Course on

High Dimensional

Data Analysis

Stéphane Mallat

École Normale Supérieure www.di.ens.fr/data/scattering

High Dimensional Data

- Tremendous increase of data acquistion: audio, images, video medical/biological data, industrial processes, social networks...

Numerical data: $x \in \mathbb{R}^{d}$ with $d \geq 10^{6}$

- Automatic analysis becomes critical for industries, science medecine, Internet search, new services.

Satellite images

Video phones

HD Television

Seismic data

Medical data

- Needs geometry, harmonic analysis, probability and statistics.

High Dimensional Classification

Joshua Tree

Lotus

Water Lily

- Considerable variability in each class.
- Euclidean distances are meaningless
- Need to find discriminative invariants.

Problems/Datasets in Computer Vision

- Imagenet
- 14,000,000 images (1,000,000 with bounding box annotations)
- 20000 categories

Curse of Dimensionality

- Analysis in high dimension: $x \in \mathbb{R}^{d}$ with $d \geq 10^{6}$.
- Points are far away in high dimensions d :
- 10 points cover $[0,1]$ at a distance 10^{-1}

- 10^{d} points cover $[0,1]^{d}$ at a distance 10^{-1}.

$$
\lim _{d \rightarrow \infty} \frac{\text { volume sphere of radius } \mathrm{r}}{\text { volume }[0, r]^{d}}=0
$$

: nearly all points are in the 2^{d} corners!
\Rightarrow there is typically no close data point in high dimension.

Classification

- Classification problems:
find the label $y(x) \in\{1, \ldots, K\}$ for a data vector $x \in \mathbb{R}^{d}$

$$
d \geq 10^{6} \text { and } 2 \leq K \leq 10^{4}
$$

Training samples: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i \leq N}$ with $10 \leq N / K \leq 10^{3}$

- An interpolation problem:
find a good approximation $\tilde{y}(x)$ of $y(x)$, with $\left\{\tilde{y}\left(x_{i}\right)=y_{i}\right\}_{i}$
- Piecewise constant interpolation: nearsest neighbor classifier

$$
\tilde{y}(x)=y_{j} \text { if } x_{j}=\arg \min _{x_{i}}\left\|x-x_{i}\right\|
$$

Low-Dimensional Manifold

- The curse of dimensionality is not a problem if signals belong to low-dimensional manifolds:

\Rightarrow Euclidean distances provide local similarity measures
- Manifold learning: find intrinsic coordinates by diagonalizing the graph Laplacian.

Low Dimensional Data

- Face variations

- Rigid motions

- Lips motion

- Identify the manifold where the data lies.

High-Dimensional Data

Textures

Beaver

Financial time-series

Turbulences

- Need to eliminate irrelevant variability: compute invariants.

Linear Classifier

- Classifications can be reduced to multiple binary classifications

Training samples: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i}$
Representation
Supervised linear classification

$$
f(x)=\langle\Phi x, w\rangle+b=\sum_{n} w_{n} \phi_{n}(x)+b
$$

- (1) How to optimize (w, b) to minimize "errors" ? SVM: $f(x)$ depends on kernel values $K\left(x, x_{i}\right)=\left\langle\Phi(x), \Phi\left(x_{i}\right)\right\rangle$.
- (2) How to define Φ to get linear discriminative invariants ?

Increase Dimensionality

Proposition: There exists a hyperplane separating any two subsets of N points $\left\{\Phi x_{i}\right\}_{i}$ in dimension $d^{\prime}>N+1$ if $\left\{\Phi x_{i}\right\}_{i}$ are not in an affine subspace of dimension $<N$.
\Rightarrow Choose Φ increasing dimensionality !

Problem: generalisation.
Example: Gaussian kernel $K\left(x^{\prime}, x\right)=\exp \left(\frac{-\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)$
$K\left(x^{\prime}, x\right)=\left\langle\Phi\left(x^{\prime}\right), \Phi(x)\right\rangle$ where $\Phi x \in \mathcal{H}$ infinite dimensional.
If σ is small, nearest neighbor classifier type:

Weak and Rare Feature Selection

- Two clasees X_{0} and $X_{1}, \mu_{0}=\mathbb{E}\left(\Phi X_{1}\right)$ and $\mu_{1}=\mathbb{E}\left(\Phi X_{0}\right)$.
- Normalize X mixture of X_{0} and $X_{1}: \operatorname{Var}\left(\phi_{n}(X)\right)=1$.
- Rare: $\mu_{1}-\mu_{0} \in \mathbb{R}^{d^{\prime}}$ is sparse. Weak: $\left\|\mu_{1}-\mu_{0}\right\|_{\infty} \ll 1$.

Donoho \mathcal{E}^{3} Jin Tsybakov

$$
f(x)=\sum_{n} w_{n} \phi_{n}(x)-\frac{\mu_{0}+\mu_{1}}{2} .
$$

\Rightarrow feature selection: $\left(w_{n}\right)_{n}$ should be sparse

- Find w so that $f\left(X_{1}\right) \approx 1$ and $f\left(X_{0}\right) \approx-1$:
linear invariant which discriminates the two clases.

Optimal Representation

Find an operator Φ which:

- eliminate useless variability for classification
\Rightarrow reduce dimensionality
- can yield many possible invariants as linear combinations

$$
\sum_{n} w_{n} \phi_{n}(x)
$$

depending upon the class of x.
need enough invariants \Rightarrow increase dimensionality.

PTranslations and Deformations

- Patterns are translated and deformed

$$
\begin{array}{lllllllllll}
4 & 4 & 4 & 4 & 4 & 4 & 4 & \mathbf{4} & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & \text { Invariance to Translations } \\
7 & 7 & 7 & 7 & 7 & 1 & 7 & 7 & 7 & 7 & \text { Two dimensional group: } \mathbb{R}^{2} \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 &
\end{array}
$$

Texture Discrimination

- Textures are realizations of high-dimensional stationary processes, which are typically not Gaussian or Markovian.
- Second order moment invariants: $\mathbb{E}(X(t) X(t-m))$ estimated from 1 realization with weak ergodicity conditions. same second order moments

same second order moments: not discriminative.

- Use higher order moments ?

Estimators have a large variance
\Rightarrow not sufficiently invariant.
J. McDermott textures
same second order moments

- Natural Sounds (1s) Original

Gaussian model

- Hammer
- Water
- Applause

Rotation and Scaling Variability

- Rotation and deformations

$$
\text { Group: } S O(2) \times \operatorname{Diff}(S O(2))
$$

- Scaling and deformations

Group: $\mathbb{R} \times \operatorname{Diff}(\mathbb{R})$

Frequency Transpositions

$\log (\omega) \uparrow$
encyclopaedias

H : Heisenberg group of "time-frequency" translations

Frequency Transpositions

Time and frequency translations and deformations:

- Frequency transposition invariance is needed
for speech recognition not for locutor recognition.

Classification with Invariants

Representation
\mathbb{R}^{d}

- Φ may be defined from prior knowledge on data.
- Unsupervised learning of Φ from unlabeled examples $\left\{x_{i}\right\}$: requires to model a very high dimension distribution in \mathbb{R}^{d}.

