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I. Introduction 

Consider the system 

t k t 

x ( t )=a+ S f (x(s))ds+ ~, S yi(x(s))dz~(s) ( 0 < t < l ) ,  (1) 
0 / = 1  0 

where a e R d, f and gi (i = 1 . . . . .  k) are vector fields on R ~, and z 1 . . . . .  z ~ e C1([0, lJ; 
•/. 

Doss [21 and Sussmann [17] have shown that, under appropriate conditions 
on the coefficients f and g~ (i = 1 . . . . .  k) [see (2) below], the mapping S which takes 
z=(z ~ ..... z k) into the solution x of(l)  admits a continuous (w.r. to the sup-norm) 
extension to C([0, 1]; R~). 

If one wants to extend the mapping S "by continuity" to inputs, say, with 
jumps, an LP-norm (rather than the sup-norm) is suitable. 

In contrary to what is asserted in [13, Lemma 2 and Theorem 1], we show 
(Example 1) that under the assumptions (2) in general S does not admit a 
continuous extension to L~ 1]; Rk). S is, however, Lipschitz continuous with 
respect to LP-norm on each L~~ set (Theorem 1), hence admits a 
continuous extension to L~([0, 1]; R k) in this sense. 

Viewed as a mapping from D([0, 1]; R k) (the space of right continuous 
functions with left limits) into D([0, 1]; ](d), S will be shown to be continuous w. r. 
to the Skorokhod topology [1,7], and local Lipschitz dependence in the 
Skorokhod metrics will be discussed (Theorem 2). 

For z e D([0, 1]; R k) with finite quadratic variation, x = S(z) obeys an integral 
Eq. (4), which is a deterministic analogue of the stochastic integral Eq. (9) in [13] 
(there called "canonical extension" of (1) for semimartingale inputs). 

It is obvious from (9) that the mapping S gives a "pathwise solution" of a certain 
Stochastic differential equation, if z = z(co) is, e.g., a semimartingale. Especially, ff z 
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is a Wiener process, then x = S(z) is the solution of(l) in the sense of Stratonovich 
(a fact which was proved already in [2] and [17]). 

For certain questions of approximation (like the preservation of convergence 
rates under the mapping S for random inputs, [18]) one needs estimates on the 
local Lipschitz coefficients of S. 

Only under further assumptions on f and gi (i = 1 . . . . .  k) we will be able to show 
that the local Lipschitz coefficients w.r. to the sup-norm (resp. the LP-norm resp. 
the [modified] Skorokhod metric) grow not faster than exponentially with the 
sup-norm of the input (Theorem 3). This is of special interest if a random input, 
which is large only with small probability (e.g. a Wiener process) is approximated, 
say, "in probability": in this case one obtains "nearly the same" convergence rates 
for the outputs (Theorem 4). 

As one application of Theorem 4, we re-establish the original version of [8], 
Theorem 1 on the rate of convergence of an approximate solution of stochastic 
differential equations, which had to be essentially weakened in [9] because of an 
error in its proof (whose methods are entirely different from ours). 

An essential condition for the continuity of S is that the g~ (i= 1 ..... k) 
"commute", i.e. the Lie brackets [gi, g~] vanish (i,j = 1 . . . . .  k) (see C17, Sect. 7]); for 
approximation theorems which go beyond this condition but are valid only for 
special approximations, see, e.g., [11, 13, 14]. 

2. Continuity Properties of the Mapping S 

In the whole section, let a ~ R  a, and f .EC(~a;  ~d), G=(gl , . . . , gk )~Cl (Rd;  
L(IR ~, IRd)) be fixed with the following properties [2, 13, 17] 

(i) f is locally Lipschitz continuous and satisfies a linear growth condition 
(ii) G is uniformly Lipschitz continuous, and D G =  (Dgl . . . . .  Dgk) is locally 

Lipschitz continuous (2) 
(iii) the vector fields gl . . . . .  gk commute, i.e. 

(Dg,)g.i = (Dgj)g, ( i , j=  ! , . . . ,  k) 
(where Dgj denotes the Jacobian of g j). 

For z = (z 1 . . . . .  z~), z i : [0, 1 ] ~ R  bounded and measurable, consider the system [2, 
6, 13, 17]. 

O--ff(~x, fl)=G(cp(~x, fl)) ( ~ e R ' , f l e R  k) 
(3a) 

0 )  = 

~=(t) = a + i ~l(~(s), z(s))ds , (3b) 
0 

S(z) (t) = r (~, _ ~oj(t), z (t) - z (0)). (3c) 

Note that (3) has a unique solution (it follows, e.g., from [2, Lemma 18] that ~P as 
well as ~/are locally Lipschitz continuous). For z E C ~([0, 1 ]; l~k)) an application of 
the chain rule shows that x = S ( z )  is the solution of (1). 
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Proposition 1. If z is continuous from the right, with left limits and of finite quadratic 
variation along some fixed sequence of partitions of [0, 1] with mesh size tending to 
zero, then x = S(z) is the solution of 

t ! 

x(t)=a+ ~ f(x(s))ds+ S G(x(s-))dz(s) 
0 0 

1 k t 
+ -~ E ! (g,Og)(x(s-))'l[z~,zqC(s) 

f , j =  1 

+ ~=,~ t_~cP(x(s-)'Az(s))-x(s-)- i= ~'1 g,(x(s-))Az'(s)] (4) 

(see [5] for the notation). 

