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Abstract. The short-term cost-optimal dispatch of electric power in a generation sys­
tem under uncertain electricity demand is considered. The system comprises thermal 
and pumped-storage hydro units. An operation model is developed which represents 
a multistage mixed-integer stochastic program and a conceptual solution method using 
Lagrangian relaxation is sketched. For fixed start-up and shut-down decisions an effi­
cient algorithm for solving the multistage stochastic program is described and numerical 
results are reported. 

1 Introduction 

Mathematical models for cost-optimal power scheduling in hydro-thermal systems 
often combine several difficulties such as a large number of mixed-integer variables, 
nonlinearities, and uncertainty of problem data. Typical examples for the latter are 
uncertain prices in electricity trading, the future electric power demand, and future 
inflows into reservoirs of hydro plants. Incorporating the uncertainties directly into 
an optimization model leads to stochastic programming problems. In the context 
of power scheduling such models are developed e.g. in [4], [5], [9], [11]. 

In the present paper we consider a short-term optimization model for the dis­
patch of electric power in a hydro-thermal generation system over a certain time 
horizon in the presence of uncertain demand. The generation system comprises 
(coal-fired and gas-burning) thermal and pumped-storage hydro units (without 
inflows) which is typical for the eastern part of Germany. Short- and long-term 
energy contracts are regarded (and modelled) as (particular) thermal units. The 
operation of such a generation system is very complex, because it creates a link 
between a decision in a given time interval and the future consequences of this 
decision. Even for optimal on-line power scheduling future costs created by actual 
decisions have to be taken into account. Since a longer time horizon (e.g. one 
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week) is often needed due to the pumping cycle of the hydro storage plants, the 
stochastic nature of the demand cannot be ignored. The optimization model thus 
represents a multistage stochastic program containing mixed-integer (stochastic) 
decisions which reflect the on/off schedules and production levels of the generat­
ing units for all time intervals of the horizon. The increase of scenarios in the 
stochastic programming model corresponds to a decrease of information on the 
power demand. 

The stochastic model will be developed and discussed in some detail in section 
2 (for more information we refer to [3]). In section 3 we sketch a conceptual 
decomposition method by applying Lagrangian relaxation to the loosely coupled 
multistage stochastic program, and in section 4 an efficient algorithm for solving 
the stochastic program for fixed on/off decisions is described and numerical results 
are reported. 

2 Stochastic Model 

The mathematical model represents a mixed-integer multistage stochastic program 
with linear constraints. Let T denote the number of (hourly or shorter) time 
intervals in the optimization horizon and {dt : t = 1, ... , T} the stochastic 
demand process (on some probability space (0, A, P)) reflecting the stochasticity 
of the electric power demand. It is assumed that the information on the demand 
is complete for t = 1 and that it decreases with increasing t. This is modelled by 
a filtration of a-fields 

Al = {0, O} ~ A2 ~ ... ~ At ~ ... ~ AT ~ A, 
where At is the a-field generated by the random vector (dI, ... , dt). Let I and 
J denote the number of thermal and pumped-storage hydro units in the system, 
respectively. According to the stochasticity of the demand process the decisions 
for all thermal and hydro units 

{(uLpD : t=l, ... ,T} (i=l, ... ,I) 
{(sj,wj) : t=l, ... ,T} (j=l, ... ,J) 

are also stochastic processes being adapted to the filtration of a-fields. The latter 
condition means that the decisions at time t only depend on the demand vector 
(d I , ... , d t ) (nonanticipativity). Here, u~ E {O, I} and p~ denote the on/off decision 
and the production level for the thermal unit i and time interval t, respectively, 
and s;, w; are the generation and pumping levels, for the pumped-storage plant j 
during time interval t, respectively. Further, let I; denote the water level (in terms 
of electrical energy) in the upper reservoir of plant j at the end of interval t. 

The objective function is given by the expected value of the total fuel and 
start~up costs of the thermal units 

IE [~~ FCi(pL uD + SC;(Ui(t))] (2.1) 
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where IE denotes the expectation, FCi the fuel cost function and SCi the start-up 
costs for the operation of the i-th thermal unit. It is assumed that the functions 
FCi are monotonically increasing and piecewise linear convex with respect to P~ 
and that SCi (11i(t» is determined by (U:, ... , u!'i) where t - tBi is the preceding 
down-time of the unit i (see e.g. [12] for typical start-up cost functions). All 
the (stochastic) variables mentioned above have finite lower and upper bounds 
reflecting unit capacity limits and reservoir capacities of the generation system: 

min t< t< max t '-1 I t-l T Pit U i _ Pi _ Pit U i , ~ - , ... , , - , ... , 

o ~ s~ ~ Sjt, 0 ~ w~ ~ Wfix, 0 ~ l~ ~ ljiax, j = 1, ... , J, t = 1, ... , T 
(2.2) 

The constants p~in p~ax Sf!'ax w,!,ax and If!'ax denote the minimal/maximal .t , .t , Jt , Jt Jt 
outputs and maximal water levels in the upper reservoir, respectively. During the 
whole time horizon reservoir constraints have to be maintained for all pumped 
storage plants. These are modelled by the equations: 

I} = l~-l - s} + 17jW~, t = 1, ... , T, j = 1, ... , J 
l~ = li.n l":f = ll!nd, J' - 1 J 3 J'3 J -, ... ,. 

