Learning with minimal supervision

Sanjoy Dasgupta

University of California, San Diego

Learning with minimal supervision

There are many sources of almost unlimited unlabeled data:

- Images from the web
- Speech recorded by a microphone
- Readings of sensors placed on bodies or civil structures
- Records of credit card or other transactions

But *labels* can be difficult and expensive to obtain.

What can be gleaned with little or no supervision?

Outline

1. Clustering.

What kinds of cluster structure can reliably be unearthed?

2. Exploiting low intrinsic dimension.

What kinds of low-dimensional structure can be detected (for instance, support close to a low-dimensional manifold)? What rates of convergence does this yield in subsequent classification/regression?

3. Active learning.

If only a limited number of labels can be afforded, what is an intelligent and adaptive strategy for picking the query points?

Data points X_1, \ldots, X_n are independent random draws from an unknown density f on \mathbb{R}^d

Data points X_1, \ldots, X_n are independent random draws from an unknown density f on \mathbb{R}^d

- Different random sample \Rightarrow similar clustering (if *n* is large)
- As $n \to \infty$: approach "natural clusters" of f

Data points X_1, \ldots, X_n are independent random draws from an unknown density f on \mathbb{R}^d

- Different random sample \Rightarrow similar clustering (if *n* is large)
- As $n \to \infty$: approach "natural clusters" of f

Such properties are not known for almost any clustering procedure.

The most popular clustering algorithm: k-means

- ▶ Takes as input a set of points *x*₁,..., *x*_n and an integer *k*
- Returns k "centers" μ_1, \ldots, μ_k
- A local search heuristic which tries to minimize the cost function

$$\sum_{i=1}^{n} \min_{1 \le j \le k} \|x_i - \mu_j\|^2$$

Data points X_1, \ldots, X_n are independent random draws from an unknown density f on \mathbb{R}^d

- Different random sample \Rightarrow similar clustering (if *n* is large)
- As $n \to \infty$: approach "natural clusters" of f

Such properties are not known for almost any clustering procedure.

The most popular clustering algorithm: k-means

- ▶ Takes as input a set of points *x*₁,..., *x*_n and an integer *k*
- Returns k "centers" μ_1, \ldots, μ_k
- A local search heuristic which tries to minimize the cost function

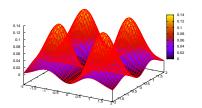
$$\sum_{i=1}^{n} \min_{1 \le j \le k} \|x_i - \mu_j\|^2$$

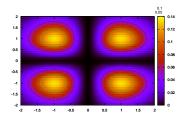
Consistency is known only for a different algorithm that actually minimizes this cost function (Pollard 1982): which is NP-hard. And even that limit is not particularly "natural".

A notion of natural cluster structure

Data points X_1, \ldots, X_n are independent random draws from an unknown density f on \mathbb{R}^d

- Different random sample \Rightarrow similar clustering (if *n* is large)
- As $n \to \infty$: approach "natural clusters" of f

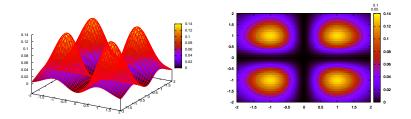




A notion of natural cluster structure

Data points X_1, \ldots, X_n are independent random draws from an unknown density f on \mathbb{R}^d

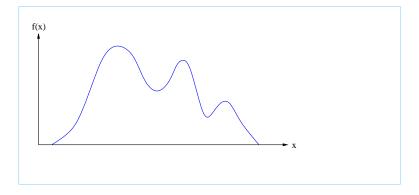
- Different random sample \Rightarrow similar clustering (if *n* is large)
- As $n \to \infty$: approach "natural clusters" of f



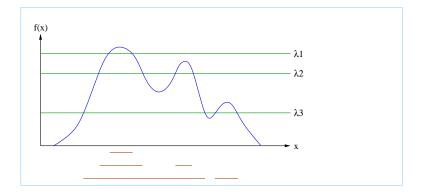
cluster \equiv connected component of $\{x : f(x) \ge \lambda\}$, any $\lambda > 0$

These clusters form an infinite hierarchy, the cluster tree.

