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Metrizability of spaces of homomorphisms between metric vector

spaces

Olaf Müller∗

May 22, 2009

Abstract

Ťhis note tries to give an answer to the following question: Is there a sufficiently rich class of metric
vector spaces such that sufficiently large spaces of continuous linear maps between them are metrizable?

1 Introduction

Ǎ useful feature of finite-dimensional analysis is the representation of the differential of a C1 map f : R
n ⊃

U → R
m as a map taking values in the metric space CL(Rn,Rm). In Banach spaces this point of view begins

to cause problems and leads to the distinction between the (weaker) notion of Michal-Bastiani differentiability
and the (stronger) notion of Fréchet differentiability (cf. [1], where it is shown that the two notions differ
only by one degree of differentiability). As soon as leaving normable spaces towards more general metric
vector spaces, the situation gets even more complicated. On the other hand, it is well-known that we cannot
avoid non-normable spaces if we want to include spaces in which derivative operators are continuous:

Theorem 1.1 There is no normable topology on F0 := C∞([0, 1],R) with continuous derivative operator.

ˇProof. This is because continuity in normed spaces is equivalent to boundedness but there are arbitrarily
high eigenvalues of the differential operator ∂t given by the functions t 7→ sin(Nt). 2

Ňow, most people working in Fréchet spaces tend to consider only Michal-Bastiani differentiability which
renouns completely on the concept of the differential taking values in spaces of linear maps and considering
it as a map f ′ : U × V → W . One reason for this is that if one equips the space of continuous linear maps
CL(F,G) between two Fréchet spaces with a topology, it turns out that in very general cases the evaluation
map is not continuous any more (for a good overview cf. [4] who suggested to circumvent this problem
by considering convergence structures instead of topologies). But in the light of recent results on inverse
function theorems for so-called bounded differentiable maps ([6]) it seems desirable to explore other types
of differentiability which do include some form of iterated spaces of homomorphisms of the type above. The
program followed by this and subsequent notes will thus be to find the exact reasons of non-metrizability
and to provide some appropriate classes of metric vector spaces and linear maps between them.

Ťhe research leading to this note has been partially funded by the CONACyT project 82471.

2 Palette topologies on CL(V, W )

Ǒften topologies on the dual space of a tvs V are defined by means of a family of subspaces of V . Here and
subsequently CL(V,W ) is the space of continuous linear maps from a tvs V to a tvs W , and for A ⊂ V ,
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B ⊂ W , (A,B) is defined as the subset of CL(V,W ) which consists of all maps that map A into B. For
a family F of subsets of V the topology τF on CL(V,W ) is defined as the topology generated by the sets
(P,O) as a subbasis where P ∈ F and O ⊂ W open. It turns out that some properties of F are important
to ensure that τF is a vector space topology.

Definition 2.1 Let V,W be lhs, A a linear subspace of the continuous linear maps from V to W . An
A-palette is a subset P of the potence set P(V ) of V with the properties

1. For every member p of P and every member a of A, a(p) is s-bounded in W ,

2. A,B ∈ P ⇒ A ∪B ∈ P ,

3. A,B ∈ P ⇒ lA ∈ P ,

4. A ∈ P, v ∈ V ⇒ conv(A, {v}) ∈ P ,

5.
⋃

A∈P A is dense in V .

Ťhe palette is called strong iff, for every neighborhood N of 0 it contains an element PN with PN ⊂ N .

Theorem 2.2 (for (i) cf. [9] III.3.1 and III.3.2) Let V be an lhs.
(̌i) Every A-palette P of V generates as a subbasis a lhs topology τP on A ⊂ CL(V,W ).
(̌ii) The evaluation map evx for x ∈ V is continuous on (A, τP ) if and only if P is strong.

ˇProof. (i) We have to show that there is a basis B of zero neighborhoods which are point-absorbing,
circled and such that for every W ∈ B there is an U ∈ B with U+U ⊂W . If we choose a zero neighborhood
base H of W which consists of circled sets, then the sets (S, h) with h ∈ H are circled as well as l(S, h) =
(S, lh) (and even convex, so the topology defined is locally convex). Also the last property is satisfied
automatically. The first property is equivalent to the first property in the definition of palettes. It remains
to show that τP is Hausdorff. Thus we have to show that 0 ∈ CL(V,W ) is closed. Let 0 6= f ∈ CL(V,W ),
then there is a x ∈ V with f(x) 6= 0. Hausdorffness of W allows us to find a zero neighborhood W with
0 /∈ f(x)+W and some zero neighborhood U with U +U ⊂W . By continuity of f and density of P we find
a p0 ∈ P with f(p0) ∩ (f(x) + U) 6= ∅, and then 0 /∈ (p0, f(x) + U) ∋ f .

(̌ii) Now we want to show that if the palette is strong, the evaluation map is continuous: We want to
show openness of ev−1

x (U) = (x, U) for an open set U in W and every x ∈ V . If L ∈ (x, U) then, as
· − L is continuous, the subset (x, U) is open iff (x, U) − L = (x, J := U − L(x)) is open, and J is an
open neighborhood of 0. But because A consists of continuous maps, (x, J) =

⋃

N∈N(0)(x + N, J). Now

because of the strongness condition PN ⊂ N we get (x, J) =
⋃

p∈P 0(x + p, J) where P 0 is the subfamily of
P consisting of the elements containing 0. But the sets x + Cpp are members of the palette because of the
defining properties 3 and 4, so (x, J) is open and therefore (x, U) as well. 2

ˇExamples: Basic examples are

1. the palette FC of convex compact subsets contained in finite-dimensional linear subspaces,

2. the palette F of compact subsets contained in finite-dimensional linear subspaces,

3. the palette CC of convex compact subspaces

4. the palette C of compact subspaces

5. the palette PC of precompact subsets

6. the palette S of s-bounded subsets

7. the palette Bs of metrically bounded subsets of diameter ≤ s
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8. the palette B of metrically bounded subsets

ˇRemark: It is obvious that if P1 ⊂ P2 then τP1
⊂ τP2

.
ˇRemark: If the metric is bounded, then B is the maximal palette consisting of the whole potence set

of V , and then it is easy to see that this generates a completely disconnected topology.
ˇRemark: Property 5 is needed only to show Hausdorffness. Thus, for example, BrL(V,W ) as described

in [6] does not come from any palette, even without 5, as it is Hausdorff anyway.