Dimension is too high for:

- Gaussian mixture models
- Graphical models

Deep Neural Networks

J. Hinton, Y. LeCun "State of the art results"

Wavelets

Hinton, Bengio, Ranzato et. al.: usupervised learning with sparsity

Why and how does it work ?

- Part I:

Invariants and stability to diffeomorphisms Scattering and deep neural networks

- Part II:

Limit scattering transform
Expected scattering of stationary processes
Texture discrimination and synthesis

- Part III:

Multifractal random processes
Scattering on Lie Groups
Unsupervised learning of representations

Translations and Deformations

- Patterns are translated and deformed (class dependent)

Need invariance to translations: two dimensional group \mathbb{R}^{2}

Need class dependent invariance to small deformations: belong to diffeomorphism group.

Digit recognition

$$
\begin{array}{llllllllll}
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8
\end{array}
$$

Translation and Deformations

Supervised learning:

Stable Translation Invariants

- Invariance to translations $x_{c}(t)=x(t-c)$

$$
\forall c \in \mathbf{R}, \quad \Phi\left(x_{c}\right)=\Phi(x) .
$$

- Lipschitz stable to diffeomorphisms $x_{\tau}(t)=x(t-\tau(t))$ small deformations of $x \Longrightarrow$ small modifications of $\Phi(x)$

$$
\forall \tau,\left\|\Phi\left(x_{\tau}\right)-\Phi(x)\right\| \leq C \underbrace{\sup \mid \nabla \tau(t)}_{\text {diffeomorphism metric }} \mid\|x\| .
$$

Estimation of Deformations

- Deformation appear in many statistical problems:

- We do not want to compute $\tau(t)$.
- Need to be "sensitive" to $\tau(t)$.
- Lipschitz stable to diffeomorphisms $x_{\tau}(t)=x(t-\tau(t))$

$$
\forall \tau, \quad\left\|\Phi\left(x_{\tau}\right)-\Phi(x)\right\| \leq C \sup _{t}\left|\tau^{\prime}(t)\right|\|x\| .
$$

Fourier Translation Invariance

- Fourier transform $\hat{x}(\omega)=\int x(t) e^{-i \omega t} d t$ invariance:

$$
\text { if } x_{c}(t)=x(t-c) \text { then }\left|\widehat{x_{c}}(\omega)\right|=|\hat{x}(\omega)|
$$

- Instabilites to small deformations $x_{\tau}(t)=x(t-\tau(t))$:

$$
\left|\left|\hat{x}_{\tau}(\omega)\right|-|\hat{x}(\omega)|\right| \text { is big at high frequencies }
$$

Example: If $\tau(t)=\epsilon t$ then $x_{\tau}(t)=x((1-\epsilon) t)$

$$
\Rightarrow \quad \widehat{x}_{\tau}(\omega)=(1-\epsilon)^{-1} \widehat{x}\left((1-\epsilon)^{-1} \omega\right)
$$

Wavelet Transform

- Complex analytic wavelet: $\psi(t)=\psi^{a}(t)+i \psi^{b}(t)$
- Dilated: $\psi_{\lambda}(t)=\alpha^{-j} \psi\left(\alpha^{-j} t\right)$ with $\lambda=\alpha^{-j}$.

- Wavelet transform: $x \star \psi_{\lambda}(t)=\int x(u) \psi_{\lambda}(t-u) d u$

$$
W x=\binom{x \star \phi(t)}{x \star \psi_{\lambda}(t)}_{t, \lambda}
$$

Image Wavelet Transform

- Complex wavelet: $\psi(t)=\psi^{a}(t)+i \psi^{b}(t), t=\left(t_{1}, t_{2}\right)$ rotated and dilated: $\psi_{\lambda}(t)=2^{-j} \psi\left(2^{-j} r t\right)$ with $\lambda=\left(2^{j}, r\right)$

real parts

imaginary parts

- Wavelet transform: $\quad W x=\binom{x \star \phi(t)}{x \star \psi_{\lambda}(t)}_{t, \lambda}$

Wavelet Tight Frames in L2

Functions in $\mathbf{L}^{2}\left(\mathbb{R}^{d}\right):\|x\|^{2}=\int|x(t)|^{2} d t<\infty$

$$
W x=\binom{x \star \phi(t)}{x \star \psi_{\lambda}(t)}_{t, \lambda}
$$

Proposition: (Littlewood-Paley)
The wavelet transform is a tight frame for $x \in \mathbf{L}^{\mathbf{2}}\left(\mathbb{R}^{d}\right)$

$$
\|W x\|^{2}=\|x \star \phi\|^{2}+\sum_{\lambda}\left\|x \star \psi_{\lambda}\right\|^{2}=\|x\|^{2}
$$

if and only if for almost all ω.

$$
|\hat{\phi}(\omega)|^{2}+\frac{1}{2} \sum_{\lambda}\left(\left|\hat{\psi}_{\lambda}(\omega)\right|^{2}+\left|\hat{\psi}_{\lambda}(-\omega)\right|^{2}\right)=1
$$

Why Wavelets ?

- The wavelet dictionary $\left\{\psi_{\lambda}(t-u)\right\}_{t, \lambda}$ is translation invariant.
- Wavelets are uniformly stable to deformations:

$$
\begin{aligned}
& \text { if } \psi_{\lambda, \tau}(t)=\psi_{\lambda}(t-\tau(t)) \text { then } \\
& \qquad\left\|\psi_{\lambda}-\psi_{\lambda, \tau}\right\| \leq C \sup _{t}|\nabla \tau(t)|
\end{aligned}
$$

Wavelet Translation Invariance

- The modulus $\left|x \star \psi_{\lambda_{1}}\right|$ is a regular envelop
- The average $\left|x \star \psi_{\lambda_{1}}\right| \star \phi(t)$ is invariant to small translations relatively to the support of ϕ.
- Full translation invariance at the limit:

$$
\lim _{\phi \rightarrow 1}\left|x \star \psi_{\lambda_{1}}\right| \star \phi(t)=\int\left|x \star \psi_{\lambda_{1}}(u)\right| d u=\left\|x \star \psi_{\lambda_{1}}\right\|_{1}
$$

but few invariants.

Wavelet Stabilization

Wavelet time-frequency

$$
\left|x \star \psi_{\lambda}(t)\right|
$$

Time averaging on $\mathbf{3 7 0 m s}$

Locally invariant to translations and stable to deformations
but loss of information.

