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1. Introduction

1.1. In [1], S. Arakelov defined an intersection theory of divisors on an arithmetic
surface by including a contribution at infinity which is computed using certain
Green’s functions defined on the corresponding Riemann surface. In his founda-
tional paper [5], G. Faltings established fundamental results in the development
of Arakelov theory for arithmetic surfaces based on S. Arakelov’s original work on
this subject. This work was the origin for various developments in arithmetic ge-
ometry such as the creation of higher dimensional Arakelov theory by C. Soulé and
H. Gillet, or more refined work on arithmetic surfaces by A. Abbes, P. Michel and
E. Ullmo, or P. Vojta’s work on the Mordell conjecture.

In the setting of Faltings’s results [5] there are a number of basic analytic
quantities attached to compact Riemann surfaces, namely: The canonical volume
form µcan, the canonical Green’s function gcan, the Arakelov volume form µAr,
and Faltings’s delta function δFal. For brevity of language, we will use the term
analytic Arakelov invariants to describe these four analytic quantities arising from
the Arakelov theory of algebraic curves. Unquestionably, applications of the general
arithmetic results from [1] or [5] include an understanding of the aforementioned
analytic invariants. Various authors have derived numerous identities which express
these invariants in terms of the classical Riemann theta function (see, e.g., [2],
[3], [6], [7], [9], [15], and [19]). In some sense, these identities all utilize the
algebraic geometry of the underlying compact Riemann surface since, in many
regards, the classical Riemann theta function is a quantity that naturally belongs
to the algebraic geometric aspect of Riemann surface theory.

1.2. Summary of the results. In this article, we revisit the problem of un-
derstanding the basic analytic invariants from the Arakelov theory of arithmetic
surfaces. Specifically, we take the point of view of differential geometry and relate
the invariants under consideration to aspects of the hyperbolic geometry of Rie-
mann surface theory, specifically the hyperbolic heat kernel. The main results of
this paper are new identities which express each of the above mentioned Arakelov
invariants (the canonical volume form, the canonical Green’s function, the Arakelov
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volume form, and Faltings’s delta function) explicitly in terms of the hyperbolic heat
kernel.

1.3. Outline of the paper. The outline of the paper is as follows. In section 2,
we establish the notation we need throughout the article. In section 3, we prove
the first of our identities. Theorem 3.5 expresses the canonical volume form in
terms of the hyperbolic volume form and the hyperbolic heat kernel. In some
sense, Theorem 3.5 is the main result since all subsequent computations use the
identity given in Theorem 3.5. Theorem 3.9 relates the canonical Green’s function
to the hyperbolic Green’s function and the hyperbolic heat kernel, from which
we immediately obtain Corollary 3.10, which studies the Arakelov volume form in
terms of hyperbolic heat kernels. In section 4 we turn our attention to the Faltings’s
delta function. The main result of section 4, Theorem 4.6, expresses δFal in terms
of hyperbolic geometry.

1.4. Acknowledgements. Some of the results stated in this article have been
used elsewhere in our study of analytic aspects of Arakelov theory (see [11], [12],
and [13]). The second named author presented parts of these results in a lecture at
the International Conference “Shimura Varieties, Lattices and Symmetric Spaces”
held in Ascona in May 2004 and thanks L. Clozel, B. Edixhoven, and E. Ullmo for
their insightful comments. We also thank James Cogdell and Andrew McIntyre for
their constructive comments concerning preliminary versions of the present article.

2. Background material

2.1. Hyperbolic and canonical metrics. Let Γ be a Fuchsian subgroup of
the first kind of PSL2(R) acting by fractional linear transformations on the upper
half-plane H = {z ∈ C | Im(z) > 0}. We let X be the quotient space Γ\H and
denote by gX the genus of X. In a slight abuse of notation, we will throughout this
article identify X with a fundamental domain (say, a Ford domain, bounded by
geodesic paths) and identify points on X with their pre-images in H. We assume
that gX > 1 and that Γ has no elliptic and, apart from the identity, no parabolic
elements, i.e., X is smooth and compact.

