Vector fields, flows

November 23, 2006

Let *X*, *Y* be smooth vector fields on a manifold *M*, with flows ϕ_t and ψ_s , supposed complete. Show that the following statements are equivalent :

- 1. [X, Y] = 0
- 2. $X(f \circ \psi_s) = X(f) \circ \psi_s$ for any $f \in C^{\infty}(M)$ and all $s \in \mathbb{R}$.
- 3. $[\phi_t, \psi_s] := \phi_t \circ \psi_s \circ \phi_t^{-1} \circ \psi_s^{-1} = \mathbb{I}_M$ for all $t, s \in \mathbb{R}$.

Proof. We first prove $(1) \Leftrightarrow (2)$ and then $(2) \Leftrightarrow (3)$

• The statement 2 is equivalent to $X(f \circ \psi_s) \circ \psi_s^{-1}(m) = X(f)$ for all f, m, s. Denote by *G* the function

$$G(s) = X(f \circ \psi_s) \circ \psi_s^{-1}(m) - X(f)(m).$$

Statement (2) is equivalent to $G(s) \equiv 0$. One has obviously G(0) = 0. On the other hand, one has the derivative

$$\left. \frac{dG}{ds} \right|_{s} = X\left(Y\left(f\right)\psi_{s}\right) \circ \psi_{s}^{-1}\left(m\right) - Y\left(X\left(f\circ\psi_{s}\right)\right) \circ \psi_{s}^{-1}\left(m\right) \right)$$

Using $Y(f) \circ \psi = Y(f \circ \psi)$ one obtains

$$\left. \frac{dG}{ds} \right|_{s} = [X, Y] \left(f \circ \psi_{s} \right) \circ \psi_{s}^{-1} \left(m \right).$$

Suppose (2). This implies in particular that $\frac{dG}{ds}\Big|_s = 0$ for all s, and therefore (1). Conversely, if [X, Y] = 0, one has $\frac{dG}{ds}\Big|_s = 0$ for all s, and this ODE with the "initial" condition G(0) = 0 is solved uniquely by G(s) = 0 for all s, i.e. statement (2).

• Now, the statement (3) is equivalent to

$$F(t,s) := f \circ \phi_t \circ \psi_s \circ \phi_t^{-1}(m) - f \circ \psi_s(m) = 0 \,\forall t, s$$

for all $f \in C^{\infty}(M)$ and all $m \in M$. On the other hand, one has always the derivatives

$$\frac{\partial F}{\partial t} = X(f) \circ \phi_t \circ \psi_s \circ \phi_t^{-1}(m) - X(f \circ \phi_t \circ \psi_s) \circ \phi_t^{-1}(m).$$

Now, if we use $X(f) \circ \phi_t = X(f \circ \phi_t)$ and assume (2), i.e. $X(f \circ \phi_t) \circ \psi_s = X(f \circ \phi_t \circ \psi_s)$, we obtain

$$\frac{\partial F}{\partial t} = X\left(f \circ \phi_t \circ \psi_s\right) \circ \phi_t^{-1}\left(m\right) - X\left(f \circ \phi_t \circ \psi_s\right) \circ \phi_t^{-1}\left(m\right) = 0$$

for all t, s. Moreover, for t = 0 and any s, one has F(0, s) = 0. With s fixed, this is an ODE whose solution is F(t, s) = 0 for all t, which implies (3). Conversely, assuming (3), one has $\frac{\partial F}{\partial t} = 0$ for all t, and in particular for t = 0, which provides precisely $X(f) \circ \psi_s(m) - X(f \circ \psi_s)(m) = 0$, i.e. the statement (2).