Definition 2.3 A fundamental sequence of a palette P is an increasing sequence S1 ⊂ S2 ⊂ ... of
elements of P such that every element of P is contained in some Pk.

Lemma 2.4 ([5]) If V is a metrizable tvs with a palette P and an associated fundamental sequence {Si|i ∈
N}, then there is an i ∈ N such that Si absorbs every element of P .

ˇProof. Suppose there is no such Si. Then w.r.o.g. let Si be absolutely convex and such that no Sn

absorbs Sn+1. Choose a sequence xn ∈ S1 \ {0} with xn → 0. Then for all (n, k) ∈ N
2 choose zn,k ∈ k−1Sn

with

zn,k /∈ (k + 1)Sn−1. (1)

Ňow define M := {xn + zn,k|n, k ∈ N}. We want to show that the sequential completion M
s

of M is
not closed in V , in contradiction to the assumption of metricity of V which would define a metric on M
by restriction. To see that M

s
is not closed, observe that xn ∈ M

s
and xn → 0, but 0 /∈ M

s
: Suppose a

sequence in M converges to 0, then it is s-bounded, so by the defining property of fundamental sequences it
is contained in some Sm. Then we have xn + zn,k ∈ Sm and therefore zn,k ∈ Sm − S1 = Sm + S1 ⊂ 2Sm,
therefore because of Eq. 1 we have n ≤ m for all members of the sequence. But as the sequence converges
to 0, it has to contain arbitrarily high values of n, a contradiction. 2

Theorem 2.5 (cf. [8]) Every metrizable tvs has a translation-invariant compatible metric with circled balls.
2

Theorem 2.6 Let (V, d) be a metric vector space with circled balls. Then (V, d) is scalar-bounded by 2, and
we have even d(sv, 0) ≤ (−[−s])d(v, 0) for any s > 0 where [·] is the Gauss bracket.

ˇProof. This is just an easy application of the triangle inequality. 2

Theorem 2.7 Let V be a metrizable locally convex tvs, A ⊂ V ∗ := CL(V,R) with the Hahn-Banach property
and an A-palette P which contains the palette of convex compact sets. If (A, τP ) is metrizable then there is
an element of P which contains an open set.

ˇRemark. Here we could also consider the space of all continuous linear maps into a Banach space. The
latter property we will need in the rescaling process below.

ˇProof. If (A, τP ) is metrizable, then there is a countable system of zero neighborhoods Ui which are
w.r.o.g. of the form Ui := (Si, Oi) where Si ∈ P and Oi ∈ K (here we need the first property in the definition
of palettes, stability under finite union, and because of (S1, O1)∩ ...∩ (Si, Oi) ⊃ (S1∪ ...Si, O1∩ ...∩Oi)). By
rescaling we can even find a system of the form U ′

i := (S′
i := ki · Si, O1) as there are constants ki > 0 with

Oi ⊂ kiO1 by local s-boundedness of K and because of the second property in the definition of palettes. Then
the S′

i are a fundamental system for P , because otherwise there is S ∈ P with S 6⊂ S′
i and therefore there

is an open set (S,O1) not containing any (S′
i, O1) (applying the Hahn-Banach property assumed above).

With the lemma above we conclude that there is an S′
m which absorbs all sets of P , thus all convex compact

sets. Then S′
m contains a ball: If not, define a sequence xn ∈ V \ S′

m but with an := d(xn, 0) → 0. Then
x′n :=

√
an

−1xn → 0 because (V, d) is scalar-bounded by 2, therefore conv({xn|n ∈ N}) is convex and

3



compact, but is not absorbed by S′
m (as the necessary scaling factor to absorb the n-th point of the sequence

would have to be smaller than
√
an which tends to 0), a contradiction. 2

Ǎs a corollary we get the well-known result

Theorem 2.8 Let V be a metrizable locally convex tvs. If V ′ equipped with the compact-open topology is
metrizable, V is finite-dimensional. If the s-bounded-open topology is metrizable, then V is normable. 2

Šo let’s go on with our quest: First let us look below the CCO topology. What about the FO (finite-
open) topology on CL(V,W ) described by the palettes FC or F? This topology is described by uniform
convergence of filters on finite sets (as the maps are linear, finite and finite-dimensional are equivalent here)
and is therefore complete if and only if W is complete.

Theorem 2.9 If V is infinite-dimensional, the finite-open topology on V ∗ is not metrizable.

ˇProof. If we assume that there is a countable zero neighborhood base U1 ⊃ U2... we can assume w.r.o.g.
that Ui = (Fi, Oi) with Fi finite sets. This gives us a countable Hamel generating system (and by the usual
clean-up procedure a countable Hamel basis) which does not exist in infinite-dimensional complete metric
vector spaces as they are nonmeager in itself and as the sequence of finite-dimensional subspaces following
the basis would be sequence of closed subspaces of empty interior whose union is the whole space. 2

3 General obstructions against metrization

Ňow we will see that typical Fréchet spaces do not have well-behaved metrizable topologies on their dual
spaces. Throughout this section, let V1 := R

N be the space of real sequences equipped with any vector
space topology τ1 in which the linear maps dn ∈ L(V1,R) given by dn(a) := an are continuous. Let
V2 := C∞([0, 1],R) equipped with any topology τ2 in which the maps en

x : f → f (n)(x) are continuous
for every n ∈ N, x ∈ [0, 1]. The finite-open topology τfo on the dual spaces V ∗

i is given by the subsets
({p}, O) ⊂ V ∗

i = CL(Vi,R) as a subbasis.