In the sequel, µ denotes a (smooth) metric on X, i.e., µ is a positive (1, 1)-form
on X. We write volµ(X) for the volume of X with respect to µ. In particular, we
let µhyp denote the hyperbolic metric on X, which is compatible with the complex
structure of X, and has constant negative curvature equal to −1. Locally, we have

µhyp(z) =
i

2
· dz ∧ dz̄

Im(z)2
.

As a shorthand, we write vX for the hyperbolic volume volµhyp(X); we recall that
vX is given by 4π(gX−1). The scaled hyperbolic metric µshyp is simply the rescaled
hyperbolic metric µhyp/vX , which measures the volume of X to be one.

Let Sk(Γ) denote the C-vector space of cusp forms of weight k with respect to
Γ equipped with the Petersson inner product

〈f, g〉 =
i

2

∫
X

f(z) g(z) Im(z)k · dz ∧ dz̄
Im(z)2

(f, g ∈ Sk(Γ)) .
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By choosing an orthonormal basis {f1, . . . , fgX} of S2(Γ) with respect to the Pe-
tersson inner product, the canonical metric µcan of X is given by

µcan(z) =
1
gX
· i

2

gX∑
j=1

|fj(z)|2 dz ∧ dz̄ .

We note that the canonical metric measures the volume of X to be one.

2.2. Green’s functions and residual metrics. We denote the Green’s function
associated to the metric µ by gµ. It is a function on X ×X characterized by the
two properties

dzdczgµ(z, w) + δw(z) =
µ(z)

volµ(X)
,∫

X

gµ(z, w)µ(z) = 0 (w ∈ X) ;

recall that dc = (4πi)−1(∂ − ∂̄), and ddc = −(2πi)−1∂∂̄. Assuming that z, w are
points on X, which are sufficiently close, our convention for the Green’s function
is such that the sum gµ(z, w) + log |z − w|2 is bounded as w approaches z. Basic
and fundamental information concerning the role of Green’s functions in Arakelov
theory can be found in [1], [5], [15], and [18].

Writing z = x+ iy and µ(z) = e2ρµ(z)(i/2)dz∧dz̄, the Laplacian ∆µ associated
to µ is given by

∆µ = −e−2ρµ(z)

(
∂2

∂x2
+

∂2

∂y2

)
= −4e−2ρµ(z) ∂2

∂z∂z̄
.

We set the convention that an eigenfunction ϕ with associated eigenvalue λ satisfies
the equation ∆µϕ = λϕ; hence, in our notation, we have λ ≥ 0. Also, we note that
by combining the above formulas, one gets, for any smooth function f on X, the
relation

−4πddcf = (∆µf)µ .

The Green’s function gµ is the integral kernel which inverts the operator −ddc

on the space of functions whose integral is zero. More precisely, for any smooth,
bounded function f on X, we have the identity∫

X

gµ(z, ζ)(−dζdcζf(ζ)) = f(z), provided
∫
X

f(ζ)µ(ζ) = 0.

If µ = µhyp, µ = µshyp, or µ = µcan, we set

gµ = ghyp , gµ = gshyp , gµ = gcan ,

respectively. By means of the function Gµ = exp(gµ), we can now define a metric
‖ · ‖µ,res on the canonical line bundle Ω1

X of X in the following way. For z ∈ X, we
set

‖dz‖2µ,res = lim
w→z

(
Gµ(z, w) · |z − w|2

)
.

We call the metric

µres(z) =
i

2
· dz ∧ dz̄
‖dz‖2µ,res
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the residual metric associated to µ. If µ = µhyp, µ = µshyp, or µ = µcan, we set

‖ · ‖µ,res = ‖ · ‖hyp,res , ‖ · ‖µ,res = ‖ · ‖shyp,res , ‖ · ‖µ,res = ‖ · ‖can,res ,

µres = µhyp,res , µres = µshyp,res , µres = µcan,res ,

respectively. We recall that the Arakelov metric µAr is defined as the residual
metric associated to the canonical metric µcan; the corresponding metric on Ω1

X is
denoted by ‖ · ‖Ar. In order to be able to compare the metrics µAr and µhyp, we
define the C∞-function φAr on X by the equation

(2.1) µAr = eφArµhyp .

