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Bounds on Faltings’s delta function
through covers

By Jay Jorgenson and Jürg Kramer*

Abstract

Let X be a compact Riemann surface of genus gX ≥ 1. In [7], G. Falt-
ings introduced a new invariant δFal(X) associated to X. In this paper
we give explicit bounds for δFal(X) in terms of fundamental differential
geometric invariants arising from X, when gX > 1. As an application, we
are able to give bounds for Faltings’s delta function for the family of mod-
ular curves X0(N) in terms of the genus only. In combination with work
of A. Abbes, P. Michel and E. Ullmo this leads to an asymptotic formula
for the Faltings height of the Jacobian J0(N) associated to X0(N).

1. Introduction

1.1. In his foundational paper [7], G. Faltings established fundamental
results in the development of Arakelov theory for arithmetic surfaces based on
S.S. Arakelov’s original work on this subject. The article [7] was the origin
for various developments in arithmetic geometry such as the creation of higher
dimensional Arakelov theory by C. Soulé and H. Gillet, or more refined work on
arithmetic surfaces by A. Abbes, P. Michel, and E. Ullmo, or P. Vojta’s work
on the Mordell conjecture. The ideas from Faltings’s original article continue
to be used, and further understanding of the ideas developed in [7] often leads
to advances in arithmetic algebraic geometry.

Let us now explain the main object of study in this paper, namely Falt-
ings’s delta function. To do this, we let X be a compact Riemann surface of
positive genus gX , Ω1

X the holomorphic cotangent bundle and ω1, . . . , ωgX an
orthonormal basis of holomorphic 1-forms on X with respect to the Petersson
inner product. The canonical metric on X is then defined by means of the
(1, 1)-form

µcan =
1
gX
· i

2

gX∑
j=1

ωj ∧ ωj .
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We note that if gX > 1, the Riemann surface X also carries a hyperbolic
metric, which is compatible with the complex structure of X and has negative
curvature equal to minus one; we denote the corresponding (1, 1)-form by µhyp.

By means of the normalized Green’s function gcan(x, y) (x, y ∈ X) as-
sociated to the canonical (1, 1)-form µcan in the sense of Arakelov one can
inductively define a hermitian metric on any line bundle L on X, whose curva-
ture form is proportional to µcan. In particular, if this construction is applied
to the line bundle Ω1

X , the corresponding hermitian metric is such that the
isomorphism induced by the residue map from the fiber of Ω1

X(x) at x to C
(equipped with the standard hermitian metric) becomes an isometry for all
x ∈ X. By means of the hermitian metric thus defined on any line bundle L,
G. Faltings constructs in [7] a hermitian metric ‖ · ‖1 on the determinant line
bundle λ(L) associated to the cohomology of the line bundle L.

Now, there is another way to metrize the determinant line bundle λ(L).
For this one considers the degree gX −1 part PicgX−1(X) of the Picard variety
of X together with the line bundle O(Θ) associated to the theta divisor Θ. By
means of Riemann’s theta function the line bundle O(Θ) can be metrized in a
canonical way. By restricting to the case where the degree of L equals gX − 1,
and noting that L is of the form OX(E −P1− . . .−Pr) with a fixed divisor E
on X and suitable points P1, . . . , Pr on X, we obtain a natural morphism from
Xr to PicgX−1(X) by sending (P1, . . . , Pr) to the class of OX(E−P1−. . .−Pr).
By pulling back O(Θ) to Xr via this map, extending it to Y = Xr × X and
restricting to the fiber X of the projection from Y to Xr, we obtain a line
bundle, which turns out to be isomorphic to λ(L). In this way the hermitian
metric given by Riemann’s theta function on O(Θ) induces a second hermitian
metric ‖ · ‖2 on λ(L). A straightforward calculation shows that the curvature
forms of the two metrics thus obtained coincide. Therefore, they agree up to a
multiplicative constant, which depends solely on (the isomorphism class of) X.
This constant defines Faltings’s delta function δFal(X); for a precise definition,
we refer to [7], p. 402.

In [7], p. 403, it is asked to determine the asymptotic behavior of δFal(Xt)
for a family of compact Riemann surfaces Xt, which approach the Deligne-
Mumford boundary of the moduli space of stable algebraic curves of a fixed
positive genus gX . This problem was solved in [13] by first expressing Faltings’s
delta function in terms of Riemann’s theta function, thus obtaining asymptotic
expansions for all quantities involved in the expression. In the present article,
we will address, among other things, the following, related question, namely
to estimate δFal(X) for varying X covering a fixed base Riemann surface X0 in
terms of fundamental geometric invariants of X as well as additional intrinsic
quantities coming from X0.
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1.2. In their work A. Abbes, P. Michel, and E. Ullmo investigated the
case of the modular curve X0(N) (N squarefree, 6 - N) associated to the
congruence subgroup Γ0(N) more closely. Using an arithmetic analogue of
Noether’s formula, which was also obtained in [7], it was shown in [1], [24]
that the Faltings height hFal(J0(N)) for the Jacobian J0(N) of X0(N) has
the following asymptotic expression involving Faltings’s delta function as the
archimedean contribution

(1) 12 · hFal(J0(N)) = 4gX0(N) log(N) + δFal(X0(N)) + o(gX0(N) log(N)) ;

here the genus gX0(N) of X0(N) (N squarefree, 6 - N) is given by the formula
(see [29])

gX0(N) = 1 +
1
12
·N

∏
p|N

(
1 +

1
p

)
− 1

2
· d(N)−

1
4

∏
p|N

(
1 +

(
−4
p

))
− 1

3

∏
p|N

(
1 +

(
−3
p

))
,

where d(N) denotes the number of divisors of N . In the subsequent work
[31], E. Ullmo established another formula for hFal(J0(N)) involving a suitable
discriminant δT of the Hecke algebra T of J0(N), the matrix MN of all possible
Petersson inner products of a certain basis of eigenforms of weight 2 for Γ0(N),
and a suitable natural number α, namely

(2) hFal(J0(N)) =
1
2

log |δT| −
1
2

log |det(MN )| − log(α) .

By estimating congruences for modular forms, as well as estimating det(MN )
and α, E. Ullmo derives the bounds

gX0(N) log(N) + o(gX0(N) log(N)) ≤ log |δT| ≤

2gX0(N) log(N) + o(gX0(N) log(N))(3)

for log |δT|, from which he then derives the following bounds for hFal(J0(N))

(4) −BgX0(N) ≤ hFal(J0(N)) ≤
gX0(N)

2
log(N) + o(gX0(N) log(N))

with an absolute constant B > 0; we note that the lower bound here is due
to unpublished work of J.-B. Bost. This estimate in turn allows him to bound
δFal(X0(N)) as follows

−4gX0(N) log(N) + o(gX0(N) log(N)) ≤ δFal(X0(N)) ≤

2gX0(N) log(N) + o(gX0(N) log(N)) .(5)

1.3. The main purpose of this note is to give bounds for δFal(X) for ar-
bitrary compact Riemann surfaces of genus gX > 1 in terms of fundamental
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geometric invariants of X. As a first main result, Theorem 4.5 gives a bound
for δFal(X) for any compact Riemann surface of genus gX > 1 in terms of the
smallest non-zero eigenvalue, the length of the shortest geodesic, the number of
eigenvalues in the interval [0, 1/4), the number of closed, primitive geodesics of
length in the interval (0, 5), the supremum over x ∈ X of the ratio µcan/µhyp,
and the implied constant in the error term of the prime geodesic theorem for
X. Applying this result to the situation where X is a finite cover of a fixed
Riemann surface X0 of genus gX0 > 1, we obtain as a second main result (see
Corollary 4.6) the estimate

δFal(X) = OX0

(
gX

(
1 +

1
λX,1

))
,

where λX,1 denotes the smallest non-zero eigenvalue on X. We now want
to apply our main results to the modular curves X0(N) with N being such
that gX0(N) > 1, and to derive a bound for δFal(X0(N)) simply in terms of
the genus gX0(N). To do this, we unfortunately cannot apply Corollary 4.6
directly, but rather have to step back to Theorem 4.5, and have to bound all
the fundamental geometric quantities in terms of gX0(N). This can be done by
exploiting the arithmetic nature of the situation, e.g., by recalling estimates
on the smallest non-zero eigenvalue on X0(N) given by R. Brooks in [2]. In
Theorem 5.6, we end up with the estimate

δFal(X0(N)) = O(gX0(N)) ,

thereby improving the bound (5). Plugging this bound into (1), yields

hFal(J0(N)) =
gX0(N)

3
log(N) + o(gX0(N) log(N)) ,

thereby improving (4). Using (2) in combination with our bound for hFal(J0(N))
and E. Ullmo’s lower bound for log |det(MN )|, we find the lower bound

log |δT| ≥
5
3
gX0(N) log(N) + o(gX0(N) log(N)) ,

thereby improving the lower bound in (3).

1.4. The paper is organized as follows. In section 2, we recall and summa-
rize all the notations, definitions and results used later on in this article. In
particular, we recall the definitions for the hyperbolic and the canonical metric
on a compact Riemann surface X of genus gX > 1, as well as the definitions of
the corresponding Green’s functions giving rise to the so-called residual met-
rics on Ω1

X . Next, we define Faltings’s delta function δFal(X) by means of
the regularized determinant associated to the Laplacian with respect to the
Arakelov metric on Ω1

X (which is nothing but the residual metric associated to
the canonical metric). This result was obtained in [30] as a by-product of the
analytic part of the arithmetic Riemann-Roch theorem for arithmetic surfaces.
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By means of Polyakov’s formula, we are able to express Faltings’s delta func-
tion in terms of the regularized determinant associated to the Laplacian with
respect to the hyperbolic metric and a local integral involving the conformal
factor relating the two metrics under consideration. We end this section by
recalling the heat kernel, heat trace, and Selberg’s zeta function associated to
X, as well as the formula relating the first derivative of Selberg’s zeta function
to the regularized determinant associated to the hyperbolic Laplacian, which
was proved in [28].

In section 3, we weave together the relations collected in section 2. As
the main result of section 3, we obtain a representation of δFal(X) in terms of
the genus, the first derivative of Selberg’s zeta function for X at s = 1, and a
triple integral over X involving the hyperbolic heat trace of X.

The formula obtained in section 3, allows us to estimate δFal(X) in sec-
tion 4 by suitably extending the techniques developed in [14] to give bounds
for the constant term of the logarithmic derivative of Selberg’s zeta function
at s = 1. In this way, we arrive at our main estimate for δFal(X) given in The-
orem 4.5 in terms of the above mentioned fundamental geometric invariants.

In section 5, we then specialize to the case of the modular curves X0(N).
The main focus here is to estimate all the fundamental geometric quantities
occuring in Theorem 4.5 in terms of the genus gX0(N) of X0(N) only. The
problem that one encounters is the following: The family of modular curves
X0(N) which admit hyperbolic metrics do not form a single tower so then the
geometric invariants which appear in Theorem 4.5 cannot be readily bounded.
Since X0(N) is an isometric cover of X0(N ′) whenever N ′|N , the hyperbolic
modular curves are sufficiently inter-related, in what one could view as a “net”
rather than a single “tower”, so that one is able to develop uniform bounds
for the geometric invariants in Theorem 4.5 in order to bound Faltings’s delta
function for all modular curves. This leads to the main result stated in Theo-
rem 5.6.

In section 6, we conclude by briefly discussing the arithmetic implications
arising from Theorem 5.6 to estimating the Faltings height hFal(J0(N)) of the
Jacobian J0(N) of X0(N) and the discriminant δT of the Hecke algebra T of
J0(N).

2. Notations and preliminaries

2.1. Hyperbolic and canonical metrics. Let Γ be a Fuchsian subgroup
of the first kind of PSL2(R) acting by fractional linear transformations on
the upper half-plane H := {z ∈ C | Im(z) > 0}. We let X be the quotient
space Γ\H and denote by gX the genus of X. Unless otherwise stated, we
assume that gX > 1 and that Γ has no elliptic and, apart from the identity,
no parabolic elements, i.e., X is smooth and compact. We identify X locally
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with its universal cover H; we make this identification explicit by denoting the
image of x ∈ X in H by z(x).
In the sequel µ denotes a (smooth) metric on X, i.e., µ is a positive (1, 1)-form
on X. We write volµ(X) for the volume of X with respect to µ. In particular,
we let µ = µhyp denote the hyperbolic metric on X, which is compatible with
the complex structure of X, and has constant negative curvature equal to
minus one. Locally, we have

µhyp(x) =
i

2
· dz(x) ∧ dz̄(x)

Im(z(x))2
.