Theorem 3.1 For i = 1, 2, every metrizable topology on V ∗
i is strictly coarser than the finite-open topology.

ˇProof. The proof consists of two parts: in the first one, we invoke a theorem from [4] to show that for
every continuous map A : Vi → (V ∗

i , τfo), the map Ã : Vi×Vi → R given by Ã(v, w) := A(v)(w) is continuous.
In the second one, for every metrizable topology τm on V ∗

i we construct a map A : Vi → (V ∗
i , τM ) for which

Ã is not continuous. Now if τM were finer than τfo then A : Vi → (V ∗
i , τfo) would be continuous as well and

the theorem from the first part would apply, proving the continuity of Ã, a contradiction.

ˇFirst part: The theorem from [4] (there Lemma 0.1.4.) reads:

Lemma 3.2 Let E be a metrizable and barrelled l.c.s., F an arbitrary l.c.s. and n ∈ N. If X is a metrizable
topological space and if g : X → Ln

s (E,F ) is a continuous function, then the map g̃ : X×En → F , associated
to g, is continuous.

W̌e apply this to E = Vi = X which is Fréchet and therefore barrelled (and locally convex and metrizable),
and F = R. We put n = 1, then we have that for every g : Vi → L1

s(Vi,W ) continuous, g̃ : Vi × Vi → R is
continuous again. By definition on p. 14 we have L1(E,F ) = L(E,F ), and the topology is defined on p.14/15
as the one of simple convergence, that is, equicontinuous convergence on finite sets, which corresponds to
the finite-open topology. The definition of g̃ appears on p. 17 (Lemma 0.1.2.).

ˇSecond part: Let τm be any metrizable topology on V ∗ and let D be a metric compatible to τm. Then

Lemma 3.3 For all δ, ǫ > 0, there is f i
δ,ǫ ∈ V ∗

i with fδ,ǫ ∈ B
V ∗

i

δ (0), but f i
δ,ǫ(B

Vi

ǫ (0)) = R.
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ˇProof of the lemma. In the case i = 1 consider the continuous linear maps dn. Suppose there is
a ball Bǫ(0) in which all of them are bounded. Then let Mn := max{|dn(Bǫ(0))|, n} and consider v ∈ V1

defined by vn := M2
n. Then there is no t > 0 with tv ∈ Bǫ(0), a contradiction to the assumption that

τ1 is compatible with scalar multiplication. In the case i = 2 proceed analogously but replace dn by

δn : f 7→ f (n)(1−2−n) and define v as the locally finite sum of smooth functions vn with v
(n)
n (1−2−n) = Mn

and supp(vn) ⊂ [1 − 2−n − 2−n−2, 1 − 2−n + 2−n−2]. Then the supports are disjoint and the sum is
defined as a smooth function, and there is no t > 0 with tv ∈ Bǫ(0). Now if we require additionally that
||vn||Ck([0,1],R) < 2−n for all k < n then v extends even to 1 in every Ck (and therefore in the smooth) sense.

ˇRemark: We could instead of requiring all the en
x to be continuous only require the en

1/2 to be continuous

and then translate the vn as above to 1/2. Their sum converges with the same arguments. In general, the
arguments given above imply that given a sequence of points pn in [0, 1] and a sequence of numbers an, one
can find a smooth function f on [0, 1] with f (n)(pn) = an.

Ňow for natural n put fn := f2−n−1,2−n , then we have fn ∈ B
V ∗

i

2−n−1(0) and fn(BVi

2−n(0)) = R, thus

we can pick w′
n ∈ BVi

2−n(0) with fn(w′
n) > n, and there are real numbers sn ≥ 1 with wn := snw

′
n ∈

BVi

2−n(0) \ BVi

2−n−1(0) and still fn(wn) > n. As Vi is a metric space and therefore paracompact, for each n
there is a continuous function ψn ∈ C0(Vi,R) with ψn(wn) = 1 and supp(wn) ⊂ B2−n−2(wn) ⊂ Vi\B2−n−2(0).
The triangle inequality implies that supp(ψi) ∩ supp(ψi+4) = ∅, thus we can define f :=

∑

i∈4N
ψn · fn, and

this is a continuous function as every point in Vi has a neighborhood in which every but one term of the sum
vanishes. Thus f ∈ C0(Vi, (V

∗
i , τm)) (f is even a sub-isometry if D has starshaped balls, but we will not

need this fact). But f̃ : Vi × Vi → R is not continuous, not even f̂ := fø∆ : Vi → R, where ∆ : Vi → Vi × Vi

is the diagonal map, so f̂(v) := f(v)(v). This is because f̂(vn) = f(wn)(wn) > n, while wn → 0.

Ňow we put together the two parts: If there is a metrizable topology on V ∗
i and it is finer than τfo, then

we apply the first part to f and conclude that f̃ is continuous, a contradiction. 2

4 Restriction to tame linear maps

Ǎnother idea is to not consider all of CL(V,W ) but only a part A of it. Our first and only try is the
space of tame linear maps TL(V,W ) which we want to introduce now. The interest in them stems from
the fact that every differential operator of degree k corresponds to a k-tame map in the natural metrics on
spaces of sections (cf. [3], [6]). A pre-Fréchet space is a locally convex metric vector space. Consider two
pre-Fréchet spaces V,W . Let U ⊂ V be open. A map f : U → G is called tame if for every u ∈ U there is
a neighborhood A of u and r, b ∈ N and Cn ∈ R such that for all a ∈ A and all n ≥ b we have

µW
n (f(a) − f(u)) ≤ Cn(1 + µV

n+r(a− u)),

w̌here the µ are the respective Minkowski functionals. Now it is esy to see that tameness implies con-
tinuity. Less easy to see is the following theorem which gives more restrictive conditions for linear tame
maps:

Theorem 4.1 (cf. [3]) Let V,W be pre-Fréchet spaces. Then any linear f : V →W is tame if and only if
there are r, b ∈ N and Kn ∈ R such that for all v ∈ V we have

µn(f(v)) ≤ Kn · µn+r(V )

f̌or all n ≥ b. In this case we call f ∈ CL(V,W ) r-tame with basis b.