2.3. Faltings’s delta function and determinants. Recall that the Laplacian on
X associated to the metric µ is denoted by ∆µ, and we write ∆hyp for the hyperbolic
Laplacian on X. In general, associated to the Laplacian ∆µ one has a spectral zeta
function ζµ(s), which gives rise to the regularized determinant det∗(∆µ) (see, for
example, [18] and references therein). We set the notation

Dµ(X) = log
(

det∗(∆µ)
volµ(X)

)
.

If µ = µhyp, or µ = µAr, we set Dµ = Dhyp, or Dµ = DAr, respectively. Observing
the first Chern form relations

c1(Ω1
X , ‖ · ‖hyp) = (2gX − 2)µshyp , c1(Ω1

X , ‖ · ‖Ar) = (2gX − 2)µcan ,

an immediate application of Polyakov’s formula (see [14], p. 78) shows the relation

(2.2) DAr(X) = Dhyp(X) +
gX − 1

6

∫
X

φAr(z)(µshyp(z) + µcan(z)) .

Faltings’s delta function δFal(X) is introduced in [5], where also some of its ba-
sic properties are given. In [9], Faltings’s delta function is expressed in terms of
Riemann’s theta function, and its asymptotic behavior is investigated. As a by-
product of the analytic part of the arithmetic Riemann-Roch theorem for arithmetic
surfaces, it is shown in [18] that

(2.3) δFal(X) = −6DAr(X) + a(gX) ,

where

(2.4) a(gX) = −2gX log(π) + 4gX log(2) + (gX − 1)(−24ζ ′
Q

(−1) + 1).

2.4. Heat kernels and heat traces. The heat kernel KH(t; z, w) on H (t ∈ R>0;
z, w ∈ H) is given by the formula

KH(t; z, w) =
√

2e−t/4

(4πt)3/2

∞∫
ρ

re−r
2/4t√

cosh(r)− cosh(ρ)
dr ,

where ρ = dH(z, w) denotes the hyperbolic distance between z and w. The heat
kernel Khyp(t; z, w) associated to X (t ∈ R>0; z, w ∈ X), resp. the hyperbolic heat
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kernel HKhyp(t; z, w) associated to X (t ∈ R>0; z, w ∈ X) is defined by averaging
over the elements of Γ, resp. the elements of Γ different from the identity, namely

Khyp(t; z, w) =
∑
γ∈Γ

KH(t; z, γw) , resp.

HKhyp(t; z, w) =
∑
γ∈Γ
γ 6=id

KH(t; z, γw) .

If z = w, we write Khyp(t; z) instead of Khyp(t; z, z), and analogously for the
functions KH(t; z, z), resp. HKhyp(t; z, z). The hyperbolic heat trace HTrKhyp(t)
(t ∈ R>0) is now given by

HTrKhyp(t) =
∫
X

HKhyp(t; z)µhyp(z) .

We note that the hyperbolic Green’s function ghyp(z, w) (z, w ∈ X; z 6= w) relates
in the following way to the heat kernel:

(2.5) ghyp(z, w) = 4π

∞∫
0

(
Khyp(t; z, w)− 1

vX

)
dt .

To see this, one only has to recall(
∆hyp,z +

∂

∂t

)
Khyp(t; z, w) = 0,

and the known asymptotic behavior of Khyp(t; z, w) near t = 0 and t = ∞. By
analogy, the hyperbolic Green’s function on H is defined through the formula

gH(z, w) = 4π

∞∫
0

KH(t; z, w) dt (z, w ∈ H; z 6= w) .

Explicit formulas were given evaluating gH(z, w), namely, from [8], p. 31, we have

gH(z, w) = − log

(∣∣∣∣z − wz − w̄

∣∣∣∣2
)
.