(2.3) 

Here, l;n and lTd denote the initial and terminal water level in the upper reservoir, 
respectively, and 17j is the efficiency of the j-th pumped-storage plant. Moreover, 
there are minimum down times Ti and possible must-on/off constraints for each 
thermal unit i. Minimum down times are imposed to prevent the thermal stress 
and high maintenance costs due to excessive unit cycling. They are described by 
the inequalities: 

U!-l - u! ~ 1 - ur, T = t + 1, '" min{t + Ti - 1, T}, i = 1, .. , I, t = 2, '" T. (2.4) 

Load coverage for each time interval t of the horizon is described by the equations: 

I J 

L P~ + L (s; - w;) = d t , t = 1, ... , T. (2.5) 
i=l j=l 

In order to compensate sudden load increases or unforeseen events on-line, some 
spinning reserve level rt for the thermal units is required leading to the constraints: 

I 

L (p?t'axu~ - p!) ~ rt, t = 1, ... , T. (2.6) 
i=l 

Altogether, (2.1)-(2.6) represents a multistage stochastic program with 2(1 + J)T 
stochastic decision variables. For large power generation systems like that of 
VEAG Vereinigte Energiewerke AG in the eastern part of Germany (with 1=25, 
J = 7 and T = 168 which corresponds to an hourly discretization of one week) 
these models involve an enormous number of stochastic decisions. 
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Numerical approaches for solving (2.1)-(2.6) are mostly based on designing 
discretization schemes (scenario trees) for the probability distribution of the ran­
dom demand vector (d1 , ... , dT ) and lead to large-scale mixed-integer programs 
with a huge number of variables. In general, such problems are too large from the 
viewpoint of even the latest solution techniques for multistage stochastic programs 
with discrete distributions. However, it is possible to make use of the fact that 
the problem (2.1)-(2.6) is loosely coupled via the constraints (2.5) and (2.6) with 
respect to the operation of different units. 

3 Lagrangian relaxation 

For deterministic models of the form (2.1)-(2.6) (i.e. for AT = {0, D}) the authors 
of [10] came to the conclusion that for solving realistic problems a clear consen­
sus is presently tending toward the Lagrangian relaxation approach over other 
methodologies. The approach is based on introducing a partial Lagrangian for 
constraints linking the operation of different units and on solving the nondiffer­
entiable concave dual maximization problem by modern nonsmooth optimization 
methods. This approach is also suggested for certain multistage stochastic models 
in [11] by relying on the same arguments as in the deterministic case, namely, that 
the dual problems decompose into single unit subproblems and the duality gap 
becomes small under certain circumstances (see [1], [3]). 

In order to describe the Lagrangian relaxation approach for the model (2.1)­
(2.6), let {At : t = 1, ... , T} and {J.£t : t = 1, ... , T} be stochastic processes in 
L1 (D, A, P; IRT) adapted to the filtration and consider the (partial) Lagrangian: 

L(u,p,s, w; A,J.£) = IEL:=l { L{=l {FCi(pL uD + SCi(Ui(t))} 

+At (dt - L{=lP~ - L;=l(Sj - wj)) + J.£t (rt - L[=l(U~pit'ax - pn) }. 

The dual problem then reads 

max {D(A, 1') : I' ~ 0, A} , 

(3.1) 

(3.2) 

where D(A,J.£) denotes the infimum of L(u, p, s, w; A, 1') subject to (u, p, s, w) 
satisfying the constraints (2.2)-(2.4). Since (2.2)-(2.4) represent exclusively single 
unit constraints, the Lagrangian dual function can be written as: 

I J T 

D(A,J.£) = L Di(A, 1') + L Dj(A) + IE L [Atdt + J.£trt]. 
i=1 j=1 t=1 

where the functions Di and Dj are defined by 

T 

Di(A,J.£) = min IE L [FCi(pL uD + SCi(Ui(t)) - (At - J.£t)p~ - J.£tu~puax] (3.3) 
(Ui,P;) t=1 
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(3.4) 

and the corresponding minimization is carried out subject to the constraints (2.2), 
(2.4) and (2.2), (2.3), respectively. 

To solve the dual problem, an iterative bundle-type method ([6), [7]) is used 
for updating the Lagrange multipliers (~, p.) and maximizing the concave function 
D, respectively. For given (~, p.) the value of D(~, p.) is computed by solving the 
single thermal unit subproblem (3.3) by dynamic programming (as described in 
[11]) and the single hydro subproblem (3.4) by a fast descent method developed 
in (8). After solving the dual problem a heuristic approach is applied to obtain 
primal decisions (u, p, s, w) which are feasible for (2.5) and (2.6). This approach 
consists in a modification of the search for reserve-feasible solutions in (12) for the 
case of hydro-thermal systems. 

