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Abstract
Each connected graded, graded-commutative algebra A of finite type over a field k

of characteristic zero defines a complex of finitely generated, graded modules over a
symmetric algebra, whose homology graded modules are called the (higher) Koszul
modules of A. In this note, we investigate the geometry of the support loci of these
modules, called the resonance schemes of the algebra. When A = k〈�〉 is the exte-
rior Stanley–Reisner algebra associated to a finite simplicial complex �, we show
that the resonance schemes are reduced. We also compute the Hilbert series of the
Koszul modules and give bounds on the regularity and projective dimension of these
graded modules. This leads to a relationship between resonance and Hilbert series that
generalizes a known formula for the Chen ranks of a right-angled Artin group.
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1 Introduction and statement of results

Koszul modules are graded modules over a symmetric algebra that are constructed
from the classical Koszul complex. They emerged from geometric group theory and
topology [2, 12] and found applications in other fields such as algebraic geometry.
One prominent instance is [1], where the effective vanishing in high degrees of some
Koszul modules led to a new proof of the celebrated Green’s Conjecture on syzygies
of generic canonical curves. The argument relies on a connection between the graded
pieces of those particular Koszul modules and the Koszul cohomology of the tangent
developable surface of a rational normal curve. The non-trivial vehicle that permits the
passage in [1] from symmetric powers (Koszul modules) to exterior powers (Koszul
cohomology) is an explicit version of the Hermite reciprocity formula.

It is the aim of this paper to describe a completely new instance where the passage
from Koszul modules to Koszul cohomology of some homogeneous coordinate ring
is still possible. The setup is, however, simpler and more elementary than the one
involved with Green’s Conjecture.

For a ground field k of characteristic 0, a classical construction of Stanley and
Reisner associates to every simplicial complex � on n vertices a graded, graded-
commutative algebra k〈�〉 = E/J�, where E = ∧

k
(e1, . . . , en) is the exterior

algebra over k and J� is the ideal generated by all the monomials eσ = e j1 ∧ · · ·∧ e js
corresponding to simplices σ = ( j1, . . . , js) with 1 � j1 < · · · < js � n which do
not belong to �.

Let S := k[x1, . . . , xn] be the polynomial ring in n variables over k, and consider
the cochain complex (k〈�〉• ⊗k S, δ) of free, finitely generated, graded S-modules
obtained by applying the BGG correspondence to the finitely generated, graded E-
module k〈�〉•. The Fitting ideals of this complex define the jump resonance loci of
our simplicial complex,

Ri (�) := V
(
Fittβi+1(δ

i−1 ⊕ δi )
)

, (1.1)

where βi+1 is the number of faces of dimension i in �. It was shown in [10] that
the irreducible components ofRi (�) are coordinate subspaces of k〈�〉1 = k

n , given
explicitly in terms of the (simplicial) homology groups of certain subcomplexes of �.

Now let
(
k〈�〉• ⊗k S, ∂

)
be the dual chain complex, and define the Koszul modules

(in weight i) of the simplicial complex � to be the homology S-modules of this
complex,

Wi (�) := Hi
(
k〈�〉• ⊗k S, ∂

)
. (1.2)

123



Journal of Algebraic Combinatorics (2024) 59:787–805 789

An alternate definition of resonance is given by the support loci of these modules,

Ri (�) := V
(
Ann(Wi (�))

)
. (1.3)

These varieties, called the support resonance loci, are again finite unions of coordi-
nate subspaces. Though they do not coincide in general with the previously defined
sets Ri (�), it is known that R1(�) = R1(�) (away from 0) and

⋃
j�i R j (�) =

⋃
j�i R j (�) for all i � 1.
A notable property of the higherKoszulmodules associated to simplicial complexes

is that they are multigraded as opposed to the general case when they are only graded
modules. Using the general theory of multi-graded square-free modules, we prove that
themulti-graded pieces of the Koszul modules can be described asmulti-graded pieces
of some Tor’s over symmetric algebras. It is known (see, for example, [12]) that the
graded pieces of weight-one Koszul modules are graded pieces of Tor’s over exterior
algebras; however, their relations with Tor’s over symmetric algebras are quite rare in
general.

Theorem 1.1 For any i � 1 and any square-free multi-index b, there is a natural
isomorphism of vector spaces,

[Wi (�)]b ∼=
[
TorS

|b|−i (k, k[�])
]∨
b

, (1.4)

where k[�] is the polynomial Stanley–Reisner ring of �.

We refer to Sect. 3.1 for a quick review of multi-graded square-free modules. This
multigraded structure of the Koszul modules is captured in the Hilbert series.

Theorem 1.2 For every simplicial complex �, the multigraded Hilbert series of the
Koszul modules Wi (�) are given by

∑

a∈Nn

dimk[Wi (�)]a ta =
∑

b∈N
n

b square-free

dimk(H̃i−1(�b; k))
tb

∏
j∈Supp(b)(1 − t j )

.

In Sect. 5, we give a precise description of the irreducible components of the support
resonance loci. In each weight i , they correspond to maximal subcomplexes with non-
vanishing reduced homology in degree i − 1.