2.5. Selberg’s zeta function. A thorough study of the Selberg zeta function can
be found in [8]. For the sake of completeness, we recall here the basic results which
we need, referring the reader to [8] for further details. Let H(Γ) denote a complete
set of representatives of inconjugate, primitive, hyperbolic elements in Γ. Denote
by `γ the hyperbolic length of the closed geodesic determined by γ ∈ H(Γ) on X;
it is well-known that the equality

|tr(γ)| = 2 cosh(`γ/2)

holds. For s ∈ C, Re(s) > 1, the Selberg zeta function ZX(s) associated to X is
defined via the Euler product expansion

ZX(s) =
∏

γ∈H(Γ)

∞∏
n=0

(
1− e−(s+n)`γ

)
.
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The Selberg zeta function ZX(s) is known to have a meromorphic continuation to
all of C and satisfies a functional equation. From [17], p. 115, we recall the relation

(2.6) Dhyp(X) = log
(
Z ′X(1)
vX

)
+ b(gX) ,

where

(2.7) b(gX) = (gX − 1)(4ζ ′
Q

(−1)− 1/2 + log(2π)) .

As in [10], we define the quantity

cX = lim
s→1

(
Z ′X
ZX

(s)− 1
s− 1

)
.

From [10], Lemma 4.2, we recall the formula

(2.8) cX = 1 +

∞∫
0

(HTrKhyp(t)− 1) dt =

∞∫
0

(HTrKhyp(t)− 1 + e−t) dt .

Identity (2.8) is obtained by means of the McKean formula (assuming Re(s) > 1)

Z ′X
ZX

(s) = (2s− 1)

∞∫
0

HTrKhyp(t)e−s(s−1)t dt ,

which, observing the relation lim
s→∞

ZX(s) = 1, has the integrated version

(2.9) log(ZX(s)) = −
∞∫

0

HTrKhyp(t)e−s(s−1)t dt
t
.

Observing the identity

(2.10) log(w) =

∞∫
0

(
e−t − e−wt

) dt
t

for w > 0 and taking w = s(s− 1) (with s ∈ R>1), we can combine (2.10) with the
integrated version of the McKean formula (2.9) to get, for Re(s) > 1, the formula

− log
(
ZX(s)
s(s− 1)

)
=

∞∫
0

(
(HTrKhyp(t)− 1)e−s(s−1)t + e−t

) dt
t
.

In particular, when letting s approach 1, we get

(2.11) − log(Z ′X(1)) =

∞∫
0

(
HTrKhyp(t)− 1 + e−t

) dt
t
.

In this way, we have shown how the special values (2.8) and (2.11) are expressed
using the hyperbolic heat kernel.
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3. Canonical metrics, Arakelov metrics and Green’s functions

In this section, we derive an explicit identity which expresses the canonical
metric µcan and the hyperbolic metric µhyp in terms of the hyperbolic heat kernel;
see Theorem 3.5. Building on this result, we then obtain a closed-form expression
for the canonical Green’s function in terms of hyperbolic geometry; see Theorem
3.9. As a consequence of this result, we derive in Corollary 3.10 an identity for the
Arakelov volume form in terms of hyperbolic geometry.

Lemma 3.1. With the above notations, we have, for all z, w ∈ X, the formula

ghyp(z, w)− gcan(z, w) =
∫
X

ghyp(z, ζ)µcan(ζ) +
∫
X

ghyp(w, ζ)µcan(ζ)−

∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) .

Proof. Let FL(z, w), resp. FR(z, w), denote the left-, resp. right-hand side
of the stated identity. Using the characterizing properties of the Green’s functions,
one can show directly that we have for fixed w ∈ X

dzdczFL(z, w) = dzdczFR(z, w) = µshyp(z)− µcan(z) ,

and ∫
X

FL(z, w)µcan(z) =
∫
X

FR(z, w)µcan(z) =
∫
X

ghyp(w, ζ)µcan(ζ).

