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Introduction

Most approaches for solving stochastic programs of the form

min {/Efo(g;,g)P(dg) T € X}

with a probability measure P on = C R? and a (normal) integrand f, require
to replace P by a some discrete probability measure or, equivalently, to replace
the integral by some quadrature formula with nonnegative weights

[ &P ~ 3 pifu(a.6),
= =1l

where p; = P({&:}), Y. pi = 1, are the probabilitiesand §;, € =, i = 1,...,n,
the scenarios. This leads to the scenario-based stochastic program

min {sz’f()(x,fi) X € X}
i=1

Since fy is often expensive to compute, the number n should be as small as
possible.
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With v(P) and S(P) denoting the optimal value and solution set of the stochastic
program, respectively, the following estimates are known

[v(P) —v(Q)] < sup

0#5Q) C S(P)Jr\lf]_g (sup

zeX

| o 6P - QW@‘
/hxéP Qwﬂ)

where X is assumed to be compact, () is a probability distribution approximating
P and Up is the growth function of the objective near the solution set, i.e.,

Up(t) := inf {/_ fo(z, &)P(d€) — v(P) : x € X,d(z, S(P)) > t}.

Hence, the distance dr with F := {fo(z, ) : © € X}

a5(P,Q) —mg/f (P - @uﬁ

feF

becomes important when approximating P.



For given n € N the best possible choice of elements &, € = (scenarios) and

probabilities p;, © = 1,...,n, is obtained by minimizing
sup | [ fule, OPIdE) — 3 pifu(w, 69|
TE = i—1

i.e., by solving the best approximation problem

min dr(P,
i (P, Q)

where P, (Z) := {Q : Q is a discrete probability measure with n scenarios}.

It may be reformulated as a semi-infinite program. and is known as optimal
quantization of P with respect to the function class /. Such optimal quantization
problems of probability measures are often extremely difficult to solve.

|dea: Enlarging the class F !

Aim of the talk:

Solving the best approximation problem for discrete probability measures P hav-
ing many scenarios and for function classes F, which are relevant for two-stage
stochastic programs (optimal scenario reduction).



Linear two-stage stochastic programs

win{ () + [ @) 1(6) ~ T Plag) 2 € X |

—

where ¢ € R™, = and X are polyhedral subsets of R? and R™, respectively, P
is a probability measure on = and the s x m-matrix T(-), the vectors ¢(-) € R™
and h(-) € R? are affine functions of .

Furthermore, ® and D denote the infimum function of the linear second-stage
program and its dual feasibility set, respectively, i.e.,
O(u,t) = inf{(u,y) Wy=t,y €Y} ((u,t) € R™ x R
D= {uecR": {zecR:W'z—uecY*}#£0},

where W is the s x T recourse matrix, W' the transposed of 1 and Y* the
polar cone to the polyhedral cone Y in R™.



Theorem: (Walkup-Wets 69)

The function ®(-, -) is finite and continuous on the polyhedral set D x W (Y').
Furthermore, the function ®(u, -) is piecewise linear convex on the polyhedral set
W(Y) for fixed u € D, and ®(-,t) is piecewise linear concave on D for fixed
te W().

Assumptions:

(A1) relatively complete recourse: for any (£, z) € = x X,
h(§) —T(§)x € W(Y);

(A2) dual feasibility: q(£) € D holds for all £ € =.
(A3) existence of second moments: |- ||{||*P(d§) < +oo.

Note that (A1) is satisfied if W (Y') = R® (complete recourse). In general, (A1)
and (A2) impose a condition on the support = of P. (Al) and (A2) imply that
d(q(-), h(-) — T'(-)x) is a finite linear-quadratic function on =.

Extensions to certain random recourse models, i.e., to W (£), exist.



Idea: Extend the class F such that it covers all two-stage models.

Fortet-Mourier metrics: (as canonical distances for two-stage models)

G:(P,Q) = sup

[reP-qua): s e 7)),
where > 1 (r € {12} if W(€) = W)
FoB) ={f:E=R: f(6) = f(§) < (&), ¥, € € EY,
e (6,6) = max{1, €L IEI " HIg - €] (6.6 € D).

PI’OpOSitiO“: (Rachev-Riischendorf 98)
If = is bounded, (,, may be reformulated as transportation problem

(P =int} [ (e Emide,dd)imn=P.mn =@
where ¢, is a metric (reduced cost) with ¢, < ¢, and given by

n—1

ér(faé) = inf {Z CT<€Zi7€Zi+1) NS Nvgli S Evgh — S?fln — g}

1=1



Let P and () be two discrete distributions with finite support, where &; are the

scenarios with probabilities p;, = = 1,..., N, of P and éj the scenarios and ¢,
7 =1,...,n, the probabilities of (). Let = denote the union of both scenario
sets. Then

6(P.Q) = nt{ [ a6 &mide,dé) s mu=Pman =

S

N
i=

n N
= int { ZZ%ér(fugj) : ZW = Di, Z%’ = qj;Mij = 0,
j=1 j=1 i=1

1
izl,...,N,jzl,...,n}

N n
= SUP{ZP@W Y gy pi— g < é&,§),i=1,...,N,
= =l

j:1,...,n}

These two formulas represent the primal and dual representations of (.(P, Q)
and at the same time primal and dual linear programs.
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1. Introduction

