Klaus Mohnke
Institut für Mathematik
Rudower Chaussee 25
Haus 1 Raum 306

Homework Problems 7
 Analysis and Geometry on Manifolds WS 06/07

due 14.12.2006

Problem 1

Show that the following definition is equivalent to Definition 1.14 of the lecture:
A manifold with boundary is a topological space M which admits a family of parametrizations $\left\{\phi_{\alpha}: U \alpha \rightarrow M\right\}$ such that for all α, β
(i) $U \alpha \subset \mathbb{H}^{n}$ and $\phi_{\alpha}(U \alpha) \subset M$ are open sets
(ii) $\cup_{\alpha} \phi_{\alpha}\left(U_{\alpha}\right)=M$
(iii) ϕ_{α} is a homeomorphism onto its image
(iv) $\phi_{\beta}^{-1} \circ \phi_{\alpha}: \phi_{\alpha}^{-1}\left(\phi_{\alpha}(U \alpha) \cap \phi_{\beta}\left(U_{\beta}\right)\right) \rightarrow \phi_{\beta}^{-1}\left(\phi_{\alpha}(U \alpha) \cap \phi_{\beta}\left(U_{\beta}\right)\right)$ is differentiable.

Problem 2

(1) Show that the linear forms $\sigma^{1}, \ldots, \sigma^{k}$ on a vector space V are linear independent if and only if $\sigma^{1} \wedge \ldots \wedge \sigma^{k} \neq 0$.
(2) Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V and $\left\{\sigma^{1}, \ldots, \sigma^{n}\right\}$ be the dual basis of V^{*}. Show that for for any exterior k-form ω we have

$$
\sum_{i=1}^{n} \sigma^{i} \wedge\left(i_{v_{i}} \omega\right)=k \omega
$$

Problem 3

(1) For a vector $v \in \mathbb{R}^{3}$ denote by $v^{*}:=\langle v,.\rangle \in\left(\mathbb{R}^{3}\right)^{*}$ where $\langle.,$.$\rangle denotes the standard scalar$ product. Show that for $v, w \in \mathbb{R}^{3}$ equipped with the standard scalar product

$$
\left(v^{} \wedge w^{*}\right)=(v \times w)^{*}
$$

(2) For a differentiable vector field X on \mathbb{R}^{n} denote by X^{*} the corresponding differentiable 1-form with respect to the standard scalar product on all tangent spaces $T_{p} \mathbb{R}^{n}$.
(a) Compute $* d *\left(X^{*}\right)$. (Check if the expression is something you already know.)
(b) Let $n=3$. Determine the vector field Y which satisfies $* d\left(X^{*}\right)=Y^{*}$. (Have you seen the operation $X \mapsto Y$ before?)

The following problems will be discussed in the tutorials:

Problem 4

Show claim (3) from Satz 2.3. of the lecture that $\alpha \wedge * \beta=g(\alpha, \beta) d V$ for an n-dimensional oriented euclidean vector space V with scalar product g, and $\alpha \in \Lambda^{k}\left(V^{*}\right)$ and $\beta \in \Lambda^{n-k}\left(V^{*}\right)$.

Problem 5

Show statement (3) of Satz 2.5. of the lecture that $d F^{*} \alpha=F^{*}(d \alpha)$ for a diffeomorphism $F: U \subset$ $\mathbb{R}^{n} \rightarrow V \subset \mathbb{R}^{m}$ and $\alpha \in \Omega^{k}(V)$.

