Mg which fails to be semi-
ample is known although it is expected there are many such examples.

REMARK 2.7. It makes sense of course to ask what is the nef cone of the mod-
uli space of abelian varieties. Shepherd-Barron computed the nef cone of the first
Voronoi compactification AI

g of Ag (cf. [SB]). Precisely, NE1(AI
g) is generated by

two curve classes C1 and C2, where C1 is any exceptional curve in the contraction
of AI

g to the Satake compactification of Ag , while C2 = {[X × E]}[E]∈A1
, where

[X ] ∈ Ag−1 is a fixed ppav of dimension g − 1 and E is a moving elliptic curve.
Hulek and Sankaran have determined the nef cone of the second Voronoi com-
pactification AII

4 of A4 (cf. [HS]).

Towards the canonical model of Mg,n

A somewhat related question concerns the canonical model of Mg . Since the vari-

ety Mg is of general type for large g, a result from [BCHM] implies the finite gen-

eration of the canonical ring R(Mg) := ⊕n≥0H
0(Mg, nKMg

) and the existence

of a canonical model of the moduli space M
can

g := Proj
(
R(Mg)

)
. It is natural to

ask for a modular interpretation of the canonical model. Very interesting ongo-
ing work of Hassett and Hyeon provides the first steps towards understanding

M
can

g (see [Ha1], [HH], but also [HL] where the Minimal Model Program for M3

is completed). Precisely, if

δ := δ0 + · · · + δ[g/2] ∈ Pic(Mg)

denotes the total boundary of Mg andKMg
= 13λ−2δ is the canonical class of the

moduli stack, for each rational number 0 ≤ α ≤ 1 we introduce the log canonical
model

M
can

g (α) := Proj
(
⊕n≥0H

0
(
Mg, n(KMg

+ αδ)
))
.

Then M
can

g (α) = Mg for 9/11 ≤ α ≤ 1 because of the already mentioned result of

Cornalba and Harris [CH], whereas limα→0 M
can

g (α) = M
can

g . The first interesting

question is what happens to M
can

g (α) when α = 9/11 since in this case there there

exists a curve R ⊂ Mg such that (KMg
+ 9

11δ) · R = 0 (precisely, R corresponds to

a pencil of plane cubics with a section which is attached to a fixed pointed curve

of genus g − 1). It turns out that for 7/10 < α ≤ 9/11, the moduli space M
can

g (α)

exists and it is identified with the space M
ps

g of pseudo-stable curves in which cusps

are allowed but elliptic tails are ruled out. The morphism Mg
|11λ−δ|
−→ M

ps

g is a
divisorial contraction of the boundary divisor ∆1. The next (substantially more
involved) step is to understand what happens when α = 7/10. It turns out that
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M
can

g (7/10) exists as the quotient by SL3g−3 of the Chow variety of bicanonical

curves C ⊂ P3g−4, whereas the model M
can

g (7/10 − ǫ) for 0 ≤ ǫ << 1 exists and

it is obtained from M
can

g (7/10 + ǫ) by an explicit flip and it parameterizes curves
with nodes, cusps and tacnodes as singularities. As α → 0, one expects of course
worse and worse singularities like higher-order tacnodes.

2.2. The effective cone of Mg .

Following Harris and Morrison [HMo], we define the slope function on the

effective cone s : Eff(Mg) → R ∪ {∞} by the formula

s(D) := inf {
a

b
: a, b > 0 such that aλ− bδ −D ≡

[g/2]∑

i=0

ciδi, where ci ≥ 0}.

From the definition it follows that s(D) = ∞ unless D ≡ aλ −
∑[g/2]

i=0 biδi with
a, bi ≥ 0 for all i. Moreover, it is well-known that s(D) <∞ for any D which is the

closure of an effective divisor on Mg. In this case one has that s(D) = a/min
[g/2]
i=0 bi.

We denote by s(Mg) the slope of the moduli space Mg , defined as

s(Mg) := inf {s(D) : D ∈ Eff(Mg)}.

CONJECTURE 2.8. (Harris, Morrison, [HMo]) We have the inequality

s(D) ≥ 6 +
12

g + 1

for all effective divisors D ∈ Eff(Mg), with equality if g + 1 is composite and D is
a combination of Brill-Noether divisors.

Let us recall the definition of the classical Brill-Noether divisors. We fix a
genus g ≥ 3 such that there exist r, d ≥ 1 with ρ(g, r, d) := g − (r + 1)(g − d+ r) =
−1 (in particular, g + 1 has to be composite). We define the following geometric
subvariety of Mg

Mr
g,d := {[C] ∈ Mg : C has a linear series of type gr

d}.

Since ρ(g, r, d) is the expected dimension of the determinantal variety W r
d (C) of

gr
d’s on a fixed curve C of genus g (see [ACGH]), one would naively expect that

Mr
g,d is a divisor on Mg. In fact we have a stronger result due to Eisenbud and

Harris (cf. [EH2], [EH3]):

THEOREM 2.9. The locus Mr
g,d is an irreducible divisor on Mg whenever ρ(g, r, d) =

−1. Moreover, the class of the compactification in Mg of the Brill-Noether divisor is given
by the formula

M
r

g,d ≡ cg,d,r

(
(g + 3)λ−

g + 1

6
δ0 −

[g/2]∑

i=1

i(g − i)δi

)
,

where cg,d,r is an explicitly given constant.

Thus s(M
r

g,d) = 6 + 12/(g + 1) and then the Slope Conjecture singles out

the Brill-Noether divisors on Mg as those having minimal slope. Apart from the
evidence coming from low genus, the conjecture was mainly based on the large

number of calculations of classes of geometric divisors on Mg (see e.g. [EH3],
[H1]).
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REMARK 2.10. If D ≡ aλ − b0δ0 − · · · − b[g/2]δ[g/2] is a nef divisor on Mg ,
then combining the inequalities a − 12b0 + b1 ≥ 0 and 2b0 − b1 ≥ 0 obtained by
intersecting D with two F -curves, we obtain that s(D) ≥ a/b0 ≥ 10. On the other

hand, the class 10λ− δ0 − 2δ1 is nef on Mg (cf. [GKM]), hence

liminf{s(D) : D ∈ Nef(Mg)} = 10.

This once again illustrates that nef divisors contribute little to the birational geom-

etry of Mg.

As explained in the original paper [HMo], the Slope Conjecture is intimately
related to the problem of determining the Kodaira dimension of Mg. Recall first

the computation of the canonical class of Mg:

THEOREM 2.11. (Harris-Mumford)

KMg
≡ 13λ− 2δ0 − 3δ1 − 2δ2 − · · · − 2δ[g/2].

PROOF. If π : Mg,1 → Mg is the universal curve, then by Kodaira-Spencer
theory we have that Ω1

Mg
= π∗(ωπ⊗Ωπ), where Ωπ is the cotangent sheaf while ωπ

is the dualizing sheaf. Then apply Grothendieck-Riemann-Roch to the universal
curve, to obtain that the canonical class of the moduli stack is equal to

KMg
= 13λ− 2(δ + . . .+ δ[g/2]).