Theorem 1.3 For every simplicial complex � and every i � 1, the scheme structure on
the support resonance Ri (�) is reduced. Moreover, the decomposition in irreducible
components is given by

Ri (�) =
⋃

V′⊆V maximal with
H̃i−1(�V′ ;k) �=0

k
V′

. (1.5)

Particularly interesting is the casewhen� is 1-dimensional, that is, itmay be viewed
as a finite simple graph �. It was shown in [9] that all the irreducible components of
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R1(�) are coordinate subspaces, which correspond to themaximally disconnected full
subgraphs of �. This result comes as a direct consequence of our analysis. The state-
ment concerning the reducedness of Ri (�) can be compared with the detailed study
performed in [3] on the scheme structure of (support) resonance varieties associated
to classical Koszul modules.

2 Graded algebras, Koszul modules, and higher resonance

We start in a more general context (adapted from the setup in [11, 13]) that will be
used throughout the paper.

2.1 Chain complexes associated to graded algebras

Let A• be a graded, graded-commutative algebra over a field k of characteristic 0, with
multiplication maps Ai ⊗k A j → Ai+ j . We will assume that A is connected (that is,
A0 = k) and of finite type (that is, dimk Ai < ∞, for all i > 0), and we will write
βi (A) = dimk Ai . To avoid trivialities, we always assume that β1(A) �= 0.

For each a ∈ A1, graded commutativity of multiplication yields a2 = 0; therefore,
we have a cochain complex

(A•, δa) : A0 A1 A2 · · · ,
δ0a δ1a δ2a (2.1)

with differentials δi
a(u) = a · u, for all u ∈ Ai . The resonance varieties of A are the

jump loci for the cohomology groups of this complex: for each i � 0, we put

Ri (A) := {
a ∈ A1 | Hi (A•, δa) �= 0

}
. (2.2)

Clearly, these are homogeneous subsets of the affine space A1. Since A0 is 1-
dimensional, generated by 1 ∈ k, and since δa(1) = a for each a ∈ A1, it follows that
R0(A) = {0}. The most studied is the first resonance variety, which can be described
as the set

R1(A) = {a ∈ A1 | ∃b ∈ A1, 0 �= a ∧ b ∈ K ⊥} ∪ {0}, (2.3)

where K ⊥ denotes the kernel of the multiplication map A1 ∧ A1 → A2.
Let us now fix a k-basis {e1, . . . , en} of A1, and let {x1, . . . , xn} be the dual basis

of the dual k-vector space A1 = (A1)∨. This allows us to identify the symmetric
algebra Sym(A1) with the polynomial ring S = k[x1, . . . , xn], the coordinate ring of
the affine space A1 ∼= k

β1(A).
Viewing A• as a graded module over the exterior algebra E• = ∧

A1, the BGG
correspondence [7] yields a cochain complex of finitely generated, free S-modules,

(
A• ⊗k S, δA

) : · · · Ai ⊗k S Ai+1 ⊗k S Ai+2 ⊗k S · · · ,
δi

A δi+1
A

(2.4)
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whose coboundary maps are the S-linear maps given by δi
A(u ⊗s) = ∑n

j=1 e j u ⊗sx j

for u ∈ Ai and s ∈ S. It is readily seen that this cochain complex is independent of
the choice of basis for A1 and that, moreover, the specialization of (A ⊗k S, δA) at an
element a ∈ A1 coincides with the complex (A, δa) defined by (2.1).

Remark 2.1 Typically, the elements in the exterior algebra E• are given negative
degrees, see, for instance, [7]. However, we prefer to work here with the positive
grading, which amounts to negating the standard action of the torus (k∗)n on E• as
well. This convention carries over to the exterior Stanley–Reisner rings A• = k〈�〉
in Sect. 3.2 and is compatible with the notation of [4], as recalled in Proposition 3.8.

It follows directly from the definition (2.2) that a point a ∈ A1 belongs toRi (A) if
and only if rank δi−1

a + rank δi
a < βi (A). Therefore,

Ri (A) = V
(
Fittβi+1(A)

(
δi−1

A ⊕ δi
A

))
, (2.5)

where ψ1 ⊕ ψ2 denotes the block sum of two matrices, Fittr (ψ) denotes the ideal of
minors of size n − r of a matrix ψ : Sm → Sn , and V (I ) denotes the zero-set of an
ideal I ⊂ S. This shows that the sets Ri (A) are algebraic subvarieties of the affine
space A1 called jump resonance loci.

2.2 Koszul modules and their support loci

Set Ai := (Ai )∨ and ∂ A
i := (δi−1

A )∨ and consider the chain complex of finitely
generated S-modules

(
A• ⊗k S, ∂

) : · · · Ai+1 ⊗k S Ai ⊗k S Ai−1 ⊗k S · · · .
∂ A

i+1 ∂ A
i

(2.6)
We define the Koszul modules (in weight i) of the algebra A as the homology S-
modules of this chain complex, that is,

Wi (A) := Hi
(

A• ⊗k S
)
. (2.7)

Clearly, these are finitely generated, graded S-modules. The degree d component
of the Koszul module Wi (A) is computed by the homology of the complex

Ai+1 ⊗k Sd−i−1 Ai ⊗k Sd−i Ai−1 ⊗k Sd−i+1, (2.8)

where we recall that S = Sym(A1). It follows straight from the definitions that
W0(A) = k is the trivial S-module.