Recovering Lost Information

- The high frequencies of $\left|x \star \psi_{\lambda_{1}}\right|$ are in wavelet coefficients:

$$
W\left|x \star \psi_{\lambda_{1}}\right|=\binom{\left|x \star \psi_{\lambda_{1}}\right| \star \phi(t)}{\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}(t)}_{t, \lambda_{2}}
$$

- Translation invariance by time averaging the amplitude:

$$
\forall \lambda_{1}, \lambda_{2}, \quad| | x \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right| \star \phi(t)
$$

Deep Convolution Network

Scattering Vector

Network ouptut:

$$
S x=\left(\begin{array}{c}
x \star \phi(u) \\
\left|x \star \psi_{\lambda_{1}}\right| \star \phi(u) \\
\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi(u) \\
\left|\left|x \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}} \mid \star \phi(u) \\
\cdots
\end{array}\right)_{u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}
$$

Singular Functions

$$
\left|x \star \psi_{\lambda_{1}}(t)\right|=\left|\int x(u) \psi_{\lambda_{1}}(t-u) d u\right|
$$

$\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}(t)\right| \approx 0$ if $\lambda_{2}>\lambda_{1}$

Amplitude Modulation

$$
x_{i}(t)=a_{i}(t)(c \star h(t)) \text { with } c(t)=\sum_{n} \delta(t-n T) .
$$

$\log \left(\lambda_{1}\right)$
$-\left|x \star \psi_{\lambda_{1}}(t)\right|$

Translations and Deformations

$$
\begin{array}{llllllllll}
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
7 & 7 & 7 & 7 & 9 & 1 & 7 & 7 & 7 & 7 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8
\end{array}
$$

- Invariance to translations $x_{c}(t)=x(t-c)$

$$
\forall c \in \mathbf{R}, \quad \Phi\left(x_{c}\right)=\Phi(x) .
$$

Fourier invariant: $\Phi(x)=|\hat{x}(\omega)|=\left|\int x(t) e^{-i t \omega} d \omega\right|$

- Lipschitz stable to diffeomorphisms $x_{\tau}(t)=x(t-\tau(t))$

$$
\forall \tau,\left\|\Phi\left(x_{\tau}\right)-\Phi(x)\right\| \leq C \sup _{\star}|\nabla \tau(t)| \quad\|x\| .
$$

Fourier Failure

Wavelet Transform

- Complex analytic wavelet: $\psi(t)=\psi^{a}(t)+i \psi^{b}(t)$ -For $t \in \mathbb{R}$, dilated

$$
\begin{aligned}
& \text { or } t \in \mathbb{R} \text {, dilated } \\
& \psi_{\lambda}(t)=2^{j} \psi\left(2^{j} t\right) \\
& \text { with } \lambda=2^{j}
\end{aligned} \xrightarrow[{\underset{\lambda}{\lambda}}^{-1}]{\psi_{\lambda}(t)}
$$

-For $t \in \mathbb{R}^{2}$, dilated and rotated

$$
\begin{gathered}
\psi_{\lambda}(t)=2^{j} \psi\left(2^{j} r t\right) \\
\text { with } \lambda=\left(2^{j}, r\right)
\end{gathered}
$$

Wavelet transform $W x=\left(x \star \phi(t), x \star \psi_{\lambda}(t)\right)_{\lambda}$
Tight frame $\|W x\|^{2}=\|x \star \phi\|^{2}+\sum_{\lambda}\left\|x \star \psi_{\lambda}\right\|^{2}=\|x\|^{2}$

Local Scattering Transform

Scattering Properties

$$
\begin{aligned}
& S x=\left(\begin{array}{c}
x \star \phi(u) \\
\left|x \star \psi_{\lambda_{1}}\right| \star \phi(u) \\
\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi(u) \\
\left|\left|x \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}} \mid \star \phi(u) \\
\cdots
\end{array}\right)_{u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots} \\
& \|S x\|^{2}=\sum_{m=0}^{\infty} \sum_{\lambda_{1}, \ldots, \lambda_{m}}\left\|\left|\left\|x \star \psi_{\lambda_{l}}|\star \ldots| \star \psi_{\lambda_{m}} \mid \star \phi\right\|^{2}\right.\right.
\end{aligned}
$$

Theorem: For appropriate wavelets, a scattering is contractive $\|S x-S y\| \leq\|x-y\|$ preserves norms $\quad\|S x\|=\|x\|$
stable to deformations $x_{\tau}(t)=x(t-\tau(t))$

$$
\left\|S x-S x_{\tau}\right\| \leq C \sup _{t}|\nabla \tau(t)|\|x\|
$$

Contraction

$$
\begin{aligned}
& W x=\binom{x \star \phi(t)}{x \star \psi_{\lambda}(t)}_{t, \lambda} \quad \text { is linear and }\|W x\|=\|x\| \\
& |W| x=\binom{x \star \phi(t)}{\left|x \star \psi_{\lambda}(t)\right|}_{t, \lambda} \quad \text { is non-linear }
\end{aligned}
$$

- it is contractive $\||W| x-|W| y\| \leq\|x-y\|$ because for $(a, b) \in \mathbb{C}^{2}| | a|-|b|| \leq|a-b|$
- it preserves the norm $\||W| x\|=\|x\|$

Scattering Contraction

- S is contractive because product of contractive operators.

Scattering Energy Conservation

- S preserves the norm because inner layer energy converge to zero as the depth increases.

Modulus <Demodulation»

$$
x \star \psi_{\lambda_{1}}(t)=x \star \psi_{\lambda_{1}}^{a}(t)+i x \star \psi_{\lambda_{1}}^{b}(t)
$$

- The modulus $\left|x \star \psi_{\lambda_{1}}\right|$ is a regular lower frequency envelop

Modulus shift wavelet coefficient energy to low frequencies.

Lipschitz Stability to Deformations

Wavelet transforms "nearly commute" with deformations:

$$
D_{\tau} x(t)=x(t-\tau(t))
$$

Commutator operator:

$$
\left[W, D_{\tau}\right]=W D_{\tau}-D_{\tau} W
$$

Lemma :

$$
\left\|\left[W, D_{\tau}\right]\right\| \leq C \sup _{t}|\nabla \tau(t)| .
$$

$$
\text { and }\left\|\left[|W|, D_{\tau}\right]\right\| \leq\left\|\left[W, D_{\tau}\right]\right\|
$$

because modulus commutes with diffeomorphisms.

Fourier versus Scattering

Frequencies $\omega=m \xi$

$$
e^{i m \xi t} x(t)=e^{i \xi t} \ldots e^{i \xi t} e^{i \xi t} x(t)
$$

Countable frequency set

Local Fourier:

$$
\int e^{i m \xi u} x(u) \phi(t-u) d u
$$

$$
\hat{\phi}(\omega) \text { in }[-\xi, \xi]
$$

Fourier transform:

$$
\begin{aligned}
& \hat{x}(\omega)=\int e^{i \omega u} x(u) d u \\
& \hat{\delta}(\omega)=1
\end{aligned}
$$

Frequency set: \mathbb{R}

Paths $p=\left(\lambda_{1}, \lambda_{2} \ldots, \lambda_{m}\right)$

$$
\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \ldots\left|\star \psi_{\lambda_{m}}(t)\right|
$$

Countable path set for $\lambda_{k}=2^{j_{k}} \geq \xi$

Local scattering:

$$
\int\left|\left|x \star \psi_{\lambda_{1}}\right| \ldots\right| \star \psi_{\lambda_{m}}(u) \mid \phi(t-u) d u
$$

Scattering transform:

$$
\begin{aligned}
& \bar{S} x(p)=\mu_{p}^{-1} \int| | x \star \psi_{\lambda_{1}}|\ldots| \star \psi_{\lambda_{m}}(u) \mid d u \\
& \bar{S} \delta(p)=1
\end{aligned}
$$

Path set $\mathcal{P} \sim \mathbb{Z}^{\mathbb{N}} \sim \mathbb{R}$

Scattering Transform

Theorem S converges weakly to \bar{S} when ϕ goes to 1
There exists a measure $d \mu$ on \mathcal{P} such that

$$
\begin{gathered}
\forall x \in \mathbf{L}^{\mathbf{2}}(\mathbf{R}) \quad, \quad \bar{S} x(p) \in \mathbf{L}^{\mathbf{2}}(\mathcal{P}, d \mu) \\
\int_{\mathcal{P}}|\bar{S} x(p)|^{2} d \mu(p)<\infty .
\end{gathered}
$$

We know that $\|S x\|^{2}=\|x\|^{2}$ and $\lim _{\phi \rightarrow 1} S=\bar{S}$
Conjecture: $\quad \int_{\mathcal{P}}|\bar{S} x(p)|^{2} d \mu(p)=\|x\|^{2}$.