To obtain the formula for the canonical classKMg
of the coarse moduli space we use

that the natural map from the stack to the coarse moduli space is simply branched
along the boundary divisor ∆1. �

Since the Hodge class λ is big and nef, it follows that Mg is of general type

whenever s(Mg) < s(KMg
) = 13/2. Since s(M

r

g,d) = 6 + 12/(g + 1) < 13/2 ⇐⇒

g ≥ 24, we obtain the main result from [HM] and [EH3], namely that Mg is of
general type for g ≥ 24 (Strictly speaking, this argument works only for those g for
which g + 1 is composite. In the remaining cases, when there are no Brill-Noether

divisors on Mg, one has to use the locus where the classical Petri Theorem fails, see
[EH3]). The Slope Conjecture would immediately imply the following statement:

CONJECTURE 2.12. The Kodaira dimension of Mg is −∞ for all g < 23.

The unirationality of M14

Severi proved that Mg is unirational for g ≤ 10. The cases g = 11, 12, 13 were
settled by Sernesi and then Chang and Ran (cf. [Se], [CR1]). Moreover, it is known

that M15 is rationally connected (cf. [BV]) and that κ(M16) = −∞ (cf. [CR2]).

Optimal bounds for rationality of Mg,n when g ≤ 6 are provided in [CF]. Verra

has recently settled the long standing case of M14 proving the following theorem
(cf. [Ver]):

THEOREM 2.13. The moduli space M14 is unirational.

Sketch of proof. We denote by Hd,g,r the Hilbert scheme of curves C ⊂ Pr with
g(C) = g and deg(C) = d. The key observation is that if [C] ∈ M14 is suitably

general, then dim W 6
18(C) = 0 and if C

|L|
→֒ P6 is the embedding given by any

linear series L ∈ W 6
18(C), then

dim Ker{Sym2H0(C,L) → H0(C,L⊗2)} = 5,
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that is, C lies precisely on 5 quadrics Q1, . . . , Q5. Writing that

∩5
i=1Qi = C ∪R,

one finds that the residual curve R is smooth with deg(R) = 14 and g(R) = 8.
Significantly, h1(OR(1)) = 0 (that is, non-special) and the Hilbert scheme H14,8,6

is a lot easier to study than the scheme H18,14,6 we started with and which param-

eterizes curves C ⊂ P6 with h1(OC(1)) = 2. Using Mukai’s result that a generic

canonical curve of genus 8 is a linear section of G(2, 6) ⊂ P14, one proves that
H14,8,6 is unirational. If G5 → H14,8,6 denotes the Grassmann bundle consisting
of pairs [R, V ] with [R] ∈ H14,8,6 and V ∈ G

(
5, H0(IR(2))

)
, then G5 is unirational

(becauseH14,8,6 is so), and there exists a dominant rational map G5 −− > H18,14,6

which sends [R, V ] to [C], where C ∪R is the scheme in P6 defined by V . By stan-
dard Brill-Noether theory, the forgetful morphismH18,14,6−− >M14 is dominant,
hence the composition G5 −− >M14 is dominant as well. This shows that M14 is
unirational. �

The Slope Conjecture is also connected to the Schottky problem of describing
geometrically Mg in the Torelli embedding t : Mg → Ag given by

[C] 7→ [Jac(C),ΘC ].

The map t can be extended to a rational map t : Mg − − > Apart
g well-defined at

least in codimension 1, where Apart
g is Mumford’s partial compactification of rank

1 degenerations obtained by blowing-up the open subvariety Ag ∪Ag−1 inside the
Satake compactification of Ag (cf. [M2]). One has that Pic(Apart

g )⊗Q = Q ·λ⊕Q ·δ,
where λ := c1(E) is the Hodge class corresponding to modular forms of weight
one and δ = [Apart

g − Ag] is the class of the irreducible boundary divisor. Note

that t∗(λ) = λ ∈ Pic(Mg) while t∗(δ) = δ0. The quasi-projective variety Apart
g is

as good as any projective model of Ag when it comes to codimension 1 problems
like determining the Kodaira dimension of of Apart

g or describing Eff(Apart
g ). In

particular, one can define the slope of Ag as being

s(Ag) = s(Apart
g ) := inf{s(D) =

a

b
: D ≡ aλ− b δ ∈ Eff(Apart

g )}.

THEOREM 2.14. (Tai, [T]) We have that limg→∞s(Ag) = 0.

If we combine Tai’s estimate with the Slope Conjecture, it follows that any
Siegel modular form of slope less than 6 + 12/(g+ 1) would automatically vanish
on Mg thus providing a Schottky relation. Note that any weaker estimate of the

form s(Mg) ≥ ǫ for g large, where ǫ > 0 is a constant independent on g, would
suffice to obtain the same conclusion. It is then very tempting to ask whether
the modular forms of slope ≥ ǫ cut out precisely Mg. A positive answer to this
question would represent a completely novel solution to the Schottky problem.

Unfortunately, the Slope Conjecture (at least in its original form), turns out to
be false. The first counterexample was constructed in [FP] and we start by giving a
geometric reinterpretation to the Slope Conjecture which will turn out to be crucial
in constructing counterexamples:

PROPOSITION 2.15. Let D be an effective divisor on Mg. If s(D) < 6+12/(g+1),
then D contains the closure of the locus Kg := {[C] ∈ Mg : C sits on a K3 surface}.
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PROOF. Clearly, we may assume that D is the closure of an effective divisor
on Mg. We consider a Lefschetz pencil of curves of genus g lying on a general K3
surface of degree 2g − 2 in Pg . This gives rise to a curve B in the moduli space

Mg . Since Kg is the image of a Pg-bundle over the irreducible moduli space of
polarized K3 surfaces of degree 2g − 2, the pencils B fill up the entire locus Kg .
We have that λ · B = g + 1, δ0 · B = 6g + 18 and δi · B = 0 for i ≥ 1. The
first two intersection numbers are computed using the classical formula for the
number of singular fibres in a pencil (see e.g. [GH], p. 508) while the last assertion
is obvious since a Lefschetz pencil contains no reducible curves. We can write that
δ ·B/λ ·B = 6+ 12/(g+ 1) > s(D), which implies that D ·B < 0 hence B ⊂ D. By

varying B and S we obtain that Kg ⊂ D. �

REMARK 2.16. Proposition 2.15 shows that the Slope Conjecture would be im-

plied by the curve B ⊂ Mg being nef. It is also proved in [FP] that if

D ≡ aλ− b0δ0 − · · · − b[g/2]δ[g/2] ∈ Eff(Mg)

is a divisor class such that a/b0 ≤ 71/10, then bi ≥ b0 for all 1 ≤ i ≤ 11. At least for
g ≤ 23, the statement of the Slope Conjecture is thus equivalent to B being a nef
curve.