Setting E• := ∧
A1, the first Koszul module also has the following presentation

(
E3 ⊕ K

) ⊗k S E2 ⊗k S W1(A),
∂ E
3 +ι⊗kidS

(2.9)
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where K = {
ϕ ∈ A1 ∧ A1 = (A1 ∧ A1)∨ | ϕ|K ⊥ ≡ 0

}
A1 ∧ A1 = E2.

ι

The resonance schemes of the graded algebra A are defined by the annihilator ideals
of the Koszul modules of A,

Ri (A) := Spec
(
S/Ann Wi (A)

)
. (2.10)

By slightly abusing notation, we also denote byRi (A) = Supp Wi (A) the underly-
ing sets and call them support resonance loci. Note that the algebra structure on A• is
not essential in the discussion above, as the definitions of Koszul modules and support
resonance loci only use the E-module structure. In particular, the constructions apply
for finitely generated graded E-modules, as well.

Clearly, R0(A) = R0(A) = {0}. More generally, suppose W j (A) �= 0 for all
1 � j � i . Then, as shown in [11, Theorem 2.5], the support resonance loci are
related to the jump resonance loci by the formula1

⋃

j�i

R j (A) =
⋃

j�i

R j (A). (2.11)

In particular, if W1(A) �= 0, then R1(A) = R1(A).

2.3 Quotients of exterior algebras through ideals generated in fixed degree

Wenow discuss a particularly interesting case of this general construction. Fix integers
d � 1 and n � 3. Let V be an n-dimensional vector space over the field k, and let
K ⊆ ∧d+1V be a subspace. Set S := Sym(V ) and E• := ∧

V ∨, and then consider
the linear subspace

K ⊥ := (∧d+1
V /K

)∨ = {
ϕ ∈

∧d+1
V ∨ | ϕ|K = 0

} ⊆
∧d+1

V ∨. (2.12)

Letting A• := E•/〈K ⊥〉 be the quotient of the exterior algebra E• by the (homoge-
neous) ideal generated by K ⊥, we clearly have K = Ad+1. Conversely, if J ⊆ E• is
a homogeneous ideal generated in degree d + 1 and we take K ⊥ := Jd+1, then the
algebra A• = E•/J is obtained as above. Denote by j the inclusion of the dual algebra
A• into E•. Recalling that ∂i : ∧i V ⊗k S → ∧i−1V ⊗k S is the Koszul differential,
we have the following characterization.

Proposition 2.2 The Koszul modules Wi (V , K ) = Wi (A) satisfy the following prop-
erties:

(1) Wi (A) = 0 for i � d − 1.
(2) Wd(A) = coker

(
∂d+2 + jd+1 ⊗k S

)
.

1 We denote byRi (A) what in [11] is denoted byRi
1(A) = V i

1(A• ⊗k S) and in [13] byRi (A), whereas

we use the notation Ri (A) for what in [11] is denoted by W i
1(A) = Supp Hi (A• ⊗k S) and in [13] by

R̃i (A).
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Proof The first part is quite straightforward, as Ji=0 for i � d − 1 and hence Ai = Ei

for i � d −1. For the second part, first note that the d-th Koszul module is in this case
the middle homology of the complex

K ⊗k S
∧d V ⊗k S

∧d−1V ⊗k S, (2.13)

and hence

Wd(V , K ) = coker
{

K ⊗k S
∧d+1V ⊗k S coker(∂d+2)

}
.

jd+1⊗kS

(2.14)
Applying now the Snake Lemma to the diagram

0
∧d+2V ⊗k S

(∧d+2V ⊕ K
) ⊗k S K ⊗k S 0

0 im(∂d+2)
∧d+1V ⊗k S coker(∂d+2) 0

∂d+2+ jd+1⊗kS

(2.15)
establishes the claim. ��

Remark 2.3 Note that the Snake Lemma also applies to the diagram

0 K ⊗k S
(∧d+2V ⊕ K

) ⊗k S
∧d+2V ⊗k S 0

0 K ⊗k S
∧d+1V ⊗k S (

∧d+1V /K ) ⊗k S 0,
(2.16)

leading to the simpler presentation

Wd(A) = coker
{∧d+2V ⊗k S (

∧d+1V /K ) ⊗k S
}
. (2.17)

If d = 1, in weight 1 we recover the original Koszul module W (V , K ) of a pair
(V , K ) with K ⊆ ∧2V considered in [2, 3, 12] and elsewhere. However, note the
shift by two in degrees, that is, W (V , K ) = W1(A)(2).

Example 2.4 Let X be a smooth complex projective variety, and consider a vector
bundle E on X of rank � r + 1, for some integer r � 1. We consider the determinant
maps

dr : ∧r+1H0(X , E) H0(X ,
∧r+1E) (2.18)

and take K ⊥
r := ker(dr ). Then the above construction applies, producing for each r

a series of Koszul modules Wr (X , E) := Wr
(
H0(X , E)∨, Kr

)
.
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As in the case d = 1 (see [1, 12]), we have a geometric characterization of vanishing
resonance, inwhich case the correspondingKoszulmodule is of finite length and hence
vanishes in high degrees. For an element ω ∈ ∧d+1V ∨, we denote by ϕ(ω) : V ∨ →
∧d+2V ∨ the map a �→ a ∧ ω. Consider the projective variety parameterizing the
decomposable elements,

�d :=
{

[ω] ∈ P
(∧d+1

V ∨) | rank(ϕ(ω)) � n − 1

}

. (2.19)

Standard multilinear algebra proves the following proposition.