The cluster tree

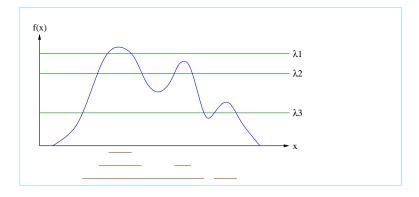


The cluster tree



Hierarchy: For any $\lambda' < \lambda$, each cluster at level λ is contained within a cluster at level λ' .

The cluster tree



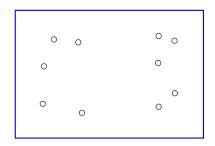
Hierarchy: For any $\lambda' < \lambda$, each cluster at level λ is contained within a cluster at level λ' .

Are there hierarchical clustering procedures (input: n points; output: dendogram with n leaves) that converge to the cluster tree?

Joseph Kruskal, 1928-2010

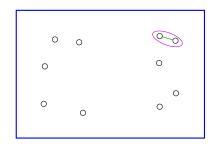
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

Joseph Kruskal, 1928-2010



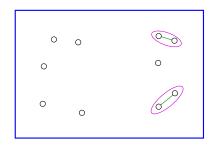
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

Joseph Kruskal, 1928-2010



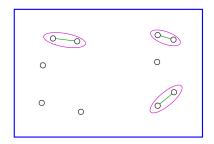
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

Joseph Kruskal, 1928-2010



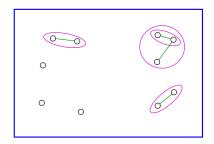
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

Joseph Kruskal, 1928-2010



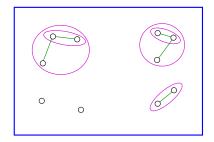
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

Joseph Kruskal, 1928-2010



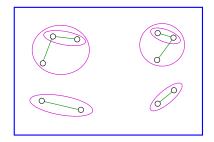
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

Joseph Kruskal, 1928-2010



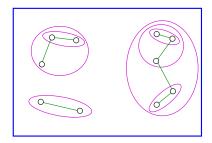
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

Joseph Kruskal, 1928-2010



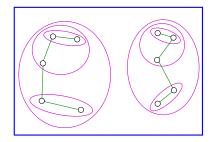
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

Joseph Kruskal, 1928-2010



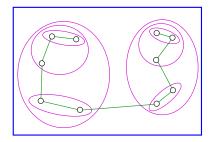
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

Joseph Kruskal, 1928-2010

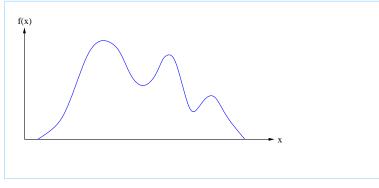


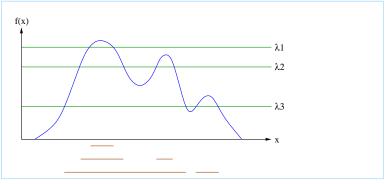
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

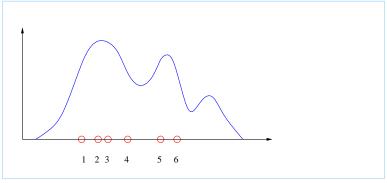
Joseph Kruskal, 1928-2010

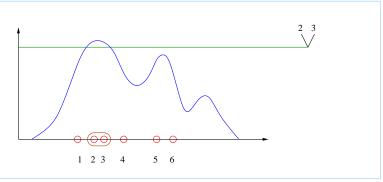


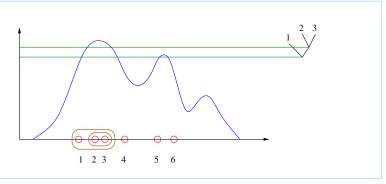
- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

