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Introduction

Most approaches for solving stochastic programs of the form

min

{∫
Ξ

f0(x, ξ)P (dξ) : x ∈ X
}

with a probability measure P on Ξ ⊂ Rd and a (normal) integrand f0, require

to replace P by a some discrete probability measure or, equivalently, to replace

the integral by some quadrature formula with nonnegative weights∫
Ξ

f0(x, ξ)P (dξ) ≈
n∑
i=1

pif0(x, ξi),

where pi = P ({ξi}),
∑n

i=1 pi = 1, are the probabilities and ξi ∈ Ξ, i = 1, . . . , n,

the scenarios. This leads to the scenario-based stochastic program

min

{
n∑
i=1

pif0(x, ξi) : x ∈ X

}
Since f0 is often expensive to compute, the number n should be as small as

possible.





With v(P ) and S(P ) denoting the optimal value and solution set of the stochastic

program, respectively, the following estimates are known

|v(P )− v(Q)| ≤ sup
x∈X

∣∣∣∣∫
Ξ

f0(x, ξ)(P −Q)(dξ)

∣∣∣∣
∅ 6= S(Q) ⊆ S(P ) + Ψ−1

P

(
sup
x∈X

∣∣∣∣∫
Ξ

f0(x, ξ)(P −Q)(dξ)

∣∣∣∣) ,
where X is assumed to be compact, Q is a probability distribution approximating

P and ΨP is the growth function of the objective near the solution set, i.e.,

ΨP (t) := inf

{∫
Ξ

f0(x, ξ)P (dξ)− v(P ) : x ∈ X, d(x, S(P )) ≥ t

}
.

Hence, the distance dF with F := {f0(x, ·) : x ∈ X}

dF(P,Q) := sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ)

∣∣∣∣
becomes important when approximating P .



For given n ∈ N the best possible choice of elements ξi ∈ Ξ (scenarios) and

probabilities pi, i = 1, . . . , n, is obtained by minimizing

sup
x∈X

∣∣∣∣∣
∫

Ξ

f0(x, ξ)P (dξ)−
n∑
i=1

pif0(x, ξi)

∣∣∣∣∣,
i.e., by solving the best approximation problem

min
Q∈Pn(Ξ)

dF(P,Q)

where Pn(Ξ) := {Q : Q is a discrete probability measure with n scenarios}.

It may be reformulated as a semi-infinite program. and is known as optimal

quantization of P with respect to the function classF . Such optimal quantization

problems of probability measures are often extremely difficult to solve.

Idea: Enlarging the class F !

Aim of the talk:

Solving the best approximation problem for discrete probability measures P hav-

ing many scenarios and for function classes F , which are relevant for two-stage

stochastic programs (optimal scenario reduction).



Linear two-stage stochastic programs

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X
}
,

where c ∈ Rm, Ξ and X are polyhedral subsets of Rd and Rm, respectively, P

is a probability measure on Ξ and the s×m-matrix T (·), the vectors q(·) ∈ Rm

and h(·) ∈ Rs are affine functions of ξ.

Furthermore, Φ and D denote the infimum function of the linear second-stage

program and its dual feasibility set, respectively, i.e.,

Φ(u, t) := inf{〈u, y〉 :Wy = t, y ∈ Y } ((u, t) ∈ Rm × Rs)

D := {u ∈ Rm : {z ∈ Rs : W>z − u ∈ Y ∗} 6= ∅},

where W is the s ×m recourse matrix, W> the transposed of W and Y ∗ the

polar cone to the polyhedral cone Y in Rm.



Theorem: (Walkup-Wets 69)

The function Φ(·, ·) is finite and continuous on the polyhedral set D ×W (Y ).

Furthermore, the function Φ(u, ·) is piecewise linear convex on the polyhedral set

W (Y ) for fixed u ∈ D, and Φ(·, t) is piecewise linear concave on D for fixed

t ∈ W (Y ).

Assumptions:

(A1) relatively complete recourse: for any (ξ, x) ∈ Ξ×X ,

h(ξ)− T (ξ)x ∈ W (Y );

(A2) dual feasibility: q(ξ) ∈ D holds for all ξ ∈ Ξ.

(A3) existence of second moments:
∫

Ξ ‖ξ‖
2P (dξ) < +∞.

Note that (A1) is satisfied if W (Y ) = Rs (complete recourse). In general, (A1)

and (A2) impose a condition on the support Ξ of P . (A1) and (A2) imply that

Φ(q(·), h(·)− T (·)x) is a finite linear-quadratic function on Ξ.

Extensions to certain random recourse models, i.e., to W (ξ), exist.



Idea: Extend the class F such that it covers all two-stage models.

Fortet-Mourier metrics: (as canonical distances for two-stage models)

ζr(P,Q) := sup

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ) : f ∈ Fr(Ξ)

∣∣∣∣,
where r ≥ 1 (r ∈ {1, 2} if W (ξ) ≡ W )

Fr(Ξ) := {f : Ξ 7→ R : f (ξ)− f (ξ̃) ≤ cr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ},

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).

Proposition: (Rachev-Rüschendorf 98)

If Ξ is bounded, ζr may be reformulated as transportation problem

ζr(P,Q) = inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) :π1η=P, π2η =Q

}
,

where ĉr is a metric (reduced cost) with ĉr ≤ cr and given by

ĉr(ξ, ξ̃) := inf

{
n−1∑
i=1

cr(ξli, ξli+1
) : n ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.