Proposition 2.5 If d � 2, then Rd(A) = {0} if and only if P(K ⊥) ∩ �d = ∅.

Proof Recall that a ∈ V ∨ divides ω if and only if a ∧ω = 0. Therefore,Rd(A) �= {0}
if and only if there exist a ∈ V ∨ and b ∈ ∧d V ∨ such that 0 �= a ∧ b ∈ K ⊥. This
is equivalent to the existence of a nonzero element a ∈ V ∨ and of a nonzero element
ω ∈ K ⊥ such that a ∧ ω = 0, i.e., 0 �= a ∈ ker(ϕ(ω)), and hence [ω] ∈ �d . ��

The case d = 1 is special, since ϕ(ω) non-injective implies its kernel is at least
2-dimensional. Indeed, if ω = a ∧ b �= 0 then ker(ϕ(ω)) is generated by a and b. In
this case, �1 is the Grassmann variety Gr2(V ∨) ⊆ P

(∧2V ∨)
.

Remark 2.6 For theKoszulmodule Wr (X , E) considered in Example 2.4, we have that
the resonance Rr (X , E) := Supp Wr (X , E) is non-trivial if and only if there exists
a section 0 �= s ∈ H0(X , E) such that the determinant map ds : ∧r H0(X , E) →
∧r+1H0(X , E) given by ω �→ dr+1(s ∧ ω) is not injective.

3 Simplicial complexes and their Koszul modules

3.1 Square-freemodules

We start this section with some algebraic preliminaries regarding square-freemodules.
We recall from [14] some basic facts about this type of modules, which will be needed
in Sects. 4.2, 5, and 6.1.

Let V be a k-vector space of dimension n, and identify the symmetric algebra
Sym(V ) with the polynomial ring S = k[x1, . . . , xn]. We consider the standard N

n-
multigrading on S, defined by deg(xi ) = ei ∈ N

n , where ei = (0, . . . , 1, . . . , 0) is the
multi-index with 1 placed in the i-th position. Given a multi-index a = (a1, . . . , an) ∈
N, its support is defined as the set Supp(a) := {i | ai > 0}.
Definition 3.1 An N

n-graded S-module M is said to be square-free if for any a ∈ N
n

and any i ∈ Supp(a), the multiplication map

xi : Ma Ma+ei (3.1)

is an isomorphism.
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This definition is a direct generalization of the case of ideals. Indeed, an ideal I ⊆ S
is a square-free module if and only if it is a square-free monomial ideal, and this is
also equivalent to S/I being a square-free module.

Note that a free N
n-graded S-module is square-free if and only it is generated in

square-free multidegrees.

Proposition 3.2 If f : M → N is a morphism of N
n-graded S-modules, and M and

N are square-free modules, then ker( f ) and coker( f ) are also square-free. Moreover,
if

0 M ′ M M ′′ 0

is an exact sequence of N
n-graded S-modules, and M ′ and M ′′ are square-free, then

so is M.

Proposition 3.2 has a few interesting consequences.

Corollary 3.3 Let M be an N
n-graded square-free S-module. Then all the modules in

the minimal free N
n-graded resolution of M are square-free.

Corollary 3.4 IfF is a bounded complex of free square-free S-modules, then the homol-
ogy modules of F are also square-free.

The following result will be of particular interest for us.

Theorem 3.5 If M is an N
n-graded, square-free S-module, then its annihilator is a

square-free monomial ideal. In particular, the annihilator of M is a radical ideal.

Proof Since M is an N
n-graded S-module, the annihilator Ann(M) ⊆ S is also N

n-
graded, that is, it is a monomial ideal. Let m = xa1

1 · · · xan
n ∈ Ann(M) be a monomial

annihilating M , and assume ak > 1 for some k. Then the multiplication map

m : Mb Mb+deg(m)

is zero for all b ∈ N
n . We have k ∈ Supp(b + deg(m) − ek), and so, by hypothesis,

the map
xk : Mb+deg(m)−ek Mb+deg(m)

is an isomorphism. Therefore,

m/xk : Mb Mb+deg(m)−ek

is the zeromap for all b ∈ N
n , and thus, xa1

1 · · · xak−1
k · · · xan

n ∈ Ann(M). By repeating
the argument, we see that Ann(M) is a square-free monomial ideal. ��

Finally, we note that Theorem 3.5 and [14, Lemma 2.2] give the following.
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Proposition 3.6 Let M be a finitely generated N
n-graded, square-free S-module. Then

the annihilator scheme structure on the support of M is reduced. Moreover, the decom-
position of the support in irreducible components is given by

Supp(M) =
⋃

b square-free
maximal with Mb �=0

k
Supp(b),

where k
V′

denotes the locus V (xi | i /∈ V′).

Proposition 3.6 will be essential for describing the components of the support
resonance loci of a simplicial complex in the next section.

