
Exploiting low intrinsic dimensionality

Sanjoy Dasgupta

University of California, San Diego



The new nonparametrics

Nonparametric methods (kernel density estimation, tree-based
regression, etc) can fit any function. But they suffer a severe curse
of dimension.

Consider random pair (X ,Y ), where X ∈ Rd and Y ∈ R.

I Regression problem: infer f (x) = E[Y |X = x ].

I Let fn be an estimator based on n data points. It is common
to judge it by its squared loss

E(fn(X )− f (X ))2.

I Stone 1982: In general, loss ≥ n−2p/(2p+d), where p captures
the smoothness of f .

What if a high-dimensional data source actually has relatively few
“degrees of freedom”?
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Low dimensional manifolds

Sometimes data in a high-dimensional space Rd in fact lies close to
a do-dimensional manifold, for do � d

Low dimensional manifolds

Example 1: Motion capture

N markers on a human body yields data in R3N

Example 2: Speech signals

Representation can be made arbitrarily high 
dimensional by applying more filters to each 
window of the time series

Often data that appears to be high-dimensional in fact lies 
close to a low-dimensional manifold.

This  area  of  research:  “Manifold  learning”

1. Motion capture
M markers on a human body
yields data in R3M

2. Speech signals
Representation can be made
arbitrarily high dimensional by
applying more filters to each
window of the time series

This whole area: “Manifold learning”



Another example of low intrinsic dimension

Bag-of-words document model

I Fix a vocabulary of size, say, d

I A document is represented by a d-dimensional vector
indicating, for each word, whether it appears (or how often)

Average number of nonzero entries in these vectors is do � d .

There are several different and widely-occurring types of low
intrinsic dimension. Can we:

I Find a broad notion of dimensionality that captures at least a
few of these?

I Develop nonparametric estimators whose rates of convergence
depend only on this refined notion rather than on the
superficial ambient dimension?
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Doubling dimension

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball
B, the subset S ∩ B can be covered by 2do balls of half the radius.

1. Example: S = line has doubling dimension 1.

2. A k-dimensional flat has doubling dimension cok for some
absolute constant co .

3. If S has diameter ∆ and doubling dimension do , then for any
ε > 0, it has an ε-cover of size ≤ (2∆/ε)do .

4. If S has doubling dimension do , then so does any subset of S .
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radius.

S = line
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S = k-dimensional affine subspace
Doubling dimension = O(k)

S = set of N points
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B S = k-dim submanifold of RD

with finite condition number
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The doubling dimension of sparse sets

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball
B, the subset S ∩ B can be covered by 2do balls of half the radius.

1. A set of n points has doubling dimension at most log n.
Proof: It can be covered by n balls of any radius.

2. If sets S1, . . . ,Sm each have doubling dimension ≤ do , then
S1 ∪ · · · ∪ Sm has doubling dimension ≤ do + logm.
Proof: Si ∩ B can be covered by 2do balls of half the radius.
Therefore, at most m2do balls are needed for the union.

3. Suppose each point in S ⊂ Rd has ≤ k nonzero coordinates.
Then S has doubling dimension ≤ cok + k log d .
Proof: S is the union of

(d
k

)
flats of dimension k; we’ve seen

that each flat has doubling dimension ≤ cok.
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The doubling dimension of manifolds

A Riemannian submanifold M ⊂ Rd has condition number ≤ 1/τ
if normals to M of length τ don’t intersect:

A useful curvature condition
[Niyogi-Smale-Weinberger  ’03]

Suppose data lies on M = d-dimensional Riemannian submanifold of RD.
M has condition number · 1/¿ if normals to M of length ¿ don’t  intersect.

Computational geometry formulation [Amenta-Bern]:
Medial axis: points in RD with > 1 nearest neighbor in M
Then every p 2M has distance ¸ ¿ to medial axis

If M ⊂ Rd is a k-dimensional manifold of condition number 1/τ ,
then its neighborhoods of radius τ have doubling dimension O(k).



Exploiting low intrinsic dimension

Suppose we have data (X ,Y ), where the distribution of X is
supported on a set X ⊂ Rd of intrinsic dimension do .

Some possibilities:

1. Find an embedding Φ : Rd → Rk such that:
I Φ is 1− 1 on X ,
I k is much smaller than d , ideally k = O(do), and
I Φ preserves the neighborhood structure of X in some suitable

sense.

2. Find a simpler representation of X that is easy to construct
and provably adapts to the intrinsic dimension. Obvious
candidate: tree-based spatial partition.
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Spatial partitioning for nonparametric regression

e.g. the k-d tree: To split a cell with points S :

I Choose a coordinate direction

I Split at the median along that
direction

Once the tree is built:

I Fit a simple model (e.g. constant)
in each leaf.