REMARK 2.17. The pencils B fill up Mg for g ≤ 11, g 6= 10 (cf. [Mu]), hence

Proposition 2.15 gives a short proof of the Slope Conjecture on Mg for these val-
ues. For those g such that Kg ( Mg, Proposition 2.15 suggests how to search
for counterexamples to the Slope Conjecture: one has to come up with divisorial
geometric properties which are a relaxation of the condition that a curve lie on

a K3 surface. The first case where one can test the Slope Conjecture is on M10,
where contrary to the naive dimension count, K10 is a divisor: The moduli space
of polarizedK3 surfaces of genus g depends on 19 parameters, hence the expected
dimension of Kg is min(19 + g, 3g − 3) which would suggest that any [C] ∈ M10

lies on a K3 surface. However, Mukai has proved that K3 surfaces of genus 10
appear as codimension 3 linear sections of a certain rational homogeneous variety

X5 ⊂ P13 corresponding to the Lie group G2 (cf. [Mu]). Therefore, if [C] ∈ M10

lies on a K3 surface, then C lies on ∞3 K3 surfaces and K10 is a divisor on M10.
The Slope Conjecture holds on M10 if and only if it holds for K10.

THEOREM 2.18. ([FP]) The divisor K10 provides a counterexample to the Slope Con-
jecture. Its class is given by the formula K10 ≡ 7λ− δ0−5δ1−9δ2−12δ3−14δ4−15δ5,

hence s(K10) = 7.

The proof of this theorem does not use the original definition of K10. Instead,

we show that K10 has a number of other interpretations, in particular, we can

geometrically characterize the points from K10 in ways that make no reference to

K3 surfaces and use these descriptions to compute the class of K10.

THEOREM 2.19. ([FP]) The divisor K10 has two other incarnations as a geometric
subvariety of M10:

(1) The locus of curves [C] ∈ M10 carrying a semistable rank two vector bundle E
with ∧2(E) = KC and h0(C,E) ≥ 7.

(2) The locus of curves [C] ∈ M10 for which there exists L ∈W 4
12(C) such that the

multiplication map Sym2H0(L) → H0(L⊗2) is not an isomorphism.
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Proof of Theorem 2.18. We use the second description from Theorem 2.19 and study-
ing degenerations of multiplication maps, we can explicitly describe the pull-backs

j∗i (K10) where j∗i : Mi,1 → M10 is the map obtained by attaching a fixed tail of
genus 10− i at the marked point of each genus i curve. It turns out that these pull-

backs are sums of “pointed” Brill-Noether divisors on Mi,1. Since these classes

have been computed in [EH2], we get enough relations in the coefficients of [K10]
that enable us to fully determine its class. �

REMARK 2.20. Note that if B ⊂ M10 is the pencil appearing in Proposition

2.15, then K10 · B = −1. The Slope Conjecture fails on M10 precisely because of
the failure of B to be a nef curve.

REMARK 2.21. We note that a general curve [C] ∈ M10 possesses finitely many
(precisely 42) linear series g4

12 = KC(−g1
6), and these g1

6’s are the pencils of mini-
mal degree on C. If C lies on a K3 surface S, the exceptional rank 2 vector bundle
E which appears in Theorem 2.19 is a Lazarsfeld-Mukai bundle obtained as a re-
striction toC of a rank 2 bundle on S which is the elementary transformation along
C given by the evaluation map H0(g1

6) ⊗ OS → g1
6. These bundles have played

an important role in Voisin’s recent proof of Green’s Conjecture on syzygies of
canonical curves (cf. [V1], [V2]).

The counterexample constructed in Theorem 2.18 now raises at least three
questions:

• Is the divisor K10 an isolated counterexample? (After all, the condition that a

curve lie on a K3 surface is divisorial only for g = 10, and even on M10 this con-
dition gives rise to a divisor almost by accident, due to the somewhat miraculous

existence of Mukai’s rational 5-fold X5 ⊂ P13).
• If the answer to the first question is no and the Slope Conjecture fails systemat-

ically, are there integers g ≤ 23 and divisors D ∈ Eff(Mg) such that s(D) < 13/2,

so that Mg of general type, thus contradicting Conjecture 2.12?
• In light of the application to the Schottky problem, is there still a lower bound

on s(Mg)? Note that we know that s(Mg) ≥ O(1/g) for large g (cf. [HMo]).
In the remaining part of this paper we will provide adequate answers to the

first two of these questions.

3. Constructing divisors of small slope using syzygies

We describe a general recipe of constructing effective divisors on Mg having
very small slope. In particular, we obtain an infinite string of counterexamples
to the Slope Conjecture. Everything in this section is contained in [F2] and [F3]
and we outline the main ideas and steps in these calculations. The key idea is to

reinterpret the second description of the divisor K10 (see Theorem 2.19) as a failure
of [C] ∈ M10 to satisfy the Green-Lazarsfeld property (N0) in the embedding
given by one of the finitely many linear series g4

12 on C. We will be looking at loci
in Mg consisting of curves that have exceptional syzygy properties with respect
to certain gr

d’s.

Suppose that C
|L|
→֒ Pr is a curve of genus g embedded by a line bundle

L ∈ Picd(C). We denote by IC/Pr the ideal of C in Pr and consider its minimal
resolution of free graded S = C[x0, . . . , xr]-modules

0 → Fr+1 → · · · → F2 → F1 → IC/Pr → 0.
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Following Green and Lazarsfeld we say that the pair (C,L) satisfy the property
(Ni) for some integer i ≥ 1, if Fj = ⊕S(−j − 1) for all j ≤ i (or equivalently in
terms of graded Betti numbers, bi,l(C) = 0 for all l ≥ 2). Using the computation
of bj,l(C) in terms of Koszul cohomology, there is a well-known cohomological
interpretation of property (Ni): If ML is the vector bundle on C defined by the
exact sequence

0 →ML → H0(L) ⊗OC → L→ 0,

then (C,L) satisfies property (Ni) if and only if for all j ≥ 1, the natural map

ui,j : ∧i+1H0(L) ⊗H0(L⊗j) → H0(∧iML ⊗ L⊗(j+1))

is surjective (cf. e.g. [L2]).
Our intention is to define a determinantal syzygy type condition on a generi-

cally finite cover of Mg parametrizing pairs consisting of a curve and a gr
d. We fix

integers i ≥ 0 and s ≥ 1 and set

r := 2s+ si+ i, g := rs+ s and d := rs+ r.

We denote by Gr
d the stack parametrizing pairs [C,L] with [C] ∈ Mg and L ∈

W r
d (C) and denote by σ : Gr

d → Mg the natural projection. Since ρ(g, r, d) = 0, by
general Brill-Noether theory, the general curve of genus g has finitely many gr

d’s
and there exists a unique irreducible component of Gr

d which maps onto Mg.
We define a substack of Gr

d consisting of those pairs (C,L) which fail to satisfy
property (Ni). In [F3] we introduced two vector bundles A and B over Gr

d such

that for a curve C
|L|
→֒ Pr corresponding to a point (C,L) ∈ Gr

d, we have that

A(C,L) = H0(Pr,∧iMPr (2)) and B(C,L) = H0(C,∧iML ⊗ L2).

There is a natural vector bundle morphism φ : A → B given by restriction. From
Grauert’s Theorem we see that both A and B are vector bundles over Gr

d and from
Bott’s Theorem we compute their ranks

rank(A) = (i+ 1)

(
r + 2

i+ 2

)
and rank(B) =

(
r

i

)(
−
id

r
+ 2d+ 1 − g

)

(use that ML is a stable bundle, hence H1(∧iML ⊗L⊗2) = 0, while rank(B) can be
computed from Riemann-Roch). It is easy to check that for our numerical choices
we have that rank(A) = rank(B).