We end this section with the following definition:

Definition 3.7 For an N
n-graded vector space M , the square-free part of M is the

subspace sqf(M) ⊆ M concentrated in square-free multidegrees.

3.2 Stanley–Reisner rings

Let S = k[x1, . . . , xn] be the polynomial ring in n variables over a field k of char-
acteristic 0. Given a simplicial complex � on n vertices, we let k[�] := S/I� be
the (polynomial) Stanley–Reisner ring of �, where I� is the ideal generated by the
(square-free) monomials xσ = xi1 · · · xis for all simplices σ = (i1, . . . , is) with
1 � i1 < · · · < is � n not in �. Similarly, we define the exterior Stanley–Reisner
ring of � as k〈�〉 := E/J�, where E = ∧

(e1, . . . , en) is the exterior algebra in n
variables over k and J� is the ideal generated by the monomials eσ = ei1 ∧ · · · ∧ eis

for all simplices σ /∈ �.
Consider the graded, graded-commutative k-algebra A• := k〈�〉. As mentioned

in Remark 2.1, this algebra is given the positive grading. In each degree d, the vector
space Ad is spanned by multivectors eσ , where σ is a (d − 1)-dimensional face of �.
Indeed, since σ = (i1, . . . , is) /∈ � implies (i1, . . . , is, j) /∈ � for all j /∈ Supp(�),
it follows that in each degree d, the vector space J�,d is spanned by the multivectors
eσ with σ /∈ � of dimension d − 1. With the notation of the previous sections, the
dual Ad is generated by the vectors vσ with σ ∈ � being of dimension d − 1.

For an element a = ∑n
i=1 λi ei ∈ A1, let (A•, δa) be the cochain complex from

(2.1). As shown in [4, Proposition 4.3] (see also [10, Lemma 3.4]), this complex
depends only on Supp(a) := {i | λi �= 0}; more precisely, (A•, δa) is isomorphic
to (A•, δā), where ā = ∑

i∈Supp(a) ei . The following Hochster-type formula from [4,
Proposition 4.3], suitably interpreted and corrected in [10, Proposition 3.6], describes
the cohomology groups of the cochain complexes (A•, δa).

Proposition 3.8 [4, 10] Let � be a finite simplicial complex on vertex set V = [n] and
a ∈ A1 as above. Writing V′ = Supp(a), we have

dimk Hi (
k〈�〉, δa

) =
∑

σ∈�V\V′
dimk H̃i−1−|σ |

(
lk�V′ (σ ); k

)
.
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Here �V′ := {τ ∈ � | τ ⊂ V′} is the simplicial complex obtained by restricting
� to V′ and lk�V′ (σ ) := {τ ∈ �V′ | τ ∪ σ ∈ �} is the link of a simplex σ in �V ′ .
The range of summation in the above formula includes the empty simplex, with the
convention that |∅| = 0 and H̃−1(∅; k) = k.

3.3 Koszul modules of a simplicial complex

Fix a basis v1, . . . , vn of the k-vector space V . Let K• denote the Koszul complex of
x1, . . . , xn , whose i-th free module is Ki = ∧i V ⊗k S, and set deg(vi ) = ei ∈ N

n .
Then K• is a complex of N

n-graded square-free S-modules.
A simplicial complex � on vertex set [n] = {1, . . . , n} determines a subcomplex

K�• of K•, whose i-th module K�
i is the free S-module generated by the exterior

monomials v j1 ∧ · · · ∧ v ji such that { j1, . . . , ji } is a face of �. Applying (2.7), the
i-th Koszul module Wi (�) defined as the i-th Koszul module of the exterior Stanley–
Reisner ring of � is the i-th homology Hi (K�• ).

Proposition 3.9 For every simplicial complex � on n vertices and for every i , the
Koszul module Wi (�) is an N

n-graded square-free S-module.

Proof The subcomplex K�• is a complex of N
n-graded square-free S-modules. By

Corollary 3.4, it follows that each homology vector space Wi (�) is a square-free
S-module. ��

4 Hilbert series for Koszul modules of simplicial complexes

We fix some notation first. For a multidegree b, we denote the sum of its entries by
|b|. For a square-free multidegree b ∈ N

n , we denote by �b the restriction of the
simplicial complex � to the subset of the vertices Supp(b) ⊆ {1, . . . , n}.

We denote by h̃i (−; k) and h̃i (−; k) the dimensions of the simplicial homology
groups H̃i (−; k) and of the reduced cohomology groups H̃ i (−; k) ∼= H̃i (−; k)∨ with
coefficients in k, respectively.

4.1 Koszul modules versus Koszul (co)homology

We establish a duality result between the Koszul modules associated to a simplicial
complex and Koszul (co)homology of the symmetric Stanley–Reisner algebra.

Theorem 4.1 For any i � 1 and any square-free multi-index b, there are natural
isomorphisms of vector spaces

[Wi (�)]b ∼=
[
TorS

|b|−i (k, k[�])
]∨
b

∼= H̃ i−1(�b; k)∨ ∼= H̃i−1(�b; k). (4.1)

Proof For the square-free multidegree b, we denote j := |b| − i .
We start by proving the first isomorphism. We use the notation from Sect. 3.2. Let

Ad ⊆ ∧d V be the subspace generated by the exterior monomials vσ such that σ is
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a face of �. Denote by Sd the graded component of S = Sym(V ) of total degree d.
Then, the vector space [Wi (�)]b is the middle homology of the complex of vector
spaces

[Ai+1 ⊗ S j−1]b [Ai ⊗ S j ]b [Ai−1 ⊗ S j+1]b.
By Proposition 3.9, this complex is the same as

[Ai+1 ⊗ sqf(S j−1)]b [Ai ⊗ sqf(S j )]b [Ai−1 ⊗ sqf(S j+1)]b.