Consequently, FL(z, w) = FR(z, w), again for fixed w. However, it is obvious that
FL and FR are symmetric in z and w. This completes the proof of the lemma. �

Proposition 3.2. With the above notations, we have, for all z ∈ X, the for-
mula

gXµcan(z) = µshyp(z) +
1
2

c1(Ω1
X , ‖ · ‖hyp,res)(z) ;

here Ω1
X denotes the canonical line bundle on X.

Proof. Let us rewrite the identity in Lemma 3.1 as

(3.1) ghyp(z, w)− gcan(z, w) = φ(z) + φ(w) ,

where
φ(z) =

∫
X

ghyp(z, ζ)µcan(ζ)− 1
2

∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) .

Taking dzdcz in relation (3.1), we get the equation

(3.2) µshyp(z)− µcan(z) = dzdczφ(z) .

On the other hand, we have by definition

log ‖dz‖2hyp,res = lim
w→z

(
ghyp(z, w) + log |z − w|2

)
,

log ‖dz‖2can,res = lim
w→z

(
gcan(z, w) + log |z − w|2

)
.

From this we deduce, again using (3.1),

(3.3) log ‖dz‖2hyp,res − log‖dz‖2can,res = lim
w→z

(ghyp(z, w)− gcan(z, w)) = 2φ(z) .
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Now, taking −dzdcz of equation (3.3), yields

(3.4) c1(Ω1
X , ‖ · ‖hyp,res)(z)− c1(Ω1

X , ‖ · ‖can,res)(z) = −2dzdczφ(z) .

Combining equations (3.2) and (3.4) leads to

(3.5) 2(µshyp(z)− µcan(z)) = c1(Ω1
X , ‖ · ‖can,res)(z)− c1(Ω1

X , ‖ · ‖hyp,res)(z) .

Recalling

(3.6) c1(Ω1
X , ‖ · ‖can,res)(z) = (2gX − 2)µcan(z) ,

we derive from (3.5)

µshyp(z)− µcan(z) =
2gX − 2

2
µcan(z)− 1

2
c1(Ω1

X , ‖ · ‖hyp,res)(z) ,

which proves the proposition. �

Remark 3.3. A key step in the proof of Proposition 3.2 is equation (3.6), which
was first proved in [1] using classical variational theory. An alternate proof of (3.6)
is given in [9], which first expresses the canonical Green’s function in terms of
classical Riemann theta functions, from which the differentiation required to prove
(3.6) is immediate.

Proposition 3.4. With the above notations, we have the following formula for
the first Chern form of Ω1

X with respect to ‖ · ‖hyp,res

c1(Ω1
X , ‖ · ‖hyp,res)(z) =

1
2π
· µhyp(z) +

 ∞∫
0

∆hypKhyp(t; z) dt

µhyp(z).

Proof. By our definitions, we have for z ∈ X

c1(Ω1
X , ‖ · ‖hyp,res)(z) = −dzdcz log ‖dz‖2hyp,res

= −dzdcz lim
w→z

(ghyp(z, w) + log |z − w|2)

= −dzdcz lim
w→z

4π

∞∫
0

(
Khyp(t; z, w)− 1

vX

)
dt+ log |z − w|2


= −dzdcz lim

w→z

4π

∞∫
0

KH(t; z, w) dt+ log |z − w|2


−dzdcz lim
w→z

4π

∞∫
0

∑
γ∈Γ
γ 6=id

KH(t; z, γw)− 1
vX

dt

 .
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Using the formula for the Green’s function gH(z, w) on H, we obtain for the first
summand in the latter sum

A = −dzdcz lim
w→z

4π

∞∫
0

KH(t; z, w) dt+ log |z − w|2


= −dzdcz lim
w→z

(
gH(z, w) + log |z − w|2

)
= −dzdcz log |z − z̄|2 = − 2i

2π
∂z ∂̄z log(z − z̄)

=
i

π
∂z

dz̄
z − z̄

= − i
π
· dz ∧ dz̄

(z − z̄)2

= − i
π
· dz ∧ dz̄

(2iIm(z))2
=

1
2π
· µhyp(z) .