We write volhyp(X) for the hyperbolic volume of X; we recall that volhyp(X)
is given by 4π(gX − 1). The scaled hyperbolic metric µ = µshyp is simply the
rescaled hyperbolic metric µhyp/volhyp(X), which measures the volume of X
to be one.
Let Sk(Γ) denote the C-vector space of cusp forms of weight k with respect to
Γ equipped with the Petersson inner product

〈f, g〉 =
i

2

∫
X

f(z(x)) g(z(x)) Im(z(x))k · dz(x) ∧ dz̄(x)
Im(z(x))2

(f, g ∈ Sk(Γ)) .

By choosing an orthonormal basis {f1, ..., fgX} of S2(Γ) with respect to the
Petersson inner product, the canonical metric µ = µcan of X is given by

µcan(x) =
1
gX
· i

2

gX∑
j=1

|fj(z(x))|2 dz(x) ∧ dz̄(x).

We note that the canonical metric measures the volume of X to be one. In
order to be able to compare the hyperbolic and the canonical metrics, we define

dsup,X := sup
x∈X

∣∣∣∣ µcan(x)
µshyp(x)

∣∣∣∣ .
We note that in [17], optimal bounds for dsup,X through covers were obtained.

2.2. Green’s functions and residual metrics. We denote the Green’s
function associated to the metric µ by gµ. It is a function on X ×X charac-
terized by the two properties

dxdcxgµ(x, y) + δy(x) =
µ(x)

volµ(X)
,∫

X

gµ(x, y)µ(x) = 0 .

If µ = µhyp, µ = µshyp, or µ = µcan, we set

gµ = ghyp , gµ = gshyp , gµ = gcan ,
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respectively. Note that ghyp = gshyp. By means of the function Gµ = exp(gµ),
we can now define a metric ‖ · ‖µ,res on the canonical line bundle Ω1

X of X in
the following way. For x ∈ X and z(x) as above, we set

‖dz(x)‖2µ,res = lim
y→x

(
Gµ(x, y) · |z(x)− z(y)|2

)
.

We call the metric
µres(x) =

i

2
· dz(x) ∧ dz̄(x)
‖dz(x)‖2µ,res

the residual metric associated to µ. If µ = µhyp, µ = µshyp, or µ = µcan, we set

‖ · ‖µ,res = ‖ · ‖hyp,res , ‖ · ‖µ,res = ‖ · ‖shyp,res , ‖ · ‖µ,res = ‖ · ‖can,res ,

µres = µhyp,res , µres = µshyp,res , µres = µcan,res ,

respectively. Since ghyp = gshyp, we have µhyp,res = µshyp,res. We recall that the
Arakelov metric µAr is defined as the residual metric associated to the canonical
metric µcan; the corresponding metric on Ω1

X is denoted by ‖ · ‖Ar. In order to
be able to compare the metrics µhyp and µAr, we define the C∞-function φAr

on X by the equation

(6) µAr = eφArµhyp .

2.3. Faltings’s delta function and determinants. We denote the
Laplacian on X associated to the metric µ by ∆µ. We write ∆hyp for the hy-
perbolic Laplacian on X; identifying x ∈ X with z(x) = ξ+iη in a fundamental
domain for Γ in H, we have

(7) ∆hyp = −η2

(
∂2

∂ξ2
+

∂2

∂η2

)
.

We let {φX,n}∞n=0 denote an orthonormal basis of eigenfunctions of ∆hyp on X
with eigenvalues

0 = λX,0 < λX,1 ≤ λX,2 ≤ . . . ,

i.e.,
∆hypφX,n = λX,nφX,n (n = 0, 1, 2, . . .).

We denote the number of eigenvalues of ∆hyp lying in the interval [a, b) by
N

[a,b)
ev,X .

To ∆µ, we have associated the spectral zeta function ζµ(s), which gives rise to
the regularized determinant det∗(∆µ). We set the notation

Dµ(X) = log
(

det∗(∆µ)
volµ(X)

)
.

If µ = µhyp, or µ = µAr, we set Dµ = Dhyp, or Dµ = DAr, respectively.
Observing the first Chern form relations

c1(Ω1
X , ‖ · ‖hyp) = (2gX − 2)µshyp(x) , c1(Ω1

X , ‖ · ‖Ar) = (2gX − 2)µcan(x) ,
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an immediate application of Polyakov’s formula (see [20], p. 78) shows the
relation

(8) DAr(X) = Dhyp(X) +
gX − 1

6

∫
X

φAr(x)(µcan(x) + µshyp(x)) .

Faltings’s delta function δFal(X) is introduced in [7], where also some of its basic
properties are given. In [13], Faltings’s delta function is expressed in terms of
Riemann’s theta function, and its asymptotic behavior is investigated. As a
by-product of the analytic part of the arithmetic Riemann-Roch theorem for
arithmetic surfaces, it is shown in [30] that

(9) δFal(X) = −6DAr(X) + a(gX) ,

where

(10) a(gX) = −2gX log(π) + 4gX log(2) + (gX − 1)(−24ζ ′
Q
(−1) + 1).

For the sequel, we only have to recall that a(gX) = O(gX).

2.4. Heat kernels and heat traces. Let H(Γ) denote a complete set of
representatives of inconjugate, primitive, hyperbolic elements in Γ. Denote by
`γ the hyperbolic length of the closed geodesic determined by γ ∈ H(Γ) on X;
it is well-known that the equality

|tr(γ)| = 2 cosh(`γ/2)

holds. We denote the number of elements γ in H(Γ), whose geodesic represen-
tatives have length in the interval (0, b) by N (0,b)

geo,X .
The heat kernel KH(t; z, w) on H (t ∈ R>0; z, w ∈ H) is given by the formula

KH(t; z, w) = KH(t; ρ) :=
√

2e−t/4

(4πt)3/2

∞∫
ρ

re−r
2/4t√

cosh(r)− cosh(ρ)
dr ,

where ρ := dH(z, w) denotes the hyperbolic distance between z and w. The heat
kernel Khyp(t;x, y) associated to X (t ∈ R>0; x, y ∈ X), resp. the hyperbolic
heat kernel HKhyp(t;x, y) associated to X (t ∈ R>0; x, y ∈ X) is defined by
averaging over the elements of Γ, resp. the elements of Γ different from the
identity, namely

Khyp(t;x, y) =
∑
γ∈Γ

KH(t; z(x), γz(y)) , resp.

HKhyp(t;x, y) =
∑
γ∈Γ
γ 6=id

KH(t; z(x), γz(y)) .
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We note that Khyp(t;x, y) satisfies the equation(
∂

∂t
+ ∆hyp,x

)
Khyp(t;x, y) = 0 (y ∈ X),

lim
t→0

∫
X

Khyp(t;x, y) f(y)µhyp(y) = f(x) (x ∈ X)

for all C∞-functions f on X. In terms of the eigenfunctions {φX,n}∞n=0 and
eigenvalues {λX,n}∞n=0 of ∆hyp, we have

Khyp(t;x, y) =
∞∑
n=0

φX,n(x)φX,n(y)e−λX,nt .

If x = y, we write HKhyp(t;x) instead of HKhyp(t;x, x). The hyperbolic heat
trace HKhyp(t) (t ∈ R>0) is now given by

HTrKhyp(t) =
∫
X

HKhyp(t;x)µhyp(x) .

Introducing the function

(11) f(u, t) =
e−t/4

(4πt)1/2

∞∑
n=1

log(u)
un/2 − u−n/2

e−(n log(u))2/4t,

and setting HTrKγ(t) = f(e`γ , t), we recall the identity

HTrKhyp(t) =
∑

γ∈H(Γ)

HTrKγ(t) ,

which is one application of the Selberg trace formula (see [9]). For any δ > 0,
we now define

(12) HTrKhyp,δ(t) = HTrKhyp(t)−
∑
γ∈H(Γ)
`γ<δ

HTrKγ(t) .

We note that the hyperbolic Green’s function ghyp(x, y) (x, y ∈ X; x 6= y)
relates in the following way to the heat kernel

(13) ghyp(x, y) = 4π

∞∫
0

(
Khyp(t;x, y)− 1

volhyp(X)

)
dt .

In particular for the Green’s function gH(z, w) on H (z, w ∈ H; z 6= w), we
recall the formulas

gH(z, w) = − log

(∣∣∣∣z − wz − w̄

∣∣∣∣2
)

= 4π

∞∫
0

KH(t; z, w) dt .
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2.5. Prime geodesic theorem. Consider the function

πX(u) =
∑
γ∈H(Γ)

e
`γ <u

1 ,

which is defined for u ∈ R>1; it is just the number of inconjugate, primitive,
hyperbolic elements of Γ such that the corresponding geodesics have length
less than log(u). For any eigenvalue λX,j (j = 0, 1, 2, . . . ), 0 ≤ λX,j < 1/4, we
put

sX,j =
1
2

+

√
1
4
− λX,j ,

and note that 1/2 < sX,j ≤ 1. Introducing the integral logarithm

li(usX,j ) =

usX,j∫
2

dξ
log(ξ)

,

the prime geodesic theorem states

(14)

∣∣∣∣∣∣πX(u)−
∑

0≤λX,j<1/4

li(usX,j )

∣∣∣∣∣∣ ≤ C · u3/4(log(u))−1/2

for u > 2 with an implied constant C > 0 depending solely on X (see [11], [5],
p. 297, or [10], p. 474). Then, we define the Huber constant CHub,X to be the
infimum of all constants C > 0 such that (14) holds. With this definition the
main result of [15] implies the following: Assume that X is a finite cover of a
fixed Riemann surface X0 of genus gX0 > 1, then

(15) CHub,X ≤ deg(X/X0) · CHub,X0 ,

where deg(X/X0) denotes the degree of X over X0. This choice for the error
term in the prime geodesic theorem suffices for our purposes, since we are
working with general compact Riemann surfaces. Improvements on the error
term in certain cases are contained in [4], [12], and [23]. For the purpose of
the present article, these results will not be used.
We note that using the function πX(u), the truncated hyperbolic heat trace
(12) can be rewritten as

(16) HTrKhyp,δ(t) =

∞∫
eδ

f(u, t) dπX(u) .

2.6. Selberg’s zeta function. For s ∈ C, Re(s) > 1, the Selberg zeta
function ZX(s) associated to X is defined via the Euler product expansion

ZX(s) =
∏

γ∈H(Γ)

Zγ(s),
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where the local factors Zγ(s) are given by

Zγ(s) =
∞∏
n=0

(
1− e−(s+n)`γ

)
.

The Selberg zeta function ZX(s) is known to have a meromorphic continuation
to all of C and satisfies a functional equation. From [28], p. 115, we recall the
relation

(17) Dhyp(X) = log
(

Z ′X(1)
volhyp(X)

)
+ b(gX) ,

where

(18) b(gX) = (gX − 1)(4ζ ′
Q
(−1)− 1/2 + log(2π)) .

As in [14], we define the quantity

cX := lim
s→1

(
Z ′X
ZX

(s)− 1
s− 1

)
.

From [14], Lemma 4.2, we recall the formula

(19) cX = 1 +

∞∫
0

(HTrKhyp(t)− 1)dt =

∞∫
0

(HTrKhyp(t)− 1 + e−t)dt .

Identity (19) is obtained by means of the McKean formula

Z ′X
ZX

(s) = (2s− 1)

∞∫
0

HTrKhyp(t)e−s(s−1)tdt ,

which, observing the asymptotic lim
s→∞

ZX(s) = 1, has the integrated version

(20) log(ZX(s)) = −
∞∫

0

HTrKhyp(t)e−s(s−1)tdt
t
.

Analogously, we find the local versions

Z ′γ
Zγ

(s) = (2s− 1)

∞∫
0

HTrKγ(t)e−s(s−1)tdt ,(21)

log(Zγ(s)) = −
∞∫

0

HTrKγ(t)e−s(s−1)tdt
t
.

Observing the identity

(22) log(w) =

∞∫
0

(
e−t − e−wt

) dt
t
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for w > 0 and taking w = s(s− 1) (with s ∈ R>1), we can combine (22) with
the integrated version of the McKean formula (20) to get

(23) − log(Z ′X(1)) =

∞∫
0

(
HTrKhyp(t)− 1 + e−t

) dt
t
.

Subtracting (22) form (23), yields the more general formula

(24) − log(Z ′X(1))− log(w) =

∞∫
0

(
HTrKhyp(t)− 1 + e−wt

) dt
t
,

which holds for w > 0. Using (12) and the second formula in (21) with s = 1,
we end up with the formula

− log(Z ′X(1))− log(w) +
∑
γ∈H(Γ)
`γ<δ

log(Zγ(1)) =(25)

∞∫
0

(
HTrKhyp,δ(t)− 1 + e−wt

) dt
t
.