Frequency to Paths Mapping

$$
\begin{aligned}
& \mathbb{R} \longrightarrow \mathcal{P} \\
& \omega \longrightarrow p(\omega) \text { with } d \mu(p(\omega))=d \omega \\
& \omega \longrightarrow \bar{S} x(p(\omega))
\end{aligned}
$$

$$
\int|\hat{x}(\omega)|^{2}\left|\hat{\psi}\left(2^{j} \omega\right)\right|^{2} d \omega=\int_{2^{j} \pi}^{2^{j+1} \pi}|\bar{S} x(p(\omega))|^{2} d \omega
$$

Scattering Integral Examples

$$
x_{\tau}(t)=x(t-\tau(t)) \text { with } \tau(t)=\epsilon t
$$

$$
\frac{\left\||\hat{x}| \hat{\psi} \hat{\psi}^{2} \mid\right\|}{\|x\|\left\|\mid \tau^{\prime}\right\|_{\infty}}=13 \quad \frac{\left\|\bar{S} x-\bar{S} x_{\tau}\right\|_{\mathcal{P}}}{\|x\|\left\|\tau^{\prime}\right\|_{\infty}}=1.4
$$

Fourier transforms maps regularity and decay and vice-versa. What notion of regularity defined by the scattering decay ?
Depends on the sparsity/geometry of wavelet coefficients.

Image Scattering Transforms

Image

$$
\begin{gathered}
x(t) \\
t=\left(t_{1}, t_{2}\right)
\end{gathered}
$$

Fourier Modulus

$$
\text { Scattering } \phi(t)=1
$$

$$
\begin{gathered}
|\hat{x}(\omega)| \\
\omega=\left(\omega_{1}, \omega_{2}\right)
\end{gathered}
$$

$$
\begin{array}{rr}
\left|x \star \psi_{\lambda_{1}}\right| \star \phi & \left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi \\
\left\|x \star \psi_{\lambda_{1}}\right\|_{1} & \left\|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{2^{j_{2}}}\right\|_{1}
\end{array}
$$

$$
\lambda_{1}=2^{j_{1}} r_{\theta_{1}}
$$

$$
\lambda_{1}=2^{j_{1}} r_{\theta_{1}}
$$

$$
\lambda_{2}=2^{j_{2}} r_{\theta_{2}}
$$

$$
\begin{array}{llllllllll}
3 & 6 & 8 & 1 & 7 & 9 & 6 & 6 & 9 & 1 \\
6 & 7 & 5 & 7 & 8 & 6 & 3 & 4 & 8 & 5 \\
2 & 1 & 7 & 9 & 7 & 1 & 2 & 8 & 4 & 5 \\
4 & 8 & 1 & 9 & 0 & 1 & 8 & 8 & 9 & 4
\end{array}
$$

Digit Classification: MNIST

Second order Scattering $S x$:

$\left|x \star \psi_{\lambda_{1}}\right| \star \phi\left(2^{J} n\right)$
$\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi\left(2^{J} n\right)$

Digit Classification: MNIST

$368 / 796691$ Joan Brunt
6757863485
$21797 / 2845$
4819018894

Classification Errors

Training size	Conv. Net.	Scattering
300	7.2%	$\mathbf{4 . 4} \%$
5000	1.5%	$\mathbf{1 . 0} \%$
20000	0.8%	$\mathbf{0 . 6} \%$
60000	0.5%	$\mathbf{0 . 4} \%$

LeCun et. al.

Scattering Inversion: Phase Recovery

$$
W x=\left\{x \star \phi, x \star \psi_{\lambda}\right\}_{\lambda} \text { is linear and unitary. }
$$

Theorem For appropriate wavelets
I. Waldspurger

$$
|W| x=\left\{x \star \phi,\left|x \star \psi_{\lambda}\right|\right\}_{\lambda}
$$

is invertible and the inverse is continuous.

Scattering Inversion: Phase Recovery
 I. Waldspurger

Theorem For appropriate wavelets

$$
|W| x=\left\{x \star \phi,\left|x \star \psi_{\lambda}\right|\right\}_{\lambda}
$$

is invertible and the inverse is continuous.
Inverse scattering:

$$
\begin{aligned}
& \stackrel{x}{\uparrow}|W|^{-1} \\
& \left\{x \star \phi,\left|x \star \psi_{\lambda_{1}}\right|\right\}_{\lambda_{1}} \\
& |W|^{-1} \\
& \left\{\underline{\left|x \star \psi_{\lambda_{1}}\right| \star \phi},\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right|\right\}_{\lambda_{1}, \lambda_{2}} \\
& |W|^{-1} \quad \text { Propagation of errors } \\
& \left.\left.\begin{array}{rl}
\left\{\left|\left|x * \psi_{\lambda_{1}}\right| * \psi_{\lambda_{2}}\right| * \phi\right.
\end{array},| | O_{c} \star\right\}_{\lambda_{1}, \lambda_{2}, \lambda_{3}}\left|\star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}} \mid\right\}_{\lambda_{1}, \lambda_{2}, \lambda_{3}} \\
& \left\{\left|\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}}\right| \star \phi, \quad| || | x \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}}\left|\star \psi_{\lambda_{4}}\right|\right\}_{\lambda_{1}, \lambda_{2}, \lambda_{3},}
\end{aligned}
$$

Audio Reconstruction

J. Anden

Original audio signal x

Reconstruction from $S x$ for an averaging window ϕ of 1 s
from 1st layer coefficients $\left|x \star \psi_{\lambda_{1}}\right| \star \phi$
adding 2nd layer coefficients $\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi$

Expected Scattering Transform

- If $X(t)$ is a stationary process then

$$
\left|\left|X \star \psi_{\lambda_{1}}\right| \star \ldots\right| \star \psi_{\lambda_{m}}(t) \mid \text { is also stationary. }
$$

Scattering :

$$
S X(t)=\left(\begin{array}{c}
\left|X \star \psi_{\lambda_{1}}\right| \star \phi(t) \\
\left|\left|X \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi(t) \\
\left|\left|\left|X \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}}\right| \star \phi(t) \\
\cdots
\end{array}\right)_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}
$$

- When $\phi \rightarrow 1$ with "appropriate" ergodicity conditions" $S X(t)$ may converge to the expected scattering transform:

$$
\bar{S} X=\left(\begin{array}{c}
E(X) \\
E\left(\left|X \star \psi_{\lambda_{1}}\right|\right) \\
E\left(| | X \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right|\right) \\
E\left(| | X \star \psi_{\lambda_{2}}\left|\star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}} \mid\right) \\
\cdots
\end{array}\right)_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}
$$