I Answer a query by routing it to a
leaf and applying the leaf’s model.

These regressors are consistent if, as n→∞,

1. the diameter of the leaf cells goes to zero, and

2. the number of samples in each leaf goes to infinity.

Rate of convergence depends on relative speed of these two effects.
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k-d trees are not adaptive to intrinsic dimension

As one moves down a k-d tree, how rapidly does the cell diameter
shrink?

Consider the data set S = ∪di=1{tei : −1 ≤ t ≤ 1}.

Rate of diameter decrease

Consider: X = [Di=1ftei : ¡1 · t · 1g ½RD

Need at least D levels to halve 
the diameter

Intrinsic dimension of this set is 
d = log D (or perhaps even 1, 
depending on your definition)

At least d levels are needed to halve the diameter.

Yet S has doubling dimension just do = 1 + log d .
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Random projection trees
A randomized variant
of the k-d tree:

To split a cell with points S ⊂ Rd :

I Choose a direction v at random
from the unit sphere Sd−1

I Split at the median along that
direction, perturbed slightly:

I Pick any x ∈ S , and let y ∈ S
be the point farthest from it

I Choose δ uniformly at random
from [−1, 1] · 6‖x − y‖/

√
d

I Split at
median({z · v : z ∈ S}) + δ

Theorem: There is a constant c1 with the following property. Suppose

an RP tree is built using data set S ⊂ Rd . Pick any cell C in the RP

tree; suppose that S ∩ C has doubling dimension ≤ do . Then with

probability at least 1/2 (over the randomization in constructing the

subtree rooted at C ), for every descendant C ′ which is more than

c1do log do levels below C , we have radius(C ′) ≤ radius(C )/2.
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Properties of random projection
We choose random projections from Rd to R as follows:

I Pick U from the multivariate Gaussian N(0, (1/d)Id).

I Define projection Π(x) = U · x .

This shrinks an individual vector x by roughly
√
d .

Lemma: For any α, β > 0:

(a) Pr
[
|Π(x)| ≤ α · ‖x‖√

d

]
≤
√

2
π α; and

(b) Pr
[
|Π(x)| ≥ β · ‖x‖√

d

]
≤ 2

β e
−β2/2.

Proof: Π(x) also has a Gaussian distribution, N(0, ‖x‖2/d).

Corollary: Suppose S ⊂ B(xo ,∆). With probability > 1− δ,

|median(Π(S))− Π(xo)| ≤ ∆√
d
·
√

2 ln
2

δ
.
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Random projection and diameter

For S ⊂ Rd , how does the diameter of Π(S) compare to that of S?

If S is full-dimensional, the
diameter could be unchanged.

Example: effect of RP on diameter

Set S ½ RD; random projection U.  How does the diameter of S ¢ U 
compare to that of S?

If S is full-dimensional:
diam(S ¢ U) · diam(S). 

S

U

bounding 
ball of S

U

If S has doubling dimension d:
diam(S ¢ U) · diam(S) . 

But if S has doubling
dimension do � d , the
diameter ought to shrink.
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Random projection and diameter

Theorem: If S ⊂ Rd has doubling dimension do , then with
probability at least 1− δ, the diameter of Π(S) is at most

4 · diam(S)√
d
·
√

2

(
do + ln

2

δ

)
.

Proof: We’ll prove a weaker version with factor
√

(do log d)/d .

1. WLOG S has diameter 1 and S ⊂ B(0, 1).

2. Cover S by balls of radius
√

do/d . At most (d/do)do/2 balls
are needed.

3. Pick any of these balls. With probability 1− (1/d)do , its
center is projected to a point within distance

√
(do log d)/d

of the origin; and thus the entire projected ball lies in an
interval within distance

√
(do log d)/d +

√
do/d of the origin.

4. Take a union bound over all the balls.
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of the origin; and thus the entire projected ball lies in an
interval within distance

√
(do log d)/d +

√
do/d of the origin.

4. Take a union bound over all the balls.
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Proof outline for RP trees

Suppose S ⊂ Rd has doubling dimension do and lies in a ball of
radius 1. We need to show that if an RP tree is built on S , then
with constant probability, every cell O(do log do) levels below is
contained in ball of radius 1/2.

Proof outline

Suppose X ½ RD has doubling dim d and lies in a ball of radius 1.

To show: in the RP tree, d log d levels below, with high probability 
every descendant cell is contained in a ball of radius 1/2.

