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Learning with minimal supervision

There are many sources of almost unlimited unlabeled data:

◮ Images from the web

◮ Speech recorded by a microphone

◮ Readings of sensors placed on bodies or civil structures

◮ Records of credit card or other transactions

But labels can be difficult and expensive to obtain.

What can be gleaned with little or no supervision?



Outline

1. Clustering.
What kinds of cluster structure can reliably be unearthed?

2. Exploiting low intrinsic dimension.
What kinds of low-dimensional structure can be detected (for
instance, support close to a low-dimensional manifold)? What
rates of convergence does this yield in subsequent
classification/regression?

3. Active learning.
If only a limited number of labels can be afforded, what is an
intelligent and adaptive strategy for picking the query points?
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Such properties are not known for almost any clustering procedure.

The most popular clustering algorithm: k-means
◮ Takes as input a set of points x1, . . . , xn and an integer k
◮ Returns k “centers” µ1, . . . , µk

◮ A local search heuristic which tries to minimize the cost
function

n∑

i=1

min
1≤j≤k

‖xi − µj‖2
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Such properties are not known for almost any clustering procedure.

The most popular clustering algorithm: k-means
◮ Takes as input a set of points x1, . . . , xn and an integer k
◮ Returns k “centers” µ1, . . . , µk

◮ A local search heuristic which tries to minimize the cost
function

n∑

i=1

min
1≤j≤k

‖xi − µj‖2

Consistency is known only for a different algorithm that actually
minimizes this cost function (Pollard 1982): which is NP-hard.
And even that limit is not particularly “natural”.



A notion of natural cluster structure

Data points X1, . . . ,Xn are independent random draws from an
unknown density f on R
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◮ Different random sample ⇒ similar clustering (if n is large)

◮ As n → ∞: approach “natural clusters” of f
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A notion of natural cluster structure

Data points X1, . . . ,Xn are independent random draws from an
unknown density f on R

d

◮ Different random sample ⇒ similar clustering (if n is large)
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cluster ≡ connected component of {x : f (x) ≥ λ}, any λ > 0

These clusters form an infinite hierarchy, the cluster tree.



The cluster tree

x

f(x)



The cluster tree

x

f(x)

λ3

λ2

λ1

Hierarchy: For any λ′ < λ, each cluster at level λ is contained
within a cluster at level λ′.



The cluster tree

x

f(x)

λ3

λ2

λ1

Hierarchy: For any λ′ < λ, each cluster at level λ is contained
within a cluster at level λ′.
Are there hierarchical clustering procedures (input: n points;
output: dendogram with n leaves) that converge to the cluster
tree?



A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010

The single linkage algorithm:

◮ Start with each point in its own, singleton, cluster

◮ Repeat until there is just one cluster:
◮ Merge the two clusters with the closest pair of points

◮ Disregard singleton clusters
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Consistency: Let A,A′ be connected components of {f ≥ λ}, for
any λ. In the tree constructed from n data points Xn, let An be
the smallest cluster containing A ∩ Xn; likewise A′

n. Then:

lim
n→∞

Prob[An is disjoint from A′
n] = 1



Converging to the cluster tree
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Consistency: Let A,A′ be connected components of {f ≥ λ}, for
any λ. In the tree constructed from n data points Xn, let An be
the smallest cluster containing A ∩ Xn; likewise A′

n. Then:

lim
n→∞

Prob[An is disjoint from A′
n] = 1

Hartigan 1975: Single linkage is consistent for d = 1.
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Higher dimension

Hartigan 1982: Single linkage is not consistent for d > 1.

Chaudhuri-D ’10: a simple variant of single linkage is consistent in
any dimension. Finite sample convergence rate depending on a
separation condition.



Related prior work

◮ Single linkage satisfies a partial consistency property
Penrose ’95

◮ Algorithms to capture a user-specified level set {x : f (x) ≥ λ}
Maier-Hein-von Luxburg ’09, Rinaldo-Wasserman ’09,
Singh-Scott-Nowak ’09

◮ Other estimators for the cluster tree
Wishart ’69, Wong and Lane ’83, Stuetzle and Nugent ’10



Single linkage, amended

f (x)

low r

high r

◮ For each xi : set r(xi ) = distance to nearest neighbor
◮ As r increases from 0 to ∞:

◮ Construct graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges between any (xi , xj) for which ‖xi − xj‖ ≤ r

◮ Output the connected components of Gr
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Single linkage, amended

f (x)

low r

high r

◮ For each xi : set r(xi ) = distance to kth nearest neighbor
◮ As r increases from 0 to ∞:

◮ Construct graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges between any (xi , xj) for which ‖xi − xj‖ ≤ αr

◮ Output the connected components of Gr

With
√
2 ≤ α ≤ 2 and k ∼ d log n, this is consistent for any d .
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Which clusters are most salient?