THEOREM 3.1. The cycle

Ug,i := {(C,L) ∈ Gr
d : (C,L) fails property (Ni)},

is the degeneracy locus of vector bundle map φ : A → B over Gr
d.

Thus Zg,i := σ(Ug,i) is a virtual divisor on Mg when g = s(2s + si + i + 1).

In [F3] we show that we can extend the determinantal structure of Zg,i over Mg

in such a way that whenever s ≥ 2, the resulting virtual slope violates the Harris-
Morrison Conjecture. One has the following statement:

THEOREM 3.2. If σ : G̃r
d → Mg is the compactification of Gr

d given by limit linear

series, then there exists a natural extension of the vector bundle map φ : A → B over G̃r
d

such that Zg,i is the image of the degeneracy locus of φ. The class of the pushforward to

Mg of the virtual degeneracy locus of φ is given by

σ∗(c1(Gi,2 −Hi,2)) ≡ aλ− b0 δ0 − b1 δ1 − · · · − b[g/2] δ[g/2],
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where a, b0, . . . , b[g/2] are explicitly given coefficients such that b1 = 12b0− a, bi ≥ b0 for
1 ≤ i ≤ [g/2] and

s
(
σ∗(c1(Gi,2 −Hi,2))

)
=

a

b0
= 6

f(s, i)

(i+ 2) sg(s, i)
, with

f(s, i) =
(i4+24i2+8i3+32i+16)s7+(i4+4i3−16i−16)s6−(i4+7i3+13i2−12)s5−(i4+2i3+
i2+14i+24)s4+(2i3+2i2−6i−4)s3+(i3+17i2+50i+41)s2+(7i2+18i+9)s+2i+2

and

g(s, i) = (i3 + 6i2 + 12i+ 8)s6 + (i3 + 2i2 − 4i− 8)s5 − (i3 + 7i2 + 11i+ 2)s4 −
− (i3 − 5i)s3 + (4i2 + 5i+ 1)s2 + (i2 + 7i+ 11)s+ 4i+ 2.

Furthermore, we have that 6 < a
b0
< 6 + 12

g+1 whenever s ≥ 2. If the morphism φ is

generically non-degenerate, then Zg,i is a divisor on Mg which gives a counterexample to
the Slope Conjecture for g = s(2s+ si+ i+ 1).

REMARK 3.3. Theorem 3.2 generalizes all known examples of effective divi-

sors on Mg violating the Slope Conjecture. For s = 2 and g = 6i + 10 (that is,
in the case h1(L) = 2 when Gr

d is isomorphic to a Hurwitz scheme parametrizing

covers of P1), we recover our result from [F2]. We have that

s(Z6i+10,i) =
3(4i+ 7)(6i2 + 19i+ 12)

(12i2 + 31i+ 18)(i+ 2)
.

For i = 0 we recover the main result from [Kh] originally proved using a
completely different method:

COROLLARY 3.4. (Khosla) For g = s(2s+ 1), r = 2s, d = 2s(s+ 1) the slope of the
virtual class of the locus of those [C] ∈ Mg for which there exists L ∈ W r

d (C) such that
the embedded curve C ⊂ P

r sits on a quadric hypersurface, is

s(Zs(2s+1),0) =
3(16s7 − 16s6 + 12s5 − 24s4 − 4s3 + 41s2 + 9s+ 2)

s(8s6 − 8s5 − 2s4 + s2 + 11s+ 2)
.

REMARK 3.5. In the case s = 1, g = 2i + 3 when gr
d = g

g−1
2g−2 is the canonical

system, our formula reads

s(Z2i+3,i) =
6(i+ 3)

i+ 2
= 6 +

12

g + 1
.

Remembering that Z2i+3,i is the locus of curves [C] ∈ M2i+3 for which KC fails
property (Ni), from Green’s Conjecture for generic curves (cf. [V1], [V2]) we ob-
tain the set-theoretic identification identification between Z2i+3,i and the locus
M1

2i+3,i+2 of (i + 2)-gonal curves. Thus Z2i+3,i is a Brill-Noether divisor! The-
orem 3.2 provides a new way of calculating the class of the compactification of
the Brill-Noether divisor which was first computed by Harris and Mumford (cf.
[HM]).

Theorem 3.2 is proved by extending the determinantal structure of Zg,i over

the boundary divisors in Mg . We can carry this out outside a locus of codimension

≥ 2 in Mg. We denote by M̃g := M0
g ∪

(
∪

[g/2]
j=0 ∆0

j

)
the locally closed subset of

Mg defined as the union of the locus M0
g of smooth curves carrying no linear

systems gr
d−1 or gr+1

d to which we add the open subsets ∆0
j ⊂ ∆j for 1 ≤ j ≤ [g/2]
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consisting of 1-nodal genus g curves C ∪y D, with [C] ∈ Mg−j and [D, y] ∈ Mj,1

being Brill-Noether general curves, and the locus ∆0
0 ⊂ ∆0 containing 1-nodal

irreducible genus g curves C′ = C/q ∼ y, where [C, q] ∈ Mg−1 is a Brill-Noether
general pointed curve and y ∈ C, together with their degenerations consisting of
unions of a smooth genus g − 1 curve and a nodal rational curve. One can then
extend the finite covering σ : Gr

d → M0
g to a proper, generically finite map

σ : G̃r
d → M̃g

by letting G̃r
d be the stack of limit gr

d’s on the treelike curves from M̃g (see [EH1],
Theorem 3.4 for the construction of the space of limit linear series).

One method of computing [Zg,i] is to intersect the locus Zg,i with standard test

curves in the boundary of Mg which are defined as follows: we fix a Brill-Noether
general curve C of genus g − 1, a general point q ∈ C and a general elliptic curve
E. We define two 1-parameter families
(1)
C0 := {C/y ∼ q : y ∈ C} ⊂ ∆0 ⊂ Mg and C1 := {C ∪y E : y ∈ C} ⊂ ∆1 ⊂ Mg.

It is well-known that these families intersect the generators of Pic(Mg) as follows:

C0 · λ = 0, C0 · δ0 = −(2g − 2), C0 · δ1 = 1 and C0 · δa = 0 for a ≥ 2, and

C1 · λ = 0, C1 · δ0 = 0, C1 · δ1 = −(2g − 4), C1 · δa = 0 for a ≥ 2.

Before we proceed we review the notation used in the theory of limit linear
series (see [EH1] as a general reference). If X is a treelike curve and l is a limit gr

d

onX , for a component Y ofX we denote by lY = (LY , VY ⊂ H0(LY )) the Y -aspect
of l. For a point y ∈ Y we denote by by {alY

s (C)}s=0...r the vanishing sequence of

l at y and by ρ(lY , y) := ρ(g, r, d) −
∑r

i=0(a
lY
i (y) − i) the adjusted Brill-Noether

number with respect to y. We have the following description of the curves σ∗(C0)
and σ∗(C1):

PROPOSITION 3.6. (1) Let C1
y = C ∪y E be an element of ∆0

1. If (lC , lE) is a limit

gr
d on C1

y , then VC = H0(LC) and LC ∈ W r
d (C) has a cusp at y. If y ∈ C is a general

point, then lE =
(
OE(dy), (d− r− 1)y+ |(r+ 1)y|

)
, that is, lE is uniquely determined.