ˇProof. One direction is trivial. For the other one, assume f is tame. Then for some neighborhood U
of 0 we have

µn(f(v)) ≤ Cn(1 + µn+r(v))

5



f̌or all n ≥ b, v ∈ U . Now look for B ≥ b, ǫ > 0 with {v|µB+r(v) ≤ ǫ} ⊂ U . Choose v ∈ V \ {0} and put
g := ǫv/µB+r(v). Then µB+r(g) = ǫ and

µn(f(g)) ≤ Cn(1 + µn+r(g)). (2)

Ľinearity of f implies f(g) = ǫf(v)/µB+r(v). Plugging this in into 2 yields

ǫ

µB+r(v)
· µn(f(v)) ≤ Cn(1 +

ǫ

µB+r(v)
µn+r(v)),

šo for n ≥ B we get

µn(f(v)) ≤ Cn(
µB+r(v)

ǫ
+ µn+r(v))

≤ Cn(
µn+r(v)

ǫ
+ µn+r(v)) = Cn(1 +

1

ǫ
)µn+r(v) =: Knµn+r(v),

w̌hich shows that f is r-tame with basis B. 2

Ǒbviously, f ∈ CL(V,W ) is r-tame with basis b if and only if f(B(M + r)) ⊂ CM · B(M) ∀M > b
for B(N) := B2−N and the CN being arbitrary real constants. These maps form a subspace Tr,bL(V,W ) ⊂
CL(V,W ). If there is a natural b such that f is r-tame with basis b we call f r-tame and collect these
maps to the space TrL(V,W ). The composition of two tame maps is easily seen to be tame again, but the
order of tameness adds up: If f ∈ TrL(V,W ) and g ∈ TsL(W,X), then føg ∈ Tr+sL(V,X). Therefore, if we
are interested in forming algebras of linear maps or for some other purpose, it seems desirable to collect all
tame linear maps in one space, irrespective of their tameness order. Thus we define the space of tame maps
TL(V,W ) =

⋃

r∈N
TrL(V,W ). Obviously BrL(V,W ) as defined in [6] is contained in TL(V,W ), but not in

a single TrL(V,W ). Moreover, we have:

Theorem 4.2 (cf. [3]) Let V,W be pre-Fréchet spaces and let the metric of V or of W be tamely equiv-
alent to a norm, then, for all r, b ∈ N, we have CL(V,W ) = Tr,bL(V,W ), and in particular, TL(V,W ) =
CL(V,W ). Therefore for linear maps between normed spaces tameness is continuity.

ˇProof. Let f : V → W be linear and continuous. If V is normable with a norm ν, then for all n ∈ N,
there is an ǫ > 0 with f(ǫ · Bν

1 (0)) = f(Bν
ǫ (0)) ⊂ C(n). If W is normable with a norm ν, then there is an

m ∈ N with f(c(m)) ⊂ Bν
1 (0) = 2mC(m). 2

ˇRemark: Also if both V and W are normed spaces, not every nonlinear continuous map is tame,
consider the continuous function x 7→ x1/3 on R. But at least C1 maps between finite-dimensional normed
spaces are easily seen to be tame.

Ǒne can now try to replace continuity by tameness in the foundational theorems of infinite-dimensional
analysis. For example, it is easy to see that

Theorem 4.3 In every pre-Fréchet space its metric is a tame (nonlinear) function. 2

ǎnd, by composing the metric with an appropriate function f ∈ C1([0,∞), [0, 1]) to conclude that

Theorem 4.4 Every pre-Fréchet space has tame partitions of unity. 2

Ťhe subspaces Tr,bL(V,W ) can be metrized by a quite natural Fréchet metric which corresponds to the
minimal choice cM of the CM if all balls in W are compact and which consists in the familiar Fréchet metric
for the real sequence {||A||M := µM (A(M + r))}M≥b.

6



Theorem 4.5 The space Tr,bL(V,W ) with the metric above is a Fréchet space.

ˇProof. We have to show completeness only. So let {An}n∈N be a Cauchy sequence in the metric, then
it is a Cauchy sequence in every || · ||M . Thus the values An(v) for a fixed vector v form a Cauchy sequence
in every Minkowski functional of W . Therefore completeness of W implies that they converge to a point
A(v). Then the map A defined as pointwise limit is linear and continuous by the usual arguments, and every
||A||M is finite, again because the ||An||M form a Cauchy sequence. 2

