Klaus Mohnke
Institut für Mathematik
Rudower Chaussee 25
Haus 1 Raum 306

Homework Problems 13

Analysis and Geometry on Manifolds WS 06/07
due 8.2.2007

Problem 1 Covariant derivative along a map
Let ∇ be a covariant derivative acting on vector fields on a manifold M.
(1) For a 1-form $\alpha \in \Omega^{1}(M)$ and a tangent vector $X \in T_{p} M$ define $\nabla_{X} \alpha \in T_{p}^{*} M$ via

$$
X(\alpha(Y))=\left(\nabla_{X} \alpha\right)(Y)+\alpha\left(\nabla_{X} Y\right)
$$

for any differentiable vector field Y (see Set 12, Problem 2). Show that $(X, \alpha) \mapsto \nabla_{X} \alpha$ is a bilinear map which satisfies Leibniz' rule

$$
\nabla_{X}(f \alpha)=X(f) \alpha+f \nabla_{X} \alpha
$$

for any differentiable function f on M.
(2) Let $u: F \rightarrow M$ be a differentiable map between manifolds. A vector field along u is a differentiable family $\{Y(z)\}_{z \in F}$ of tangent vectors $Y(z) \in T_{u(z)} M$. Differentiability refers to differentiable coefficients in the decomposition $Y(z)=\sum_{i} Y^{i} \frac{\partial}{\partial x_{i}}$ with respect to any set of coordinates on M. Notice that Y^{i} are differentiable functions on (open subsets of) F. The covariant derivative of a vector field Y along u in direction of a tangent vector $v \in T_{z} F, \nabla_{v}^{u} Y$, should satisfy

$$
v(\alpha(Y))=\left(\nabla_{d_{z} u(v)} \alpha\right)(Y)+\alpha_{u(z)}\left(\nabla_{v}^{u} Y\right)
$$

for any 1-form $\alpha \in \Omega^{1}(M)$, where $\alpha(Y)(z):=\alpha_{u(z)}(Y(z))$.
(a) Show that this requirement determines $\nabla_{v}^{u} Y$ completely.
(b) Show that $(v, Y) \mapsto \nabla_{V}^{u} Y$ is a bilinear map.
(c) Show that ∇^{u} satisfies Leibniz' rule: $\nabla_{v}^{u}(f Y)=v(f) Y+f \nabla^{u} Y$ for any differentiable function f
(d) Show that ∇^{u} is metric provided that ∇ is: $v(g(Y, Z))=g\left(\nabla_{v}^{u} Y, Z\right)+g\left(Y, \nabla_{v}^{u} Z\right)$.
(e) Show that ∇^{u} is torsion free if ∇ is: $\nabla_{d_{z} u(X)}^{u} Y-\nabla_{d_{z} u(Y)}^{u} X-d_{z} u([X, Y])=0$ for all differentiable vector fields X, Y on F
(f) Express ∇^{u} in local coordinates, i.e. compute

$$
\nabla_{\frac{\partial}{\partial z_{\alpha}}} \frac{\partial}{\partial x_{i}}=: \sum_{k} a_{\alpha i}^{k} \frac{\partial}{\partial x_{k}}
$$

for coordinates z_{α} on F and x_{i} on M. Explain why this determines ∇^{u} and why its representation via $a_{\alpha i}^{k}$ does not depend on the coordinates chosen.

Problem 2

Determine the parallel transport on $S^{2} \subset \mathbb{R}^{3}$ along the closed paths given by:
(a) three quarter segments of grand circles forming a triangle
(b) an arbitrary circle.

The following problems will be discussed in the tutorials:

Problem 3

Let M be a smooth manifold. Define the canonical 1-form θ on $T^{*} M$ via

$$
\theta_{\alpha}(X):=\alpha\left(d \pi_{\alpha}(X)\right)
$$

where $\alpha \in T^{*} M, \pi: T^{*} M \rightarrow M$ is the projection assigning the base point to the cotangent vector, $X \in T_{\alpha}\left(T^{*} M\right)$. Show that $d \theta \in \Omega^{2}\left(T^{*} M\right)$ is a symplectic form (Hint: Use local coordinates).

Problem 4

Let (M, g) be a Riemannian manifold. g induces a linear identification $T_{p} M \cong T_{p}^{*} M$ via $X \mapsto$ $g(X,$.$) . Hence we can measure lengths of elements in T_{p}^{*} M$ with the help of g. Let $H: T^{*} M \rightarrow \mathbb{R}$ be given by $H(\alpha)=\|\alpha\|^{2} / 2$. Determine the equation for the Hamiltonian flow of H. Reformulate this equation purely as an equation for curves in M (rather than $T^{*} M$).