Upon identifying sqf(Sd) = ∧d V ∨ via the k-linear map given by xi1 · · · xid �→
ei1 ∧ · · · ∧ eid , this chain complex may be written as

[
Ai+1 ⊗ ∧ j−1 V ∨

]

b

[
Ai ⊗ ∧ j V ∨

]

b

[
Ai−1 ⊗ ∧ j+1 V ∨

]

b
, (4.2)

which, by dualization gives

[
Ai−1 ⊗ ∧ j+1 V

]

b

[
Ai ⊗ ∧ j V

]

b

[
Ai+1 ⊗ ∧ j−1 V

]

b
. (4.3)

As usual, all these identifications are made without changing the positivity of the
grading. After having identified Ad = sqf(S/I�)d , the sequence (4.3) may be written
as

[
sqf(S/I�)i−1 ⊗ ∧ j+1 V

]

b

[
sqf(S/I�)i ⊗ ∧ j V

]

b

[
sqf(S/I�)i+1 ⊗ ∧ j−1 V

]

b
.

Since b is a square-free multidegree, this complex is the same as

[
(S/I�)i−1 ⊗ ∧ j+1 V

]

b

[
(S/I�)i ⊗ ∧ j V

]

b

[
(S/I�)i+1 ⊗ ∧ j−1 V

]

b
.

(4.4)
By the properties of the Koszul complex, the middle cohomology of this complex is
isomorphic to [

TorS
j (k, k[�])

]

b
,

and this concludes the proof of the first isomorphism.

For the second isomorphism, note that
[
TorS

j (k, k[�])
]

b
is isomorphic to

[
TorS

j−1(k, I�)
]

b
. Indeed, for j � 2, this is clear, whereas for j = 1 this fol-

lows from the fact the I� is contained in the ideal generated by the variables, and
hence k ∼= k ⊗S k[�]. From [8, Proof of Theorem 8.1.1] we obtain an isomorphism
[
TorS

j−1(k, I�)
]

b
∼= H̃ |b|− j−1(�b; k). In conclusion,[Wi (�)]b ∼= H̃ i−1(�b; k)∨, (4.5)

as soon as |b| − i � 1. ��
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Remark 4.2 The isomorphism in the statement of Theorem 4.1 does not necessarily

hold if we drop the hypothesis that b is square-free. Indeed,
[
TorS

|b|−i (k, k[�])
]

b
is equal to 0 if b is not square-free, [8, Theorem 8.1]. On the other hand, since the
square-free multi-indices are finitely many, the vanishing of [Wi (�)]b for all b that is
not square-free implies Wi (�) is of finite length.

An alternate, less explicit proof of the above theorem can be obtained by applying
the Bernstein–Gelfand–Gelfand correspondence to express [Wi (�)]b as the (duals)
of some Tor spaces over the exterior algebra, and then apply a theorem of Aramova,
Avramov, and Herzog [4], see [8, Corollary 7.5.2]. More precisely, we have the fol-
lowing result.

Proposition 4.3 For any i � 1 and any square-free multi-index b, there is a natural
isomorphism of vector spaces

[Wi (�)]b ∼=
[
TorE|b|−i

(
k, k〈�〉)

]∨
b

. (4.6)

The proof of the proposition follows from an adaptation to the multi-graded context
[5] of the classical BGG correspondence, as described in [7].

4.2 Multigraded Hilbert series

Ournext goal is to determine theHilbert series of theKoszulmodulesWi (�) associated
to a simplicial complex �. For a multidegree a = (a1, . . . , an) ∈ N

n , we will write
ta := ta1

1 · · · tan
n .

Theorem 4.4 For every simplicial complex � and every i > 0, the N
n-graded Hilbert

series of the Koszul module Wi (�) is given by

∑

a∈Nn

dimk[Wi (�)]a ta =
∑

b∈N
n

b square-free

dimk(H̃i−1(�b; k))
tb

∏
j∈Supp(b)(1 − t j )

.

Proof We begin by observing that, by the definition of a square-free module, we have

∑

a∈Nn

dim[Wi (�)]a ta =
∑

b∈Nn

b square-free

dim[Wi (�)]b tb
∏

j∈Supp(b)(1 − t j )
. (4.7)

Thus, it suffices to determine dim[Wi (�)]b when b is a square-free multidegree. Fix
a square-free multidegree b, and let j = |b| − i . From Theorem 4.1, we know that

[Wi (�)]b ∼= H̃i−1(�b; k). (4.8)
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Therefore,

∑

a∈Nn

dim[Wi (�)]a ta =
∑

b∈Nn

b square-free

h̃i−1
(
�b, k

) tb
∏

j∈Supp(b)(1 − t j )
, (4.9)

and this completes the proof. ��
Specializing to the single N-grading, the above theorem yields the following for-

mula for the Hilbert series of the Koszul module Wi (�):

∑

a∈N
dim[Wi (�)]a ta =

∑

b∈N
n

b square-free

dim
(
H̃i−1(�b; k)

)
(

t

1 − t

)|b|
. (4.10)

In the particular case when � has dimension at most 1, that is, when � is equal to
a (simplicial) graph �, we recover the Hilbert series of the module W� := W1(�)(2),
as computed in [9, Theorem 4.1].

