All Packages  Class Hierarchy  This Package  Previous  Next  Index

Class org.netlib.lapack.Dspevx

java.lang.Object
   |
   +----org.netlib.lapack.Dspevx

public class Dspevx
extends Object
Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DSPEVX computes selected eigenvalues and, optionally, eigenvectors * of a real symmetric matrix A in packed storage. Eigenvalues/vectors * can be selected by specifying either a range of values or a range of * indices for the desired eigenvalues. * * Arguments * ========= * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * RANGE (input) CHARACTER*1 * = 'A': all eigenvalues will be found; * = 'V': all eigenvalues in the half-open interval (VL,VU] * will be found; * = 'I': the IL-th through IU-th eigenvalues will be found. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) * On entry, the upper or lower triangle of the symmetric matrix * A, packed columnwise in a linear array. The j-th column of A * is stored in the array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. * * On exit, AP is overwritten by values generated during the * reduction to tridiagonal form. If UPLO = 'U', the diagonal * and first superdiagonal of the tridiagonal matrix T overwrite * the corresponding elements of A, and if UPLO = 'L', the * diagonal and first subdiagonal of T overwrite the * corresponding elements of A. * * VL (input) DOUBLE PRECISION * VU (input) DOUBLE PRECISION * If RANGE='V', the lower and upper bounds of the interval to * be searched for eigenvalues. VL < VU. * Not referenced if RANGE = 'A' or 'I'. * * IL (input) INTEGER * IU (input) INTEGER * If RANGE='I', the indices (in ascending order) of the * smallest and largest eigenvalues to be returned. * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. * Not referenced if RANGE = 'A' or 'V'. * * ABSTOL (input) DOUBLE PRECISION * The absolute error tolerance for the eigenvalues. * An approximate eigenvalue is accepted as converged * when it is determined to lie in an interval [a,b] * of width less than or equal to * * ABSTOL + EPS * max( |a|,|b| ) , * * where EPS is the machine precision. If ABSTOL is less than * or equal to zero, then EPS*|T| will be used in its place, * where |T| is the 1-norm of the tridiagonal matrix obtained * by reducing AP to tridiagonal form. * * Eigenvalues will be computed most accurately when ABSTOL is * set to twice the underflow threshold 2*DLAMCH('S'), not zero. * If this routine returns with INFO>0, indicating that some * eigenvectors did not converge, try setting ABSTOL to * 2*DLAMCH('S'). * * See "Computing Small Singular Values of Bidiagonal Matrices * with Guaranteed High Relative Accuracy," by Demmel and * Kahan, LAPACK Working Note #3. * * M (output) INTEGER * The total number of eigenvalues found. 0 <= M <= N. * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. * * W (output) DOUBLE PRECISION array, dimension (N) * If INFO = 0, the selected eigenvalues in ascending order. * * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) * If JOBZ = 'V', then if INFO = 0, the first M columns of Z * contain the orthonormal eigenvectors of the matrix A * corresponding to the selected eigenvalues, with the i-th * column of Z holding the eigenvector associated with W(i). * If an eigenvector fails to converge, then that column of Z * contains the latest approximation to the eigenvector, and the * index of the eigenvector is returned in IFAIL. * If JOBZ = 'N', then Z is not referenced. * Note: the user must ensure that at least max(1,M) columns are * supplied in the array Z; if RANGE = 'V', the exact value of M * is not known in advance and an upper bound must be used. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= max(1,N). * * WORK (workspace) DOUBLE PRECISION array, dimension (8*N) * * IWORK (workspace) INTEGER array, dimension (5*N) * * IFAIL (output) INTEGER array, dimension (N) * If JOBZ = 'V', then if INFO = 0, the first M elements of * IFAIL are zero. If INFO > 0, then IFAIL contains the * indices of the eigenvectors that failed to converge. * If JOBZ = 'N', then IFAIL is not referenced. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, then i eigenvectors failed to converge. * Their indices are stored in array IFAIL. * * ===================================================================== * * .. Parameters ..


Constructor Index

 o Dspevx()

Method Index

 o dspevx(String, String, String, int, double[], int, double, double, int, int, double, intW, double[], int, double[], int, int, double[], int, int[], int, int[], int, intW)

Constructors

 o Dspevx
 public Dspevx()

Methods

 o dspevx
 public static void dspevx(String jobz,
                           String range,
                           String uplo,
                           int n,
                           double ap[],
                           int _ap_offset,
                           double vl,
                           double vu,
                           int il,
                           int iu,
                           double abstol,
                           intW m,
                           double w[],
                           int _w_offset,
                           double z[],
                           int _z_offset,
                           int ldz,
                           double work[],
                           int _work_offset,
                           int iwork[],
                           int _iwork_offset,
                           int ifail[],
                           int _ifail_offset,
                           intW info)

All Packages  Class Hierarchy  This Package  Previous  Next  Index