For the second summand we obtain

B = −4πdzdcz

∞∫
0

∑
γ∈Γ
γ 6=id

KH(t; z, γz)− 1
vX

dt .

Since this integral converges absolutely, as does the integral of derivatives of the
integrand, we can interchange differentiation and integration, yielding

B = −4π

∞∫
0

dzdcz

∑
γ∈Γ
γ 6=id

KH(t; z, γz)− 1
vX

dt

= −4π

∞∫
0

∑
γ∈Γ
γ 6=id

dzdczKH(t; z, γz) dt .

The claimed formula then follows, since KH(t; z) is independent of z, and recalling,
as in section 2, the identity

−4πdzdczf(z) = (∆hypf(z))µhyp(z) ,

for any smooth function f on X. �

Theorem 3.5. With the above notations, we have, for all z ∈ X, the formula

µcan(z) = µshyp(z) +
1

2gX

 ∞∫
0

∆hypKhyp(t; z) dt

µhyp(z).

Proof. We simply have to combine Propositions 3.2 and 3.4, and to use that

1
gX

+
vX

4πgX
= 1 .

�
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Lemma 3.6. For all z ∈ X, let H(z) be defined by

H(z) =

∞∫
0

(
HKhyp(t; z)− 1

vX

)
dt− cX − 1

vX
.

Then, H(z) is uniquely characterized by satisfying the integral formula∫
X

H(z)µhyp(z) = 0 ,

and the differential equation

∆hypH(z) =

∞∫
0

∆hypKhyp(t; z) dt .

Proof. Concerning the integral equation, note that, by interchanging the or-
der of integration, we have

∫
X

H(z)µhyp(z) =
∫
X

 ∞∫
0

(
HKhyp(t; z)− 1

vX

)
dt− cX − 1

vX

µhyp(z)

=

∞∫
0

(HTrKhyp(t)− 1) dt− (cX − 1) = 0 ,

where the last equality follows from formula (2.8), given in section 2. As for the
differential equation, note that for any z ∈ X, we have

HKhyp(t; z) = Khyp(t; z)−KH(t; z).

Elementary bounds of heat kernels imply that this function and its derivatives are
bounded, hence we can interchange differentiation and integration in the definition
of H(z). Since both KH(t; z) and (cX − 1)/vX are annihilated by ∆hyp, the result
follows. �

Lemma 3.7. With the above notations, we have, for all z ∈ X, the formula∫
X

ghyp(z, ζ)µcan(ζ) =
2π
gX

H(z) .
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Proof. Using Theorem 3.5, we have∫
X

ghyp(z, ζ)µcan(ζ)

=
∫
X

ghyp(z, ζ)

µshyp(ζ) +
1

2gX

 ∞∫
0

∆hypKhyp(t; ζ) dt

µhyp(ζ)


=

1
2gX

∫
X

ghyp(z, ζ)

 ∞∫
0

∆hypKhyp(t; ζ) dt

µhyp(ζ)

=
1

2gX

∫
X

ghyp(z, ζ)∆hypH(ζ)µhyp(ζ) ,

where the last equality follows from Lemma 3.6. Using the integral formula in
Lemma 3.6, the assertion is proved by recalling that ghyp inverts the operator −ddc

on the space of functions whose integral is zero. �

Lemma 3.8. With the above notations, we have the formula∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) =
π

g2
X

∫
X

H(ξ)∆hypH(ξ)µhyp(ξ) .

Proof. From Lemma 3.7, we have∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) =
2π
gX

∫
X

H(ξ)µcan(ξ) .