Corollary 4.5 [9] For a graph � on vertex set V, we have

Hilb(W�, t) = 1

t2
· Q�

( t

1 − t

)
,

where Q�(t) = ∑
j�2 c j (�)t j and c j (�) = ∑

V′⊆V : |V′|= j h̃0(�V′).

The significance of the above formula is that it gives the Chen ranks of the right-
angled Artin group G� associated to the graph �.

5 Resonance varieties of a simplicial complex

Given an (abstract) simplicial complex � on vertex set V, we define its resonance
varieties as those of the corresponding exterior Stanley–Reisner ring. That is, we put
Ri (�) := Ri (k〈�〉) for the jump resonance andRi (�) := Ri (k〈�〉) for the support
resonance varieties, respectively.

Using Proposition 3.8, a precise description of the varieties Ri (�) was given in
[10, Theorem 3.8], as follows.

Proposition 5.1 For each i � 1, the decomposition in irreducible components of the
jump resonance variety is given by

Ri (�) =
⋃

V′⊆V maximal such that
∃σ∈�V\V′ , H̃i−1−|σ |(lk�V′ (σ );k) �=0

k
V′

. (5.1)
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Here k
V′

denotes the coordinate subspace of k
V = k

n (where n = |V|) spanned
by the vectors {ei | i ∈ V′}. On the other hand, for the support resonance defined in
(2.10), the situation is different in degrees i > 1.

Theorem 5.2 For each i � 1, the scheme structure on the support resonance locus
Ri (�) is reduced. Moreover, the decomposition in irreducible components is given
by

Ri (�) =
⋃

V′⊆V maximal with
H̃ i−1(�V′ ;k) �=0

k
V′

. (5.2)

Proof The first claim follows fromProposition 3.9 andTheorem3.5. The precise struc-
ture of the decomposition in irreducible components is governed by the multi-graded
structure detailed in Theorem 4.4 and Proposition 3.6. Observe that (5.2) corresponds
to the primary decomposition of the ideal Ann(Wi (�)). ��

Notice the difference at the set level between (5.1) and (5.2); in particular, observe
that the support resonance loci are easier to describe. Furthermore, whereas Theorem
5.2 guarantees that the support resonance schemes Ri (�) are always reduced, the
corresponding jump resonance lociRi (�) are not necessarily reduced (with the Fitting
scheme structure), even in weight one, as the following example illustrates.

Example 5.3 Let � be a path on 4 vertices. Then Fitt0(W1(�)) = (x2) ∩ (x3) ∩
(x1, x22 , x23 , x4) is not reduced, althoughAnn(W1(�)) = (x2)∩(x3) is reduced. There-
fore, the Fitting scheme structure onR1(�) has an embedded component at 0.

A simplicial complex � of dimension d is said to be a Cohen–Macaulay complex
over k if H̃•(lk(σ ); k) is concentrated in degree d − |σ |, for all σ ∈ �. As shown in
[6], the jump resonance varieties of such a simplicial complex propagate, that is,

R1(�) ⊆ R2(�) ⊆ · · · ⊆ Rd+1(�). (5.3)

For arbitrary simplicial complexes, though, the resonance varieties do not always
propagate. This phenomenon, first identified in [10], happens even for graphs.

Example 5.4 [10] Let � be the disjoint union of two edges. Then R1(�) = k
4,

whereas R2(�) = k
2 ∪ k

2, the union of two transversal coordinate planes. Thus,
R1(�) � R2(�).

When � is Cohen–Macaulay, propagation and formula (2.11) give Ri (�) =⋃
j�i R j (�). But it is not known whether the support resonance varieties Ri (�)

propagate when � is Cohen–Macaulay, or, equivalently, whether Ri (�) = Ri (�)

in this case. In general, though, we can use the previous example to settle the latter
question in the negative.

Example 5.5 Let � be the disjoint union of two edges. Then R1(�) = R1(�) = k
4

butR2(�) = ∅whereas, aswe sawbefore,R2(�) = k
2∪k

2. Thus,R2(�) �= R2(�).
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6 Regularity and projective dimension for Koszul modules
of simplicial complexes

6.1 General bounds

We start this section with an upper bound on the Castelnuovo–Mumford regularity
and projective dimension of the Koszul modules.

Proposition 6.1 For every simplicial complex � on n vertices and every i > 0, the
Koszul module Wi (�) has regularity at most n and projective dimension at most
n − i − 1.