Scattering White Noises

Constant Fourier power spectrum: $\hat{R}_{X}(\omega)=\sigma^{2}$.
 ${ }_{2} \times 10^{5} \quad \bar{S} X(p(\omega))^{2}:$ Radon measure

 $\bar{S} X\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ $\bar{S} X\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$

Gaussian White

Wavelet Tight Frames in L2

Functions in $\mathbf{L}^{2}\left(\mathbb{R}^{d}\right):\|x\|^{2}=\int|x(t)|^{2} d t<\infty$
Wavelet transform: $W x=\binom{x \star \phi(t)}{x \star \psi_{\lambda}(t)}_{t, \lambda}$

Proposition: (Littlewood-Paley)
The wavelet transform is a tight frame for $x \in \mathbf{L}^{\mathbf{2}}\left(\mathbb{R}^{d}\right)$

$$
\|W x\|^{2}=\|x \star \phi\|^{2}+\sum_{\lambda}\left\|x \star \psi_{\lambda}\right\|^{2}=\|x\|^{2}
$$

if and only if for almost all ω.

$$
|\hat{\phi}(\omega)|^{2}+\frac{1}{2} \sum_{\lambda}\left(\left|\hat{\psi}_{\lambda}(\omega)\right|^{2}+\left|\hat{\psi}_{\lambda}(-\omega)\right|^{2}\right)=1
$$

Wavelet Frames of Processes

Stationary processes $X(t)$ with $\mathbb{E}\left(|X(t)|^{2}\right)<\infty$.
Wavelet transform: $W X=\binom{\mathbb{E}(X)}{X \star \psi_{\lambda}(t)}_{t, \lambda}$

Proposition: (Littlewood-Paley)
The wavelet transform preserves the variance of stationary X

$$
\mathbb{E}(X)^{2}+\sum_{\lambda} \mathbb{E}\left(\left|X \star \psi_{\lambda}\right|^{2}\right)=\mathbb{E}\left(|X|^{2}\right)
$$

if and only if for almost all ω.

$$
\frac{1}{2} \sum_{\lambda}\left(\left|\hat{\psi}_{\lambda}(\omega)\right|^{2}+\left|\hat{\psi}_{\lambda}(-\omega)\right|^{2}\right)=1
$$

Expected Scattering Transform

$$
|W| X=\left(\mathbb{E}(X),\left|X \star \psi_{\lambda}\right|\right)_{\lambda}
$$

$\left|\left|X \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right|$
$\mathbb{E}\left(\left|X \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}} \mid\right)$

Expected Scattering Transform

$X(t)$ stationary process:

$$
\begin{gathered}
\bar{S} X=\left(\begin{array}{c}
E\left(\left|X \star \psi_{\lambda_{1}}\right|\right) \\
E\left(| | X \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right|\right) \\
E\left(| |\left|X \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{2}}\left|\star \psi_{\lambda_{3}}\right|\right) \\
\ldots
\end{array}\right)_{\lambda_{1},}, \\
\|\bar{S} X\|^{2}=\mathbb{E}(X)^{2}+\sum_{m=1}^{\infty} \sum_{\lambda_{1}, \ldots, \lambda_{m}} \mathbb{E}\left(| |\left|X \star \psi_{\lambda_{1}}\right| \star \ldots\left|\star \psi_{\lambda_{m}}\right|\right)^{2}
\end{gathered}
$$

$$
\sum_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}
$$

Theorem: A scattering is
contractive $\|\bar{S} X-\bar{S} Y\|^{2} \leq E\left(|X-Y|^{2}\right)$
stable to stationary deformations $X_{\tau}(t)=X(t-\tau(t))$

$$
\left\|\bar{S} X-\bar{S} X_{\tau}\right\| \leq C \sup _{t}|\nabla \tau(t)| E\left(|X|^{2}\right)^{1 / 2}
$$

Textures with Same Spectrum

Sounds with Same Spectrum

X : stationary process

Fourier Spectrum

$\log \left(\lambda_{1}\right) \quad 2 s$ window

$$
\left|x \star \psi_{\lambda_{1}}{ }^{\prime}\right| \star \phi(t)
$$

$$
\log \left(\lambda_{2}\right) \quad\left|\left|x \star \psi_{\lambda_{1}}\right| \star \dot{\psi}_{\lambda_{2}}^{\dot{\prime}}\right| \star \phi(t) \text { for } \lambda_{1}=2000
$$

Mean-Square Consistency

- Empricial average scattering coefficients

$$
\left|\left|\left|X \star \psi_{\lambda_{\cdot}}\right| \star \ldots\right| \star \psi_{\lambda_{m}}\right| \star \phi
$$

are unbiased estimators of

$$
\mathbb{E}\left(\left|\left|\left|X \star \psi_{\lambda_{\bullet}}\right| \star \ldots\right| \star \psi_{\lambda_{m}}\right|\right)
$$

- A scattering is mean-square consistent if

$$
\lim _{\phi \rightarrow 1} \sum_{m=0}^{\infty} \sum_{\lambda_{1}, \ldots, \lambda_{m}} \mathbb{E}\left(| |\left|X \star \psi_{\lambda_{\bullet}}\right| \star \ldots\left|\star \psi_{\lambda_{m}}\right| \star \phi-\mathbb{E}\left(| |\left|X \star \psi_{\lambda_{\bullet}}\right| \star \ldots\left|\star \psi_{\lambda_{m}}\right|\right)\right)^{2}=0
$$

Expected Scattering Transform

Theorem For any stationary X, equivalent propositions:
(i) The scattering transform is mean-square consistent.
(ii) $\|\bar{S} X\|^{2}=E\left(|X|^{2}\right)$
(iii) $\lim _{m \rightarrow \infty} \sum_{\lambda_{1}, \ldots, \lambda_{m}} \mathbb{E}\left(| |\left|X \star \psi_{\lambda_{1}}\right| \ldots \star \psi_{\lambda_{m}} \mid\right)^{2}=0$

- Numerically always verified but not proved.

Representation of Random Processes

- An expected scattering is a non-complete representation

$$
\bar{S} X=\left(\begin{array}{rlr}
E(X) & =E\left(U_{0} X\right) \\
E\left(\left|X \star \psi_{\lambda_{1}}\right|\right) & = & E\left(U_{1} X\right) \\
E\left(| | X \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right|\right) & =E\left(U_{2} X\right) \\
E\left(| | X \star \psi_{\lambda_{2}}\left|\star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}} \mid\right) & =E\left(U_{3} X\right) \\
\cdots &
\end{array}\right)_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}
$$

Theorem (Boltzmann) The distribution $p(x)$ which satisfies

$$
\int_{\mathbb{R}^{N}} U_{m} x p(x) d x=E\left(U_{m} X\right)
$$

and maximizes the entropy $-\int p(x) \log p(x) d x$
can be written: $\quad p(x)=\frac{1}{Z} \exp \left(\sum_{m=1}^{\infty} \lambda_{m} \cdot U_{m} x\right)$

Synthesis from Second Order

J. McDermott textures

- Maximum entropy estimation of $X(t)$:
- Gaussian model from 2nd order moments
(N power spectrum coefficients)
- Scattering model 1st \& 2nd orders $\left(\left(\log _{2} N\right)^{2}\right.$ coefficients)
- Original jackhammer
- Gaussian model
- Scattering model
- Original water
- Gaussian model
- Scattering model
- Original applause
- Gaussian model
- Scattering model

Classification of Textures

CUREt database
61 classes

Rotations and illumination variations.