3. Expressing Faltings’s delta via hyperbolic geometry

The purpose of this section is to obtain an expression which evaluates
Faltings’s delta function δFal(X) in terms of spectral theoretic information of
X coming from hyperbolic geometry. Our method of proof is as follows. First,
we use results from [28] and [30] together with the Polyakov formula (8) to
express δFal(X) in terms of hyperbolic information and the conformal factor
φAr (see (6)) relating the Arakelov metric µAr to the hyperbolic metric µhyp

on X. We then derive and exploit explicit relations between the canonical and
hyperbolic Green’s functions in order to explicitly evaluate the term involving
φAr. Our starting point is the following lemma which collects results stated
above.

3.1. Lemma. For any X with genus gX > 1, let

c(gX) := a(gX)− 6b(gX) + 6 log(volhyp(X))

where a(gX), resp. b(gX) are given by formulas (10), resp. (18). With the
above notations, we then have the formula

δFal(X) = −6 log(Z ′X(1))− (gX − 1)
∫
X

φAr(x)(µshyp(x) + µcan(x)) + c(gX).
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Proof. Combining formulas (9), (8), and (17), we obtain

δFal(X) = −6DAr(X) + a(gX) =

−6Dhyp(X)− (gX − 1)
∫
X

φAr(x)(µshyp(x) + µcan(x)) + a(gX) =

−6 log
(

Z ′X(1)
volhyp(X)

)
− (gX − 1)

∫
X

φAr(x)(µshyp(x) + µcan(x))+

a(gX)− 6b(gX) =

−6 log(Z ′X(1))− (gX − 1)
∫
X

φAr(x)(µshyp(x) + µcan(x))+

a(gX)− 6b(gX) + 6 log(volhyp(X)).

This completes the proof of the lemma. 2

3.2. Remark. For the sake of completeness, let us make explicit the value
of c(gX); a straightforward calculation yields

c(gX) = a(gX)− 6b(gX) + 6 log(volhyp(X)) =

2gX
(
−24ζ ′

Q
(−1)− 4 log(π)− log(2) + 2

)
+ 6 log(volhyp(X))+(

48ζ ′
Q
(−1) + 6 log(2π)− 4

)
.

3.3. Lemma. Let µ1, resp. µ2 be any two positive (1, 1)-forms on X with
associated Green’s function g1(x, y), resp. g2(x, y), and assume that∫

X

µ1(x) =
∫
X

µ2(x) = 1.

Then, we have the relation

g1(x, y)− g2(x, y) =(26) ∫
X

g1(x, ζ)µ2(ζ) +
∫
X

g1(y, ζ)µ2(ζ)−
∫
X

∫
X

g1(ξ, ζ)µ2(ζ)µ2(ξ) .

Proof. Let FL(x, y), resp. FR(x, y) denote the left-, resp. right-hand side of
the stated identity (26). Using the characterizing properties of the Green’s
functions, one can show directly that we have for fixed y ∈ X

dxdcxFL(x, y) = dxdcxFR(x, y) = µ1(x)− µ2(x) ,

and ∫
X

FL(x, y)µ2(x) =
∫
X

FR(x, y)µ2(x) =
∫
X

g1(y, ζ)µ2(ζ).
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Consequently, FL(x, y) = FR(x, y), again for fixed y. However, it is obvious
that FL and FR are symmetric in x and y. This completes the proof of the
lemma. 2

3.4. Remark. Equation (26) from Lemma 3.3 provides the key identity
for the subsequent investigations. Note that a less explicit variant of it can be
found in the literature, e.g., [22], Proposition 1.3.

3.5. Lemma. Let µ1, µ2 be as in Lemma 3.3. Furthermore, let µ1,res,
resp. µ2,res be the residual metrics associated to µ1, resp. µ2. Then, we have∫

X

log
(
µ2,res(x)
µ1,res(x)

)
(µ1(x) + µ2(x)) = 0.

Proof. Using the definitions of Green’s functions and residual metrics given in
section 2.2, we get

log
(
µ2,res(x)
µ1,res(x)

)
= log

(
lim
y→x

G1(x, y)
G2(x, y)

)
.

Using Lemma 3.3, this implies

log
(
µ2,res(x)
µ1,res(x)

)
= lim

y→x
(g1(x, y)− g2(x, y)) =

2
∫
X

g1(x, ζ)µ2(ζ)−
∫
X

∫
X

g1(ξ, ζ)µ2(ζ)µ2(ξ).

Since∫
X

2
∫
X

g1(x, ζ)µ2(ζ)−
∫
X

∫
X

g1(ξ, ζ)µ2(ζ)µ2(ξ)

 (µ1(x) + µ2(x)) = 0,

the result follows. 2

3.6. Lemma. For any X, we have

log
(
µcan,res(x)
µshyp,res(x)

)
=(27)

φAr(x) + 4π

∞∫
0

(
HKhyp(t;x)− 1

volhyp(X)

)
dt+ log(4) .

Proof. The left-hand side of the claimed formula can be expressed as

log (µcan,res(x)/µshyp,res(x)) = log (µAr(x)/µhyp,res(x)) =

log
(
eφAr(x)µhyp(x)/µhyp,res(x)

)
= φAr(x) + log (µhyp(x)/µhyp,res(x)) .
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We now evaluate µhyp(x)/µhyp,res(x) in terms of the heat kernel on X. Working
with relation (13), we have

ghyp(x, y) = 4π

∞∫
0

∑
γ∈Γ
γ 6=id

KH(t; z(x), γz(y))− 1
volhyp(X)

dt−

log

(∣∣∣∣z(x)− z(y)
z(x)− z̄(y)

∣∣∣∣2
)

=

4π

∞∫
0

(
HKhyp(t;x, y)− 1

volhyp(X)

)
dt− log

(∣∣∣∣z(x)− z(y)
z(x)− z̄(y)

∣∣∣∣2
)
,

from which we derive

lim
y→x

(
ghyp(x, y) + log |z(x)− z(y)|2

)
=

4π

∞∫
0

(
HKhyp(t;x)− 1

volhyp(X)

)
dt+ log(4 Im(z(x))2) .

This implies

log (µhyp(x)/µhyp,res(x)) = log
(
‖dz(x)‖2hyp,res/Im(z(x))2

)
=

lim
y→x

(
ghyp(x, y) + log |z(x)− z(y)|2

)
− log(Im(z(x))2) =

4π

∞∫
0

(
HKhyp(t;x)− 1

volhyp(X)

)
dt+ log(4) .

Combining these calculations, we conclude that

log
(
µcan,res(x)
µshyp,res(x)

)
= φAr(x) + 4π

∞∫
0

(
HKhyp(t;x)− 1

volhyp(X)

)
dt+ log(4) ,

which proves the lemma. 2

3.7. Proposition. For any X with genus gX > 1, let

F (t;x) := HKhyp(t;x)− 1
volhyp(X)

.

Then, we have the formula∫
X

φAr(x)(µshyp(x) + µcan(x)) =

− 2π
gX

∫
X

∞∫
0

∞∫
0

F (t1;x)∆hypF (t2;x)dt1dt2 µhyp(x)− 2(cX − 1)
gX − 1

− 2 log(4) .
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Proof. Choosing µ1 = µshyp and µ2 = µcan in Lemma 3.5, shows∫
X

log
(
µcan,res(x)
µshyp,res(x)

)
(µshyp(x) + µcan(x)) = 0 .

Multiplying (27) by (µshyp + µcan) and integrating over X, we arrive at the
relation∫

X

φAr(x)(µshyp(x) + µcan(x)) =

−4π
∫
X

∞∫
0

(
HKhyp(t;x)− 1

volhyp(X)

)
dt (µshyp(x) + µcan(x))− 2 log(4) .

Interchanging the integration and recalling the formula for the hyperbolic vol-
ume of X in terms of gX together with formula (19) gives

4π
∫
X

∞∫
0

(
HKhyp(t;x)− 1

volhyp(X)

)
dt µshyp(x) =

4π
volhyp(X)

∞∫
0

(HTrKhyp(t)− 1)dt =
cX − 1
gX − 1

,

which leads to the relation∫
X

φAr(x)(µshyp(x) + µcan(x)) =(28)

−4π
∫
X

∞∫
0

(
HKhyp(t;x)− 1

volhyp(X)

)
dt µcan(x)− cX − 1

gX − 1
− 2 log(4) .

In order to rewrite the latter integral, we recall the following formula from [18],
which gives an explicit relation between the canonical and the scaled hyperbolic
metric form, namely

(29) µcan(x) = µshyp(x) +
1

2gX

 ∞∫
0

∆hypKhyp(t;x)dt

µhyp(x) ;

for the reader’s convenience, we add the proof of (29) in Appendix I, section
6. Observing that ∆hypKhyp(t;x) = ∆hypHKhyp(t;x), we obtain by means of
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(29) and the preceding calculations

4π
∫
X

∞∫
0

(
HKhyp(t;x)− 1

volhyp(X)

)
dt µcan(x) =(30)

cX − 1
gX − 1

+
2π
gX

∫
X

∞∫
0

∞∫
0

(
HKhyp(t1;x)− 1

volhyp(X)

)

×∆hypHKhyp(t2;x)dt1dt2 µhyp(x) .

Substituting (30) into (28) and observing that ∆hypHKhyp(t2;x) = ∆hypF (t2;x),
completes the proof of the proposition. 2

3.8. Theorem. For any X with genus gX > 1, let

F (x) :=

∞∫
0

(
HKhyp(t;x)− 1

volhyp(X)

)
dt .

Then, we have

δFal(X) =

2π
(

1− 1
gX

)∫
X

F (x)∆hypF (x)µhyp(x)− 6 log(Z ′X(1)) + 2cX + C(gX) ,

where
C(gX) = a(gX)− 6b(gX) + 2(gX − 1) log(4) + 6 log(volhyp(X))− 2 =

2gX
(
−24ζ ′

Q
(−1)− 4 log(π) + log(2) + 2

)
+ 6 log(volhyp(X))+(

48ζ ′
Q
(−1) + 6 log(2π)− 2 log(4)− 6

)
.

Proof. Simply combine Lemma 3.1 with Proposition 3.7. 2

3.9. Remark. From Theorem 3.8, we have a precise expression for δFal(X)−
C(gX) in terms of hyperbolic data associated to X, all of which can be derived
from the trace of the hyperbolic heat kernel. As such, one can extend the hy-
perbolic expression to general non-compact, finite volume hyperbolic Riemann
surfaces, including those which admit elliptic fixed points. Going further, it
seems possible to employ the techniques known as Artin formalism, which has
been shown to hold for hyperbolic heat kernels, in order to obtain analogous
relations for the Faltings delta function as well as the constant C(gX). Note
that since the Arakelov metric does not lift through covers, there is no immedi-
ate reason to expect any relations involving δFal(X) similar to those predicted
by the Artin formalism; however, Theorem 3.8 implies that some relations are
possible. We leave this problem for further study elsewhere.
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4. Analytic bounds

The main result of the section is Theorem 4.5, which states a bound for
Faltings’s delta function in terms of fundamental invariants from hyperbolic
geometry. Propositions 4.1, 4.2, and 4.3 bound the non-trivial quantities in
the expression for Faltings’s delta function given in Theorem 3.8, and these
results, together with Lemma 4.4, are used to prove Theorem 4.5.

4.1. Proposition. For any X with genus gX > 1, let F (x) be as in
Theorem 3.8, and set

dsup,X := sup
x∈X

∣∣∣∣ µcan(x)
µshyp(x)

∣∣∣∣ .
Then, we have the estimate

0 ≤
∫
X

F (x)∆hypF (x)µhyp(x) ≤
(dsup,X + 1)2volhyp(X)

λX,1
.

Proof. From formula (29), we have the identity

gXµcan(x)− gXµshyp(x) =

1
2

 ∞∫
0

∆hypHKhyp(t;x)dt

µhyp(x) =
1
2

∆hypF (x)µhyp(x) ,

which immediately gives the formula

∆hypF (x) =
2gX

4π(gX − 1)

(
µcan(x)
µshyp(x)

− 1
)
,

and, hence, leads to the estimate

sup
x∈X
|∆hypF (x)| ≤ dsup,X + 1.

Since X is compact, we can expand F (x) in terms of the orthonormal basis of
eigenfunctions {φX,n}∞n=0 with eigenvalues {λX,n}∞n=0 of ∆hyp, i.e.,

F (x) =
∞∑
n=0

anφX,n(x),

from which we derive

∆hypF (x) =
∞∑
n=1

λX,nanφX,n(x),

taking into account that λX,0 = 0. Therefore, we have∫
X

F (x)∆hypF (x)µhyp(x) =
∞∑
n=1

λX,na
2
n .
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Observing that ∫
X

(∆hypF (x))2 µhyp(x) =
∞∑
n=1

λ2
X,na

2
n ,

which yields by the above calculations the trivial bound
∞∑
n=1

λ2
X,na

2
n =

∫
X

(∆hypF (x))2 µhyp(x) ≤ (dsup,X + 1)2volhyp(X) ,

and taking into account λX,1 ≤ λX,n for all n ≥ 1, we are finally led to the
estimate

0 ≤ λX,1
∫
X

F (x)∆hypF (x)µhyp(x) = λX,1

∞∑
n=1

λX,na
2
n ≤

∞∑
n=1

λ2
X,na

2
n ≤ (dsup,X + 1)2volhyp(X) .

