Construction of a diffeomorphism of $\mathbb{C P}^{1}$ and S^{2}

November 17, 2006

- $\mathbb{C P}^{1}=\left(\mathbb{C}^{2} \backslash(0,0)\right) / \sim$ with $\left(z_{1}, z_{2}\right) \sim\left(z_{1}, z_{2}\right) \Leftrightarrow \exists z \in \mathbb{C}^{*}$, s. t. $\left(z_{1}, z_{2}\right)=$ $\left(z z_{1}, z z_{2}\right)$.
An atlas is given by $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right)\right\}$ where the charts are

$$
\begin{array}{ll}
\varphi_{1}: \mathbb{C P}^{1} \backslash[0: 1]=U_{1} \rightarrow \mathbb{C} & {\left[1: z_{2}\right] \mapsto z_{2}} \\
\varphi_{2}: \mathbb{C P}^{1} \backslash[1: 0]=U_{2} \rightarrow \mathbb{C} & {\left[z_{1}: 1\right] \mapsto z_{1} .}
\end{array}
$$

With $\varphi_{1}\left(U_{1} \cap U_{2}\right)=\mathbb{C}^{*}=\varphi_{2}\left(U_{1} \cap U_{2}\right)$, the transition mapping is

$$
\varphi_{2} \circ \varphi_{1}^{-1}: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*} \quad z \mapsto z^{-1}
$$

since $\varphi_{2} \circ \varphi_{1}^{-1}(z)=\varphi_{2}([1: z])=\varphi_{2}\left(\left[z^{-1}: 1\right]\right)=z^{-1}$ for all $z \in \mathbb{C}^{*}$. Here we use charts in \mathbb{C} rather than in \mathbb{R}^{2} for convenience.

- $S^{2}=\left\{(a, b, c) \in \mathbb{R}^{3} \mid a^{2}+b^{2}+c^{2}=1\right\}$

An atlas is given by $\left\{\left(V_{1}, \psi_{1}\right),\left(V_{2}, \psi_{2}\right)\right\}$ where the charts are

$$
\begin{aligned}
\psi_{1}: S^{2} \backslash(0,0,1) & =V_{1} \rightarrow \mathbb{C}
\end{aligned} \quad(a, b, c) \mapsto \frac{a}{1-c}+i \frac{b}{1-c} .
$$

With $\psi_{1}\left(V_{1} \cap V_{2}\right)=\mathbb{C}^{*}=\psi_{2}\left(V_{1} \cap V_{2}\right)$, the transition mapping also turns out to be

$$
\psi_{2} \circ \psi_{1}^{-1}: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*} \quad z \mapsto z^{-1}
$$

In order to see this note that for all $(a, b, c) \in S^{2} \backslash(0,0, \pm 1)$ we have $\left(\frac{a}{1-c}+i \frac{b}{1-c}\right)\left(\frac{a}{1+c}-i \frac{b}{1+c}\right)=1$ and apply the fact that ψ_{1} and ψ_{2} are both bijections, which is well-known from the construction of the stereographic projection.

- Define a map $f: \mathbb{C P}^{1} \rightarrow S^{2}$ by setting $f\left(\varphi_{i}^{-1}(z)\right):=\psi_{i}^{-1}(z)$ for all $z \in \mathbb{C}$.

1. This is a well-defined mapping from $\mathbb{C P}^{1}$ to S^{2} since

$$
\varphi_{2}^{-1}\left(z_{2}\right)=\varphi_{1}^{-1}\left(z_{1}\right) \Leftrightarrow z_{2}=\varphi_{2} \circ \varphi_{1}^{-1}\left(z_{1}\right) \Leftrightarrow z_{2}=z_{1}^{-1} \Leftrightarrow z_{2}=\psi_{2} \circ \psi_{1}^{-1}\left(z_{1}\right) \Leftrightarrow \psi_{2}^{-1}\left(z_{2}\right)=\psi_{1}^{-1}\left(z_{1}\right)
$$

2. This is a smooth mapping since

$$
\psi_{i} \circ f \circ \varphi_{i}^{-1}: \mathbb{C} \rightarrow \mathbb{C} \quad z \mapsto z
$$

and for $i \neq j$

$$
\psi_{j} \circ f \circ \varphi_{i}^{-1}: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*} \quad z \mapsto z^{-1}
$$

are all smooth.
3. The map is a diffeomorphism since

$$
f^{-1}: S^{2} \rightarrow \mathbb{C P}^{1} \quad \psi_{i}^{-1}(z) \mapsto \varphi_{i}^{-1}(z) \quad \forall z \in \mathbb{C}
$$

defines a smooth inverse for f .