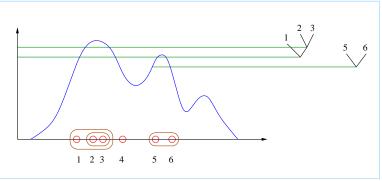


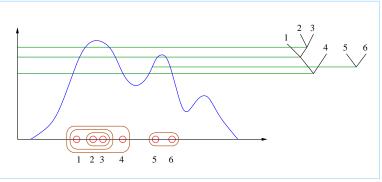


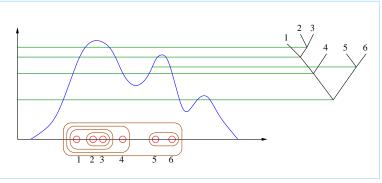


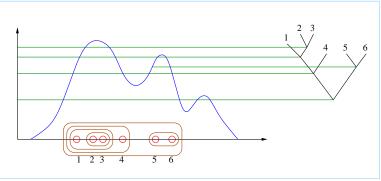






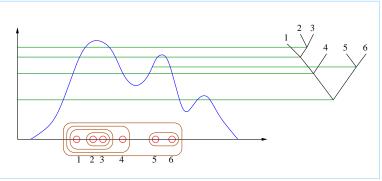






Consistency: Let A, A' be connected components of $\{f \ge \lambda\}$, for any λ . In the tree constructed from n data points X_n , let A_n be the smallest cluster containing $A \cap X_n$; likewise A'_n . Then:

 $\lim_{n\to\infty}\operatorname{Prob}[A_n \text{ is disjoint from } A'_n]=1$



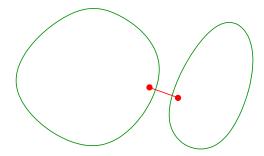
Consistency: Let A, A' be connected components of $\{f \ge \lambda\}$, for any λ . In the tree constructed from n data points X_n , let A_n be the smallest cluster containing $A \cap X_n$; likewise A'_n . Then:

 $\lim_{n\to\infty}\operatorname{Prob}[A_n \text{ is disjoint from } A'_n]=1$

Hartigan 1975: Single linkage is consistent for d = 1.

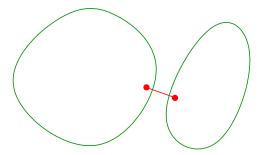
Higher dimension

Hartigan 1982: Single linkage is not consistent for d > 1.



Higher dimension

Hartigan 1982: Single linkage is not consistent for d > 1.

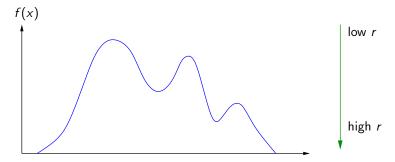


Chaudhuri-D '10: a simple variant of single linkage is consistent in any dimension. Finite sample convergence rate depending on a separation condition.

Related prior work

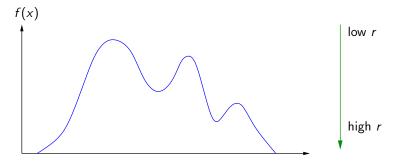
- Single linkage satisfies a partial consistency property Penrose '95
- ► Algorithms to capture a user-specified level set {x : f(x) ≥ λ} Maier-Hein-von Luxburg '09, Rinaldo-Wasserman '09, Singh-Scott-Nowak '09
- Other estimators for the cluster tree
 Wishart '69, Wong and Lane '83, Stuetzle and Nugent '10

Single linkage, amended



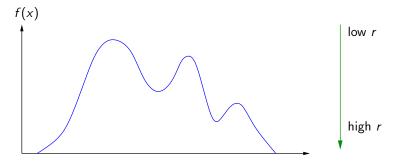
- For each x_i : set $r(x_i)$ = distance to nearest neighbor
- As *r* increases from 0 to ∞ :
 - Construct graph G_r: Nodes {x_i : r(x_i) ≤ r} Edges between any (x_i, x_j) for which ||x_i − x_j|| ≤ r
 - Output the connected components of G_r