This completes the proof of the proposition. 2

4.2. Proposition. For any X with genus gX > 1, we have the lower
bound

cX ≥ −4 log(2gX − 2).

Letting α = min{λX,1, 7/64} and ε ∈ (0, α), we have the upper bound

cX ≤ 2 +
∑
γ∈H(Γ)
`γ<5

Z ′γ
Zγ

(1) +
6
ε

(
CHub,X +N

[0,1/4)
ev,X

)
.

Proof. The lower bound is proved in [14], Theorem 3.3. The upper bound
comes from the proof of Theorem 4.7 in [14]. Specifically, for any δ > 0, we
recall the inequality

cX ≤ 1 +
∑

0<λX,j<ε

1
λX,j

+
∑
γ∈H(Γ)
`γ<δ

Z ′γ
Zγ

(1) + CX,εe
−(1−sε)δ + 12N [0,ε)

ev,Xe
−δ/2

with

CX,ε =
4(4− 3sε)

ε
(CHub,X +N

[ε,1/4)
ev,X ), sε =

1
2

+

√
1
4
− ε .

Choosing δ = 5 and ε as stated above, noting that N [0,ε)
ev,X = 1, 12e−5/2 < 1,

and 7/8 < sε < 1, i.e., 4(4− 3sε) < 6, the claim follows. 2

4.3. Proposition. For any X with genus gX > 1, we have the lower
bound

− log(Z ′X(1)) ≥ −4 log(4gX − 4)− 1
16
.



20 JAY JORGENSON AND JÜRG KRAMER

Letting α = min{λX,1, 7/64} and ε ∈ (0, α), we have the upper bound

− log(Z ′X(1)) ≤ −
∑
γ∈H(Γ)
`γ<5

log(Zγ(1)) + 12
(

5 +
1
ε

)(
CHub,X +N

[0,1/4)
ev,X + 1

)
.

Proof. We follow the method of proof used to prove the bounds in Proposi-
tion 4.2. Since these calculations are not immediate from the results in [14], it
is necessary to give the details. Let δ > 0 to be specified below. Then, using
the trivial bounds

HTrKhyp(t) + volhyp(X)KH(t; 0) =
∞∑
j=0

e−λX,jt ≥ 1

for t ≥ δ, and
HTrKhyp(t) ≥ 0

for 0 ≤ t ≤ δ, we get from formula (23) the bound

− log(Z ′X(1)) ≥
δ∫

0

(e−t − 1)
dt
t

+

∞∫
δ

(
e−t − volhyp(X)KH(t; 0)

) dt
t
.

Trivially, one has e−t − 1 ≥ −t for t ≥ 0, so

δ∫
0

(e−t − 1)
dt
t
≥ −δ .

Using the obvious bound KH(t; 0) ≤ e−t/4/(4πt), we get
∞∫
δ

KH(t; 0)
dt
t
≤ e−δ/4

πδ2
,

which gives
∞∫
δ

(
e−t − volhyp(X)KH(t; 0)

) dt
t
≥

−volhyp(X)

∞∫
δ

KH(t; 0)
dt
t
≥ −volhyp(X)

e−δ/4

πδ2
,

hence

− log(Z ′X(1)) ≥ −δ − volhyp(X)
e−δ/4

πδ2
.

Taking δ = 4 log(4gX − 4), and using log(4gX − 4) ≥ log(4) > 1, gives the
stated lower bound.
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For the upper bound, we proceed as in [14], section 4. Letting sw =
1/2+

√
1/4− w for w ∈ [0, 1/4], δ > 4, and f(u, t) as in (11), a straightforward

calculation yields

(31)

∞∫
eδ

f(u, t)dli(usw) =
e−t/4

(4πt)1/2

∞∫
δ

∞∑
n=1

∞∑
m=0

e(sw−n/2−nm)ξe−(nξ)2/4tdξ

(see also the proof of Lemma 4.3 in [14]). Writing the term with n = 1 and
m = 0 as

e−t/4

(4πt)1/2

∞∫
δ

e(sw−1/2)ξe−ξ
2/4tdξ = e−wt − e−t/4

(4πt)1/2

δ∫
−∞

e(sw−1/2)ξe−ξ
2/4tdξ ,

we can rewrite (31) as

e−wt =

∞∫
eδ

f(u, t)dli(usw)− e−t/4

(4πt)1/2

∞∫
δ

∑
(n,m) 6=(1,0)

e(sw−n/2−nm)ξe−(nξ)2/4tdξ+

e−t/4

(4πt)1/2

δ∫
−∞

e(sw−1/2)ξe−ξ
2/4tdξ ,

where the sum is taken over all integer pairs (n,m) with n ≥ 1, m ≥ 0, except
for the pair (n,m) = (1, 0). Using this identity twice, once with w = 0, so
sw = 1, and again with w = 1/4, so sw = 1/2, and recalling formula (16), we
obtain the equality

HTrKhyp,δ(t)− 1 + e−t/4 =

∞∫
eδ

f(u, t) d
[
πX(u)− li(u) + li(u1/2)

]
+(32)

e−t/4

(4πt)1/2

∞∫
δ

∑
(n,m) 6=(1,0)

e(1−n/2−nm)ξe−(nξ)2/4tdξ − e−t/4

(4πt)1/2

δ∫
−∞

eξ/2e−ξ
2/4tdξ −

e−t/4

(4πt)1/2

∞∫
δ

∑
(n,m) 6=(1,0)

e(1/2−n/2−nm)ξe−(nξ)2/4tdξ +
e−t/4

(4πt)1/2

δ∫
−∞

e−ξ
2/4tdξ .

After these preliminary calculations, we turn to bounding − log(Z ′X(1)) from
above. For this we recall formula (25) with w = 1/4, namely

− log(Z ′X(1))− log(1/4) +
∑
γ∈H(Γ)
`γ<δ

log(Zγ(1)) =(33)

∞∫
0

(
HTrKhyp,δ(t)− 1 + e−t/4

) dt
t
.



22 JAY JORGENSON AND JÜRG KRAMER

As in [14], we substitute expression (32) for the integrand on the right-hand
side of (33), interchange the order of integration, and evaluate. First, we do
this for the two integrals coming from the term belonging to (n,m) = (1, 0).
We follow the convention which defines the K-Bessel function via the integral

Kσ(a, b) =
∫ ∞

0
e−a

2t−b2/ttσ
dt
t

for a, b ∈ R>0 and σ ∈ R; in particular, it can be shown that

K−1/2(a, b) =
√
π

b
e−2ab.

Using this notation, we get

∞∫
0

 e−t/4

(4πt)1/2

δ∫
−∞

e−ξ
2/4tdξ − e−t/4

(4πt)1/2

δ∫
−∞

eξ/2e−ξ
2/4tdξ

 dt
t

=

0∫
−∞

(
1√
4π
K−1/2(1/2,−ξ/2)− eξ/2√

4π
K−1/2(1/2,−ξ/2)

)
dξ+

δ∫
0

(
1√
4π
K−1/2(1/2, ξ/2)− eξ/2√

4π
K−1/2(1/2, ξ/2)

)
dξ =

0∫
−∞

1
ξ

(
eξ − eξ/2

)
dξ +

δ∫
0

1
ξ

(
e−ξ/2 − 1

)
dξ = log(2) +

δ∫
0

1
ξ

(
e−ξ/2 − 1

)
dξ .

For the remaining terms, meaning when (n,m) 6= (1, 0), we can integrate term
by term to get

∑
(n,m) 6=(1,0)

∞∫
0

 e−t/4

(4πt)1/2

∞∫
δ

e(1−n/2−nm)ξe−(nξ)2/4tdξ−

e−t/4

(4πt)1/2

∞∫
δ

e(1/2−n/2−nm)ξe−(nξ)2/4tdξ

 dt
t

=

∑
(n,m) 6=(1,0)

∞∫
δ

(
e(1−n/2−nm)ξ

√
4π

K−1/2(1/2, nξ/2)−

e(1/2−n/2−nm)ξ

√
4π

K−1/2(1/2, nξ/2)

)
dξ =

∑
(n,m) 6=(1,0)

∞∫
δ

1
nξ

(
e(1−n−nm)ξ − e(1/2−n−nm)ξ

)
dξ .
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Having explicitly evaluated these integrals, we now proceed to estimate the
results. For the first case, we observe the trivial inequality

(34) log(2) +

δ∫
0

1
ξ

(
e−ξ/2 − 1

)
dξ = log(2)−

δ∫
0

1
ξ

(
1− e−ξ/2

)
dξ ≤ log(2) .

For the second case, we first notice that for n ≥ 1, m ≥ 0, but (n,m) 6= (1, 0),
we have n+ nm ≥ 2, which leads to the trivial estimate∣∣∣∣∣∣

∑
(n,m) 6=(1,0)

∞∫
δ

1
nξ

(
e(1−n−nm)ξ − e(1/2−n−nm)ξ

)
dξ

∣∣∣∣∣∣ ≤
2

∑
(n,m) 6=(1,0)

∞∫
δ

e(1−n−nm)ξ

nξ
dξ ≤ 2eδ

δ

∑
(n,m) 6=(1,0)

e−n(m+1)δ

n(n+ nm− 1)
.

In order to further estimate the latter sum, we break it up into three parts,
the first one given by n ≥ 2, m = 0, the second one by n = 1, m ≥ 1, and the
third one by n ≥ 2, m ≥ 1. For the first part, we have the upper bound

(35)
2eδ

δ

∞∑
n=2

e−nδ

n(n− 1)
≤ 2e−δ

δ

∞∑
n=2

1
n(n− 1)

=
2e−δ

δ
≤ 2
δ
.

For the second part, we estimate

(36)
2eδ

δ

∞∑
m=1

e−(m+1)δ

m
≤ 2eδ

δ
e−δ

e−δ

1− e−δ
=

2
δ
· 1
eδ − 1

≤ 2
δ2
.

Using the inequality nm− 1 ≥ 1, we estimate for the third part

2eδ

δ

∞∑
n=2

∞∑
m=1

e−n(m+1)δ

n(n+ nm− 1)
≤ 2eδ

δ

∞∑
n=2

∞∑
m=1

e−2(m+1)δ

n(n+ 1)
=(37)

2eδ

δ
· 1

2

∞∑
m=1

e−2(m+1)δ =
eδ

δ
e−2δ e−2δ

1− e−2δ
=
e−δ

δ
· 1
e2δ − 1

≤ e−δ

2δ2
≤ 1

2δ2
.

Integrating (32) with respect to t from 0 to ∞ and taking into account the
estimates (34), (35), (36), (37), we get the upper bound

∞∫
0

(
HTrKhyp(t)− 1 + e−t/4

) dt
t
≤(38)

∞∫
0

∞∫
eδ

f(u, t) d
[
πX(u)− li(u) + li(u1/2)

] dt
t

+
4δ + 5

2δ2
+ log(2) .
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In order to further estimate the right-hand side of (38), we proceed as in the
first part of the proof of Theorem 4.7 in [14] (see pp. 18–20). For this, we first
note that a direct computation establishes the equality

F (u) :=

∞∫
0

f(u, t)
dt
t

= − log

( ∞∏
n=0

(1− u−(n+1))

)
,

which shows that the function F (u) is decreasing in u. We now apply Lemma 4.6
of [14] to the right-hand side of (38) with ε ∈ (0, α), where α = min{λX,1, 7/64},
and δ > 4 to arrive at the upper bound

∞∫
0

∞∫
eδ

f(u, t) d
[
πX(u)− li(u) + li(u1/2)

] dt
t
≤(39)

C ′X

∞∫
eδ

F (u)dli(usε) + 2C ′XF (eδ)li(esεδ) ,

where C ′X = CHub,X +N
[0,1/4)
ev,X + 1 (see also the proof of Theorem 4.7 in [14]).