Classification of Textures

40 classes of CureT

Thursday, September 19, 2013

Classification of Textures

Expected Scattering estimated with $\phi=1$

X

$\left|X \star \psi_{\lambda_{1}}\right| \star \phi$

$\left|\left|X \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi$

Classification of Textures

J. Bruna

CUREt database
61 classes

Training per class	Fourier Spectr.	Histogr. Features	Scattering
46	1%	1%	$\mathbf{0 . 2} \%$

Self-Similar Processes

- If $X(t)$ has stationary increments then $X \star \psi_{2^{j}}(t)$ is stationary
- If $\mathbb{E}(|X(t)-X(t-\tau)|)<\infty$ then for all $\left(j_{1}, \ldots, j_{m}\right)$

$$
\mathbb{E}\left(\left|\left|\left|X \star \psi_{2^{j_{1}}}\right| \star \ldots\right| \star \psi_{2^{j_{m}}}\right|\right)<\infty . \Rightarrow \bar{S} X \text { exists. }
$$

- Self-similarity: $X(s t) \equiv s^{H} X(t)$ and $X(t)$ has stationary increments.

$$
\Rightarrow \mathbb{E}\left(\left|X \star \psi_{2^{j}}\right|^{q}\right)=2^{j H q} \mathbb{E}\left(|X \star \psi|^{q}\right) .
$$

Examples: Fractional Brownian motions, Levy stable processes

Scattering Fractals

$$
\begin{aligned}
& \text { J.Bruna, E.Bacry, J.F.Muzy } \\
& \quad X(s t) \equiv s^{H} X(t)
\end{aligned}
$$

- First order scattering coefficients

$$
\bar{S} X\left(2^{j_{1}}\right)=\mathbb{E}\left(\left|X \star \psi_{j_{1}}\right|\right)=\mathbb{E}(|X \star \psi|) 2^{H j_{1}}
$$

Not sufficient to discriminate different selsimilar processes.
Avoid high order moments: numerical instabilities.

- Normalized second order scattering

$$
\widetilde{S} X\left(2^{j_{1}}, 2^{j_{2}}\right)=\frac{E\left(| | X \star \psi_{2^{j_{1}}}\left|\star \psi_{2^{j_{2}}}\right|\right)}{E\left(\left|X \star \psi_{2^{j_{1}}}\right|\right)}
$$

Proposition If X has stationary increments and self-similar:

$$
\widetilde{S} X\left(2^{j_{1}}, 2^{j_{2}}\right)=\widetilde{S} X\left(2^{j_{1}-j_{2}}\right) .
$$

Fractional Brownian Scattering

Proposition: For fractional Brownian motion and noise

$$
\widetilde{S} X\left(2^{j_{1}}, 2^{j_{2}}\right)=\frac{E\left(| | X \star \psi_{2^{j_{1}}}\left|\star \psi_{2^{j_{2}}}\right|\right)}{E\left(\left|X \star \psi_{2^{j_{1}}}\right|\right)} \sim 2^{-\left(j_{2}-j_{1}\right) / 2}
$$

Fractional Brownian

Poisson Process

10^{4}
$\log \widetilde{S} X\left(j_{1}, j_{2}\right)$

Scattering Stable Levy Measures

$X(t)$

$$
\alpha=1.5
$$

$\alpha=2:$ Brownian motion.

Scattering Multifractals

- Stochastic self-similarity: $X(s t) \equiv A_{s} X(t)$ where A_{s} is a random variable independant of X and

$$
E\left(\left|A_{s}\right|^{q}\right) \sim s^{\zeta(q)}
$$

and $X(t)$ has stationary increments.

- A_{s} is constant for fractional Brownians and Levy Stable:

$$
\Rightarrow \quad \zeta(q)=\zeta(1) q .
$$

- A_{s} is a log-normal random variable for Mandelbrot cascades.

Proposition If X has stationary increments and self-similar:

$$
\widetilde{S} X\left(2^{j_{1}}, 2^{j_{2}}\right)=\widetilde{S} X\left(2^{j_{1}-j_{2}}\right) .
$$

Mandelbrot Cascades

Barral, Mandelbrot

- Stationary log normal random measure $d X(t)$ obtained as multiscale products of log-normal random variables.

$$
\zeta(q)=\left(1+\frac{\mu}{2}\right) q-\frac{\mu}{2} q^{2}
$$

Scattering Mandelbrot Cascades

J.Bruna, E.Bacry, J.F.Muzy

Theorem: Mandelbort Random Measures $d X$ satisfy:

$$
\lim _{-j_{1} \rightarrow \infty} \widetilde{S} d X\left(2 j_{1}, 2^{j_{2}}\right)=C_{2} \mu .
$$

$\log \bar{S} d X\left(2^{j_{1}}\right) \sim C_{1}$

$\log \widetilde{S} d X\left(2^{j_{1}}, 2^{j_{2}}\right)$

Scattering Turbulence

Financial Time Series

1 Trading day of German Bund.

Fetal Heart Rate Variability

P. Abry, J. Anden, V. Chudacek, M. Doret, R. Talmon

- Fetal heart rate monitoring gives information on the stress level of babies before delivery.

- Recording over 30 minutes before delivery $x \in \mathbb{R}^{10^{4}}$
- Locally stationary over 2 minutes: 10^{3} points.
- Build a scattering representation $S x$

Fetal Heart Rate Variability

P. Abry, J. Anden, V. Chudacek, M. Doret

Fetal heart rate monitoring gives information on the stress level of babies before delivery.
"Fractal behavior"

True Unhealthy
False Healthy
True Healty
$\log \tilde{S} X\left(2^{j_{1}}, 2^{j_{2}}\right) \neq F\left(j_{2}-j_{1}\right) \Rightarrow$ Not self-similar

Fetal Heart Rate Variability

P. Abry, J. Anden, V. Chudacek, M. Doret, R. Talmon

- Fetal heart rate monitoring gives information on the stress level of babies before delivery.

True Unhealthy
False Healthy
True Healty
Laplacian embedding with

$$
k\left(x_{i}, x_{j}\right)=\left\langle S x_{i}, S x_{j}\right\rangle
$$

Part III: Adapted Invariants

- How to represent high-dimensional data $x \in \mathbb{R}^{d}$ for classification? $d \geq 10^{6}$
- Need to compute discriminative invariants.

MNIST digit classification

Lotus

Deep Neural Network Classifiers

J. Hinton, Y. LeCun "State of the art results"

Hierarchical invariance

- Deep network algorithms learn the W_{k} with sparsity.

Overview

- Invariance to a Lie group action and stability to diffeomorphisms
-Translation and frequency transpositions
- Translations and rotations
-Tranvariance to translation-rotations and scaling
- Unsupervised learning of unknown variability sources

Frequency Transpositions

Time and frequency translations and deformations:

- Frequency transposition invariance is needed
for speech recognition not for locutor recognition.