Ňow, as the inclusions Tr,rL(V,W ) ⊂ Tr+1,r+1L(V,W ) are strict for all interesting cases (e.g. V,W spaces
of sections of fiber bundles), a result by Narayanaswami and Saxon ([7]) about direct limits of metric vector
spaces shows that there is no way to define a Fréchet topology on TL(V,W ) with all Tr,rL(V,W ) closed in
TL(V,W ). What can be done, however, is, on the one hand, define a (non-complete) locally convex metric
tvs structure on TL(V,W ) with all Tr,rL(V,W ) closed, or, on the other hand, define a Fréchet structure on
TL(V,W ) with at least some Tr,rL(V,W ) not closed. In the light of the inverse function theorems of Nash and
Moser the second way seems to be by far more desirable, so we will follow this approach. To this aim, let us
introduce some more non-standard terminology: We call a metric vector space (V, d) strict iff for all v ∈ V we
have that S(v) := supr>0 d(rv, 0)/r <∞. An elementary calculation shows that S(v) = limr→0d(rv, 0)/r and

that S(lv) = lS(v) for l > 0. A counterexample to strictness is provided by (R, d) with d(x, y) :=
√

|x− y|.
We call the metric vector space s-differentiable iff the function mv : s 7→ d(sv, 0) satisfies mv ∈ C1([0,∞)).
Obviously, any differentiable metric vector space is strict. The pull-back of an s-differentiable resp. strict
metric by a map which is differentiable along rays is s- differentiable resp. strict (the main example is the
map γ → {||γ||n : n ∈ N} for some seminorms || · ||n as the seminorms are homogeneous, thus differentiable
along rays). We will later see that, unfortunately, most common Fréchet spaces are not strict.

Ľet V,W be pre-Fréchet spaces. Local convexity implies that the c(n) := conv(BV
2−n(0)) and C(n) :=

conv(BW
2−n(0)) form zero neighborhood bases. Now for a subset S of W put

µn(S) := inf{r ∈ R
+|S ⊂ r · conv(BW

2−n)(0)} = (sup{s ∈ R
+|s · S ⊂ ·conv(BW

2−n)(0)})−1.

Ňow we define ||A||m,n := µn(A(c(m))). Theorem 2.6 tells us that the scalar multiplication with N for
N ∈ N is bounded by N , therefore applying this for N = 2 we get 2 · Br(0) ⊂ B2r(0) and 2conv(Br(0)) ⊂
conv(B2r(0)) in both V and W . Thus µi+1(S) ≥ 2µi(S) for every subset S and therefore

Lemma 4.6 ||A||m,n+1 ≥ 2||A||m,n and ||A||i+1,j ≤ 1
2 ||A||i,j . 2

Ǎs a corollary, we get

Proposition 4.7 If a continuous linear map A : V →W is r-tame with basis b, it is (r+ b)-tame with basis
0. 2

Ňow, for some ai,j ∈ R, we define

Ka
i,j := {A ∈ TL(V,W ) : ||A||i,j < ai,j} = (c(i), aijC(j)) = (a−1

ij c(i), C(j)), Ka
j :=

∞
⋃

i=1

Ki,j.

Ňow for am+1,n ≥ am,n/2, Ka
j is an ascending union of convex sets because of the Lemma 4.6, thus it

is convex, in particular circled. Now we choose, for am,n := m−n, Km,l := Ka
l and Kl := K2,l. Then the

lemma implies Kn+1 ⊂ Kn. For a real m, the topology generated by {Km,l|l ∈ N} we denote by τl and put
t := τ2. Thus Ki,j := (2ic(i), C(j)).

Theorem 4.8 Let V,W be metric vector spaces, let V be strict. The Kj and their geometric multiples
2−nKj form the countable base of a Hausdorff tvs topology t on TL(V,W ) (which is therefore metrizable)
that is coarser than the above topology on any Tr,bL(V,W ), i.e., if An → A in Tr,bL(V,W ), then An → A in
TL(V,W ).
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ˇProof. We have to show that

1. The Kj are point-absorbing,

2. For every n ∈ N there is an m ∈ N with Km +Km ⊂ Kn.

3. For every v ∈ V \ {0} there are j, n ∈ N with n · v /∈ Kj.

Ňow let A ∈ TL(V,W ), then there is an r ∈ N with A ∈ Tr,rL(V,W ). Therefore, for a given j, look for
i ∈ N with i − j ≥ 2r, then Kj contains {B ∈ TL(V,W ) : ||B||i,j < 2−i}. But ||A||i,j < ∞, and the norm
is homogeneous, so by scaling, l · A ∈ Kj . As for the second feature, we can show that m = n + 1 works:
If v, w ∈ Kn+1, then there are i, j ∈ N with ||v||i,n+1 < 2−i and ||w||j,n+1 < 2−j. W.r.o.g. let j ≥ i, then
with the second part of Lemma 4.6 we get ||v||j,n+1 < 2−i2−j+i = 2−j and therefore with the first part of
Lemma 4.6 we get 2||v+w||j,n < ||v+w||j,n+1 < 2 · 2−j, and the claim follows. For the last property in the
list above let w ∈ A(V ) \ {0}. Then there is an I ∈ N with w /∈ C(I). We choose a j ≥ I and want to show
that there is an n ∈ N with

nA /∈ Kj.

Čhoose a v ∈ A−1(w). Now, as V is strict, there is a S(v) > 0 with d(lv, 0) < S(v) · λ for every l > 0.
For any natural N > S(v) we have d(lv, 0) < N · λ as well for every l > 0 and therefore d(sN−1v, 0) < s
for any s = lN > 0. In particular, for any natural i, we have d(2−iN−1v, 0) < 2−i or, in other words,
2−iN−1v ∈ BV

2−i(0) ⊂ c(i). As w = A(v), we have 2iNA(c(i)) 6⊂ C(j) for any natural i, so ||NA||i,j ≥ 2−i

for all natural i, thus N · A /∈ Ki,j for any natural i, which means that N · A /∈ Kj. Thus the topology is
Hausdorff, the basis is countable, therefore the topology is metrizable. For the last statement of the theorem
note that if a sequence an converges in Tr,bL(V,W ) to a, then for every j, an − a lies finally in Kr+j,j, so
the sequence converges in TL(V,W ). 2

Theorem 4.9 Let V,W be metric vector spaces, V strict. Let a : N
2 → R be a map such that the system

of Ka
l defined as above is a a zero neighborhood basis of a vector space topology τa on TL(V,W ). Then τ is

coarser than τ3.