Now, the inequality

− log(1− v−1) ≤ v−1

1− e−δ
,

which is valid for v ≥ eδ, implies the upper bound

F (u) ≤ 1
1− e−δ

∞∑
n=0

u−(n+1) =
1

1− e−δ
· 1
u− 1

≤ 2
δ(1− e−δ)

· log(u)
u

,

where the last inequality holds since log(u) ≥ δ > 4. (Note: Although the fac-
tor log(u)/δ in the above bound can be eliminated by estimating F (u) by other
means, the presence of this factor is helpful in the subsequent computations.)
Using the elementary inequality

li(u) ≤ 2u
log(u)

for u > e2, we obtain

δ

eδ
li(esεδ) ≤ 2

sε
e−(1−sε)δ ,
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where ε < 7/64 and δ > 4. We are now able to estimate the right-hand side of
(39) as follows

C ′X

∞∫
eδ

F (u)dli(usε) + 2C ′XF (eδ)li(esεδ) ≤(40)

2C ′X
δ(1− e−δ)

∞∫
eδ

log(u)
u

dli(usε) +
4C ′X

δ(1− e−δ)
δ

eδ
li(esεδ) =

2C ′X
δ(1− e−δ)

· e
−(1−sε)δ

1− sε
+

4C ′X
eδ − 1

li(esεδ) ≤

2C ′X
δ2
· sεe

sεδ

ε
+

4C ′X
eδ − 1

· 2eδ

sεδ
e−(1−sε)δ ≤

2C ′Xe
sεδ

δ2

(
sε
ε

+
4
sε

)
≤

2C ′Xe
sεδ

δ2

(
5 +

1
ε

)
,

Combining (33) with the estimates (38), (39), (40), we find the upper bound

− log(Z ′X(1)) ≤ −
∑
γ∈H(Γ)
`γ<δ

log(Zγ(1)) +
2C ′Xe

sεδ

δ2

(
5 +

1
ε

)
+

4δ + 5
2δ2

− log(2) .

Since we have assumed δ > 4, we can choose δ = 5, for simplicity. Observing
1/2− log(2) < 0, and 2e5/25 < 12, we arrive at the claimed upper bound

− log(Z ′X(1)) ≤ −
∑
γ∈H(Γ)
`γ<5

log(Zγ(1)) + 12
(

5 +
1
ε

)(
CHub,X +N

[0,1/4)
ev,X + 1

)
.

2

4.4. Lemma. With the above notations, we have the following results:

(i) For any γ ∈ H(Γ) with `γ ∈ (0, 5), we have

0 ≤ − log(Zγ(1)) ≤ π2

6`γ
.

(ii) For any γ ∈ H(Γ) with `γ > 0, we have

0 ≤
Z ′γ
Zγ

(1) ≤ 3 + log
(

1
`γ

)
.

Proof. We start with the following observation. Consider the (up to scaling)
unique cusp form of weight 12 with respect to SL2(Z)

∆(z) = e2πiz
∞∏
n=1

(
1− e2πinz

)24
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for z ∈ H; it has functional equation

∆(z) = (−z)−12∆(−1/z).

Upon setting z = −`γ/(2πi), we have

Zγ(1)24 = e`γ∆
(
− `γ

2πi

)
.

Using the functional equation for ∆(z), we then obtain the relation

Zγ(1)24 = e`γ
(
`γ
2πi

)−12

∆
(

2πi
`γ

)
=(41)

e`γ
(
`γ
2π

)−12

e−(2π)2/`γ

∞∏
n=1

(
1− e−(2π)2n/`γ

)24
.

We now turn to the proof of the lemma.
(i) From the product formula for Zγ(1), it is immediate that Zγ(1) ≤ 1

for all `γ ≥ 0; hence, we get the lower bound − log(Zγ(1)) ≥ 0. Concerning
the upper bound, we derive form (41)

− log(Zγ(1)) = − `γ
24

+
1
2

log
(
`γ
2π

)
+
π2

6`γ
−
∞∑
n=1

log
(

1− e−(2π)2n/`γ
)
.

We now use the elementary inequality − log(1 − x) ≤ x/(1 − σ), which holds
whenever x ∈ [0, σ], and take σ = e−(2π)2/`γ to get

−
∞∑
n=1

log
(

1− e−(2π)2n/`γ
)
≤ 1

1− e−(2π)2/`γ

∞∑
n=1

e−(2π)2n/`γ =
e(2π)2/`γ

(e(2π)2/`γ − 1)2
.

Letting u = (2π)2/`γ , the upper bound becomes

eu

(eu − 1)2
=

1
eu − 1

+
1

(eu − 1)2
,

which is clearly monotone decreasing in u and, hence, monotone increasing in
`γ . Therefore, for `γ < 5, we obtain

1
2

log
(
`γ
2π

)
+

e(2π)2/`γ

(e(2π)2/`γ − 1)2
≤ 1

2
log
(

5
2π

)
+

e(2π)2/5

(e(2π)2/5 − 1)2
≤ 0,

where the last estimate is obtained numerically. With all this, part (i) is
proved.

(ii) We begin by writing

Z ′γ
Zγ

(1) = `γ

∞∑
n=1

1
en`γ − 1

.
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Let N ≥ 1 be the smallest integer larger than or equal to 1/`γ , i.e., N −
1 < 1/`γ ≤ N . If n ≥ N , then n`γ ≥ 1, hence, en`γ ≥ 2. Observing then
en`γ − 1 ≥ en`γ/2, we get

`γ

∞∑
n=N

1
en`γ − 1

≤ 2`γ
∞∑
n=N

e−n`γ = 2`γ
e−(N−1)`γ

e`γ − 1
≤ 2`γ
e`γ − 1

≤ 2 .

For 1 ≤ n < N , we use the inequality en`γ − 1 ≥ n`γ , which implies

`γ

N−1∑
n=1

1
en`γ − 1

≤
N−1∑
n=1

1
n
≤ 1 + log(N − 1) ≤ 1 + log

(
1
`γ

)
,

from which part (ii) follows. 2

4.5. Theorem. For any X with genus gX > 1, put

h(X) = gX +
1
λX

(
gX(dsup,X + 1)2 + CHub,X +N

[0,1/4)
ev,X

)
+

1
`X
N

(0,5)
geo,X ,

with λX = 1/2 · min{λX,1, 7/64} and `X equal to the length of the smallest
geodesic on X. Then, we have the bound

δFal(X) = O(h(X))

with an implied constant that is universal.

Proof. The result is a summary of the inequalities derived in this section,
namely Propositions 4.1, 4.2, 4.3 and Lemma 4.4, when applied to Theorem 3.8,
taking, for example, ε = λX in Propositions 4.2 and 4.3. 2

4.6. Corollary. Let X1 be a finite degree cover of the compact Riemann
surface X0 of genus gX0 > 1. Then, we have the bound

δFal(X1) = OX0

(
gX1

(
1 +

1
λX1,1

))
.

In particular, if {Xn}n≥1 is a tower of finite degree covers of X0 such that
there exists a constant c > 0 satisfying λXn,1 ≥ c > 0 for all n ≥ 1, we have
the bound

δFal(Xn) = OX0(gXn).

Proof. We analyze the bound obtained in Theorem 4.5. The quantity N [0,1/4)
ev,X1

is known to have order O(gX1) with an implied constant that is universal (see
[3], p. 211, or [33]). The main result in [6] states the bound dsup,X1 = OX0(1)
(see also [16], [17], and [18] with related results). In [15], Theorem 3.4, it is
shown that CHub,X1 = OX0(gX1). As discussed in the proof of Theorem 4.11
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in [14], N (0,5)
geo,X1

= OX0(gX1) (specifically, recall the definition of rΓ0,Γ therein).
Trivially, one has `X1 ≥ `X0 . With all this, we have shown that

h(X) = OX0

(
gX1 +

gX1

λX1

)
.

By choosing λX1 = 1/2 ·min{λX1,1, 7/64}, the result follows. 2

4.7. Remark. We view the results stated in Theorem 4.5 and Corol-
lary 4.6 as complementing known theorems answering the asymptotic behavior
of Faltings’s delta function for a degenerating family of algebraic curves that
approach the Deligne-Mumford boundary of the moduli space of stable curves
of a fixed positive genus, as first proved in [13]. The expressions derived in [13]
were well-suited to answer the question of the asymptotic behavior of δFal(X)
through degeneration, but do not appear to allow one to bound δFal(X) in
terms of more elementary information concerning X, as in Theorem 4.5 or
Corollary 4.6. On the other hand, it is possible that the exact expression for
δFal(X) in terms of hyperbolic geometry could be used to understand δFal(X)
through degeneration. Indeed, stated results in [21] study cX and log(Z ′X(1))
through degeneration, so it would remain to adapt the analysis in [21] to study
the integral which we bound in Proposition 4.1.

5. Applications to the modular curves X0(N)

In this section we focus our attention to the sequence of modular curves
X0(N). The purpose of this section is to bound the geometric quantities in
Theorem 4.5 in more elementary terms in order to prove an analogue of Corol-
lary 4.6 for the sequence of modular curves X0(N), which admit hyperbolic
metrics. As stated earlier, the issue we encounter is that the set of modular
curves X0(N) which admit hyperbolic metrics does not from a single tower
of hyperbolic Riemann surfaces, hence the results cited in the proof of Corol-
lary 4.6 do not apply. However, the family of hyperbolic modular curves forms
a different structure, which we refer to as a “net”. More specifically, there is
a sequence of hyperbolic modular curves, which we parametrize by a set of
integers B(p0), and every hyperbolic modular curve is a finite degree cover of
(possibly several) modular curves corresponding to elements of B(p0). In effect,
we bound the quantities in Theorem 4.5 by first obtaining uniform bounds for
all modular curves that correspond to elements in B(p0), after which we utilize
bounds through covers by citing the results which prove Corollary 4.6.
In the following definition, P denotes the set of primes.

5.1. Definition. (i) We call N ∈ N base hyperbolic, if gX0(N) > 1 and if
there exists no proper divisor N ′ of N with gX0(N ′) > 1.
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(ii) For p0 ∈ P, set

B1(p0) := {N base hyperbolic |N = pα1
1 · . . . · p

αk
k , pj ≤ p0 (j = 1, . . . , k ∈ N)}.

(iii) For p0 ∈ P with gX0(p0) > 1, set

B2(p0) := {p ∈ P | p > p0}.

(iv) For p0 ∈ P with gX0(p0) > 1, set

B(p0) := B1(p0) ∪ B2(p0).

5.2. Remark. (i) For instance, one can choose p0 = 23.
(ii) The set B1(p0) is obviously finite.
(iii) For every N ∈ N with gX0(N) > 1, there exists either N ′|N with N ′ ∈
B1(p0) or p|N with p ∈ B2(p0). In other words, one can state that for any
N ∈ N with gX0(N) > 1, there exists N ′ ∈ B(p0) such that X0(N) is a finite
cover of X0(N ′).

5.3. Proposition. Let N > N0 be such that X0(N) has genus gX0(N) > 1.
Then, we have the following:

(a) There is a constant c1 > 0, independent of N , such that λX0(N),1 ≥ c1.

(b) There is a constant c2 > 0, independent of N , such that N [0,1/4)
ev,X0(N) ≤

c2 · gX0(N).

(c) There is a constant c3 > 0, independent of N , such that `X0(N) ≥ c3.

(d) There is a constant c4 > 0, independent of N , such that N [0,5)
geo,X0(N) ≤

c4 · gX0(N).

Proof. (a) In order to prove the first part of the claim, we recall from [2],
Theorem 3.1, that

lim inf
N→∞

λX(N),1 ≥ 5/36 .

Hence, there is a constant c1 > 0, independent of N , such that λX(N),1 ≥ c1

for all N > N0. Since X(N) is a cover of X0(N), the Raleigh quotient method
for estimating eigenvalues, which shows that the smallest eigenvalue decreases
through covers, now implies that λX(N),1 ≤ λX0(N),1. This completes the proof
of (a).

(b) This part of the claim follows immediately by quoting the known
universal lower bound for the number of small eigenvalues applied to the special
case of the modular curves X0(N); in fact, one can choose c2 = 4 (see [3], or
[5], p. 251).

(c) In the subsequent proof, we let X0(N) ∼= ∆0(N)\H with ∆0(N) a
torsionfree and cocompact subgroup of PSL2(R). Recall that π1(X0(N)) ∼=
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∆0(N) and that each homotopy class in π1(X0(N)) can be uniquely represented
by a closed geodesic path on X0(N). Thus, we have a bijection between the
elements γ ∈ ∆0(N) and closed geodesic paths β on X0(N) (with a fixed initial
point); note that the quantity `γ introduced in section 2.4 equals the length
`X0(N)(β) of β.
Let p0 be as in Definition 5.1, and p ∈ B2(p0). The hyperbolic Riemann surface
X0(p0p) is a cover of X0(p) of degree p0 + 1. Let now β be any closed geodesic
path on X0(p) corresponding to γ ∈ ∆0(p) of length `X0(p)(β) = `γ . Then,
there exists a minimal d ∈ N, 1 ≤ d ≤ p0 + 1, such that γ′ = γd ∈ ∆0(p0p).
The element γ′ ∈ ∆0(p0p) corresponds to a closed geodesic path β′ on X0(p0p)
of length `X0(p0p)(β

′) = d · `X0(p)(β).
On the other hand, X0(p0p) is a finite cover of X0(p0), hence ∆0(p0p) is a
subgroup of ∆0(p0). Viewing γ′ ∈ ∆0(p0p) as an element of ∆0(p0), we see
that any closed geodesic path β′ on X0(p0p) descends to a closed geodesic path
β′′ on X0(p0) of the same length. This proves the inequality

`X0(p0p) ≥ `X0(p0).