If y ∈ C is one of the finitely many points for which there exists LC ∈ W r
d (C) such

that ρ(LC , y) = −1, then lE(−(d − r − 2)y) is a gr
r+2 with vanishing sequence at y

being ≥ (0, 2, 3, . . . , r, r + 2). Moreover, at the level of 1-cycles we have the identification
σ∗(C1) ≡ X + ν T , where

X := {(y, L) ∈ C ×W r
d (C) : h0(C,L(−2y)) ≥ r}

and T is the curve consisting of gr
r+2’s on E with vanishing ≥ (0, 2, . . . , r, r + 2) at the

fixed point y ∈ E while ν is a positive integer.
(2) Let C0

y = C/y ∼ q be an element of ∆0
0. Then limit linear series of type gr

d onC0
y are in

1:1 correspondence with complete linear series L on C of type gr
d satisfying the condition

h0(C,L⊗OC(−y− q)) = h0(C,L)− 1. Thus there is an isomorphism between the cycle
σ∗(C0) of gr

d’s on all curves C0
y with y ∈ C, and the smooth curve

Y := {(y, L) ∈ C ×W r
d (C) : h0(C,L(−y − q)) ≥ r}.

Throughout the papers [F2] and [F3] we use a number of facts about intersec-
tion theory on Jacobians which we now quickly review. Let C be a Brill-Noether
general curve of genus g − 1 (recall that g = rs + s and d = rs + s, where
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r = 2s + si + i). Then dim W r
d (C) = r and every L ∈ W r

d (C) corresponds to a
complete and base point free linear series. We denote by L a Poincaré bundle on

C × Picd(C) and by π1 : C × Picd(C) → C and π2 : C × Picd(C) → Picd(C) the

projections. We define the cohomology class η = π∗
1([point]) ∈ H2(C × Picd(C)),

and if δ1, . . . , δ2g ∈ H1(C,Z) ∼= H1(Picd(C),Z) is a symplectic basis, then we set

γ := −

g∑

α=1

(
π∗

1(δα)π∗
2(δg+α) − π∗

1(δg+α)π∗
2(δα)

)
.

We have the formula (cf. [ACGH], p. 335) c1(L) = dη + γ, corresponding to the
Hodge decomposition of c1(L). We also record that γ3 = γη = 0, η2 = 0 and
γ2 = −2ηπ∗

2(θ). On W r
d (C) we have the tautological rank r+ 1 vector bundle E :=

(π2)∗(L|C×W r
d
(C)). The Chern numbers of E can be computed using the Harris-Tu

formula (cf. [HT]): if we write
∑r

i=0 ci(E
∨) = (1+x1) · · · (1+xr+1), then for every

class ζ ∈ H∗(Picd(C),Z) one has the formula 3

xi1
1 · · ·x

ir+1

r+1 ζ = det
( θg−1+r−d+ij−j+l

(g − 1 + r − d+ ij − j + l)!

)
1≤j,l≤r+1

ζ.

If we use the expression of the Vandermonde determinant, we get the formula

det
( 1

(aj + l − 1)!

)
1≤j,l≤r+1

=
Πj>l (al − aj)

Πr+1
j=1 (aj + r)!

.

By repeatedly applying this we get all intersection numbers on W r
d (C) which we

need:

LEMMA 3.7. If ci := ci(E∨) we have the following identities in H∗(W r
d (C),Z):

(1) cr−1θ = r(s+1)
2 cr.

(2) cr−2θ
2 = r(r−1)(s+1)(s+2)

6 cr.

(3) cr−2c1θ = r(s+1)
2

(
1 + (r−2)(r+2)(s+2)

3(s+r+1)

)
cr.

(4) cr−1c1 = (1 + (r−1)(r+2)(s+1)
2(s+r+1) )cr.

(5) cr = 1! 2!···(r−1)! (r+1)!
(s−1)! (s+1)! (s+2)!···(s+r)!θ

g−1.

For each integers 0 ≤ a ≤ r and b ≥ 2 we shall define vector bundles Ga,b and

Ha,b over G̃r
d with fibres

Ga,b(C,L) = H0(C,∧aML ⊗ L⊗b) and Ha,b(C,L) = H0(Pr,∧aMPr(b))

for each (C,L) ∈ Gr
d giving a map C

|L|
→ Pr. Clearly Gi,2|Gr

d
= B and Hi,2|Gr

d
= A,

where A and B are the vector bundles introduced in Proposition 3.1. The question
is how to extend this description over the divisors ∆0

j . For simplicity we only ex-

plain how to do this over σ−1(M0
g∪∆0

0∪∆0
1) which will be enough to compute the

slope of Zg,i. The case of the divisors σ−1(∆0
j ) where 2 ≤ j ≤ [g/2] is technically

more involved and it is dealt with in [F3]. We start by extending G0,b (see [F3],
Proposition 2.8):

PROPOSITION 3.8. For each b ≥ 2 there exists a vector bundle G0,b over G̃r
d of rank

bd+ 1 − g whose fibres admit the following description:

3There is a confusing sign error in the formula (1.4) in [HT]: the formula is correct as it is appears

in [HT], if the xj ’s denote the Chern roots of the dual of the kernel bundle.
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• For (C,L) ∈ Gr
d, we have that G0,b

(
C,L) = H0(C,L⊗b).

• For t = (C ∪y E,L) ∈ σ−1(∆0
1), where L ∈ W r

d (C) has a cusp at y ∈ C, we
have that

G0,b(t) = H0(C,L⊗b(−2y)) + C · ub ⊂ H0
(
C,L⊗b),

where u ∈ H0(C,L) is any section such that ordy(u) = 0.
• For t = (C/y ∼ q, L) ∈ σ−1(∆0

0), where q, y ∈ C and L ∈ W r
d (C) is such

that h0(C,L(−y − q)) = h0(L) − 1, we have that

G0,b(t) = H0(C,L⊗b(−y − q)) ⊕ C · ub ⊂ H0(C,L⊗b),

where u ∈ H0(C,L) is a section such that ordy(u) = ordq(u) = 0.

Having defined the vector bundles G0,b we now define inductively all vector
bundles Ga,b by the exact sequence

(2) 0 −→ Ga,b −→ ∧aG0,1 ⊗ G0,b
da,b
−→ Ga−1,b+1 −→ 0.

To define Ha,b is even easier. We set H0,b := SymbG0,1 for all b ≥ 1 and we define
Ha,b inductively via the exact sequence

(3) 0 −→ Ha,b −→ ∧aH0,1 ⊗ SymbH0,1 −→ Ha−1,b+1 −→ 0.