Various important real-life decision problems can be formulated as convex stochastic
programs which can be mostly written in the form

minIEpf(w,x):f flo, x)Pdw). (1)
xeX Q

Here, X ¢ R" is a given nonempty convex closed set, € a closed subset of RY and
B the Borel o-field relative to €, the function f from © x R” 10 the extended reals
R is measurable with respect to o and lower semicontinuous and convex with respect
to x, and P a fixed probability measure on (€2, B), i.e., P € P(2), with IEp denoting
expectation with respect to P. This formulation covers two- and multi-stage stochastic
programs with recourse. In these cases, X is the set of feasible first-stage decisions and
the function values f(w, x) evaluate the best possible outcomes of decisions x in case
that @ is observed.
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Optimal scenario reduction

The optimal scenario reduction problem

win_ G (P.Q)

QEPn(E)
with P € Py(Z), N > n, can be decomposed into finding the optimal scenario

set J to be deleted and into determining the optimal new probabilities given J.

Let P have scenarios & with probabilities p;, ¢ = 1,..., N, and () being sup-
ported by a given subset of scenarios &, j ¢ J C {1,...,N}, |[J| =N —n.

The best approximation of P with respect to (, by such a distribution () exists
and is denoted by (*. It has the distance

Dj:= Cr(Py Q*) = min Cr P Q sz mlncr 5275])

QEPn(= 1€J

and the probabilities ¢7 = p; + > pi, Vj & J, where

ZEJ‘

= 16 € Ji g = jli}h and) i)l € argminén(c;, 65), Vi € J
J
(optlmal redistribution).



Determining the optimal index set J with prescribed cardinality N —n is, however,
a combinatorial optimization problem: (n-median problem)

min{D;:J C{l,....,N}|J|=N —n}

Hence, the problem of finding the optimal set J for deleting scenarios is N P-
hard and polynomial time algorithms are not available.

First idea: Reformulation as linear mixed-integer program

N
. 1 .
min -~ -~ g pixiicr(&,&) st

i,j=1

N N
Z zi+yi =1 (¢=1,...,N), Zyi:n,
i=1

j=1,j#i
LL"Z'j S Y; ngwgl (’Z,jzl,...,N),

y; € {0,1} (1,...,N).

and application of standard software or of specialized algorithms.

min;e y ér(§;,65) . T i ,

1 C 9 9 E J 1 , J

Solution: z;; = { nCr(éwfj) Z|§Z J Y = { ) i i J
, else. ; :



Fast reduction heuristics

Second idea: Application of (randomized) greedy heuristics.

Starting point (n = N —1): min min ¢, (&, &;
g point JE i an &6 )

Algorithm 1: (Backward reduction)

Step [0]: J":=0.

Step [i]: [; € arg min g pr min (&, &).
1g Jli—1] — jeJi=u{ny
keJli=1u{i}

Ji .= gty {1
Step [N-n+1]: Optimal redistribution.




N
Starting point (n =1):  min > ppc. (&, &)
we{l,...,.N} 1.1

Algorithm 2: (Forward selection)

Step [0]: J" .= {1,...,N}.
Step [i]: w; € arg érﬁin” Z Pr ﬂmﬁl & (&, &5)s
U keﬂi_u\{u} J&J \{u}
Ji = Ji=1 £}

Step [n+1]: Optimal redistribution.




Example: (Electrical load scenario tree)

Ternary load scenario tree (N=729 scenarios)
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(Mean shifted) Ternary load scenario tree (N=729 scenarios)
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Reduced load scenario trees with respect to the Fortet-Mourier distances (., r = 1,2,4,7 and n = 20
(starting above left) (Heitsch-Rémisch 07)



Application: Optimization of gas transport in a huge transportation network
including hundreds of gas delivery nodes. A stationary situation is considered,;
more than 8 years of hourly data available at all delivery nodes; multivariate prob-
ability distribution for the gas output in certain temperature classes is estimated;
2340 samples based on randomized Quasi-Monte Carlo methods are generated
and later reduced by scenario reduction to 50 scenarios.
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(in: Koch, T., Hiller, B., Pfetsch, M. E., Schewe, L. (Eds.): Evaluating Gas Network Capacities, SIAM-MOS
Series on Optimization, Philadelphia, 2015, Chapter 14, 295-315.)



Conclusions and outlook

e There exist reasonably fast heuristics for scenario reduction in linear two-
stage stochastic programs. (Heitsch-Rémisch 03).

e |t may be worth to study and compare exact solution methods with heuristics.

e |t is desirable to study scenario reduction based on the minimal function class

F = {0(q(-),h(-) = T()z) : z € X}.

e Recursive application of the heuristics apply to generate scenario trees for
multistage stochastic programs (Heitsch-Rémisch 09).

e Heuristics for scenario reduction and scenario tree generation were imple-

mented by H. Heitsch in GAMS/SCENRED 2.0.
e For scenario tree reduction the heuristics have to be modified.

e For mixed-integer two-stage stochastic programs and programs with chance
constraints heuristics exist, but are based on different distances (discrepan-
cies). They are more expensive and so far restricted to moderate dimensions.

e Jitka’s initial input was important for all the further developments.
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