Single linkage, amended



- For each x_i : set $r(x_i)$ = distance to kth nearest neighbor
- As *r* increases from 0 to ∞ :
 - Construct graph G_r : Nodes $\{x_i : r(x_i) \le r\}$ Edges between any (x_i, x_j) for which $||x_i - x_j|| \le \alpha r$
 - Output the connected components of G_r

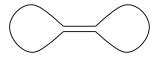
Single linkage, amended



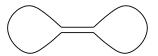
- For each x_i : set $r(x_i)$ = distance to kth nearest neighbor
- As *r* increases from 0 to ∞ :
 - Construct graph G_r : Nodes $\{x_i : r(x_i) \le r\}$ Edges between any (x_i, x_j) for which $||x_i - x_j|| \le \alpha r$
 - Output the connected components of G_r

With $\sqrt{2} \le \alpha \le 2$ and $k \sim d \log n$, this is consistent for any d.

Effect 1: thin bridges

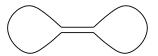


Effect 1: thin bridges



For any set Z, let Z_{σ} be all points within distance σ of it.

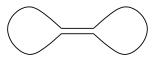
Effect 1: thin bridges



For any set Z, let Z_{σ} be all points within distance σ of it.

Effect 2: density dip

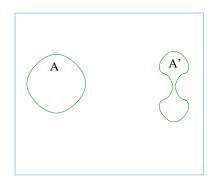
Effect 1: thin bridges



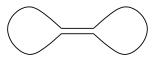
For any set Z, let Z_{σ} be all points within distance σ of it.

Effect 2: density dip

A and A' are (σ, ϵ) -separated if: - separated by some set S - max density in $S_{\sigma} \leq (1 - \epsilon)$ (min density in A_{σ}, A'_{σ})



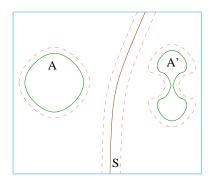
Effect 1: thin bridges



For any set Z, let Z_{σ} be all points within distance σ of it.

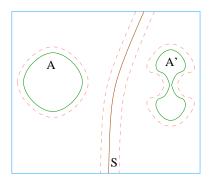
Effect 2: density dip

A and A' are (σ, ϵ) -separated if: - separated by some set S - max density in $S_{\sigma} \leq (1 - \epsilon)$ (min density in A_{σ}, A'_{σ})



Rate of convergence

A and A' are (σ, ϵ) -separated if: - separated by some set S - max density in $S_{\sigma} \leq (1 - \epsilon)$ (min density in A_{σ}, A'_{σ})



With high probability, for all connected sets A, A': if A, A' are (σ, ϵ) -separated, and have minimum density λ , then for

$$n \ge rac{d}{\lambda \epsilon^2 \sigma^d}$$

there will be some intermediate graph G_r such that:

- ► There is no path between A and A' in G_r
- ► A and A' are individually connected in G_r

Identifying high-density regions

Algorithm:

For each *i*: $r(x_i) = \text{dist to } k\text{th}$ nearest neighbor

As *r* increases from 0 to ∞ :

- Construct graph G_r: Nodes {x_i : r(x_i) ≤ r} Edges between any (x_i, x_j) for which ||x_i − x_j|| ≤ αr
- Output the connected components of G_r

Single linkage has k = 1, hoping: low $r \Leftrightarrow$ high density

Identifying high-density regions

Algorithm:

For each *i*: $r(x_i) = \text{dist to } k\text{th}$ nearest neighbor

As *r* increases from 0 to ∞ :

- Construct graph G_r: Nodes {x_i : r(x_i) ≤ r} Edges between any (x_i, x_j) for which ||x_i − x_j|| ≤ αr
- Output the connected components of G_r

Single linkage has k = 1, hoping: low $r \Leftrightarrow$ high density

Vapnik-Chervonenkis bounds: for *every* ball *B* in \mathbb{R}^d , # pts in $B = f(B)n \pm d \log n$.