Let P and Q be two discrete distributions with finite support, where ξi are the

scenarios with probabilities pi, i = 1, . . . , N , of P and ξ̃j the scenarios and qj,

j = 1, . . . , n, the probabilities of Q. Let Ξ denote the union of both scenario

sets. Then

ζr(P,Q) = inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) : π1η = P, π2η = Q

}
= inf

{ N∑
i=1

n∑
j=1

ηij ĉr(ξi, ξ̃j) :

n∑
j=1

ηij = pi,

N∑
i=1

ηij = qj, ηij ≥ 0,

i = 1, . . . , N, j = 1, . . . , n
}

= sup
{ N∑

i=1

piui −
n∑
j=1

qjvj : pi − qj ≤ ĉr(ξi, ξ̃j), i = 1, . . . , N,

j = 1, . . . , n
}

These two formulas represent the primal and dual representations of ζr(P,Q)

and at the same time primal and dual linear programs.





Optimal scenario reduction

The optimal scenario reduction problem

min
Q∈Pn(Ξ)

ζr(P,Q)

with P ∈ PN(Ξ), N > n, can be decomposed into finding the optimal scenario

set J to be deleted and into determining the optimal new probabilities given J .

Let P have scenarios ξi with probabilities pi, i = 1, . . . , N , and Q being sup-

ported by a given subset of scenarios ξj, j 6∈ J ⊂ {1, . . . , N}, |J | = N − n.

The best approximation of P with respect to ζr by such a distribution Q exists

and is denoted by Q∗. It has the distance

DJ := ζr(P,Q
∗) = min

Q∈Pn(Ξ)
ζr(P,Q) =

∑
i∈J

pi min
j 6∈J

ĉr(ξi, ξj)

and the probabilities q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J, where

Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J

ĉr(ξi, ξj), ∀i ∈ J
(optimal redistribution).



Determining the optimal index set J with prescribed cardinality N−n is, however,

a combinatorial optimization problem: (n-median problem)

min {DJ : J ⊂ {1, ..., N}, |J | = N − n}
Hence, the problem of finding the optimal set J for deleting scenarios is NP-

hard and polynomial time algorithms are not available.

First idea: Reformulation as linear mixed-integer program

min
1

n

N∑
i,j=1

pjxij ĉr(ξi, ξj) s.t.

N∑
j=1,j 6=i

xij + yi = 1 (i = 1, . . . , N),
N∑
i=1

yi = n ,

xij ≤ yi 0 ≤ xij ≤ 1 (i, j = 1, . . . , N) ,

yi ∈ {0, 1} (1, . . . , N).

and application of standard software or of specialized algorithms.

Solution: xij =

{
mini∈J ĉr(ξi,ξj)

nĉr(ξi,ξj)
, i 6∈ J, j ∈ J

0 , else.
yi =

{
1 , i 6∈ J
0 , i ∈ J.



Fast reduction heuristics

Second idea: Application of (randomized) greedy heuristics.

Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξl, ξj)

Algorithm 1: (Backward reduction)

Step [0]: J [0] := ∅ .
Step [i]: li ∈ arg min

l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

ĉr(ξk, ξj).

J [i] := J [i−1] ∪ {li} .
Step [N-n+1]: Optimal redistribution.



Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξk, ξu)

Algorithm 2: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξk, ξj),

J [i] := J [i−1] \ {ui} .
Step [n+1]: Optimal redistribution.



Example: (Electrical load scenario tree)

Ternary load scenario tree (N=729 scenarios)
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(Mean shifted) Ternary load scenario tree (N=729 scenarios)
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Reduced load scenario trees with respect to the Fortet-Mourier distances ζr, r = 1, 2, 4, 7 and n = 20
(starting above left) (Heitsch-Römisch 07)



Application: Optimization of gas transport in a huge transportation network

including hundreds of gas delivery nodes. A stationary situation is considered;

more than 8 years of hourly data available at all delivery nodes; multivariate prob-

ability distribution for the gas output in certain temperature classes is estimated;

2340 samples based on randomized Quasi-Monte Carlo methods are generated

and later reduced by scenario reduction to 50 scenarios.
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(in: Koch, T., Hiller, B., Pfetsch, M. E., Schewe, L. (Eds.): Evaluating Gas Network Capacities, SIAM-MOS
Series on Optimization, Philadelphia, 2015, Chapter 14, 295–315.)



Conclusions and outlook

• There exist reasonably fast heuristics for scenario reduction in linear two-

stage stochastic programs. (Heitsch-Römisch 03).

• It may be worth to study and compare exact solution methods with heuristics.

• It is desirable to study scenario reduction based on the minimal function class

F = {Φ(q(·), h(·)− T (·)x) : x ∈ X}.

• Recursive application of the heuristics apply to generate scenario trees for

multistage stochastic programs (Heitsch-Römisch 09).

• Heuristics for scenario reduction and scenario tree generation were imple-

mented by H. Heitsch in GAMS/SCENRED 2.0.

• For scenario tree reduction the heuristics have to be modified.

• For mixed-integer two-stage stochastic programs and programs with chance

constraints heuristics exist, but are based on different distances (discrepan-

cies). They are more expensive and so far restricted to moderate dimensions.

• Jitka’s initial input was important for all the further developments.
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’98 (M. Huškova et al. eds.), JCMF, Prague 1998, 119-124.

Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming, Computational Optimiza-
tion and Applications 24 (2003), 187–206.

Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs, Operations Research
Letters 35 (2007), 731–736.

Heitsch, H., Römisch, W.: Scenario tree modeling for multistage stochastic programs, Mathematical Program-
ming 118 (2009), 371–406.
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Shapiro, A. eds.), Handbooks in Operations Research and Management Science, Volume 10, Elsevier, Amsterdam
2003, 483–554.