In particular, we find for any closed geodesic path β onX0(p) of length `X0(p)(β)
lifting to the closed geodesic path β′ on X0(p0p) of length d · `X0(p)(β) the
estimate

`X0(p)(β) =
`X0(p0p)(β

′)
d

≥
`X0(p0p)(β

′)
p0 + 1

≥
`X0(p0p)

p0 + 1
≥
`X0(p0)

p0 + 1
.

Therefore, we have for any p ∈ B2(p0), the bound `X0(p) ≥ `X0(p0)/(p0 + 1).
We now define

c3 = min
N∈B1(p0)

{`X0(N), `X0(p0)/(p0 + 1)} ≤ inf
N∈B(p0)

{`X0(N)} ,

which depends solely on p0. Since B1(p0) is finite, and `X0(N) is positive for
any N ∈ B1(p0), we conclude that c3 is positive. Now, for any modular curve
X0(N) with gX0(N) > 1, choose N ′ ∈ B(p0), so that X0(N) is a finite cover
of X0(N ′). Using the lower bound `X0(N) ≥ `X0(N ′), together with inequality
`X0(N ′) ≥ c3 for N ′ ∈ B(p0), we find that `X0(N) ≥ c3, which completes the
proof of part (c).

(d) As in the proof of part (c), we let X0(N) ∼= ∆0(N)\H with ∆0(N)
a torsionfree and cocompact subgroup of PSL2(R). Let p0 be as in Definition
5.1, and p ∈ B2(p0). Recalling our notations given in section 2.4, we have

N
[0,5)
geo,X0(p) = #{γ ∈ ∆0(p) | γ ∈ H(∆0(p)) , `γ < 5} =

#{γ ∈ ∆0(p) | γ primitive, hyperbolic, `γ < 5}/∆0(p)−conjugacy ≤

#{γ ∈ ∆0(p) | γ primitive, hyperbolic, `γ < 5}/∆0(p0p)−conjugacy.
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We introduce the sets

C(p) = {γ ∈ ∆0(p) | γ primitive, hyperbolic, `γ < 5}/∆0(p0p)−conjugacy,

C′(p0p) = {γ′ ∈ ∆0(p0p) | γ′ hyperbolic, `γ′ < 5(p0 + 1)}/∆0(p0p)−conjugacy.

As in the proof of part (c), we find for any γ ∈ ∆0(p) a minimal d ∈ N,
1 ≤ d ≤ p0 + 1, such that γ′ = γd ∈ ∆0(p0p); note that for γ ∈ ∆0(p) with
`γ < 5, we have `γ′ < 5d ≤ 5(p0 + 1). By associating the ∆0(p0p)-conjugacy
class of γ ∈ ∆0(p) (γ primitive, hyperbolic, `γ < 5) to the ∆0(p0p)-conjugacy
class of γ′ = γd ∈ ∆0(p0p) (γ′ hyperbolic, `γ′ < 5(p0 + 1)), we obtain a well-
defined map

ϕ : C(p) −→ C′(p0p) .

Let now [γ1], [γ2] ∈ C(p) be such that ϕ([γ1]) = ϕ([γ2]), i.e., there exists d1, d2 ∈
N, 1 ≤ d1, d2 ≤ p0 + 1, and δ ∈ ∆0(p0p) such that

γd1
1 = δγd2

2 δ
−1 .

Since γ1, γ2 are hyperbolic elements, there exists α ∈ PSL2(R) such that

αγd1
1 α
−1 =

(
e` 0
0 e−`

)
= α

(
δγd2

2 δ
−1
)
α−1

with ` ∈ R>0, i.e., we have

γ1 = α−1

(
e`/d1 0

0 e−`/d1

)
α , δγ2δ

−1 = α−1

(
e`/d2 0

0 e−`/d2

)
α .

This shows that γ1 and δγ2δ
−1 commute in ∆0(p), i.e.,

δγ2δ
−1 ∈ Cent∆0(p)(γ1) .

Since γ1 is primitive, it generates its own centralizer, i.e., δγ2δ
−1 = γn1 with

n ∈ Z. But since δγ2δ
−1 is also primitive, we must have n = ±1. This proves

[γ1] = [γ±1
2 ], i.e., the map ϕ is two-to-one. From this we immediately deduce

the estimate
N

[0,5)
geo,X0(p) ≤ #C(p) ≤ 2 ·#C′(p0p)

for all p ∈ B2(p0). Introducing the set

C′′(p0) = {γ′′ ∈ ∆0(p0) | γ′′ hyperbolic, `γ′′ < 5(p0 + 1)}/∆0(p0)−conjugacy,

we have the obvious map

ϕ′ : C′(p0p) −→ C′′(p0)

given by associating the ∆0(p0p)-conjugacy class of γ′ ∈ ∆0(p0p) (γ′ hyper-
bolic, `γ′ < 5(p0 +1)) to the ∆0(p0)-conjugacy class of γ′ viewed as an element
of ∆0(p0). Since [∆0(p0) : ∆0(p0p)] = p+1, at most (p+1) ∆0(p0p)-conjugacy
classes collapse to a single ∆0(p0)-conjugacy class, i.e., ϕ′ maps at most p+ 1
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elements of C′(p0p) to the same element of C′′(p0). Therefore, we obtain the
estimate

N
[0,5)
geo,X0(p) ≤ 2 ·#C′(p0p) ≤ 2(p+ 1) ·#C′′(p0) .

Since the set C′′(p0) depends solely on p0 and since the set B1(p0) is finite, we
arrive at the bound

N
[0,5)
geo,X0(N) = O

(
gX0(N)

)
for any N ∈ B(p0), with an implied constant that depends solely on p0. Finally,
in general, and in particular for N ∈ B(p0), it is well-known (see, e.g., [9], p. 45)
that

#{γ ∈ ∆0(N) | γ hyperbolic, `γ < 5}/∆0(N)−conjugacy =
∞∑
n=1

N
[0,5/n)
geo,X0(N) .

But from part (c), we know that N [0,5/n)
geo,X0(N) = 0 provided 5/n < c3, i.e., we

have n ≤ 5/c3 in the above sum. Therefore, we find

#{γ ∈ ∆0(N) | γ hyperbolic, `γ < 5}/∆0(N)−conjugacy ≤(42) ⌈
5
c3

⌉
·N [0,5)

geo,X0(N) = O
(
gX0(N)

)
for any N ∈ B(p0), with an implied constant that depends solely on p0.
In order to complete the proof of part (d), let now X0(N) be any modular
curve with gX0(N) > 1. By definition, we have

N
[0,5)
geo,X0(N) =

#{γ ∈ ∆0(N) | γ primitive, hyperbolic, `γ < 5}/∆0(N)−conjugacy.

GivenN , chooseN ′ ∈ B(p0), so thatX0(N) is a finite cover ofX0(N ′). We then
associate the ∆0(N)-conjugacy class of γ ∈ ∆0(N) (γ primitive, hyperbolic,
`γ < 5) to the ∆0(N ′)-conjugacy class of γ viewed as an element of ∆0(N ′).
Since at most deg(X0(N)/X0(N ′)) ∆0(N)-conjugacy classes collapse to a single
∆0(N ′)-conjugacy class, we find by arguing as before

N
[0,5)
geo,X0(N) ≤ deg(X0(N)/X0(N ′))

×#{γ′ ∈ ∆0(N ′) | γ′ hyperbolic, `γ′ < 5}/∆0(N ′)−conjugacy.

By equation (42), we conclude

N
[0,5)
geo,X0(N) = deg(X0(N)/X0(N ′)) ·O

(
gX0(N ′)

)
,

where the implied constant depends solely on p0. Since deg(X0(N)/X0(N ′)) ·
gX0(N ′) = O(gX0(N)) with an implied constant which is universal, the proof of
part (d) is complete. 2
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5.4. Proposition. Let N > N0 be such that X0(N) has genus gX0(N) > 1.
Then, we have the bound

dsup,X0(N) = O(1) ,

where the implied constant is independent of N .

Proof. For n ∈ N, let Y0(n) = Γ0(n)\H, so that X0(n) is (isomorphic to)
the compactification of Y0(n) by adding the cusps and re-uniformizing at the
elliptic fixed points. If n1 is a divisor of n2, denote by πn2,n1 : X0(n2) −→
X0(n1) the natural projection. For 0 < ε < 1, let

B(ε) = {w ∈ C | |w| < ε}

be equipped with the complete hyperbolic metric

µhyp,B(ε)(w) =
i

2
· dw ∧ dw̄

(1− |w|2)2
.

Denote by X ′0(1) the Riemann surface obtained from X0(1) by removing neigh-
borhoods centered at the three points corresponding to the unique cusp and
the two elliptic fixed points of Y0(1), respectively. Let X ′0(N) = π−1

N,1(X ′0(1));
we may assume that

X ′0(N) = X0(N) \
s⋃

k=1

Uk

such that the neighborhoods Uk are isometric to the complex disc B(ε).
In course of this proof, we will use the hyperbolic metric on X0(N), resp.
on Y0(N); we will distinguish them by denoting them by µhyp,X0(N), resp.
µhyp,Y0(N) (which is slightly different from our previous notation, but will be
used in this proof alone). For x ∈

⋃s
k=1 Uk, we now have

µhyp,X0(N)(x) ≥ i

2
dz(x) ∧ dz̄(x) ,

which leads to the estimate

gX0(N) · µcan,X0(N)(x)
µhyp,X0(N)(x)

≤
gX0(N)∑
j=1

|fj(z(x))|2 .

Since the functions fj(z(x)) (j = 1, . . . , gX0(N)) are bounded and holomorphic
on the neighborhoods Uk (k = 1, . . . , s), the functions |fj(z(x))|2 are subhar-
monic on Uk, as is the sum of these functions (see, e.g., [27], p. 362). By
the strong maximum principle for subharmonic functions (see, e.g., [8], p. 15,
Theorem 2.2), we then have for k = 1, . . . , s

sup
x∈Uk

gX0(N)∑
j=1

|fj(z(x))|2
 ≤ sup

x∈∂Uk

gX0(N)∑
j=1

|fj(z(x))|2
 .
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In the given local coordinate, the conformal factor for the hyperbolic metric is
constant on ∂Uk, thus we have shown that

sup
x∈Uk

(
gX0(N) · µcan,X0(N)(x)

µhyp,X0(N)(x)

)
= Oε

(
sup
x∈∂Uk

(
gX0(N) · µcan,X0(N)(x)

µhyp,X0(N)(x)

))
.