Transposition Invariance

J.Anden

- Frequency transposition is a common source of variability
- Transposition \Leftrightarrow translation and deformations in $\log \lambda_{1}$
- Invariance with a "frequency scattering" along $\log \lambda_{1}$

Scattering along \log frequency $\gamma_{1}=\log _{2} \lambda_{1}$:

$$
\log \lambda_{1} \uparrow
$$

$$
z\left(\gamma_{1}\right)=\left|x \star \psi_{2^{\gamma_{1}}}(t)\right|
$$

Non-Averaged Scattering

Genre Classification (GTZAN)

J.Anden

- GTZAN: music genre classification (jazz, rock, classical, ...) 10 classes and 30 seconds tracks.
- Each frame is classified using a Gaussian kernel SVM.

$$
T=370 \mathrm{~ms}
$$

Feature Set	Error (\%)
Δ-MFCC (32 ms)	19.3
Time Scat., $\mathrm{m}=1$	17.9
Time Scat., $\mathrm{m}=2$	12.3
Time \& Frequency Scat., $\mathrm{m}=2$	10.3

Phone Classification (TIMIT)

J.Anden

- Training on 3696 phrases (139868 phones) and and testing on 192 phrases (7201 phones)
- Each phone is classified using a Gaussian kernel SVM.

$$
T=32 \mathrm{~ms}
$$

Feature Set	Error (\%)
Δ-MFCC (32 ms)	19.3
State of the art (excl. scattering)	16.7
Time Scat., $\mathrm{m}=1$	18.5
Time Scat., $\mathrm{m}=2$	17.7
Time \& Freq. Scat., $\mathrm{m}=2$	16.5

Joint versus Separable Invariants

- Separable cascade of invariants loose joint distributions.
- Separable rotation and translation invariants can not discriminate:

\Rightarrow need to build invariant on the joint roto-translation group.

Roto-Translation Group

- Roto-translation group $G=\left\{g=(r, t) \in S O(2) \times \mathbb{R}^{2}\right\}$

$$
(r, t) \cdot x(u)=x\left(r^{-1}(u-t)\right)
$$

- Group multiplication:

$$
\left(r^{\prime}, t^{\prime}\right) \cdot(r, t)=\left(r^{\prime} r, r^{\prime} t+t^{\prime}\right): \text { not commutative. }
$$

- Inverse: $(r, t)^{-1}=\left(r^{-1},-r^{-1} t\right)$.
- An averaging invariant is convolution on $\mathbf{L}^{\mathbf{2}}(G): x(g)=x(r, t)$

- Roto-translation Haar measure : $d g=d t d \theta$ (rotation angle θ)

Scattering on a Lie Group L. Sifre

- First layer: wavelet transform along the translation group.

translation

Scattering on a Lie Group

L. Sifre

- How to define a wavelet transform of $x(r, t) \in \mathbf{L}^{\mathbf{2}}(G)$?
- One can define separable complex wavelets $\bar{\psi}_{\lambda_{2}}(r, t) \in \mathbf{L}^{\mathbf{2}}(G)$

$$
\begin{gathered}
W_{2} x=\binom{x \circledast \bar{\phi}(r, t)}{x \circledast \bar{\psi}_{\lambda_{2}}(r, t)}_{\lambda_{2}, r, t} \text { is tight frame of } \mathbf{L}^{2}(G) . \\
x \circledast \bar{\psi}_{\lambda}(g)=\int_{G} x\left(g^{\prime}\right) \bar{\psi}_{\lambda}\left(g^{\prime-1} g\right) d g^{\prime} \\
\|x\|^{2}=\int_{G}|x(g)|^{2} d g=\|x \circledast \phi\|^{2}+\sum_{\lambda_{2}}\left\|x \circledast \psi_{\lambda_{2}}\right\|^{2}
\end{gathered}
$$

Scattering on a Lie Group

- Separable wavelet: $t=\left(t_{1}, t_{2}\right)$

$$
\begin{gathered}
\bar{\psi}_{\lambda}\left(r_{\theta}, t_{1}, t_{2}\right)=\bar{\psi}_{2^{k}}(\theta) \psi_{\alpha, 2^{j}}\left(t_{1}, t_{2}\right) \text { with } \lambda=\left(2^{k}, 2^{j}, \alpha\right) \\
x \circledast \bar{\psi}_{\lambda}(g)=\int_{G} x\left(g^{\prime}\right) \bar{\psi}_{\lambda}\left(g^{\prime-1} g\right) d g^{\prime} \text { with } g=(r, t) \\
x \circledast \bar{\psi}_{\lambda}\left(r_{\theta}, t\right)=\int_{0}^{2 \pi}\left(\int_{\mathbb{R}^{2}} x\left(t^{\prime}, \theta^{\prime}\right) \psi_{\theta, 2^{j}}\left(r_{-\theta^{\prime}}\left(t-t^{\prime}\right)\right)\right) \bar{\psi}_{2^{k}}\left(\theta-\theta^{\prime}\right) d \theta^{\prime} d t^{\prime} \\
\psi_{\theta, 2^{j}}\left(t_{1}, t_{2}\right) \\
\uparrow \uparrow \psi_{2^{k}}(\theta)
\end{gathered}
$$

Scattering on a Lie Group

L. Sifre

- A roto-translation scattering applies

$$
\left|W_{2}\right| x=\binom{x \circledast \bar{\phi}(r, t)}{\left|x \circledast \bar{\psi}_{\lambda_{2}}(r, t)\right|}_{\lambda_{2}, r, t} \text { and }\left|W_{m}\right|=\left|W_{2}\right| \text { for } m \geq 2
$$

translation
scalorroto-translation

+ renoranalization

Learning Representations

Unsupervised Learning Representation

Learn with labeled examples $\left\{\left(x_{i}, y_{i}\right)\right\}_{i}$

- Unsupervised learning of Φ from unlabeled examples $\left\{x_{i}\right\}$:
- model the $\left\{x_{i}\right\}_{i}$ as realization of a random vector $X \in \mathbb{R}^{d}$
- adapt Φ to the high-dimensional distribution $p(x)$ of X

but we can not estimate $p(x)$...

Scattering Generalization

- Towards general deep networks:

Generalized Scattering

Initialize $X_{0}=X \in \mathbb{R}^{N}$

- Define $W_{1} x=\left(\left\langle x, \theta_{n}\right\rangle\right)_{n \leq N_{1}}$ from $\mathbb{R}^{N} \rightarrow \mathbb{R}^{N_{1}}$ or $\mathbb{C}^{N_{1}}$

Tight frame: $\sum_{n}\left|\left\langle x, \theta_{n}\right\rangle\right|^{2}=\|x\|^{2} \Leftrightarrow W_{1}^{*} W_{1}=I d$

$$
\begin{aligned}
X_{1} & =\left|W_{1}\left(X_{0}-E\left(X_{0}\right)\right)\right| \\
& =\left(\left|\left\langle X_{0}-E\left(X_{0}\right), \theta_{n}\right\rangle\right|\right)_{n}
\end{aligned}
$$

Examples:

Wavelet transform $W_{1} X=\left(\sum_{n} X(n), X \star \psi_{2^{j}}(n)\right)_{1 \leq j \leq \log _{2} N}$ with $N_{1}=N \log _{2} N+1$

Identity $W_{1}=I$ with $N_{1}=N$.

