Klaus Mohnke Institut für Mathematik Rudower Chaussee 25 Haus 1 Raum 306

Homework Problems 7

Analysis and Geometry on Manifolds WS 06/07

due 14.12.2006

Problem 1

Show that the following definition is **equivalent** to Definition 1.14 of the lecture: A manifold with boundary is a topological space M which admits a family of parametrizations $\{\phi_{\alpha}: U\alpha \to M\}$ such that for all α, β

(i) $U\alpha \subset \mathbb{H}^n$ and $\phi_\alpha(U\alpha) \subset M$ are open sets

(ii) $\cup_{\alpha} \phi_{\alpha}(U_{\alpha}) = M$

(iii) ϕ_{α} is a homeomorphism onto its image (iv) $\phi_{\beta}^{-1} \circ \phi_{\alpha} : \phi_{\alpha}^{-1}(\phi_{\alpha}(U\alpha) \cap \phi_{\beta}(U_{\beta})) \to \phi_{\beta}^{-1}(\phi_{\alpha}(U\alpha) \cap \phi_{\beta}(U_{\beta}))$ is differentiable.

Problem 2

(1) Show that the linear forms $\sigma^1, ..., \sigma^k$ on a vector space V are linear independent if and only if $\sigma^1 \wedge \ldots \wedge \sigma^k \neq 0.$

(2) Let $\{v_1, ..., v_n\}$ be a basis of V and $\{\sigma^1, ..., \sigma^n\}$ be the dual basis of V^{*}. Show that for for any exterior k-form ω we have

$$\sum_{i=1}^{n} \sigma^{i} \wedge (i_{v_{i}}\omega) = k\omega.$$

Problem 3

(1) For a vector $v \in \mathbb{R}^3$ denote by $v^* := \langle v, . \rangle \in (\mathbb{R}^3)^*$ where $\langle ., . \rangle$ denotes the standard scalar product. Show that for $v, w \in \mathbb{R}^3$ equipped with the standard scalar product

$$*(v^* \wedge w^*) = (v \times w)^*.$$

(2) For a differentiable vector field X on \mathbb{R}^n denote by X^* the corresponding differentiable 1-form with respect to the standard scalar product on all tangent spaces $T_n \mathbb{R}^n$.

(a) Compute $*d * (X^*)$. (Check if the expression is something you already know.)

(b) Let n = 3. Determine the vector field Y which satisfies $*d(X^*) = Y^*$. (Have you seen the operation $X \mapsto Y$ before?)

The following problems will be discussed in the tutorials:

Problem 4

Show claim (3) from Satz 2.3. of the lecture that $\alpha \wedge *\beta = g(\alpha, \beta)dV$ for an *n*-dimensional oriented euclidean vector space V with scalar product g, and $\alpha \in \Lambda^k(V^*)$ and $\beta \in \Lambda^{n-k}(V^*)$.

Problem 5

Show statement (3) of Satz 2.5. of the lecture that $dF^*\alpha = F^*(d\alpha)$ for a diffeomorphism $F: U \subset$ $\mathbb{R}^n \to V \subset \mathbb{R}^m$ and $\alpha \in \Omega^k(V)$.