Therefore, in order to prove the proposition, it suffices to show

sup
x∈X′0(N)

(
gX0(N) · µcan,X0(N)(x)

µhyp,X0(N)(x)

)
= O(1)

with an implied constant that is independent of N . Recalling that µcan,X0(N)

on X ′0(N) equals µcan,Y0(N) on Y ′0(N) = Y0(N) \
⋃s
k=1 Uk, we can consider the

formal identity

(43)
gX0(N) · µcan,X0(N)(x)

µhyp,X0(N)(x)
=
gX0(N) · µcan,Y0(N)(x)

µhyp,Y0(N)(x)
·
µhyp,Y0(N)(x)
µhyp,X0(N)(x)

on the set X ′0(N) = Y ′0(N). The argument given in [6], [16], or [17] proves a
sup-norm bound for the ratio of the canonical metric by the hyperbolic metric
through compact covers; however, the argument is adapted easily to towers
of non-compact surfaces when restricting attention to compact subsets, such
as the subsets Y ′0(N). Thus, the first factor on the right-hand side of (43) is
bounded through covers, with a bound depending solely on the base Y0(1), i.e.,
independent of N . As for the second factor on the right-hand side of (43), we
argue as follows. Put

F (N) = sup
x∈Y ′0 (N)

µhyp,Y ′0 (N)(x)
µhyp,X′0(N)(x)

,

where µhyp,X′0(N) = µhyp,X0(N)|X′0(N), and µhyp,Y ′0 (N) = µhyp,Y0(N)|Y ′0 (N). The
quantity F (N) is easily shown to be finite, since µhyp,X0(N) is non-vanishing
everywhere on the compact Riemann surface X0(N), and µhyp,Y0(N) is non-
vanishing on Y0(N) and decaying at the cusps of Y0(N). Let then p0 be as in
Definition 5.1, and p ∈ B2(p0). Since X ′0(p0p) is an unramified cover of X ′0(p),
resp. Y ′0(p0p) is an unramified cover of Y ′0(p), we have (denoting both covering
maps by π′p0p,p)

π′∗p0p,p

(
µhyp,X′0(p)

)
= µhyp,X′0(p0p), resp. π′∗p0p,p

(
µhyp,Y ′0 (p)

)
= µhyp,Y ′0 (p0p) ,

hence F (p0p) = F (p) for all p ∈ B2(p0). Symmetrically, X ′0(p0p) is an unram-
ified cover of X ′0(p0), resp. Y ′0(p0p) is an unramified cover of Y ′0(p0), which
analoguously implies (denoting both covering maps by π′p0p,p0

)

π′∗p0p,p0

(
µhyp,X′0(p0)

)
= µhyp,X′0(p0p), resp. π′∗p0p,p0

(
µhyp,Y ′0 (p0)

)
= µhyp,Y ′0 (p0p) ,

hence F (p0p) = F (p0) for all p ∈ B2(p0). Summarizing, we have F (p) = F (p0)
for all p ∈ B2(p0). Since the set B1(p0) is finite, we have

c = sup
N∈B(p0)

{F (N)} = sup
N∈B1(p0)

{F (N), F (p0)} <∞ ,
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which just depends on p0. It remains to bound F (N) for any N such that
X0(N) is a modular curve with gX0(N) > 1. Given such an N , choose N ′ ∈
B(p0), so that X0(N) is a finite cover of X0(N ′). Noting that X ′0(N), resp.
Y ′0(N) are unramified covers of X ′0(N ′), resp. Y ′0(N ′) of the same degree, we
show as above that F (N) = F (N ′). Since F (N ′) ≤ c, we find F (N) ≤ c with
c depending solely on p0, hence being independent of N . This completes the
proof of the proposition. 2

5.5. Proposition. Let N > N0 be such that X0(N) has genus gX0(N) > 1.
Then, we have

CHub,X0(N) = O(gX0(N)) ,

where the implied constant is universal, i.e., independent of N .

Proof. Before entering into the proof we begin with the following general ob-
servation. Let X1 be a finite isometric cover of the compact Riemann surface
X0 of genus gX0 > 1. As usual, if λX1,j is an eigenvalue for the hyperbolic
Laplacian on X1 satisfying λX1,j ≥ 1/4, we write λX1,j = 1/4 + r2

X1,j
with

rX1,j ≥ 0. For r ≥ 0, we put

NX1(r) = #{rX1,j | 0 ≤ rX1,j ≤ r}.

Similarly, we can define NX0,ψ(r), if ψ is a finite dimensional, unitary repre-
sentation of the fundamental group π1(X0) of X0. From [32], Theorem 6.2.2
(see also [15], Lemma 3.2 (e)), we recall that the system of functions NX1(r)
and {NX0,ψ(r)} satisfies the additive Artin formalism, i.e.,

NX1(r) =
∑
ψ

mult(ψ) ·NX0,ψ(r) ,

where the sum is taken over all irreducible representations ψ occurring with
multiplicity mult(ψ) in the representation indπ1(X0)

π1(X1)(1).
After these preliminary remarks, we start with the proof of Proposi-

tion 5.5. For this, we let p0 be as in Definition 5.1, and p ∈ B2(p0). Since
X0(p0p) is a finite isometric cover of X0(p0), we have by the additive Artin
formalism

NX0(p0p)(r) =
∑
ψ

mult(ψ) ·NX0(p0),ψ(r) .

Now, by [15], Lemma 3.3, there is a constant Ap0 depending solely on p0 such
that

|NX0(p0),ψ(r)| ≤ Ap0 · rk(ψ) · r2 .

Using the relation
∑

ψ mult(ψ) · rk(ψ) = deg(X0(p0p)/X0(p0)) = p+ 1, we find

NX0(p0p)(r) ≤ Ap0

∑
ψ

mult(ψ) · rk(ψ) · r2 = Ap0 · (p+ 1) · r2 .
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On the other hand, viewing X0(p0p) as a finite isometric cover of X0(p), we
get the trivial estimate

NX0(p)(r) ≤ NX0(p0p)(r) ,

since every eigenfunction on X0(p) lifts to an eigenfunction on X0(p0p) with
the same eigenvalue. Combining the last two inequalities yields the crucial
bound

(44) NX0(p)(r) ≤ Ap0 · (p+ 1) · r2 .

We now discuss how the bound (44) leads to a bound of the Huber constant
CHub,X0(p) for p ∈ B2(p0). For this we analyze the proof of the prime geodesic
theorem on X0(p) as given in [5], pp. 295–300, which we now review.

Let G(T ) = πX0(p)(u) with T = log(u) be the prime geodesic counting
function. Let ϕ(x) be a non-negative C∞-function with support on [−1,+1]
with L1-norm equal to one. Let ε > 0, to be chosen later, let ϕε(x) =
ε−1ϕ(x/ε), and let IT (x) be the indicator function of [−T,+T ]. We define

gεT (x) = 2 cosh(x/2)(IT ∗ ϕε)(x),

which is a valid test function for the Selberg trace formula whose Fourier
transform is denoted by hεT (r). If we define

Hε(T ) =
∑

γ∈H(Γ)

∞∑
n=1

`γ

en`γ/2 − e−n`γ/2
gεT (`γ),

the Selberg trace formula yields

(45) Hε(T ) =
∑

0≤λX0(p),j<1/4

hεT (sX0(p),j) +

∞∫
0

hεT (r) dNX0(p)(r) .

By taking ε = e−T/4, it is shown on p. 298 in [5] that

hεT (sX0(p),j) = ET (sX0(p),j) +O
(
ε · esX0(p),jT

)
,

where ET (x) = eTx/x.
Since 1/2 < sX0(p),j ≤ 1, and N

[0,1/4)
ev,X0(p) = O(gX0(p)) = O(p+ 1) by Propo-

sition 5.3 (b), this leads to

(46)
∑

0≤λX0(p),j<1/4

hεT (sX0(p),j) =
∑

0≤λX0(p),j<1/4

ET (sX0(p),j)+(p+1) ·O(e3T/4) ,

where the implied constant is universal. Continuing with the argument on
p. 299, together with our bound (44), we find that

(47)

∞∫
0

hεT (r) dNX0(p)(r) = (p+ 1) ·Op0(e3T/4) ,
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where the implied constant depends solely on p0. Substituting (46) and (47)
into (45) yields

Hε(T ) =
∑

0≤λX0(p),j<1/4

ET (sX0(p),j) + (p+ 1) ·Op0(e3T/4) ,

where the implied constant depends solely on p0.
Let

H(T ) =
∑

γ∈H(Γ),n≥1
n`γ≤T

`γ

en`γ/2 − e−n`γ/2
,

one has
Hε(T − ε) ≤ H(T ) ≤ Hε(T + ε),

which follows easily from the definition of gεT (x). Using these bounds together
with the elementary estimates

ET±ε(sX0(p),j) = ET (sX0(p),j) +O(e3T/4) ,

we get∑
0≤λX0(p),j<1/4

ET±ε(sX0(p),j) =
∑

0≤λX0(p),j<1/4

ET (sX0(p),j) +N
[0,1/4)
ev,X0(p) ·O(e3T/4) ,

where the implied constant is universal. Using Proposition 5.3 (b) again, we
arrive at the bound

(48) H(T ) =
∑

0≤λX0(p),j<1/4

ET (sX0(p),j) + (p+ 1) ·Op0(e3T/4) ,

where the implied constant depends solely on p0.
The prime geodesic theorem, i.e., the asymptotic behavior of the function

G(T ), can now be derived applying standard methods from (48) (see, e.g., [5],
pp. 296–297, for a detailed proof). In order to arrive at the assertion

πX0(p)(u)−
∑

0≤λX0(p),j<1/4

li(usX0(p),j ) = (p+ 1) ·Op0

(
u3/4(log(u))−1

)
,

one needs to also use Proposition 5.3 (b) in the derivation of the asymptotics of
G(T ) from (48). Finally, since u3/4(log(u))−1 ≤ u3/4(log(u))−1/2, we conclude
that

CHub,X0(p) = O(p+ 1) = O(gX0(p))

for any p ∈ B2(p0), with an implied constant that depends solely on p0. Since
the set B1(p0) is finite, we end up with the estimate

CHub,X0(N) = O(gX0(N))

for any N ∈ B(p0), again with an implied constant that depends solely on p0.
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Finally, given any modular curve X0(N) with gX0(N) > 1, choose N ′ ∈
B(p0), so that X0(N) is a finite cover of X0(N ′). Then, inequality (15) states
that

CHub,X0(N) ≤ deg(X0(N)/X0(N ′)) · CHub,X0(N ′) .

Since we have shown above that CHub,X0(N ′) = O(gX0(N ′)) with an implied
constant that depends solely on p0, and since deg(X0(N)/X0(N ′)) · gX0(N ′) =
O(gX0(N)) with an implied constant that is universal, the proof of the propo-
sition is now complete. 2

5.6. Theorem. Let N > N0 be such that X0(N) has genus gX0(N) > 1.
Then, we have

δFal(X0(N)) = O(gX0(N)) ,

where the implied constant is universal, i.e., independent of N .

Proof. Beginning with Theorem 4.5, we follow the method of proof of Corol-
lary 4.6 by citing results from the present section, namely Propositions 5.3,
5.4, and 5.5 to bound the six geometric invariants, aside from the genus gX0(N)

appearing in Theorem 4.5. 2

5.7. Remark. In the finite number of cases when X0(N) is not hyperbolic,
Faltings’s delta function δFal(X0(N)) can be explicitly evaluated. If X0(N)
has genus zero, then Faltings’s delta function is simply a universal constant.
If X0(N) has genus one, then Faltings’s delta function is expressed in terms of
the Dedekind delta function, the unique holomorphic cusp form of weight 12
with respect to PSL2(Z) (see [7]).

5.8. Remark. The analysis carried out in the present section applies to
establish Theorem 5.6 for other families of modular curves, namely {X1(N)}
and {X(N)}.

6. Arithmetic implications

6.1. Faltings height of the Jacobian of X0(N). In this section, we let
N be a squarefree natural number such that 2, 3 do not divide N . We then let
X0(N)/Z denote a minimal regular model of the modular curve X0(N)/Q. In
[1], A. Abbes and E. Ullmo, computed the arithmetic self-intersection number
of the relative dualizing sheaf ωX0(N) on X0(N) equipped with the Arakelov
metric. They came up with the following upper bound (see [1], Théorème B,
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p. 3)

ω2
X0(N) ≤ −8π ·

gX0(N) − 1
volhyp(X0(N))

· lim
s→1

(
Z ′Γ0(N)\H

ZΓ0(N)\H
(s)− 1

s− 1

)
+

gX0(N)

∑
p|N

p+ 1
p− 1

log(p) + 2gX0(N) log(N) + o(gX0(N) log(N)) .

Using [24], Corollaire 1.4, p. 649 (see also [14], section 5.3), in combination
with a corresponding lower bound for ω2

X0(N) (see [1], Proposition C), one then
finds

(49) ω2
X0(N) = 3gX0(N) log(N) + o(gX0(N) log(N)) .

Using Noether’s formula, one obtains the following formula for the Faltings
height hFal(J0(N)) of the Jacobian J0(N)/Q of the modular curve X0(N)

(50) 12·hFal(J0(N)) = ω2
X0(N)+

∑
p|N

δp log(p)+δFal(X0(N))−4gX0(N) log(2π) ;

here δp denotes the number of singular points in the special fiber of X0(N) over
Fp. This leads to the following asymptotic behavior of the Faltings height of
the Jacobian of X0(N).

6.2. Theorem. With the above notations, we have

hFal(J0(N)) =
gX0(N)

3
log(N) + o(gX0(N) log(N)) .