Effect 1: thin bridges

For any set Z , let Zσ be all
points within distance σ of it.

Effect 2: density dip

A and A′ are (σ, ǫ)-separated if:
- separated by some set S
- max density in Sσ ≤
(1− ǫ)(min density in Aσ,A

′
σ)

A A’

S



Rate of convergence

A and A′ are (σ, ǫ)-separated if:
- separated by some set S
- max density in Sσ ≤
(1− ǫ)(min density in Aσ,A

′
σ)

A A’

S

With high probability, for all
connected sets A,A′:
if A,A′ are (σ, ǫ)-separated,
and have minimum density λ,
then for

n ≥ d

λǫ2σd

there will be some intermediate
graph Gr such that:

◮ There is no path between
A and A′ in Gr

◮ A and A′ are individually
connected in Gr



Identifying high-density regions

Algorithm:
For each i : r(xi ) = dist to kth
nearest neighbor
As r increases from 0 to ∞:

◮ Construct graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges between any (xi , xj)
for which ‖xi − xj‖ ≤ αr

◮ Output the connected
components of Gr

Single linkage has k = 1,
hoping: low r ⇔ high density
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Identifying high-density regions

Algorithm:
For each i : r(xi ) = dist to kth
nearest neighbor
As r increases from 0 to ∞:

◮ Construct graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges between any (xi , xj)
for which ‖xi − xj‖ ≤ αr

◮ Output the connected
components of Gr

Single linkage has k = 1,
hoping: low r ⇔ high density

Vapnik-Chervonenkis bounds:
for every ball B in R

d ,
# pts in B = f (B)n ± d log n.

Moral: choose k ≥ d log n.



Separation

A,A′ are (σ, ǫ)-separated.

density ≤ λ(1− ǫ)

density ≥ λ

A A′

S

(Buffer zone has width σ.)

There is some value r at which:

1. Every point in A,A′ has
≥ k points within distance
r , and is thus a node in Gr

2. Any point in Sσ−r has < k
points within distance r ,
and thus isn’t a node in Gr

3. r ≤ σ/2
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A,A′ are (σ, ǫ)-separated.

density ≤ λ(1− ǫ)

density ≥ λ

A A′

S

(Buffer zone has width σ.)

There is some value r at which:

1. Every point in A,A′ has
≥ k points within distance
r , and is thus a node in Gr

2. Any point in Sσ−r has < k
points within distance r ,
and thus isn’t a node in Gr

3. r ≤ σ/2

A is disconnected from A′ in Gr
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Connectedness

At this particular scale r , every
point in A and A′ (or within
distance r of A,A′) is active.

x

x′

But, are these points
connected in Gr?

The worst case:

x′x

This is where α comes in:
Graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges (xi , xj) for ‖xi −xj‖ ≤ αr

◮ α = 2: easy to show
connectivity

◮ α =
√
2: our result



Connectedness (cont’d)

Proof sketch

x , x ′ are in cluster A, so there
is a path P between them.

We’ll exhibit data points
x0 = x , x1, . . . , xℓ = x ′ such
that:

◮ The xi are within distance
r of P (and thus of A, and
thus are active in Gr )

◮ ‖xi − xi+1‖ ≤ αr

So x is connected to x ′ in Gr .
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Connectedness (cont’d)

Proof sketch

x , x ′ are in cluster A, so there
is a path P between them.

We’ll exhibit data points
x0 = x , x1, . . . , xℓ = x ′ such
that:

◮ The xi are within distance
r of P (and thus of A, and
thus are active in Gr )

◮ ‖xi − xi+1‖ ≤ αr

So x is connected to x ′ in Gr .

xi x ′

x

r

path P

x ′

x

xi

xi+1

Therefore ‖xi − xi+1‖ ≤ r
√
2.

Open problem: will α = 1 work?



Lower bound

Recall result:

With high probability, for all connected sets A,A′:
if A,A′ are (σ, ǫ)-separated, and have minimum density λ, then for

n ≥ d

λǫ2σd

there will be some intermediate graph Gr such that:

◮ There is no path between A and A′ in Gr

◮ A and A′ are individually connected in Gr

Is it possible to achieve a much smaller sample complexity for this
separation task?