Proof By definition, the Koszul module Wi (�) is a sub-quotient of the module Zi ⊆∧i V ⊗k S of i-th cycles in the Koszul complex of x1, . . . , xn . Since Zi is generated in
degree i +1, it follows that the degree of any of the generators of Wi (�) is at least i +1.
Let F• denote the minimal free resolution of Wi (�). By Proposition 3.9 and Corollary
3.3, F• is a complex of N

n-graded S-modules generated in square-free multidegrees,
hence, the total degree of the generators of each Fh is at most n. The statement on
the regularity follows immediately. Since the least degree of the generators of Fh+1 is
strictly larger than the least degree of the generators of Fh , it follows that Fh = 0 for
h > n − i − 1. ��

6.2 Regularity of Koszul modules for simplicial complexes of special type

We fix integers n � 4 and 1 � d � n − 3 and assume � is a simplicial complex
of dimension d on n vertices whose (d − 1)-skeleton coincides with that of the full
simplex, that is,

�(d−1) = (
2[n])(d−1)

. (6.1)

For instance, if d = 1, then � is simply a (simplicial) graph on n vertices. If d = 2,
then � is obtained from the complete graph on n vertices by filling in some triangles.
For this type of simplicial complexes that generalize graphs, the nature of the Koszul
modules can be made more precise, as follows.

Proposition 6.2 For a simplicial complex � as above, the following hold.

(1) Wi (�) = 0 for i /∈ {d, d + 1}.
(2) Wd(�) = coker

(
∂ E

d+2 + jd+1 ⊗k S
)
.

(3) Wd+1(�) = ker
(
∂ A

d+1

)
, and hence it is either zero or torsion-free.

Proof Recall that Wi (�) = Hi (A• ⊗k S, ∂), where A = k〈�〉. By condition (6.1),
the graded algebra A = E/J� satisfies the hypothesis from the beginning of Sect. 2.3.
Hence, Proposition 2.2 applies, showing that Wi (�) = 0 for i < d. Moreover, since
dim(�) = d, we have that Ai = 0 for i > d + 1, and so Wi (�) also vanishes in that
range, thereby proving Part (1).

Part (2) follows at once from part (2) of Proposition 2.2, while part (3) follows from
the fact that Ad+2 = 0. ��
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Using the explicit presentation of Wd(�) from part (2), we can improve the bound
on regularity from Proposition 6.1.

Proposition 6.3 With notation as above, we have reg Wd(�) ≤ n − 2.

Proof We have a presentation

0 D Zd Wd(�) 0, (6.2)

where Zd ⊆ ∧d V ⊗k S is the module of Koszul d-cycles, and D is the image of
K ⊗k S under theKoszul differential. Both Zd and D are generated in degree d+1. The
module Zd has a linear free resolution, consisting of the truncated Koszul complex,
so reg Zd = d + 1. Since the module D is square-free, its syzygy modules are also
square-free, and hence, they are generated in degrees at most n. This implies that
reg D ≤ n −1, since D does not have generators of degree n. Applying the long exact
sequence of Tor(−, k) to (6.2), we obtain

reg Wd(�) ≤ max(reg Zd , reg D − 1) = max(d + 1, n − 2) = n − 2. (6.3)

and this completes the proof. ��
If d � 1, that is, if � = � is a graph on n vertices, taking into account the degree

shift, we obtain the bound
reg W1(�) � n − 4. (6.4)

Example 6.4 If � = Cn is the cycle on n � 4 vertices, then the regularity of W1(�)

attains the above bound:

reg W1(�) = n − 4 and pdim W1(�) = n − 2.

This follows from (6.2), since in this case themodule D has only one syzygy, of degree
n.

Remark 6.5 For the Koszul module Wd(�), the simplified presentation (2.17) has the
following nice interpretation. Let �̃ be the simplicial complex which is maximal (with
respect to inclusion) among all simplicial complexes that share the same d-skeleton
with �; for instance, if d = 1, then �̃ is the flag complex of the graph � = �. Denote
by Vi the k-vector space with the basis set of i-dimensional missing faces of �̃. We
then have an exact sequence,

Vd+2 ⊗k S Vd+1 ⊗k S Wd(�) 0. (6.5)

Using Proposition 6.2, together with formula (5.1), we obtain the following imme-
diate corollary.

Corollary 6.6 With � as above, we have:

(1) Ri (�) = Ri (�) for all i �= d + 1.
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(2) Rd+1(�) is equal to either ∅ or k
n.

(3) Rd(�) = ⋃
V′⊆Vmaximal

H̃d−1(�V′ ;k) �=0

k
V′

.

Example 6.7 Let � be the boundary of the tetrahedron, with the face σ = {1, 2, 3}
missing. Then �(1) = (

2[4])(1), and so � is a simplicial complex covered by the
above corollary, with d = 2. In this case, we have that Rd(�) = {x4 = 0}, since
H1(�σ ; k) = k, andRd(�) = {x4 = 0}, since H̃2−1−1(lk�σ ({4}); k) = H̃0(∅; k) =
k.

As already mentioned before, the lociRd+1(�) andRd+1(�) can be different, in
general. For example, if we take the graph � on four vertices with edges (1, 2) and
(3, 4) as in Example 5.4, then R2(�) = ∅ whileR2(�) = V (x1, x2) ∪ V (x3, x4).
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10. Papadima, Ş, Suciu, A.I.: Toric complexes and Artin kernels. Adv. Math. 220(2), 441–477 (2009).
https://doi.org/10.1016/j.aim.2008.09.008. (MR2466422)
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