Proof. The claim follows immediately from (50) using (49) and Theorem 5.6.
2

6.3. Remark. If E/Q is a semi-stable elliptic curve of conductor N , one
conjectures (see also [31], Conjecture 1.4)

(51) hFal(E) ≤ a · hFal(J0(N))
gX0(N)

with an absolute constant a > 0. Assuming the validity of the conjectured
inequality (51) with constant a = 3/2, one can derive Szpiro’s conjecture by
means of Theorem 6.2 as in [31], i.e.,

∆E ≤ c(ε) ·N6+ε

for the minimal discriminant ∆E of E (note that in [31] it was speculated that
one could take the value 1 for the constant a).
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6.4. Congruences of modular forms. We start by mentioning that
Theorem 5.6 improves the bounds for δFal(X0(N)) given in [31], Corollaire 1.3,
namely

−4gX0(N) log(N) + o(gX0(N) log(N)) ≤ δFal(X0(N)) ≤

2gX0(N) log(N) + o(gX0(N) log(N)) .(52)

Furthermore, Theorem 6.2 improves the bounds for the Faltings height of the
Jacobian of X0(N) given in [31], Théorème 1.2, namely

(53) −BgX0(N) ≤ hFal(J0(N)) ≤
gX0(N)

2
log(N) + o(gX0(N) log(N)) ;

here B > 0 is an absolute constant. The latter upper bound was obtained by
means of the formula (see [31], Théorème 1.1)

(54) hFal(J0(N)) =
1
2

log |δT| −
1
2

log |det(MN )| − log(α) ,

in which the Faltings height of the Jacobian of X0(N) is expressed in terms of
a suitably defined discriminant δT of the Hecke algebra T of J0(N), the matrix
MN of all possible Petersson inner products of a certain basis of eigenforms of
weight 2 for Γ0(N), and a suitable natural number α with support contained
in the support of 2N . In order to obtain the upper bound in (53), E. Ullmo
established the bounds

log |δT| ≤ 2gX0(N) log(N) + o(gX0(N) log(N)) ,

− log |det(MN )| ≤ −gX0(N) log(N) + o(gX0(N) log(N)) .

The lower bound in (53) is due to unpublished work of J.-B. Bost. Combining
equation (50) with the asymptotics (49) and the estimates (53), one immedi-
ately derives the bounds (52) for δFal(X0(N)).

6.5. Theorem. With the above notations, we have

(55) log |δT| ≥
5
3
gX0(N) log(N) + o(gX0(N) log(N)) .

Proof. Using (54) in combination with Theorem 6.2, we get
1
2

log |δT| −
1
2

log |det(MN )| − log(α) =
gX0(N)

3
log(N) + o(gX0(N) log(N)) .

The claim now follows immediately from the upper bound for − log |det(MN )|
given above. 2

6.6. Remark. The lower bound given in Theorem 6.5 improves the lower
bound

log |δT| ≥ gX0(N) log(N) + o(gX0(N) log(N))

given in [31], Théorème 1.2. Since the fundamental invariant δT controls con-
gruences between modular forms, the lower bound (55) thus improves the lower
bound for the minimal number of such congruences.
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7. Appendix I: Comparing canonical and hyperbolic metrics

In the proof of Proposition 3.7 we used the explicit relation

µcan(x) = µshyp(x) +
1

2gX

 ∞∫
0

∆hypKhyp(t;x)dt

µhyp(x).

The purpose of this appendix is to prove this identity, rather than referring to
[18] or [19], thus making the present article more self-contained. Our approach
uses analytic aspects of the Arakelov theory for algebraic curves.

7.1. Proposition. With the above notations, we have the following equal-
ity of forms on X

gXµcan(x) = µshyp(x) +
1
2

c1(Ω1
X , ‖ · ‖hyp,res);

here Ω1
X denotes the canonical line bundle on X.

Proof. By choosing µ1 = µshyp and µ2 = µcan, the identity in Lemma 3.3 can
be rewritten as

(56) ghyp(x, y)− gcan(x, y) = φ(x) + φ(y) ,

where

φ(x) =
∫
X

ghyp(x, ζ)µcan(ζ)− 1
2

∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) .

Taking dxdcx in relation (56), we get the equation

(57) µshyp(x)− µcan(x) = dxdcxφ(x) .

On the other hand, we have by definition

log ‖dz(x)‖2hyp,res = lim
y→x

(
ghyp(x, y) + log |z(x)− z(y)|2

)
,

log ‖dz(x)‖2can,res = lim
y→x

(
gcan(x, y) + log |z(x)− x(y)|2

)
.

From this we deduce, again using (56),

log ‖dz(x)‖2hyp,res − log‖dz(x)‖2can,res =(58)

lim
y→x

(ghyp(x, y)− gcan(x, y)) = 2φ(x) .

Now, taking −dxdcx of equation (58), yields

(59) c1(Ω1
X , ‖ · ‖hyp,res)− c1(Ω1

X , ‖ · ‖can,res) = −2dxdcxφ(x) .

Combining equations (57) and (59) leads to

(60) 2(µshyp(x)− µcan(x)) = c1(Ω1
X , ‖ · ‖can,res)− c1(Ω1

X , ‖ · ‖hyp,res) .
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Recalling
c1(Ω1

X , ‖ · ‖can,res) = (2gX − 2)µcan(x),

we derive from (60)

µshyp(x)− µcan(x) =
2gX − 2

2
µcan(x)− 1

2
c1(Ω1

X , ‖ · ‖hyp,res) ,

which proves the proposition. 2

7.2. Proposition. With the above notations, we have the following for-
mula for the first Chern form of Ω1

X with respect to ‖ · ‖hyp,res

c1(Ω1
X , ‖ · ‖hyp,res) =

1
2π
µhyp(x) +

 ∞∫
0

∆hypKhyp(t;x)dt

µhyp(x).

Proof. Our proof involves analysis similar to the proof of Lemma 3.6. By our
definitions, we have for x ∈ X

c1(Ω1
X , ‖ · ‖hyp,res) = −dxdcx log ‖dz(x)‖2hyp,res =

−dxdcx lim
y→x

(ghyp(x, y) + log |z(x)− z(y)|2) =

−dxdcx lim
y→x

4π

∞∫
0

(
Khyp(t;x, y)− 1

volhyp(X)

)
dt+ log |z(x)− z(y)|2

 =

−dzdcz lim
y→x

4π

∞∫
0

KH(t; z(x), z(y))dt+ log |z(x)− z(y)|2


−dzdcz lim
y→x

4π

∞∫
0

∑
γ∈Γ
γ 6=id

KH(t; z(x), γz(y))− 1
volhyp(X)

dt

 .

Using the formula for the Green’s function gH(x, y) on H, we obtain for the
first summand in the latter sum

A = −dzdcz lim
y→x

4π

∞∫
0

KH(t; z(x), z(y)) dt+ log |z(x)− z(y)|2


= −dzdcz lim
y→x

(
gH(z(x), z(y)) + log |z(x)− z(y)|2

)
= −dzdcz log |z(x)− z̄(x)|2 = − 2i

2π
∂z ∂̄z log(z(x)− z̄(x))

=
i

π
∂z

dz̄(x)
z(x)− z̄(x)

= − i
π
· dz(x) ∧ dz̄(x)

(z(x)− z̄(x))2

= − i
π
· dz(x) ∧ dz̄(x)

(2iIm(z(x)))2
=

1
2π
· µhyp(x) .
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For the second summand we obtain

B = −dzdcz lim
y→x

4π

∞∫
0

∑
γ∈Γ
γ 6=id

KH(t; z(x), γz(y))− 1
volhyp(X)

dt


= −4πdzdcz

∞∫
0

∑
γ∈Γ
γ 6=id

KH(t; z(x), γz(x))− 1
volhyp(X)

dt .

Since the latter integral converges absolutely, we are allowed to interchange
differentiation and integration; this gives

B = −4π

∞∫
0

dzdcz

∑
γ∈Γ
γ 6=id

KH(t; z(x), γz(x))− 1
volhyp(X)

dt

= −4π

∞∫
0

∑
γ∈Γ
γ 6=id

dzdczKH(t; z(x), γz(x))dt .

The claimed formula then follows, since KH(t; z(x), z(x)) is independent of x,
and recalling the identity (under our normalization of the Laplacian, as stated
in (7))

(61) dxdcxf(x) = −(4π)−1∆hypf(x)µhyp(x) ,

for any smooth function f on X. 2

7.3. Theorem. With the above notations, we have, for all x ∈ X, the
formula

µcan(x) = µshyp(x) +
1

2gX

 ∞∫
0

∆hypKhyp(t;x)dt

µhyp(x).

Proof. We simply have to combine Propositions 7.1 and 7.2, and to use that

1
volhyp(X)

+
1

4π
=

gX
volhyp(X)

.

2

8. Appendix II: The Polyakov formula

We shall work from the article [26]. Let us begin using the notation in
that article, then in the end indicate the changes needed to conform with other
conventions.
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Let us consider two metrics, whose area forms are written as dA0 and
dA1. In a local coordinate z on the Riemann surface X, setting z = x+ iy, let
us write

dA0(z) = e2ρ0(z) · i
2

dz ∧ dz̄ ,

dA1(z) = e2ρ1(z) · i
2

dz ∧ dz̄ .

If we then write dA1 = e2ϕdA0 (see [26], p. 155, formula (1.11)), we then have
ϕ = ρ1 − ρ0. The convention for the Laplacian is established in [26], p. 154,
formula (1.1). In the above coordinates, we have

∆0(z) = e−2ρ0(z) ·
(
∂2

∂x2
+

∂2

∂y2

)
,(62)

∆1(z) = e−2ρ1(z) ·
(
∂2

∂x2
+

∂2

∂y2

)
.

The Gauss curvature K0 is then

K0 = −∆0ρ0.

Note that if dA0 is the standard hyperbolic metric, then e2ρ0 = y−2, so ρ0 =
− log(y), and it is easy to show that K0 = −1 as expected.

The Polyakov formula is proved in [26], p. 156, and stated as formula
(1.13); it says

log
(

det′∆ϕ

Aϕ

)
= − 1

6π

1
2

∫
X

|∇0ϕ|2 dA0 +
∫
X

K0ϕdA0

+ C .

If we take ρ1 = ρ0, then ϕ = 0, so we get

C = log
(

det′∆0

A0

)
.

Therefore, in obvious notation, we find

log
(

det′∆1

A1

)
− log

(
det′∆0

A0

)
= − 1

6π

1
2

∫
X

|∇0ϕ|2 dA0 +
∫
X

K0ϕdA0

 .

Let us work with the right-hand side. Recall that, with the above notational
conventions, we have, for any smooth f , the formula ∆(f)dA = 4πddc(f), for
any metric. (Note: The normalization of the Laplacian in [26] as stated in (62)
does not include the minus sign as in our normalization, see (7); as a result,
the formula relating ddc to the Laplacian of [26] does not contain the minus
sign appearing in (61).) Therefore, if we integrate by parts, we have

1
2

∫
X

|∇0ϕ|2 dA0 = −1
2

∫
X

ϕ∆0ϕdA0 = −2π
∫
X

ϕddcϕ .
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Also, we have ∫
X

K0ϕdA0 = −
∫
X

ϕ∆0ρ0dA0 = −4π
∫
X

ϕddcρ0 .

Therefore, we find

log
(

det′∆1

A1

)
− log

(
det′∆0

A0

)
= − 1

6π

−2π
∫
X

ϕddcϕ− 4π
∫
X

ϕddcρ0


=

1
3
·
∫
X

ϕ (ddcϕ+ 2ddcρ0) .

However, since ϕ = ρ1 − ρ0, this becomes

log
(

det′∆1

A1

)
− log

(
det′∆0

A0

)
=

1
3
·
∫
X

ϕ (ddcρ0 + ddcρ1) .

Let us now fit this into our notation. Since dA1 = e2ρ1 i
2dz ∧ dz̄, we have

c1(Ω1
X , ‖ · ‖1) = ddc(2ρ1). Similarly, c1(Ω1

X , ‖ · ‖0) = ddc(2ρ0), so then

ddcρ0 + ddcρ1 =
1
2
(
c1(Ω1

X , ‖ · ‖1) + c1(Ω1
X , ‖ · ‖0)

)
.

In our notation, we write µ1 = eφµ0, so then φ = 2ϕ. Therefore, we get

log
(

det′∆1

A1

)
− log

(
det′∆0

A0

)
=

1
3
·
∫
X

ϕ (ddcρ0 + ddcρ1) =

1
6
·
∫
X

φ · 1
2
(
c1(Ω1

X , ‖ · ‖1) + c1(Ω1
X , ‖ · ‖0)

)
.

Now consider the special case when µ0 = µhyp is the hyperbolic metric, with
Gauss curvatuve equal to −1. Equivalent to the statement K0 = −1 is the
statement that c1(Ω1

X , ‖ · ‖0) = (2gX − 2)µshyp. If µ1 is the Arakelov metric,
then c1(Ω1

X , ‖ · ‖1) = (2gX − 2)µcan, where µcan is the canonical metric. If we
write µAr = eφArµhyp, then the above identity becomes

log
(

det′∆Ar

AAr

)
− log

(
det′∆hyp

Ahyp

)
=
gX − 1

6
·
∫
X

φAr (µcan + µshyp) .
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