All Packages  Class Hierarchy  This Package  Previous  Next  Index

Class org.netlib.lapack.DGBEQU

java.lang.Object
   |
   +----org.netlib.lapack.DGBEQU

public class DGBEQU
extends Object
DGBEQU is a simplified interface to the JLAPACK routine dgbequ.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines.  Using this interface also allows you
to omit offset and leading dimension arguments.  However, because
of these conversions, these routines will be slower than the low
level ones.  Following is the description from the original Fortran
source.  Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DGBEQU computes row and column scalings intended to equilibrate an * M-by-N band matrix A and reduce its condition number. R returns the * row scale factors and C the column scale factors, chosen to try to * make the largest element in each row and column of the matrix B with * elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. * * R(i) and C(j) are restricted to be between SMLNUM = smallest safe * number and BIGNUM = largest safe number. Use of these scaling * factors is not guaranteed to reduce the condition number of A but * works well in practice. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * KL (input) INTEGER * The number of subdiagonals within the band of A. KL >= 0. * * KU (input) INTEGER * The number of superdiagonals within the band of A. KU >= 0. * * AB (input) DOUBLE PRECISION array, dimension (LDAB,N) * The band matrix A, stored in rows 1 to KL+KU+1. The j-th * column of A is stored in the j-th column of the array AB as * follows: * AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KL+KU+1. * * R (output) DOUBLE PRECISION array, dimension (M) * If INFO = 0, or INFO > M, R contains the row scale factors * for A. * * C (output) DOUBLE PRECISION array, dimension (N) * If INFO = 0, C contains the column scale factors for A. * * ROWCND (output) DOUBLE PRECISION * If INFO = 0 or INFO > M, ROWCND contains the ratio of the * smallest R(i) to the largest R(i). If ROWCND >= 0.1 and * AMAX is neither too large nor too small, it is not worth * scaling by R. * * COLCND (output) DOUBLE PRECISION * If INFO = 0, COLCND contains the ratio of the smallest * C(i) to the largest C(i). If COLCND >= 0.1, it is not * worth scaling by C. * * AMAX (output) DOUBLE PRECISION * Absolute value of largest matrix element. If AMAX is very * close to overflow or very close to underflow, the matrix * should be scaled. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, and i is * <= M: the i-th row of A is exactly zero * > M: the (i-M)-th column of A is exactly zero * * ===================================================================== * * .. Parameters ..


Constructor Index

 o DGBEQU()

Method Index

 o DGBEQU(int, int, int, int, double[][], double[], double[], doubleW, doubleW, doubleW, intW)

Constructors

 o DGBEQU
 public DGBEQU()

Methods

 o DGBEQU
 public static void DGBEQU(int m,
                           int n,
                           int kl,
                           int ku,
                           double ab[][],
                           double r[],
                           double c[],
                           doubleW rowcnd,
                           doubleW colcnd,
                           doubleW amax,
                           intW info)

All Packages  Class Hierarchy  This Package  Previous  Next  Index