Identifying high-density regions

Algorithm:

For each *i*: $r(x_i) = \text{dist to } k\text{th}$ nearest neighbor

As *r* increases from 0 to ∞ :

- Construct graph G_r: Nodes {x_i : r(x_i) ≤ r} Edges between any (x_i, x_j) for which ||x_i − x_j|| ≤ αr
- Output the connected components of G_r

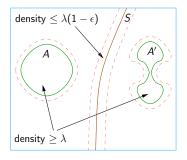
Single linkage has k = 1, hoping: low $r \Leftrightarrow$ high density

Vapnik-Chervonenkis bounds: for *every* ball *B* in \mathbb{R}^d , # pts in $B = f(B)n \pm d \log n$.

Moral: choose $k \ge d \log n$.

Separation

$$A, A'$$
 are (σ, ϵ) -separated.



(Buffer zone has width σ .)

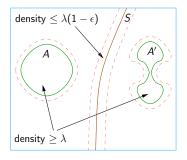
There is some value r at which:

- 1. Every point in A, A' has $\geq k$ points within distance r, and is thus a node in G_r
- Any point in S_{σ-r} has < k points within distance r, and thus isn't a node in G_r

3. $r \leq \sigma/2$

Separation

$$A, A'$$
 are (σ, ϵ) -separated.



(Buffer zone has width σ .)

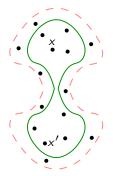
There is some value r at which:

- 1. Every point in A, A' has $\geq k$ points within distance r, and is thus a node in G_r
- Any point in S_{σ-r} has < k points within distance r, and thus isn't a node in G_r

3. $r \leq \sigma/2$

A is disconnected from A' in G_r

At this particular scale r, every point in A and A' (or within distance r of A, A') is active.



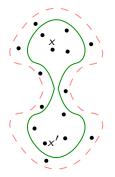
But, are these points connected in G_r ?

At this particular scale r, every point in A and A' (or within distance r of A, A') is active.

The worst case:

But, are these points connected in G_r ?

At this particular scale r, every point in A and A' (or within distance r of A, A') is active.

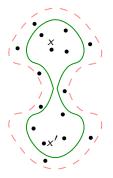


The worst case:

This is where α comes in: Graph G_r : Nodes $\{x_i : r(x_i) \le r\}$ Edges (x_i, x_j) for $||x_i - x_j|| \le \alpha r$

But, are these points connected in G_r ?

At this particular scale r, every point in A and A' (or within distance r of A, A') is active.



But, are these points connected in G_r ?

The worst case:

This is where α comes in: Graph G_r : Nodes $\{x_i : r(x_i) \le r\}$ Edges (x_i, x_j) for $||x_i - x_j|| \le \alpha r$

► α = 2: easy to show connectivity

•
$$\alpha = \sqrt{2}$$
: our result

Proof sketch

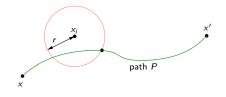
x, x' are in cluster A, so there is a path P between them.

We'll exhibit data points $x_0 = x, x_1, \dots, x_\ell = x'$ such that:

 The x_i are within distance r of P (and thus of A, and thus are active in G_r)

$$||x_i - x_{i+1}|| \le \alpha r$$

So x is connected to x' in G_r .



Proof sketch

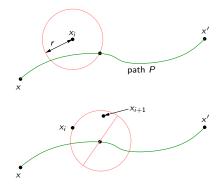
x, x' are in cluster A, so there is a path P between them.

We'll exhibit data points $x_0 = x, x_1, \dots, x_\ell = x'$ such that:

The x_i are within distance r of P (and thus of A, and thus are active in G_r)

$$||x_i - x_{i+1}|| \le \alpha r$$

So x is connected to x' in G_r .



Proof sketch

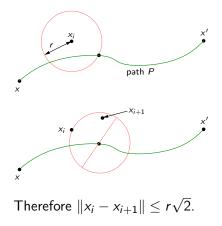
x, x' are in cluster A, so there is a path P between them.