We now employ Theorem 3.5, which gives∫
X

H(ξ)µcan(ξ) =
∫
X

H(ξ)

µshyp(ξ) +
1

2gX

 ∞∫
0

∆hypKhyp(t; ξ) dt

µhyp(ξ)


=

1
2gX

∫
X

H(ξ)

 ∞∫
0

∆hypKhyp(t; ξ) dt

µhyp(ξ) ,

where we have used the integral equation from Lemma 3.6 to obtain the last equal-
ity. The result follows by using the differential equation from Lemma 3.6. �

Theorem 3.9. With the above notations, we have the formula

ghyp(z, w)− gcan(z, w) = φX(z) + φX(w) ,

where

φX(z) =
2π
gX

H(z)− π

2g2
X

∫
X

H(ξ)∆hypH(ξ)µhyp(ξ) ,

and

H(z) =

∞∫
0

(
HKhyp(t; z)− 1

vX

)
dt− cX − 1

vX
.
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Proof. The proof is obtained by combining Lemma 3.1, Lemma 3.7 and
Lemma 3.8. �

Corollary 3.10. Let

F (z) =

∞∫
0

(
HKhyp(t; z)− 1

vX

)
dt .

Then, with the above notations, we have the formula

φAr(z) = −4π
(

1− 1
gX

)
F (z)− π

g2
X

∫
X

F (ξ)∆hypF (ξ)µhyp(ξ)− cX − 1
gX(gX − 1)

−log(4) .

Proof. Using the known formula for gH(z, w), as stated in section 2, we can
write

gcan(z, w)− gH(z, w) = gcan(z, w) + log |z − w|2 − log |z − w̄|2 .
Therefore, when using the definition of the residual metrics as given in section 2,
we then have

lim
w→z

(gcan(z, w)− gH(z, w)) = log ‖dz‖2can,res − log(2 Im(z))2

= log

(
‖dz‖2can,res

Im(z)2

)
− log(4) = log

(
µhyp(z)
µAr(z)

)
− log(4) = −φAr(z)− log(4) .

However, by Theorem 3.9, we have

lim
w→z

(gcan(z, w)− gH(z, w)) = lim
w→z

(ghyp(z, w)− gH(z, w))− 2φX(z)

= lim
w→z

4π

∞∫
0

(
Khyp(t; z, w)− 1

vX

)
dt− 4π

∞∫
0

KH(t; z, w) dt

− 2φX(z)

= 4π

∞∫
0

(
Khyp(t; z)−KH(t; z)− 1

vX

)
dt− 2φX(z) .

The rest follows from substituting the formula for φX , which was proved in Theorem
3.9. �

Remark 3.11. As stated in the introduction, prior results have expressed the
canonical Green’s function in terms of the classical Riemann theta function. There-
fore, we now have a complete, closed-form expression for the Riemann theta func-
tion in terms of the hyperbolic heat kernel. A potentially fascinating study would
be to explore this relation further, either from the point of view of obtaining re-
sults in hyperbolic geometry from the algebraic geometry of the theta function, or
conversely.

4. Faltings’s delta function

Continuing the theme of the previous section, we now derive an expression
which evaluates Faltings’s delta function δFal(X) in terms of spectral theoretic
information of X coming from hyperbolic geometry. Our method of proof is as
follows. First, we use results from [17] and [18] together with the Polyakov formula
(see (2.2)) to express δFal(X) in terms of hyperbolic information and the conformal
factor φAr (see (2.1)) relating the Arakelov metric µAr to the hyperbolic metric
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µhyp on X. Our starting point is the following lemma which collects results stated
above.

Lemma 4.1. For any X with genus gX > 1, let

c(gX) = a(gX)− 6b(gX) + 6 log(vX) ,

where a(gX), resp. b(gX) are given by formulas (2.4), resp. (2.7). With the above
notations, we then have the formula

δFal(X) = −6 log(Z ′X(1))− (gX − 1)
∫
X

φAr(z)(µshyp(z) + µcan(z)) + c(gX).