The surjectivity of the right map in (3) is obvious, whereas to prove that da,b

is surjective, one employs the arguments from Proposition 3.10 in [F2]. There is
a natural vector bundle morphism φa,b : Ha,b → Ga,b. Moreover rank(Hi,2) =
rank(Gi,2) and the degeneracy locus of φi,2 is the codimension one compactifica-
tion of Zg,i.

We now compute the class of the curves X and Y defined in Proposition 3.6
(see [F3] Proposition 2.11 for details):

PROPOSITION 3.9. Let C be a Brill-Noether general curve of genus g− 1 and q ∈ C
a general point. We denote by π2 : C ×W r

d (C) → W r
d (C) the projection and set ci :=

(π2)
∗
(
ci(E∨)

)
.

(1) The class of the curve X = {(y, L) ∈ C ×W r
d (C) : h0(C,L(−2y)) ≥ r} is given by

[X ] = cr + cr−1(2γ + (2d+ 2g − 4)η) − 6cr−2 ηθ.

(2) The class of the curve Y = {(y, L) ∈ C ×W r
d (C) : h0(C,L(−y − q)) ≥ r} is given

by
[Y ] = cr + cr−1(γ + (d− 1)η) − 2cr−2 ηθ.

Sketch of proof. Both X and Y are expressed as degeneracy loci over C ×W r
d (C)

and we compute their classes using the Thom-Porteous formula. For (y, L) ∈ C ×
W r

d (C) the natural map H0(C,L|2y)∨ → H0(C,L)∨ globalizes to a vector bundle
map ζ : J1(L)∨ → (π2)

∗(E∨). Then X = Z1(ζ) and we apply Thom-Porteous. �

We mention the following intersection theoretic result (cf. [F3], Lemma 2.12):

LEMMA 3.10. For each j ≥ 2 we have the following formulas:

(1) c1(G0,j |X) = −j2θ − (2g − 4)η − j(dη + γ).

(2) c1(G0,j |Y ) = −j2θ + η.

Proof of Theorem 3.2. Since codim(Mg − M̃g,Mg) ≥ 2, it makes no difference

whether we compute the class σ∗(Gi,2 −Hi,2) on M̃g or on Mg and we can write

σ∗(Gi,2 −Hi,2) = Aλ−B0 δ0 −B1 δ1 − · · · −B[g/2] δ[g/2] ∈ Pic(Mg),
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where λ, δ0, . . . , δ[g/2] are the generators of Pic(Mg). First we note that one has the
relation A − 12B0 + B1 = 0. This can be seen by picking a general curve [C, q] ∈
Mg−1,1 and at the fixed point q attaching toC a Lefschetz pencil of plane cubics. If

we denote by R ⊂ Mg the resulting curve, then R · λ = 1, R · δ0 = 12, R · δ1 = −1
andR ·δj = 0 for j ≥ 2. The relationA−12B0 +B1 = 0 follows once we show that
σ∗(R)·c1(Gi,2−Hi,2) = 0. To achieve this we check that G0,b|σ∗(R) is trivial and then
use (2) and (3). We take [C ∪q E] to be an arbitrary curve from R, where E is an
elliptic curve. Using that limit gr

d on C ∪q E are in 1 : 1 correspondence with linear
seriesL ∈W r

d (C) having a cusp at q (this being a statement that holds independent
ofE) and that G0,b|σ∗(∆0

1
) consists on each fibre of sections of the genus g−1 aspect

of the limit gr
d, the claim now follows.

Next we determine A,B0 and B1 explicitly. We fix a general pointed curve
(C, q) ∈ Mg−1,1 and construct the test curves C1 ⊂ ∆1 and C0 ⊂ ∆0. Using the
notation from Proposition 3.6, we get that σ∗(C0) · c1(Gi,2 − Hi,2) = c1(Gi,2|Y ) −
c1(Hi,2|Y ) and σ∗(C1)·c1(Gi,2−Hi,2) = c1(Gi,2|X)−c1(Hi,2|X) (the other component

T of σ∗(C1) does not appear because G0,b|T is trivial for all b ≥ 1). On the other
hand

C0 ·σ∗(c1(Gi,2 −Hi,2)) = (2g−2)B0−B1 and C1 ·σ∗(c1(Gi,2 −Hi,2)) = (2g−4)B1,

while we already know that A− 12B0 +B1 = 0. Next we use the relations

c1(Gi,2) =

i∑

l=0

(−1)lc1(∧
i−lG0,1 ⊗ G0,l+2) =

i∑

l=0

(−1)l

(
r + 1

i− l

)
c1(G0,l+2)+

+

i∑

l=0

(−1)l
(
(l + 2)(rs+ r) + 1 − rs − s

)( r

i− l − 1

)
c1(G0,1), and

c1(Hi,2) =

i∑

l=0

(−1)lc1(∧
i−lG0,1 ⊗ Syml+2G0,1) =

=
i∑

l=0

(−1)l
((

r

i− l − 1

)(
r + l + 2

l + 2

)
+

(
r + 1

i− l

)(
r + l + 2

r + 1

))
c1(G0,1),

which when restricted to X and Y , enable us (also using Lemma 3.10) to obtain
explicit expressions for c1(Gi,2−Hi,2)|X and c1(Gi,2−Hi,2)|Y in terms of the classes
η, θ, γ and c1 = π∗

2(c1(E∨)). Intersecting these classes with [X ] and [Y ] and using
Lemma 3.7, we finally get a linear system of 3 equations in A,B0 and B1 which
leads to the stated formulas for the first three coefficients. �

Theorem 2.18 produces only virtual divisors on Mg of slope < 6 + 12/(g + 1).
To get actual divisors one has to show that the vector bundle map φ : Hi,2 → Gi,2

is generically non-degenerate. This has been carried out for s = 2, i = 0 in [FP]
(relying on earlier work by Mukai), as well in the cases s = 2, i = 1 and s = 2, i = 2
in [F2], using the program Macaulay. D. Khosla has checked the transversality of
φ when s = 3, i = 0, that is on M21 (cf. [Kh]). We generalize this last result as
well as [FP] by proving that for i = 0 and arbitrary s, the map φ : H0,2 → G0,2 is
always generically non-degenerate. The following result also establishes a proof
of the Maximal Rank Conjecture in the case ρ(g, r, d) = 0:
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THEOREM 3.11. For an integer s ≥ 2 we set r := 2s, d := 2s(s + 1) and g :=
s(2s+ 1). Then the vector bundle map φ : H0,2 → G0,2 is generically non-degenerate. In
particular

Zg,0 := {[C] ∈ Mg : ∃L ∈ W r
d (C) such that C

|L|
→֒ P

r is not projectively normal}

is a divisor on Mg of slope

s(Zg,0) =
3(16s7 − 16s6 + 12s5 − 24s4 − 4s3 + 41s2 + 9s+ 2)

s(8s6 − 8s5 − 2s4 + s2 + 11s+ 2)

violating the Slope Conjecture.