4 Economic Dispatch 

Having the binary variables u~ fixed, one has to solve the minimization problem 
with respect to pl, s; and w;, i.e. the economic dispatch problem. It means that 
the objective function 

T I 

IEL:L:FCi(p!, uD ( 4.1) 
t=1 i=1 

has to be minimized subject to the constraints (2.2),(2.3),{2.5) and (2.6). 
Taking the right-hand side of L;=1 pl = d t - 'L;=1 (s) - w)) as a parameter 

v t the problem for one time period and one realization of v t reads: 

I I 
. . . " FC (t t) "t t t min < t < t max· 1 I (4 2) mlmmlze 0 i Pi' U i s.t. 0 Pi = V , UiPit _ Pi _ UiPit , z = , .. , . 

i=1 i=1 

Since FCi (pl, uD are piecewise linear with respect to pl, the optimal value function 
¢}(vt) of (4.2) is piecewise linear, too. Sorting the segments (see figure 1) of the 
cost functions of all thermal units, the computation of ¢}(vt) consists of a look up 
in a list. Then the problem (4.1) consists in minimizing 

IE~~t (d t - t{S~ -w~)) (4.3) 

subject to (2.2), (2.3). 
This problem can be solved by a modification of the algorithm described in [8). 

The crucial point in this descent algorithm consists in selecting a direction from a 
prescribed subset of descent directions. Since the objective function is not linear 
as in [8], the algorithm has to regard the kinks of the piecewise linear function. At 
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Figure 2: piecewise linear function 

these kinks two different slopes (up and down in figure 1) have to be considered. 
Since the kinks of the objective function (see figure 2) do not coincide with the 
sufficiently large subset of directions of [8], one has to avoid critical points. 

Under the additional assumption l:n = l:nd, i = 1, ... ,I the point s~ == w: == 0 
is feasible. With this point as a starting point and choosing the direction of steepest 
descent the algorithm converges to an optimal solution. 

5 Computational results 

The algorithm described above is implemented in C++. The performance of the 
corresponding code ECDISP has been compared with CPLEX 4.0 [2] on several 
examples. Here we report computation times for both codes on an example in­
cluding 25 thermal power units, 8 pumped hydro storage plants, 192 stages and 1 
scenario. This corresponds to a linear program with 14200 columns, 17856 rows, 
46256 nonzero elements of the matrix. The computation time of ECDISP is 50.95 
seconds. For CPLEX we display the computation times (in seconds) for different 
methods and pricing strategies. 

CPLEX function Pricing strategy primal/dual 
-1 0 1 2 3 4 

Simplex/primal 1232.47 1188.4 1918.15 2664.14 2440.7 1696.9 
Simplex/ dual 1086.18 946.24 1103.48 1466.54 1083.8 
baropt 94.78 
hybbaropt/primal 114.71 114.32 114.36 486.55 114.45 114.35 
hybbaropt/ dual 115.08 114.69 693.03 1424.86 114.84 
hybnetopt /primal 957.66 910.39 1298.03 2252.83 1960.93 1162.68 
hybnetopt/ dual 1393.82 1253.76 1412.06 1833.96 1392.3 

All these computations are done on a SPARCstation IPX (4/50) with 64 MB 
Main Memory and 40 MHz CPU-frequency. 

Further comparisons with several numbers of scenarios are performed, too. At 
this time the code ECDISP is compared with the baropt function of CPLEX only. 
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The number of nodes is the number of nodes in the scenario tree. Here, advantage 
denotes the advantage of using ECDISP versus CPLEX. 
I scenarios I nodes I columns I rows I nonzeros I ECDISP I CPLEX I advantage I 

2 252 18632 23436 60708 11.02 64.35 5.84 
6 504 37248 46872 121408 37.17 228.76 6.15 
10 723 53422 67239 174155 61.59 289.79 4.71 
14 966 71372 89838 232686 116.81 534.78 4.58 
18 1064 78592 98952 256272 103.33 504.41 4.88 
22 1260 93064 117180 303476 128.18 794.93 6.20 

The amount of memory needed by CPLEX exceeds the memory of the workstation 
if examples are computed with more than 22 scenarios, but ECDISP can even 
handle problems with more than 500 scenarios. 

For testing the algorithm on a stochastic power dispatch model a scenario tree 
for approximating the stochastic demand process is generated as follows: 
d~ampled = ~iven + O!(d~~';'pled - ~ivlen) + /3c: 

where ~iven is the given load, d!ampled a sample of the demand tree for the 
time interval t, c: is a standard normal (i.e. N(O,I)) random variable, and a, /3 
are sampling parameters. A numerical example for the demand scenario and the 
corresponding stochastic schedule is given in figure 3. 
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