Fano’s inequality

A game played with a predefined class of distributions {θ1, . . . , θℓ}.
◮ Nature picks I ∈ {1, 2, . . . , ℓ}
◮ Player is given n iid samples from from θI
◮ Player then guesses the identity of I



Fano’s inequality

A game played with a predefined class of distributions {θ1, . . . , θℓ}.
◮ Nature picks I ∈ {1, 2, . . . , ℓ}
◮ Player is given n iid samples from from θI
◮ Player then guesses the identity of I

Theorem: If Nature chooses I uniformly at random, then the
Player must draw at least

n ≥ log ℓ

2β

samples in order to guess correctly with probability ≥ 1/2, where

β =
1

ℓ2

ℓ∑

i ,j=1

K (θi , θj).



Open problem: better rates of convergence?

We’ve shown:

◮ For all distributions, rate of convergence is ≤ g(n)

◮ There exists a set of distributions on which the rate is ≥ h(n)

where h(n) ≈ g(n).

This leaves open the possibility of estimators that converge more
quickly on most distributions.
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An undirected graph with

◮ A node for each data point

◮ Edges between “neighboring” points

Two types of neighborhood graph:

1. Connect points at distance ≤ r .

2. Connect each point to its k nearest neighbors.



An alternative cluster tree estimator

Original scheme constructs a hierarchy of neighborhood r -graphs:

◮ For each xi : set rk(xi ) = distance to kth nearest neighbor
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◮ Output the connected components of Gr



An alternative cluster tree estimator

Original scheme constructs a hierarchy of neighborhood r -graphs:

◮ For each xi : set rk(xi ) = distance to kth nearest neighbor

◮ As r increases from 0 to ∞:
◮ Construct graph Gr :

Nodes {xi : rk(xi ) ≤ r}
Edges between any (xi , xj) for which ‖xi − xj‖ ≤ αr

◮ Output the connected components of Gr

[Kpotufe-von Luxburg 2011] Instead of Gr , use graph GNN
r :

◮ Same nodes, {xi : r(xi ) ≤ r}
◮ Edges (xi , xj) for which ‖xi − xj‖ ≤ αmin(rk(xi ), rk(xj))

Similar rates of convergence for these potentially sparser graphs.



An alternative cluster tree estimator

Original scheme constructs a hierarchy of neighborhood r -graphs:

◮ For each xi : set rk(xi ) = distance to kth nearest neighbor

◮ As r increases from 0 to ∞:
◮ Construct graph Gr :

Nodes {xi : rk(xi ) ≤ r}
Edges between any (xi , xj) for which ‖xi − xj‖ ≤ αr

◮ Output the connected components of Gr

[Kpotufe-von Luxburg 2011] Instead of Gr , use graph GNN
r :

◮ Same nodes, {xi : r(xi ) ≤ r}
◮ Edges (xi , xj) for which ‖xi − xj‖ ≤ αmin(rk(xi ), rk(xj))

Similar rates of convergence for these potentially sparser graphs.

Open problem: other simple estimators?



Revisiting Hartigan-consistency

Recall Hartigan’s notion of consistency:

Let A,A′ be connected components of {f ≥ λ}, for any
λ. In the tree constructed from n data points Xn, let An

be the smallest cluster containing A ∩ Xn; likewise A′
n.

Then:

lim
n→∞

Prob[An is disjoint from A′
n] = 1

In other words, distinct clusters should (for large enough n) be
disjoint in the estimated tree.



Revisiting Hartigan-consistency

Recall Hartigan’s notion of consistency:

Let A,A′ be connected components of {f ≥ λ}, for any
λ. In the tree constructed from n data points Xn, let An

be the smallest cluster containing A ∩ Xn; likewise A′
n.

Then:

lim
n→∞

Prob[An is disjoint from A′
n] = 1

In other words, distinct clusters should (for large enough n) be
disjoint in the estimated tree.

But this doesn’t guard against excessive fragmentation within the
estimated tree.



Excessive fragmentation: example
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Pruning the cluster tree

◮ Build the cluster tree as before: at each scale r , there is a
neighborhood graph Gr

◮ For each r : merge components of Gr that are connected in
Gr+δ(r)

[Kpotufe and von-Luxburg 2011]: roughly the same consistency
guarantees and rate of convergence hold, and in addition, under
extra conditions, there is no spurious fragmentation.

Open problem: Devise a stronger notion of consistency that
accounts for fragmentation. What rates are achievable?



More open problems

1. Other natural notions of cluster for a density f ? Are there
situations in which a hierarchy is not enough?

2. This notion of cluster is for densities. What about discrete
distributions?
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