ˇProof. As vector addition is continuous, for all j ∈ N there is a J ∈ N with KJ +KJ ⊂ Kj . Now by
deleting some Kl’s from the basis and renumbering we get a zero neighborhood basis for the same topology
τ with the property that Kj+1 +Kj+1 ⊂ Kj for all natural j. This implies that for all natural i, k there is
a natural I(i, k) with Ki,j +Kk,j ⊂ 2KI(i,k),j. Then we have conv(Ki,j ,Kk,j) ⊂ KI(i,k),j . Now by setting

i(1) := 1 and i(n+1) := I(n, i(n)) we get Kj =
⋃

n∈N
Ki(n),j where the Ki(n),j =: K̃nj now form an ascending

union of convex sets. In particular we have

{|| · ||i(n),j < ai(n),j} = Ki(n),j ⊂ Ki(n+1),j = {|| · ||i(n+1),j < ai(n+1),j}.
Ťhe lemma tells us that the left-hand side is contained in {|| · ||i(n+1),j < 2−D(m)ai(n),j} for D(m) :=

i(m+ 1) − i(m), so it is clear that ai(n+1),j > 2−D(n)ai(n),j > 3−D(n)ai(n),j is a sufficient condition for this.

But using µk(v) ≤ D(v) · 2k it is easy to see that for all i ∈ N there is a I ∈ N with µi(v) > 3−(I−i)µI(V ),
thus it is also necessary, so by filling out the gaps between the i(k) we get Kj ⊃ ⋃

i∈N
{|| · ||i,j < a1j · 3−i}.

The rest is scaling. 2

Řight from the definition of TL(V,W ) as the union of the Tr,rL(V,W ) it is quite clear that if all inclusions
Tr,rL(V,W ) ⊂ Tr+1,r+1L(V,W ) are proper, the former space cannot be complete (choose a diagonal Cauchy
sequence). Now we consider the completion TL(V,W ) of TL(V,W ). An element in the completion we call
almost tame:

Theorem 4.10 Let V,W be metric Fréchet spaces, V strict. Then TL(V,W ) ⊂ CL(V,W ) is a metric
Fréchet space again.
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Theorem 4.11 If V,W are Banach spaces, then TL(V,W ) = CL(V,W ) with the topology coming from the
usual operator norm which corresponds to the topology generated by the palette of s-bounded sets.

ˇProof. This is easy to see, as in this case the inequalities of Lemma 4.6 are equalities and therefore the
sets Kj are balls in the operator norm. However, note that the metric on TL(V,W ) defined this way does
not come from a norm (because of the nonlinear Φ). 2

Ňow we define a subset S of a metric vector space to be α-tame if there is a D > 0 with µn(S) < D ·αn

for all natural n, it is called tame if it is 2-tame. It is easy to see that if a subset A is tame (so for some
D > 0, A ⊂ D2nC(n)) then S as in the definition of strictness is bounded by 2D on A. The image of a tame
curve is in general not tame: Suppose that S as in the definition of strictness is unbounded in every ball
of the space V (a property which is easy to check for all spaces of sections with standard metrics), choose
vn ∈ B2−n(0) with S(vn) > 2−n and join the vn by straight line segments on the intervals [2−n−1, 2−n] and
extend continuously to c(0) := 0. The so defined curve c is a subisometry and therefore tame, but obviously
its image is not a tame subset of V as S is not bounded on it.

Ťhe family of tame subsets forms a palette T with F ⊂ T ⊂ C, and the associated palette topology
on CL(V,W ) we call tame-open topology. We say a pre-Fréchet space F to satisfy the Arzela-Ascoli
property iff for any real sequence an, the set

⋂∞

i=1{f ∈ F |µi(f) < ai} is compact. The usual spaces
of smooth sections do have this property because of the Arzela-Ascoli theorem. This property is a genuine
property of metric vector spaces in the sense that, obviously, a normable space has the Arzela-Ascoli property
if and only if it is finite-dimensional. We call a pre-Frechet space α-full if it contains a compact non-α-tame
subset. It is obvious that for pre-Fréchet spaces with the Arzela-Ascoli property, every tame set is compact,
therefore the tame-open topology is coarser than the compact-open topology. The following theorem shows
that it is strictly coarser in case that V has the Arzela-Ascoli property and is full:

Theorem 4.12 The metrizable tvs topology t := τ2 of TL(V,W ) is finer than the tame-open topology, but
coarser than the bounded-open topology.

ˇProof. As we need a lemma from general topology in a slightly more general form than the usual one,
let us recall it shortly:

Lemma 4.13 (i) Let X be a set and τ, τ̃ two topologies on X, then τ ⊂ τ̃ if and only if, for all x ∈ X, for
all A ∈ N τ (x) there is a B ∈ N τ̃ (x) with B ⊂ A.

(ii) If X has the structure of an abelian group and the topologies are compatible with the group structure,
then τ ⊂ τ̃ if and only if, for some x ∈ X, for all A ∈ N τ (x) there is a B ∈ N τ̃ (x) with B ⊂ A. 2

Ňow, by Lemma 4.6, we have 2iC(i) ⊃ 2i+1C(i+1) and therefore, for every subset A of W , (2iC(i), A) ⊂
(2i+1C(i+ 1), A). Now we use the set-theoretic fact

(LI , N) ⊂
⋃

i∈I

(Li, N) ⊂ (
⋂

i∈I

Li, N)

ťo write

(c(I), 2−Is · C(j)) ⊂ s ·Kj = s · limi→∞(2i · c(i), C(j)) ⊂ (

∞
⋂

i=1

2i · c(i), s · C(j)),

ǎnd the claim follows by staring at this line: in the center we have a general element of the zero neigh-
borhood basis of t. On the left-hand side there is an element of τb. Finally, for every element Y of the
zero-neighborhood basis of τt we can find a subset U of the form on the right-hand side with U ⊂ Y . There-
fore the bounded-open topology (which is not a vector space topology but still a vector group topology) is
finer than t which in turn is finer than the tame-open topology. 2

Ťhis gives us some tools to handle t: For example, if a sequence is Cauchy in the bounded-open topology
(which, to stress it again, is not a tvs topology), then it is Cauchy in t (and therefore converges). And on
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the other hand, if a sequence converges in t, it converges uniformly on tame subsets of V . We get another
immediate corollary:

Theorem 4.14 V1, V2 as in the previous section are not strict.