1. Cover X by dd/2 balls Bi of radius 1/d1/2

2. Consider any pair of balls Bi, Bj at 
distance ¸ 1/2 - 1/d1/2 apart.  We’ll  see  
that a single random split has constant 
probability of cleanly separating them

3. There are at most dd such pairs, so after 
d log d splits, every faraway pair of balls 
will be separated (whp)…  which  means  
all cells at that level have radius · 1/2

Bi

Bj

Current cell (radius · 1):

1. Cover S by d
do/2
o balls Bi of radius

1/
√
do .

2. Consider any pair of balls Bi ,Bj that are
distance > 1/2− 1/

√
do apart. We’ll see

that a single random split has constant
probability of cleanly separating them.

3. There are at most ddo
o such pairs, so after

O(do log do) splits, with constant
probability every faraway pair of balls will
be separated. Thus all cells at that level
will have radius ≤ 1/2.



The big picture
Big$picture$

Bi$

Bj$

radius$1$

radius$1/do1/2$

1/d1/2$

(do/d)1/2$

Recall:$random$projec:on$scales$distance$by$1/D1/2,$diameter$by$·$(d/D)1/2$

1/d1/2$dist$>$1/2$

U$

Recall that random projection shrinks diameter by
√
do/d and

individual vectors by 1/
√
d .



The big picture
Big$picture,$amended$

Bi$

Bj$

radius$1$

radius$1/do1/2$
1/d1/2$

(do/d)1/2$

Most$projected$points$(and$thus$the$median)$fall$in$a$central$interval$of$size$O(1/D1/2)$$

ce
nt
ra
l$i
nt
er
va
l$

Most projected points (and the median) fall in a central interval of
size 1/

√
d .



Regression in spaces of low intrinsic dimension

Goal: regression with rates depending on do rather than d .

Given data (X1,Y1), . . . , (Xn,Yn) ∈ Rd × R, here’s a typical
tree-based regressor:

1. The data is used to construct a partition C of the underlying
space.

2. A simple model is fit to each cell of C.

For instance, piecewise-constant regressor:

fn,C(x) =

∑n
i=1 Yi · 1(Xi ∈ C(x))∑n

i=1 1(Xi ∈ C(x))
,

where C(x) is the cell of C to which x belongs.

We’ll use the leaf-cells of an RP tree as the partition C.
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RP-tree based regression: analysis

Standard analysis of a tree-based regressor, assuming the
regression function is Lipschitz:

1. Bound the bias.
This is proportional to the physical
diameter of the cells of partition C.

2. Bound the variance.
Relate the empirical Y -mean within
each cell to the true Y -mean, and
relate the empirical probability mass of
each cell to its true mass.

Both arguments fail in the context of RP trees.
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Bounding cell diameters
The cells of an RP tree are
convex but otherwise irregular.
It is hard to bound their
physical diameter

∆(C ) = max
x ,y∈C

‖x − y‖.

But the RP tree results do give
us a bound on their data
diameter

∆n(C ) = max
Xi ,Xj∈C

‖Xi − Xj‖.

Cell C ∈ C

∆(C) ∆n(C)

Figure 9: Physical diameter ∆(C) versus data diameter ∆n(C).

3.5.1 Notions of diameter

A typical tree-based regressor works in two phases.

1. The data is used to construct a partition C of X .

2. A regressor is learned as a piecewise continuous function over the cells of C.

For instance, a piecewise constant regressor over C is defined as follows: for any x ∈ X , let C(x) be the cell
of C to which x belongs, and define

fn,C(x) =

∑n
i=1 Yi · 1 (Xi ∈ C(x))

n · µn(C(x))
(2)

if µn(C(x)) > 0 (that is, if the cell C(x) contains at least one training point). If C(x) ∩ S is empty, then a
default setting fn,C(x) = yo is used instead, for some yo ∈ Y. We will often refer to the final regressor as fn

when the partition C used for the estimate is clear from context.
In analyzing the consistency of such estimators (Gyorfi et al., 2002), it is standard to decompose the risk

into two parts, the bias (how much does f vary within a single cell?) and the variance (what is the error in
estimating the mean value of f within a cell?).

The bias can be controlled by making sure cells are small. Traditionally, this analysis has been based on
the physical diameters of cells C ∈ C,

∆(C) = max
x,x′∈C

‖x − x′‖;

see, for instance, Devroye et al. (1996). These are easy to control when the cells are regular, for instance if
they are hyperrectangles. But we wish to handle richer partitioning schemes in which the cells have arbitrary
shapes. Therefore, we will instead relate bias to the data diameters of the cells,

∆n(C) = max
x,x′∈C∩S

‖x − x′‖

(or 0 if C ∩ S is empty); recall that S is the set of data points. See Figure 9.
In fact, an even weaker notion can be used. It is not necessary for all cells of a partition to have small

data diameter, but merely for these diameters to be small in an average sense. For a collection C of disjoint
subsets of X , we use the following notion of average data diameter:

∆n(C) =

√∑
C∈C µn(C)∆2

n(C)∑
C∈C µn(C)

.
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The two notions of diameter

Although the algorithm is forced to work with irregular partition C,
we define an alternate partition C′ that is used in the analysis.

