All Packages  Class Hierarchy  This Package  Previous  Next  Index

Class org.netlib.lapack.Dggglm

java.lang.Object
   |
   +----org.netlib.lapack.Dggglm

public class Dggglm
extends Object
Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DGGGLM solves a general Gauss-Markov linear model (GLM) problem: * * minimize || y ||_2 subject to d = A*x + B*y * x * * where A is an N-by-M matrix, B is an N-by-P matrix, and d is a * given N-vector. It is assumed that M <= N <= M+P, and * * rank(A) = M and rank( A B ) = N. * * Under these assumptions, the constrained equation is always * consistent, and there is a unique solution x and a minimal 2-norm * solution y, which is obtained using a generalized QR factorization * of A and B. * * In particular, if matrix B is square nonsingular, then the problem * GLM is equivalent to the following weighted linear least squares * problem * * minimize || inv(B)*(d-A*x) ||_2 * x * * where inv(B) denotes the inverse of B. * * Arguments * ========= * * N (input) INTEGER * The number of rows of the matrices A and B. N >= 0. * * M (input) INTEGER * The number of columns of the matrix A. 0 <= M <= N. * * P (input) INTEGER * The number of columns of the matrix B. P >= N-M. * * A (input/output) DOUBLE PRECISION array, dimension (LDA,M) * On entry, the N-by-M matrix A. * On exit, A is destroyed. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * B (input/output) DOUBLE PRECISION array, dimension (LDB,P) * On entry, the N-by-P matrix B. * On exit, B is destroyed. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * D (input/output) DOUBLE PRECISION array, dimension (N) * On entry, D is the left hand side of the GLM equation. * On exit, D is destroyed. * * X (output) DOUBLE PRECISION array, dimension (M) * Y (output) DOUBLE PRECISION array, dimension (P) * On exit, X and Y are the solutions of the GLM problem. * * WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,N+M+P). * For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, * where NB is an upper bound for the optimal blocksizes for * DGEQRF, SGERQF, DORMQR and SORMRQ. * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * * =================================================================== * * .. Parameters ..


Constructor Index

 o Dggglm()

Method Index

 o dggglm(int, int, int, double[], int, int, double[], int, int, double[], int, double[], int, double[], int, double[], int, int, intW)

Constructors

 o Dggglm
 public Dggglm()

Methods

 o dggglm
 public static void dggglm(int n,
                           int m,
                           int p,
                           double a[],
                           int _a_offset,
                           int lda,
                           double b[],
                           int _b_offset,
                           int ldb,
                           double d[],
                           int _d_offset,
                           double x[],
                           int _x_offset,
                           double y[],
                           int _y_offset,
                           double work[],
                           int _work_offset,
                           int lwork,
                           intW info)

All Packages  Class Hierarchy  This Package  Previous  Next  Index