ˇProof. This follows from the theorem of the previous section and of the fact that in strict vector spaces,
points are tame, thus the tame-open topology is finer than the finite-open topology. 2

Theorem 4.15 If V is α-full, τα is not finer than the compact-open topology.

ˇProof. We choose a non-tame compact set K which exists because of fullness of V and any open set
O ⊂ W . We want to show that (K,O) does not contain any d-open set. For this, we have to show that for
every natural j there is a map fj ∈ Kj but f /∈ (K,O). We will choose fj := αj · w for a w ∈W \O chosen
arbitrarily, but fixed for all j. The requirement f /∈ (K,O) is then satisfied if for any j we find a vj ∈ K
with αj(vj) = 1. In the same time, we have to show that fj ∈ Kj =

⋃

i∈N
Kij , that is, we have to find a

natural i with f(C(i)) ⊂ 2−iC(j), or, equivalently, ||αj ||i < 2−im−1
j , where m := ||w||j . In the light of the

tame Hahn-Banach theorem (applied to Rw and the sublinear functional || · ||i and keeping in mind that
the normability of R implies that CL(V,R) = TL(V,R)) this is the same as showing that ||vj ||i < 2−im−1.
So, in summary, we have to find, for every j ∈ N, a vj ∈ K with ||vj ||i > 2−im−1

j (and then define αj

correspondingly). But the existence of such a vj is guaranteed precisely by the α-fullness of V . 2

Šo, put together with Theorem 4.9, we get that if V is 3-full then no tvs topology on TL(V,W ) of the
form τα can be finer than the compact-open topology. This is in contrast to the topologies on the spaces
Tr,b(V,W ):

Theorem 4.16 The Fréchet topology on Tr,bL(V,W ) is finer than the compact-open topology τCO, and the
evaluation map eva : TrL(V,W ) × V →W is continuous.

ˇProof. We consider the usual series of seminorms ||A||i = ||A||j+r,j for j ≥ b. As we can calculate up
to tame equivalence, let w.r.o.g. be the metrics on V,W be of sum form. Let a compact K ⊂ V and an open
set U ⊂ W be given. Then let an be the maximum of || · ||n on K. Let r > 0 with BW

r (0) ⊂ U . Choose a
natural i with 2−i < r/2, then

{w ∈W : ||w||j ≤ Φ−1(r) ∀j ≤ i} ⊂ BW
r (0).

Ťherefore it is sufficient to show ||A(K)||j ≤ Φ−1(r) for all j ≤ i. This is the case if ||A||jaj+r ≤ Φ−1(r),
or, equivalently and with M := max{1,maxk=1,...,i+rak}, ||A||j ≤ Φ−1(r)·M−1 for all j ≤ i. This is satisfied
if

∑

2−jΦ(||A||j) ≤ 2−iΦ(Φ−1(r) ·M−1) =: ǫ,

šo Bǫ(0) is contained in (K,U). For the second assertion, let n ∈ N be given, then, whenever 2−nΦ(1) > δ,
we get

BW
2−n(0) ⊃ f(B

TrL(V,W )
δ (0) ×BV

2−n−r(0)). 2

Ňow, in the light of the remark after Theorem 4.15, let us have a look at whether the standard Fréchet
spaces are 3-full. To that purpose, we define a pre-Fréchet space F to be step-full if, for all s > 1 there
are M(s) ∈ R, vs ∈ F with si < µi(v) < M(s) · (4s)i for all i ∈ N. Normed spaces are never step-full as
their Minkowski functionals grow as a geometric sequence. As the condition on the vector in the definition
of step-fullness is preserved by isometries and as there are the functions sin((2s)x), we get

Theorem 4.17 Let F be a pre-Fréchet space and i : F0 → F an isometric linear embedding. Then F is
step-full. In particular, all spaces of sections of fiber bundles with the standard sum or sup metrics are
step-full. 2
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Theorem 4.18 Let the step-full pre-Fréchet space F have the Arzela-Ascoli property. Then it is s-full, for
each real s.

ˇProof. Consider the set M(s) · ⋂(4s)iC(i), for an s ≥ 1. The Arzela-Ascoli property ensures that it is
compact. Step-fullness implies that it is not s-tame: Suppose that there is a D > 0 with M(s)

⋂

(4s)iC(i) ⊂
D

⋂

siC(i). Then put j := min{i ∈ N|4i > D/M} to see that vs as in the definition of step-fullness is in
⋂

(4s)iC(i), but not in D
⋂

siC(i), a contradiction. 2

Ňow we get an analogue of Theorem 3.1 for step-full Fréchet spaces:

Theorem 4.19 Let V be a step-full pre-Fréchet space and W be a pre-Fréchet space containing a vector w
with S(w) < ∞. Let t be any topology on TL(V,W ) compatible with scalar multiplication. Then there is
a tame map A : U → TL(U,W ) such that EA : U → W given by E(u) := A(u)(u) is not continuous. In
particular, the evaluation map eva : TL(V,W )× V →W , given by eva(A, u) = A(u) is not continuous, and
V is not strict.

