Klaus Mohnke Institut für Mathematik Rudower Chaussee 25 Haus 1 Raum 306

Homework Problems 13

Analysis and Geometry on Manifolds WS 06/07

due 8.2.2007

Problem 1 Covariant derivative along a map

Let ∇ be a covariant derivative acting on vector fields on a manifold M. (1) For a 1-form $\alpha \in \Omega^1(M)$ and a tangent vector $X \in T_pM$ define $\nabla_X \alpha \in T_p^*M$ via

 $X(\alpha(Y)) = (\nabla_X \alpha)(Y) + \alpha(\nabla_X Y)$

for any differentiable vector field Y (see Set 12, Problem 2). Show that $(X, \alpha) \mapsto \nabla_X \alpha$ is a bilinear map which satisfies Leibniz' rule

$$\nabla_X(f\alpha) = X(f)\alpha + f\nabla_X\alpha$$

for any differentiable function f on M.

(2) Let $u: F \to M$ be a differentiable map between manifolds. A vector field along u is a differentiable family $\{Y(z)\}_{z\in F}$ of tangent vectors $Y(z) \in T_{u(z)}M$. Differentiability refers to differentiable coefficients in the decomposition $Y(z) = \sum_i Y^i \frac{\partial}{\partial x_i}$ with respect to any set of coordinates on M. Notice that Y^i are differentiable functions on (open subsets of) F. The covariant derivative of a vector field Y along u in direction of a tangent vector $v \in T_z F$, $\nabla^u_u Y$, should satisfy

$$v(\alpha(Y)) = (\nabla_{d_z u(v)} \alpha)(Y) + \alpha_{u(z)} (\nabla_v^u Y)$$

for any 1-form $\alpha \in \Omega^1(M)$, where $\alpha(Y)(z) := \alpha_{u(z)}(Y(z))$.

(a) Show that this requirement determines $\nabla_v^u Y$ completely.

(b) Show that $(v, Y) \mapsto \nabla_V^u Y$ is a bilinear map.

(c) Show that ∇^u satisfies Leibniz' rule: $\nabla^u_v(fY) = v(f)Y + f\nabla^u Y$ for any differentiable function f

(d) Show that ∇^u is metric provided that ∇ is: $v(g(Y,Z)) = g(\nabla^u_v Y, Z) + g(Y, \nabla^u_v Z)$.

(e) Show that ∇^u is torsion free if ∇ is: $\nabla^u_{d_z u(X)} Y - \nabla^u_{d_z u(Y)} X - d_z u([X, Y]) = 0$ for all differentiable vector fields X, Y on F

(f) Express ∇^u in local coordinates, i.e. compute

$$\nabla_{\frac{\partial}{\partial z_{\alpha}}} \frac{\partial}{\partial x_{i}} =: \sum_{k} a_{\alpha i}^{k} \frac{\partial}{\partial x_{k}}$$

for coordinates z_{α} on F and x_i on M. Explain why this determines ∇^u and why its representation via $a_{\alpha i}^k$ does not depend on the coordinates chosen.

Problem 2

Determine the parallel transport on $S^2 \subset \mathbb{R}^3$ along the closed paths given by:

(a) three quarter segments of grand circles forming a triangle

(b) an arbitrary circle.

The following problems will be discussed in the tutorials:

Problem 3

Let M be a smooth manifold. Define the canonical 1-form θ on T^*M via

$$\theta_{\alpha}(X) := \alpha(d\pi_{\alpha}(X))$$

where $\alpha \in T^*M$, $\pi : T^*M \to M$ is the projection assigning the base point to the cotangent vector, $X \in T_{\alpha}(T^*M)$. Show that $d\theta \in \Omega^2(T^*M)$ is a symplectic form (Hint: Use local coordinates).

Problem 4

Let (M, g) be a Riemannian manifold. g induces a linear identification $T_pM \cong T_p^*M$ via $X \mapsto g(X, .)$. Hence we can measure lengths of elements in T_p^*M with the help of g. Let $H: T^*M \to \mathbb{R}$ be given by $H(\alpha) = ||\alpha||^2/2$. Determine the equation for the Hamiltonian flow of H. Reformulate this equation purely as an equation for curves in M (rather than T^*M).