Sketch of proof. From Brill-Noether theory it follows that there exists a unique

component of G̃r
d which maps onto M̃g , therefore it is then enough to produce

a Brill-Noether-Petri general smooth curve C ⊂ P2s having degree 2s(s + 1) and
genus s(2s + 1) such that C does not sit on any quadrics, that is H0(IC/P2s(2)) =

H1(IC/P2s(2)) = 0. We carry this out inductively: for each 0 ≤ a ≤ s, we con-

struct a smooth non-degenerate curve Ca ⊂ Ps+a with deg(Ca) =
(
s+a+1

2

)
+ a and

g(Ca) =
(
s+a+1

2

)
+ a − s, such that Ca satisfies the Petri Theorem (in particular

H1(Ca, NCa/Ps+a) = 0), and such that the multiplication map

µ2 : Sym2H0(Ca,OCa
(1)) → H0(Ca,OCa

(2))

is surjective.

To construct C0 ⊂ Ps we consider the White surface S = Bl{p1,...,pδ}(P
2) ⊂ Ps

obtained by blowing-up P2 at general points p1, . . . , pδ ∈ P2 where δ =
(
s+1
2

)
, and

embedding it via the linear system |sh−
∑δ

i=1 Epi
|. Here h is the class of a line on

P2. It is known that S ⊂ Ps is a projectively Cohen-Macaulay surface and its ideal
is generated by the (3 × 3)-minors of a certain (3 × s)-matrix of linear forms. The
Betti diagram of S ⊂ Ps is the same as that of the ideal of (3×3)-minors of a (3×s)-
matrix of indeterminates. In particular, we have that Hi(IS/Ps(2)) = 0 for i = 0, 1.

On S we consider a generic smooth curveC ≡ (s+1)h−
∑δ

i=1Epi
. We find that the

embedded curve C ⊂ S ⊂ Ps has deg(C) =
(
s+1
2

)
and g(C) =

(
s
2

)
. Even though

[C] ∈ Mg(C) itself is not a Petri general curve, the map Hd(C),g(C),s → M(s

2)
from

the Hilbert scheme of curves C′ ⊂ Ps, is smooth and dominant around the point
[C →֒ Ps]. Therefore a generic deformation [C0 →֒ Ps] of [C →֒ Ps] will be Petri
general and still satisfy the condition H1(IC0/Ps(2)) = 0.

Assume now that we have constructed a Petri general curve Ca ⊂ Ps+a with
all the desired properties. We pick general points p1, . . . , ps+a+2 ∈ Ca with the

property that if ∆ := p1 + · · · + ps+a+2 ∈ Syms+a+2Ca, then the variety

T := {(M,V ) ∈ W s+a+1
d(Ca)+s+a+2(Ca) : dim

(
V ∩H0(Ca,M ⊗OCa

(−∆))
)
≥ s+a+1}

of linear series having an (s+a+2)-fold point along ∆, has the expected dimension
ρ(g(Ca), s + a + 1, d(Ca) + s + a + 2) − (s + a + 1)2. We identify the projective

space Ps+a containing Ca with a hyperplane H ⊂ Ps+a+1 and choose a linearly

normal elliptic curve E ⊂ Ps+a+1 such that E ∩ H = {p1, . . . , ps+a+2}. We set

X := Ca ∪{p1,...,ps+a+2}E →֒ Ps+a+1 and then deg(X) = pa(X)+ s. From the exact
sequence

0 −→ OE(−p1 − · · · − ps+a+2) −→ OX −→ OCa
−→ 0,
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we can write that h0(OX(1)) ≤ h0(OCa
(1))+h0(OE) = s+a+2, hence h0(OX(1)) =

s+ a+ 2 and h1(OX(1)) = a+ 1. One can also write the exact sequence

0 −→ IE/Ps+a+1(1) −→ IX/Ps+a+1(2) −→ ICa/H(2) −→ 0,

from which we obtain thatH1(IX/Ps+a+1(2)) = 0, hence by a dimension count also

H0(IX/Ps+a+1(2)) = 0, that is, X and every deformation of X inside Ps+a+1 will lie

on no quadrics. In [F3] Theorem 1.5 it is proved thatX →֒ Ps+a+1 can be deformed

to an embedding of a smooth curve Ca+1 in Ps+a+1 such that H1(NCa+1/Ps+a+1) =
0. This enables us to continue the induction and finish the proof. �

4. The Kodaira dimension of Mg and other problems

Since one is able to produce systematically effective divisors on Mg having
slope smaller than that of the Brill-Noether divisors, it is natural to ask whether

one could diprove Conjecture 2.12, that is, construct effective divisorsD ∈ Eff(Mg)

for g ≤ 23 such that s(D) < s(KMg
) = 13/2, which would imply that Mg

is of general type. We almost succeeded in this with Theorem 3.2 in the case

s = 2, i = 2, g = 22: The slope of the (actual) divisor Z22,2 ⊂ M22 turns out

to be 1665/256 = 6.5039..., which barely fails to make M22 of general type. How-
ever, a different syzygy type condition, this time pushed-forward from a variety

which maps onto M22 with fibres of dimesnion one, produces an effective divisor

of slope even smaller than s(Z22,2). We have the following result [F4]:

THEOREM 4.1. The moduli space M22 is of general type. Precisely, the locus

D22 := {[C] ∈ M22 : ∃L ∈W 6
25(C) such that C

|L|
→֒ P

6 lies on a quadric}

is a divisor on M22 and the class of its closure in M22 equals

D ≡ c(
17121

2636
λ− δ0 −

14511

2636
δ1 − b2 δ2 − · · · − b11 δ11),

where c > 0 and bi > 1 for 2 ≤ i ≤ 11. Therefore s(D) = 17121/2636 = 6.49506... <
13/2.

We certainly expect a similar result for M23. We have calculated the class of
the virtual locus D23 consisting of curves [C] ∈ M23 such that there exists L ∈

W 6
26(C) with the multiplication map µL : Sym2H0(L) → H0(L⊗2) not being injec-

tive. By dimension count we expect this locus to be a divisor on M23 and assuming

so, we have computed its slope s(D23) = 470749/72725 = 6.47300... < 13/2. For
g = 23 this is only a virtual result at the moment, since we cannot rule out the
possibility that D23 equals the entire moduli space M23. The difficulty lies in the
fact that D23 as a determinantal variety is expected to be of codimension 3 inside
the variety G6

26 which maps onto M23 with fibres of dimension 2.

The Kodaira dimension of Mg,n

The problem of describing the Kodaira type of Mg,n for n ≥ 1, has been initi-
ated by Logan in [Log]. Using Theorem 2.11 together with the formula KMg,n

=

π∗
n(KMg,n−1

) + ωπn
, where πn : Mg,n → Mg,n−1 is the projection map forgetting
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the n-th marked point, we find that

KMg,n
≡ 13λ− 2δ0 +

n∑

i=1

ψi − 2
∑

i≥0,S

δi:S −
∑

S

δ1:S .