ˇProof. We choose r := 1
2d(w, 0). By putting A := f · w, by the assumption that S(w) <∞ we reduce

the problem to the case W = R: we have to find f ∈ TL(V,R) = CL(V,R) with f(vi) = i. First, for all
n ∈ N, we construct a tame linear map f̃n ∈ CL(V,R) which is unbounded on B2−n(0) by the following
lemma:

Lemma 4.20 Let V be an step-full Fréchet space, then for all ǫ > 0 there is an f̃ǫ ∈ TL(V,R) = CL(V,R)
such that f̃ǫ(Bǫ(0)) is unbounded in R.

ˇProof of the lemma. Let 2−i−1 < ǫ, then, by step-fullness, consider vn with µj(vn) < 2−2n for all
j < i and µj(vn) > 1 for j ≥ i. Then, for every n, with the Hahn-Banach Theorem we can construct a

continuous linear map f̃
(n)
ǫ with f̃

(n)
ǫ (vn) := 2n and f̃

(n)
ǫ < 2−nµi−1 pointwise. Then it is easy to see that

the partial sums
∑N

n=1 f̃
(n)
ǫ define pointwise and the map f̃ǫ defined as pointwise limit is continuous and

linear. But as all vn are in Bǫ(0), this set is mapped on an unbounded set in R by f̃ǫ. 2

Ňow we set Ãn = f̃n · w and proceed as in the proof of Theorem 3.1: we set An := tn · Ãn for real
numbers tn chosen in a way that An ∈ BTL

2−n(0). Still the An are unbounded on the BV
2−n(0). Now choose

vn ∈ B2−n(0) \ B2−n−1(0) with |An(vn)| > n, and let ψi be a tame function which takes the value 1
at vi and whose support is contained in B2−i−1(vi) (exists because of Theorem 4.4), then the function
A :=

∑

i∈2N
ψi · Ai : U → TL(V,W ) is continuous, but EA : v 7→ A(v)(v) is not continuous. For the last

statement, observe that EA = evaø(A,1), and then proceed as in Theorem 4.14. 2

F̌or V,W Fréchet spaces, V strict, we define iteratively spaces of tame linear maps by T 1
r L(V,W ) =

TrL(V,W ) and T n+1
r L(V,W ) := TrL(V, T n

r L(V,W )), T 1L(V,W ) := TL(V,W ) and T n+1L(V,W ) := TL(V, T nL(V,W ))

as well as T
1
L(V,W ) := TL(V,W ) and T

n+1
L(V,W ) := TL(V, T

n
L(V,W )). Now we can define at least

four different types of almost tame Ck maps betwen a strict and a general pre-Fréchet space:

Definition 4.21 Let U ⊂ V be an open subset of a strict Fréchet space and W a Fréchet space, let f ∈
T (U,W ). Then we define f ∈ T k

r (U,W ) iff Dlf : U → T lL(V,W ) exists and is tame for all l ≤ k. We
define f ∈ tk(U,W ) iff dlf : U × V l → W exists and is tame for all l ≤ k. We write f ∈ T k(U,W ) iff

Dlf : U → T lL(V,W ) exists and is tame for all l ≤ k, and f ∈ T
k
(V,W ) iff Dlf : U → T

l
L(V,W ) is tame

for all l ≤ k.

Ǒne example of a nonlinear map which is Tr-smooth (and, of course, t-smooth) is γ 7→ g(∇V γ, γ) for
γ a section of a Riemannian vector bundle with fiber metric g and metric connection ∇ and V a parallel
vector field in the base manifold (cf. [6] where it is shown that this is a bounded-smooth map). Obviously,

for r < s and k ≤ ∞, we have always inclusions T k
r ⊂ T k

s ⊂ T k ⊂ T
k
.

Ǐf V and W are Banach spaces, the spaces tk(U,W ) correspond to the spaces of Michal-Bastiani differ-
entiability, the spaces T k

r (U,W ) to Fréchet differentiability. Helge Glöckner showed in [1] that in this case
we have T k(U,W ) ⊂ tk(U,W ) ⊂ T k−1(U,W ). In the case of non-normable spaces we have:
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Theorem 4.22 For all natural k, we have the inclusion T k+1
r (U,W ) ⊂ Ck(U,W ) with the natural identifi-

cation of dkf and Dkf .

ˇProof. This is an easy consequence of a standard inductive argument using the continuity of the
evaluation map in TrL(V,W ) as established in Theorem 4.16. 2

Řesuming, in typical cases, the TrL spaces between metric vector spaces can be given a useful metrizable
topology while the TL spaces cannot. This can be useful in the treatment of spaces of differential operators
of bounded degree, but it does not allow for the treatment of algebras of such operators unless of algebraic
ones. Now, in the usual way we can define almost tame manifolds, T k

r maps between T k
r manifolds etc. in

exactly the same way we define Ck manifolds. In a subsequent analysis we will explore further the relations
between the different notions of differentiability, give an exponential map theorem like the one for continuous
maps in the compact-open topology, as well as establish two inverse function theorems for these maps.

F̌inally, I want to give a list of open questions which may have some importance:

1. Are there interesting strict vector spaces?

2. Is there another definition of TL(V,W ) not as a completion of something else, but intrinsically as a
subspace of CL(V,W )?

3. Is the metric topology on TL(V,W ) coarser than sbounded-open topology if V is not normable?

4. Are the metric topologies on TL(V,W ) and TrL(V,W ) generated by some palettes? If so, by which
ones?

5. Are there nice examples of non-normable Fréchet spaces which are not s-full for some s > 0?

6. Is there a simple criterion to decide when TL(V,W ) is strict?

7. Is there a sufficiently rich class C of metric vector spaces and continuous linear maps between them
such that for the latter ones form again an element of C? TL satisfies this statement only almost
because of the requirement of strictness on the first space.

8. We have seen that no vector space topology on CL(V,N) for N normable makes eva continuous. Is
there a compatible metric on TrL(V,W ) that makes eva tame? This would prove T k

r (U,W ) ⊂ tk(U,W ).
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