Generalized Scattering

- Iteratively compute $X_{m} \in \mathbb{R}^{N_{m}}$

Define $W_{m} x=\left(\left\langle x, \theta_{n}^{m}\right\rangle\right)_{n \leq N_{m}}$ from $\mathbb{R}^{N_{m-1}} \rightarrow \mathbb{R}^{N_{m}}$ or $\mathbb{C}^{N_{m}}$
Tight frame: $\sum_{n}\left|\left\langle x, \theta_{n}^{m}\right\rangle\right|^{2}=\|x\|^{2} \Leftrightarrow W_{m}^{*} W_{m}=I d$

$$
\begin{aligned}
X_{m} & =\left|W_{m}\left(X_{m-1}-E\left(X_{m-1}\right)\right)\right| \\
& =\left(\left|\left\langle X_{m-1}-E\left(X_{m-1}\right), \theta_{n}^{m}\right\rangle\right|\right)_{n}
\end{aligned}
$$

- Expected scattering transform: $\bar{S} X=\left\{E\left(X_{m}\right)\right\}_{m \in \mathbb{N}}$

Revisit Expected Scattering

For wavelet transforms
Initialize $X_{0}=X$

$$
\begin{aligned}
& X_{1}=\left|W_{1}\left(X_{0}-E\left(X_{0}\right)\right)\right| \\
& X_{2}=\left|W_{2}\left(X_{1}-E\left(X_{1}\right)\right)\right| \\
& X_{3}=\left|W_{3}\left(X_{2}-E\left(X_{2}\right)\right)\right|
\end{aligned}
$$

- Expected scattering: $\bar{S} X=\left(E\left(X_{m}\right)\right)_{m \in \mathbb{N}}$

$$
\bar{S} X=\left(\begin{array}{r}
E(X) \\
E\left(\left|X \star \psi_{\lambda_{1}}\right|\right) \\
E\left(| | X \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right|\right) \\
E\left(| | X \star \psi_{\lambda_{2}}\left|\star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}} \mid\right) \\
\cdots
\end{array}\right)_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}
$$

Scattering Properties

$$
X_{0} \xrightarrow{\square} \rightarrow+
$$

$$
\bar{S} X=\left(E\left(X_{m}\right)\right)_{m \in \mathbb{N}} \text { and }\|\bar{S} X\|^{2}=\sum_{m \in \mathbb{N}}\left|E\left(X_{m}\right)\right|^{2}
$$

- Since W_{m} is a tight frame operator $\left\|W_{m} x\right\|=\|x\|$ and

$$
\left\|\left|W_{m}\right| x-\left|W_{m} y\right|\right\| \leq\|x-y\|
$$

Theorem:
I. Waldspurger

$$
\begin{aligned}
\|\bar{S} X-\bar{S} Y\| & \leq E\left(\|X-Y\|^{2}\right) \\
\|\bar{S} X\| & =E\left(\|X\|^{2}\right)
\end{aligned}
$$

Scattering Properties

$$
X_{0} \xrightarrow{\square}
$$

$\bar{S} X=\left(E\left(X_{m}\right)\right)_{m \in \mathbb{N}}$ and $\|\bar{S} X\|^{2}=\sum_{m \in \mathbb{N}}\left|E\left(X_{m}\right)\right|^{2}$

Theorem: The empirical average estimation $\widehat{E\left(X_{m}\right)}$ of $E\left(X_{m}\right)$ from P realizations of X satisfies

$$
E\left(\left\|\widehat{E\left(X_{m}\right)}-E\left(X_{m}\right)\right\|^{2}\right) \leq C m \frac{E\left(\|X\|^{2}\right)}{P}
$$

Almost Soft Thresholding

Theorem Let $\rho_{T}(x)=\max (|x|-T, 0)$. I. Waldspurger
If for all $m, W_{m}=I$ in \mathbb{R} then

$$
\mathbb{E}\left(X_{m}\right) \sim 2 \rho_{T_{m}}(X) \text { with } T_{m}=\sum_{n=0}^{m} \mathbb{E}\left(X_{n}\right)
$$

Representation of Random Processes-

- Expected scattering: $\bar{S} X=\left(E\left(X_{m}\right)\right)_{m \in \mathbb{N}}=\left(E\left(U_{m} X\right)\right)_{m \in \mathbb{N}}$

Theorem (Boltzmann) The distribution $p(x)$ which satisfies

$$
\int_{\mathbb{R}^{N}} U_{m} x p(x) d x=E\left(U_{m} X\right)
$$

and maximizes the entropy $-\int p(x) \log p(x) d x$
can be written: $\quad p(x)=\frac{1}{Z} \exp \left(\sum_{m=1}^{\infty} \lambda_{m} \cdot U_{m} x\right)$

- Converges numerically for all $p(x)=C(1+x)^{k}$ for $k \geq 1$.

Optimized Space Contraction

- A generalized scattering progressively contracts the space
- For classification, we need to squeeze the space while minimizing the data volume reduction

Proposition: The data volume reduction at layer m is
$E\left(\left\|X_{m-1}-E\left(X_{m-1}\right)\right\|^{2}\right)-E\left(\left\|X_{m}-E\left(X_{m}\right)\right\|^{2}\right)=\left\|E\left(X_{m}\right)\right\|^{2}$
\Rightarrow for all m minimize $\left\|E\left(X_{m}\right)\right\|$.

Sparse Layerwise Learning

$$
X_{m}=\mid W_{m}\left(X_{m-1}-E\left(X_{m-1}\right) \mid \quad \text { with } W_{m}^{*} W_{m}=I d .\right.
$$

- Given $X_{m-1}-E\left(X_{m-1}\right)$ we compute W_{m} by minimizing

$$
\left\|E\left(X_{m}\right)\right\|=\left\|\frac{E\left(\mid W_{m}\left(X_{m-1}-E\left(X_{m-1}\right) \mid\right)\right.}{\mathrm{l}^{1} \text { norm across realizations }}\right\|
$$

$\Rightarrow W_{m}$ defines a sparse representation of $X_{m-1}-E\left(X_{m-1}\right)$
Sparse dictionary learning problem.

Determinist Scattering Transform

- Given $\bar{S} X=\left(\mathbb{E}\left(X_{m}\right)\right)_{m \in \mathbb{N}}$

Initialize $x_{0}=x$

$$
\forall m \quad x_{m}=\left|W_{m}\left(x_{m-1}-E\left(X_{m-1}\right)\right)\right|
$$

- Scattering transform $S x=\left(x_{m}\right)_{m \in \mathbb{N}}$

Supervised Linear Classifiers

$$
\begin{aligned}
& E\left(X_{0}\right) \quad E\left(X_{1}\right) \\
& E\left(X_{m}\right)
\end{aligned}
$$

- Which models to evaluate the classification loss ?

Conclusion

- High dimensional classification algorithms have considerably improved in the last few years with many applications.
- Opportunity to develop different non-parametric approaches to modeling and estimation of stochastic processes.
- Papers and Softwares: www.di.ens.fr/data/scattering