To prove that Mg,n is of general type one needs an ample supply of explicit effec-

tive divisor classes on Mg,n such that KMg,n
can be expressed as a linear combi-

nation with positive coefficients of such an effective divisor, boundary classes and

an ample class on Mg,n of the type
∑n

i=1 aiψi + bλ− δ0 −
∑

i≥0,S δi:S where b > 11

and ai > 0 for 1 ≤ i ≤ n. Logan has computed the class of the following effec-

tive divisors on Mg,n (cf. [Log], Theorems 5.3-5.7): We fix nonnegative integers
a1, . . . , an such that a1 + · · · + an = g and we define Dg:a1,...,an

to be the locus of
curves [C, x1, . . . , xn] ∈ Mg,n such that h0(C,OC(a1x1 + · · · + anxn)) ≥ 2. Then

Dg:a1,...,an
is a divisor on Mg,n and one has the following formula in Pic(Mg,n):

(4) Dg:a1,...,an
≡ −λ+

n∑

i+1

(
ai + 1

2

)
ψi − 0 · δ0 −

∑

i<j

(
ai + aj + 1

2

)
δ0:{i,j} − · · · .

Note that for n = 1 when necessarily a1 = g, we obtain in this way the class of the

divisor of Weierstrass points on Mg,1: Dg:g ≡ −λ+
(
g+1
2

)
−

∑g
i=1

(
g−i+1

2

)
δi:1.

In [F3] we introduced a new class of divisors generalizing the loci of higher
Weierstrass points in a different way: Fix g, r ≥ 1 and 0 ≤ i ≤ g. We set n :=
(2r + 1)(g − 1) − 2i and define the locus

Mrcr
g,i := {[C, x1, . . . , xn] ∈ Mg,n : h1

(
C,∧iMKC

⊗K
⊗(r+1)
C ⊗OC(−x1−· · ·−xn)

)
≥ 1}.

If we denote by Γ := x1 + · · · + xn ∈ Cn, by Serre duality, the condition
appearing in the definition of Mrcr

g,i is equivalent to

h0
(
C,∧iM∨

KC
⊗OC(Γ) ⊗K

⊗(−r)
C

)
≥ 1 ⇐⇒ OC(Γ) ⊗K

⊗(−r)
C ∈ Θ∧iM∨

KC

,

where we recall that for a stable vector bundle E on C having slope ν(E) = ν ∈ Z,
its theta divisor is the determinantal locus

ΘE := {η ∈ Picg−µ−1(C) : h0(C,E ⊗ η) ≥ 1}.

The main result from [FMP] gives an identification Θ∧iM∨

KC

= Cg−i−1 −Ci, where

the right hand side is one of the difference varieties associated to C. Thus one
has an alternative description of points in Mrcr

g,i: a point (C, x1, . . . , xn) ∈ Mrcr
g,i

if and only if there exists D ∈ Ci such that h0
(
C,OC(Γ + D) ⊗ K

⊗(−r)
C

)
≥ 1.

For i = 0, the divisor Mrcr
g,0 consists of points [C, x1, . . . , x(2r+1)(g−1)] such that

∑(2r+1)(g−1)
i=1 xj ∈ |K⊗r

C |.

THEOREM 4.2. When n = (2r + 1)(g − 1) − 2i, the locus Mrcr
g,i is a divisor on

Mg,n and the class of its compactification in Mg,n is given by the following formula:

Mrc
r

g,i ≡
1

g − 1

(
g − 1

i

)(
aλ+ c

n∑

j=1

ψj − b0δ0 −
∑

j,s≥0,

bj:s
∑

|S|=s

δj:S

)
,

where

c = rg+ g− i− r− 1, b0 = −
1

g − 2

((
r + 1

2

)
(g− 1)(g− 2)+ i(i+1+2r− rg− g)

)
,
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a = −
1

g − 2

(
(g − 1)(g − 2)(6r2 + 6r + 1) + i(24r + 10i+ 10 − 10g − 12rg)

)
,

b0:s =

(
s+ 1

2

)
(g − 1) + s(rg − r) − si, and bj:s ≥ b0:s for j ≥ 1.

Using (4) and Theorem 4.2 one obtains the following table for which Mg,n’s
are known to be of general type. In each case the strategy is to show that KMg,n

lies in the cone spanned by Dg:a1,...,an
, (pullbacks of) Mrc

r

g,i, boundary divisors
and ample classes:

THEOREM 4.3. For integers g = 4, . . . , 21, the moduli space Mg,n is of general type
for all n ≥ f(g) where f(g) is described in the following table.

g 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
f(g) 16 15 16 15 14 13 11 12 13 11 10 10 9 9 9 7 6 4

We end this paper with a number of questions related to the global geometry

of Mg .

4.1. The hyperbolic nature of Mg . Since Mg is of general type for g large,
through a general point there can pass no rational or elliptic curve (On the other

hand there are plenty of rational curves in Mg for every g, take any pencil on a
surface).

QUESTION 4.4. For large g, find a suitable lower bound for the invariant

γg := inf{g(Γ) : Γ ⊂ Mg is a curve passing through a general point [C] ∈ Mg}.

Is it true that for large g we have that γg ≥ C log(g), where C is a constant inde-
pendent of g? At present we do not even seem to be able to rule out the (truly pre-
posterous) possibility that γg = 2. Since Γ will correspond to a fibration f : S → Γ
from a surface with fibres being curves of genus g, using the well-known formulas

Γ · δ = c2(S) + 4(g − 1)(1 − g(Γ)) and Γ · λ = χ(OS) + (g − 1)(1 − g(Γ)),

the question can easily be turned into a problem about the irregularity of surfaces.

QUESTION 4.5. For large g, compute the invariant

ng := max{dim(Z) : Z ⊂ Mg, Z ∩Mg 6= ∅, Z is not of general type}.

For the moduli space Ag , Weissauer proved that for g ≥ 13 every subvariety of Ag

of codimension ≤ g − 13 is of general type (cf. [W]). It seems reasonable to expect

something along the same lines for Mg .

QUESTION 4.6. A famous theorem of Royden implies that Mg,n admits no
non-trivial automorphisms or unramified correspondences for 2g − 2 + n ≥ 3 (see
e.g. [M] Theorem 6.1 and the references cited therein). Recall that a non-trivial
unramified correspondence is a pair of distinct finite étale morphisms α : X →
Mg,n, β : X → Mg,n. Precisely, Royden proves that the group of holomorphic
automorphisms of the Teichmüller space Tg,n is isomorphic to the mapping class
group. Using [GKM] Corollary 0.12 it follows that this result can be extended to

Mg when g ≥ 1. Any automorphism f : Mg → Mg maps the boundary to itself,
hence f induces an automorphism of Mg and then f = 1Mg,n

. One can ask the

following questions:
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(1) Is there an algebraic proof of Royden’s Theorem (in arbitrary characteris-

tic) using only intersection theory on Mg,n?
(2) Are there any non-trivial ramified correspondences of Mg,n?
(3) Are there any non-trivial birational automorphisms of Mg for g ≥ 3? It

is known that there exists an integer g0 such that Ag admits no birational
automorphisms for any g ≥ g0 (cf. [Fr]).

(4) Is it true that for n ≥ 5 we have that Aut(M0,n) = Sn? Note that it

follows from [KMc] Theorem 1.3, that Aut
(
M0,n/Sn

)
= {Id}.

QUESTION 4.7. We fix an ample line bundle L ∈ Pic(Mg) (say L = κ1). Can
one attach a modular meaning to the Seshadri constant ǫMg

(L, [C]), where [C] ∈

Mg is a general curve?
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