(a) Cover B (b) Partition C (c) Partition C′

Figure 11: We start with a cover B of X with balls of different size; then, we see the data and obtain a
partition C; and finally we substitute C with an alternate partition C′, by intersecting the cells of C with
balls of B.

The second property makes it possible to move between the physical diameters of cells and their data
diameters.

C′ is obtained by intersecting the cells of C with balls or complements-of-balls from a fixed, pre-defined
collection B (Figure 11). Specifically, let Bi be a cover of X by balls of radius ∆X /2i. Take a variety of
scales: i = 0, 1, 2, . . . , I = !log n2/(2+do)". Then B is the union of all these balls of different sizes, blown up
by a factor of 4:

B =

I⋃

i=0

{4B : B ∈ Bi}.

The partition C′ is created by replacing each cell C ∈ C by two cells C ′
1, C

′
2 as follows:

• If C ∩ S = ∅, then C ′
1 = C and C ′

2 = ∅.

• Otherwise, let i = min{I, &log(∆X /∆n(C))'}; we’ll find a ball B ∈ Bi such that C ∩S ⊂ 4B. One way
to achieve this is by picking x ∈ C ∩ S and then choosing the ball B ∈ Bi whose center z is closest to
x. Then define C ′

1 = C ∩ 4B and C ′
2 = C \ C ′

1.

C′ is the collection of all such C ′
1, C

′
2, over C ∈ C. What makes this refined partition valuable is that the

average physical diameter of its cells can be upper-bounded by the empirical data diameters of cells in C, as
captured in the following lemma. The last term represents the resolution of the balls in B.

Lemma 33 Let C be a partition of X and define C′ as above. Then

∑

C′∈C′

µn(C ′)∆2(C ′) ≤ 64∆2
n(C) + 256n−4/(2+do)∆2

X .

3.5.4 Bounding the empirical masses of cells

Next, we need to relate the empirical masses µn(C) to their true values µ(C). Since the tree has height
O(log n), each cell is the intersection of O(log n) half-spaces. The class of such convex sets has Vapnik-
Chervonenkis dimension O(d log n), and thus a uniform convergence bound can easily be given for the
empirical masses of these sets. However, this bound would depend linearly on the ambient dimension d, and
we would like to avoid any such dependence.

Instead, we exploit the fact that the hyperplanes used for splitting are chosen at random, rather than by
looking at the data. We then get the following bound.
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Each cell of C ∈ C corresponds to two cells of C1,C2 ∈ C′:
I C1 has physical diameter approximately equal to its data

diameter.

I C2 contains no data points.



An RP-tree based regressor

C0 = Rd

Define α(n) = (log2 n) log log(n/δ) + log(1/δ)
For i = 1, 2, . . .:

For each cell C ∈ Ci−1:
Set the subtree rooted at C to coreRPtree(C ∩ S)

Let Ci be the partition of Rd defined by the leaves of the current tree

If ∆2
n(Ci ) ≤ ∆2

n(C0) · (α(n)/n) · 2depth(Ci ):

Let C∗ be either Ci−1 or Ci , whichever has smaller
(
α(n)
n · |C|+ ∆2

n(C)
)

Return fn,C∗

The coreRPtree subroutine takes as input a cell C and returns a
subtree whose root corresponds to C and whose leaves have
average data diameter half that of C .



Final risk bound

There are absolute constants C , co for the which the following
holds. Suppose

I the regression function f is λ-Lipschitz and

I the instance space has doubling dimension do and diameter ∆.

Then with probability at least 1− δ, the estimator fn has loss

‖fn − f ‖2 ≤ Cλ2∆2

(
log2 n + log 1/δ

n

)2/2+k

,

where k = codo log do .

We have gone from k = d down to k = O(do log do).
Can we go down further, to k = do?
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Open problems

1. Working in general metric spaces.
Doubling dimension can be defined for any metric space, but
an RP tree is confined to Euclidean space. What are good
spatial partition trees for metric spaces and what kinds of
adaptivity do they exhibit?

2. More general notions of intrinsic dimension.
Can we get closer to the underlying “degrees of freedom” of
the input space?
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