Proof. Combining formulas (2.3), (2.2), and (2.6), we obtain

δFal(X) = −6DAr(X) + a(gX)

= −6Dhyp(X)− (gX − 1)
∫
X

φAr(z)(µshyp(z) + µcan(z)) + a(gX)

= −6 log
(
Z ′X(1)
vX

)
− (gX − 1)

∫
X

φAr(z)(µshyp(z) + µcan(z)) +

a(gX)− 6b(gX)

= −6 log(Z ′X(1))− (gX − 1)
∫
X

φAr(z)(µshyp(z) + µcan(z)) +

a(gX)− 6b(gX) + 6 log(vX).

This completes the proof of the lemma. �

Remark 4.2. For the sake of completeness, let us make explicit the value of
c(gX); a straightforward calculation yields

c(gX) = a(gX)− 6b(gX) + 6 log(vX)

= 2gX
(
−24ζ ′

Q
(−1)− 4 log(π)− log(2) + 2

)
+ 6 log(gX − 1) +

2
(
24ζ ′

Q
(−1) + 6 log(π) + 9 log(2)− 2

)
.

Lemma 4.3. With the above notations, we have∫
X

φAr(z)µshyp(z) = − π

g2
X

∫
X

F (z)∆hypF (z)µhyp(z)− cX − 1
gX − 1

− log(4) .

Proof. The result follows from Corollary 3.10 together with Lemma 3.6. �

Lemma 4.4. With the above notations, we have∫
X

φAr(z)

 ∞∫
0

∆hypKhyp(t; z) dt

µhyp(z)

= −4π
(

1− 1
gX

)∫
X

F (z)∆hypF (z)µhyp(z) .
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Proof. The result follows from Corollary 3.10 together with Lemma 3.6. �

Proposition 4.5. With the above notations, we have∫
X

φAr(z)(µshyp(z) + µcan(z)) = − 2π
gX

∫
X

F (z)∆hypF (z)µhyp(z)−

2(cX − 1)
gX − 1

− 2 log(4) .

Proof. Using Theorem 3.5, we have∫
X

φAr(z)(µshyp(z) + µcan(z)) = 2
∫
X

φAr(z)µshyp(z) +

1
2gX

∫
X

φAr(z)

 ∞∫
0

∆hypKhyp(t; z) dt

µhyp(z) .

The result now follows from Lemma 4.3 and Lemma 4.4. �

Theorem 4.6. With the above notations, we have

δFal(X) = 2π
(

1− 1
gX

)∫
X

F (z)∆hypF (z)µhyp(z)− 6 log(Z ′X(1)) + 2cX + C(gX) ,

where
C(gX) = a(gX)− 6b(gX) + 2(gX − 1) log(4) + 6 log(vX)− 2

= 2gX
(
−24ζ ′

Q
(−1)− 4 log(π) + log(2) + 2

)
+ 6 log(gX − 1) +

2
(
24ζ ′

Q
(−1) + 6 log(π) + 7 log(2)− 3

)
.

Proof. Simply combine Lemma 4.1 with Proposition 4.5. �

Remark 4.7. Prior results have expressed δFal(X) in terms of the Riemann
theta function; see [2], [3], [9], and [19]. As previously stated, Theorem 4.7 allows
one to study δFal(X) using techniques from hyperbolic geometry. This approach
was exploited in [12], where asymptotic bounds were derived for the behavior of
δFal(X) through covers. Furthermore, it seems possible that one can use Theorem
4.7 to study δFal(X) through degeneration, thus reproving some of the main results
from [9] and [19]. Finally, we note that the identity proved in Theorem 4.6 is also
proved in [12] using a completely different analysis of the integral that appears in
Lemma 4.1.
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183 (1990), 69–105.

[4] Chavel, I.: Eigenvalues in Riemannian geometry. Academic Press, Orlando, 1984.



EXPRESSING ARAKELOV INVARIANTS USING HYPERBOLIC HEAT KERNELS 15

[5] Faltings, G.: Calculus on arithmetic surfaces. Ann. of Math. 119 (1984), 387–424.

[6] Fay, J.: Kernel functions, analytic torsion, and moduli spaces. Memoirs of AMS 464. Amer-

ican Mathematical Society, Providence, 1992.
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