We'll exhibit data points $x_0 = x, x_1, \dots, x_\ell = x'$ such that:

The x_i are within distance r of P (and thus of A, and thus are active in G_r)

 $||x_i - x_{i+1}|| \le \alpha r$

So x is connected to x' in G_r .



Proof sketch

x, x' are in cluster A, so there is a path P between them.

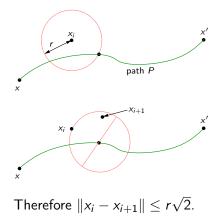
We'll exhibit data points $x_0 = x, x_1, \dots, x_\ell = x'$ such that:

The x_i are within distance r of P (and thus of A, and thus are active in G_r)

$$||x_i - x_{i+1}|| \le \alpha r$$

So x is connected to x' in G_r .

Open problem: will $\alpha = 1$ work?



Lower bound

Recall result:

With high probability, for all connected sets A, A': if A, A' are (σ, ϵ) -separated, and have minimum density λ , then for

$$n \geq \frac{d}{\lambda \epsilon^2 \sigma^d}$$

there will be some intermediate graph G_r such that:

- There is no path between A and A' in G_r
- A and A' are individually connected in G_r

Is it possible to achieve a much smaller sample complexity for this separation task?

Fano's inequality

A game played with a predefined class of distributions $\{\theta_1, \ldots, \theta_\ell\}$.

- Nature picks $I \in \{1, 2, \ldots, \ell\}$
- Player is given *n* iid samples from from θ_I
- Player then guesses the identity of I

Fano's inequality

A game played with a predefined class of distributions $\{\theta_1, \ldots, \theta_\ell\}$.

- Nature picks $I \in \{1, 2, \ldots, \ell\}$
- Player is given *n* iid samples from from θ_I
- Player then guesses the identity of I

Theorem: If Nature chooses *I* uniformly at random, then the Player must draw at least

$$n \geq \frac{\log \ell}{2\beta}$$

samples in order to guess correctly with probability $\geq 1/2,$ where

$$\beta = \frac{1}{\ell^2} \sum_{i,j=1}^{\ell} \mathcal{K}(\theta_i, \theta_j).$$

Open problem: better rates of convergence?

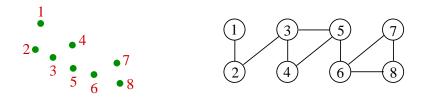
We've shown:

• For all distributions, rate of convergence is $\leq g(n)$

• There exists a set of distributions on which the rate is $\geq h(n)$ where $h(n) \approx g(n)$.

This leaves open the possibility of estimators that converge more quickly on most distributions.

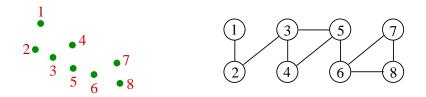
Near neighbor graphs



An undirected graph with

- A node for each data point
- Edges between "neighboring" points

Near neighbor graphs



An undirected graph with

- A node for each data point
- Edges between "neighboring" points

Two types of neighborhood graph:

- 1. Connect points at distance $\leq r$.
- 2. Connect each point to its k nearest neighbors.

An alternative cluster tree estimator

Original scheme constructs a hierarchy of neighborhood *r*-graphs:

- For each x_i : set $r_k(x_i)$ = distance to kth nearest neighbor
- As *r* increases from 0 to ∞ :
 - Construct graph G_r: Nodes {x_i : r_k(x_i) ≤ r} Edges between any (x_i, x_i) for which ||x_i − x_i|| ≤ αr
 - Output the connected components of G_r

An alternative cluster tree estimator

Original scheme constructs a hierarchy of neighborhood *r*-graphs:

- For each x_i : set $r_k(x_i)$ = distance to kth nearest neighbor
- As *r* increases from 0 to ∞ :
 - Construct graph G_r: Nodes {x_i : r_k(x_i) ≤ r} Edges between any (x_i, x_i) for which ||x_i − x_i|| ≤ αr
 - Output the connected components of G_r

[Kpotufe-von Luxburg 2011] Instead of G_r , use graph G_r^{NN} :

- Same nodes, $\{x_i : r(x_i) \leq r\}$
- Edges (x_i, x_j) for which $||x_i x_j|| \le \alpha \min(r_k(x_i), r_k(x_j))$

Similar rates of convergence for these potentially sparser graphs.

