Klaus Mohnke
Institut für Mathematik
Rudower Chaussee 25
Haus 1 Raum 306

Homework Problems 10 Analysis and Geometry on Manifolds WS 06/07 due 18.1.2007

Problem 1 Let $F \subset \mathbb{R}^{3}$ be a differentiable surface with boundary, $\left(\mathbf{n}_{F}\right)_{p}$ the (oriented) normal vector to F for $p \in F$ and $\left(\mathbf{n}_{\partial F}\right)_{p}$ be the outward normal at $p \in \partial F$. For a vector field X on \mathbb{R}^{3} denote by $\operatorname{rot}(X)$ its rotation. (see Lecture for precise definitions). Prove the classical Stokestheorems:
(a)

$$
\int_{F}\left\langle\operatorname{rot}(X), \mathbf{n}_{F}\right\rangle d F=\int_{\partial F}\langle X, \mathbf{d}(\partial F)\rangle
$$

where the one-form over which is integrated on the right hand side is given by $\gamma^{*}\langle X, \mathbf{d}(\partial F)\rangle:=$ $\left\langle X(\gamma(t)), \dot{\gamma}_{i}(t)\right\rangle d t$ for any differentiable map $\gamma:(a, b) \rightarrow \partial F$.
(b)

$$
\int_{F} d i v_{F}(X) d F=\int_{\partial F}\left\langle F, \mathbf{n}_{\partial F}\right\rangle d(\partial F)
$$

where $\operatorname{div}_{F}(X)$ is (uniquely) defined by $\operatorname{div}_{F}(X) d F=d\left(i_{X} d F\right)$ (analogous to the divergence on \mathbb{R}^{3}).

Problem 2 Let $W \subset \mathbb{R}^{3}$ be an open subset, $\phi: W \rightarrow \mathbb{R}$ be a differentiable function and V be a differentiable vector field on W. Let $p \in W$ be a point. Show by using Stokes' theorem that

$$
\operatorname{div} V(p)=\lim _{\epsilon \rightarrow 0} \frac{3}{4 \pi \epsilon^{3}} \int_{\partial B_{\epsilon}(p)} \beta_{V}
$$

where $\beta_{V}:=i_{V} d x^{1} \wedge d x^{2} \wedge d x^{3}$ and

$$
X_{p}(\phi)=\lim _{\epsilon \rightarrow 0} \frac{3}{4 \pi \epsilon^{3}} \int_{\partial B_{\epsilon}(p)} \phi \beta_{X}
$$

for any constant vector field X on W.
Problem 3 (a) Let (M, g) be an oriented Riemannian manifold with boundary, $d M$ and $d(\partial M)$, the associated volume forms of M and its boundary ∂M, i.e. $d(\partial M)=i_{\mathbf{n}} d M$, where \mathbf{n} is the outward normal along the boundary. For a differentiable vector field V on M define its divergence, $\operatorname{div} V$ by

$$
(\operatorname{div} V) d M:=d\left(i_{V} d M\right)
$$

Prove the general divergence theorem

$$
\int_{M} d i v V d M=\int_{\partial M} g(V, \mathbf{n}) d(\partial M)
$$

(b) Define, moreover, the Laplacian of a differentiable function u via

$$
\Delta u=\operatorname{div}(\nabla u)
$$

where ∇u is the gradient of u defined by $g(\nabla u, X)=d u(X)$. Prove the general Green formulas

$$
\begin{aligned}
\int_{M} \Delta u d M & =\int_{\partial M} g(\nabla u, \mathbf{n}) d(\partial M) \\
\int_{M}(u \Delta v-\Delta u v) d M & =\int_{\partial M}(u g(\nabla v, \mathbf{n})-g(\nabla u, \mathbf{n}) v) d(\partial M) .
\end{aligned}
$$

The following problem will be discussed in the tutorials:

Problem 4

(1) (See Homework Set 8, Problem 2 for the definitions.) Let $\omega \in \Omega^{2}(M)$ be a symplectic structure on the even-dimensional differentiable manifold M. Let us define the following binary operation on $C^{\infty}(M)$: For differentiable functions $f, g \in C^{\infty}(M)$, their Poisson bracket $\{f, g\} \in C^{\infty}(M)$ is given by

$$
\{f, g\}:=\omega\left(X_{f}, X_{g}\right)
$$

Prove the following identities:
(i) $\{f, g\}=-\{g, f\}$
(ii) $\{f, g h\}=\{f, g\} h+g\{f, h\}$.
(iii) $\{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\}=0$.

Such a structure is called a Poisson algebra.
(2) Show that the map $f \in C^{\infty}(M) \mapsto X_{f} \in \mathcal{X}(M)$ satisfies $\left[X_{f}, X_{g}\right]=X_{\{f, g\}}$.