An alternative cluster tree estimator

Original scheme constructs a hierarchy of neighborhood *r*-graphs:

- For each x_i : set $r_k(x_i)$ = distance to kth nearest neighbor
- As *r* increases from 0 to ∞ :
 - Construct graph G_r: Nodes {x_i : r_k(x_i) ≤ r} Edges between any (x_i, x_i) for which ||x_i − x_i|| ≤ αr
 - Output the connected components of G_r

[Kpotufe-von Luxburg 2011] Instead of G_r , use graph G_r^{NN} :

- Same nodes, $\{x_i : r(x_i) \leq r\}$
- Edges (x_i, x_j) for which $||x_i x_j|| \le \alpha \min(r_k(x_i), r_k(x_j))$

Similar rates of convergence for these potentially sparser graphs.

Open problem: other simple estimators?

Revisiting Hartigan-consistency

Recall Hartigan's notion of consistency:

Let A, A' be connected components of $\{f \ge \lambda\}$, for any λ . In the tree constructed from n data points X_n , let A_n be the smallest cluster containing $A \cap X_n$; likewise A'_n . Then:

$$\lim_{n\to\infty} \operatorname{Prob}[A_n \text{ is disjoint from } A'_n] = 1$$

In other words, distinct clusters should (for large enough n) be disjoint in the estimated tree.

Revisiting Hartigan-consistency

Recall Hartigan's notion of consistency:

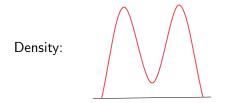
Let A, A' be connected components of $\{f \ge \lambda\}$, for any λ . In the tree constructed from n data points X_n , let A_n be the smallest cluster containing $A \cap X_n$; likewise A'_n . Then:

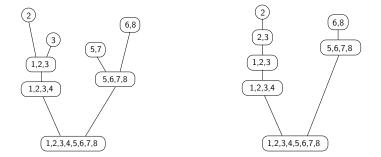
$$\lim_{n\to\infty} \operatorname{Prob}[A_n \text{ is disjoint from } A'_n] = 1$$

In other words, distinct clusters should (for large enough n) be disjoint in the estimated tree.

But this doesn't guard against excessive fragmentation within the estimated tree.

Excessive fragmentation: example





Pruning the cluster tree

- Build the cluster tree as before: at each scale r, there is a neighborhood graph G_r
- For each r: merge components of G_r that are connected in G_{r+δ(r)}

Pruning the cluster tree

- Build the cluster tree as before: at each scale r, there is a neighborhood graph G_r
- For each r: merge components of G_r that are connected in G_{r+δ(r)}

[Kpotufe and von-Luxburg 2011]: roughly the same consistency guarantees and rate of convergence hold, and in addition, under extra conditions, there is no spurious fragmentation.

Pruning the cluster tree

- Build the cluster tree as before: at each scale r, there is a neighborhood graph G_r
- For each r: merge components of G_r that are connected in G_{r+δ(r)}

[Kpotufe and von-Luxburg 2011]: roughly the same consistency guarantees and rate of convergence hold, and in addition, under extra conditions, there is no spurious fragmentation.

Open problem: Devise a stronger notion of consistency that accounts for fragmentation. What rates are achievable?

More open problems

- 1. Other natural notions of cluster for a density *f*? Are there situations in which a hierarchy is not enough?
- 2. This notion of cluster is for densities. What about discrete distributions?

Many thanks to my co-authors Kamalika Chaudhuri, Samory Kpotufe, and Ulrike von Luxburg.

And to the National Science Foundation for support under grant IIS-0713540.