Proof. This is a straightforward consequence of the differentiation rule (12) of [5], 
applied to x(0=tp(~_~t0)(t ), z(O-z(O)). (Though this differentiation rule is 
formulated for functions of class C 2, and t# is, in general, only of class C 1'2, the 
proof in [5] goes through with only slight modifications, using the fact that ~ is 
absolutely continuous.) [] 

Remark 1. a) If z = z(co) is a (k-dimensional unit variance) Wiener process (defined 
on some probability space (f2, A, P)), then, along any sequence of nested partitions, 
[z i, z j] (t) = 3~j. t P-a.s., and S G(x(s - ))dz(s) coincides with a classical It6-integral. 

Hence x(to)= S(z(co)) is, in that case, the solution of the stochastic integral 
equation (in the sense of It6) 

x(t)=a+ i( f(x(s))+ 1 ~ ) ' o ~ od)o~(x(s)) as+ ~ G(x(s))dz(s) (5) 
i = 1  0 

resp. the stochastic integral equation (in the sense of Stratonovich) 
l t 

x(O = a + I f(x(s))ds + j G(x(s))dz(s) (6) 
0 0 

- a fact which was proved already in [2], resp. [17]. 
b) If, more generally, z = z(co) is a semimartingale, then there exists a sequence 

of partitions along which z(co) has finite quadratic variation for P.a.a. co [5]; 
hence, for P. a. a. co, x(co)= S(z(co)) is the solution of (4). Moreover, in that case (4) 
may also be understood as a stochastic integral equation [13, Lemma 3]. 

c) In [17] it is proved that the restriction of S to C([0, 1]; R k) is locally 
Lipschitz continuous w.r. to sup-norm; this will be a special case (19= oo) of 
Theorem 1 below. 

d) Denote by So the restriction of S to (zE C~([0, 1]; Rk)lz(0)=0}. In [13, 
Lemma 2 resp. Theorem 1], it is claimed, appealing to results of [6], that under 
assumptions (2) 

S O is Lipschitz continuous w.r: to sup-norm, 

S O is Lipschitz continuous w.r. to L'-norm, hence 

provides a continuous extension to LP(I < p <  oo). 

(7) 

(8) 
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We now give a counterexample to (8) as well as to [6, Lemma 1], stressing that in 
general So is not uniformly Lipschitz continuous w.r. to sup-norm, and even not 
locally Lipschitz continuous w.r. to LP-norm. 

Example 1. Consider the case d = k = l ,  f = 0 ,  g (x )=x ,  a = l .  Then cp(~,/~) 
= ~ exp(fl), which is not uniformly Lipschitz continuous (contrarily to what would 
follow from 1-6, Lemma 1]). Moreover, the mapping z~So(z) ,  So(z)(t)= exp(z(t)) 
is obviously not  uniformly Lipschitz continuous w.r. to sup-norm. As to (8), 

l + t  
consider the sequence (z~),~N defined by z~(t)=y,(t)log ~-s where y~ is some 

continuously differentiable mapping from to, 1] onto [0,1], with 

{10 (O<_t<_l-1/n) 
y,(t) = (1 - 1/2n<_ t< 1). 

t l + t  
In view of ~ mg 1 - t dt = 2 log2 < oo, (z,) converges in L 1 [0, 1 ]. (So(zn)), however, 

o 
is not even bounded in L ~ [0 ,  1], as 

1 1 -tlln 1 + t 
So(z,) ( t )dt> j > l o g n .  

o o 1 - t  = 

What can be proved is 

Theorem 1. For each K > O, and 1 <= p < oo, S is uniformly Lipschitz continuous as a 
mapping f rom ({z~L~([0,  1]; R~)[ Ilzll~=<g}, II lip to (L'([0, 13: ~d), II lip)' 

Proof. By the same reasoning as in [2, pp. 119-121], one obtains the local Lipschitz 
continuity of r/as well as (for some constants Mr,  Mz) the estimate 

[t/(a, ~)1 < MI(I~I + 1) exp(M 2 [fl[) 1. (9) 

From (3b), (9) and Gronwall 's lemma follows that 

Cr : = sup{llr ~l Ilzll oo < g }  < oo ,  (10) 

Now let L~(K) be the minimal Lipschitz constant of t /on the set {(~, fl)l I~1 =< Co(K), 
lfll=<K}, and let z, g be measurable functions from [t3, 1] to R k with }}z}}~ <K, 

It ~11 ~o ~_ g .  
First assume z(0)= ~(0)=0. Then the estimate 

Ir G(t)l =< L.(K) Ir - r + j tz (s) - ~.(s)lds (11) 
0 

together with Gronwall 's lemma implies 

11r r ~ < L~(K) exp(L~(K)) [[z- ell , .  (12) 

1 We will write lY] for the maximum norm of y e IR k (resp. IRa), and put 
[/ l 'x'I~, 
Jr! IzO)l, ds+lz(O)l ~ (l<p<oo) 

Ilzll,: = ]max (ess sup Iz(t)l, Iz(O)l~ (P= oo) 
[ \ ~,~to.ll / 
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Let L~(K) be the minimal Lipsehitz constant of ~o on the set {(a, fl)l lal ~ Cr 
i/~[<K}. Then we have, for Ilzll <K,  II~l[ < g ,  and 1 < p <  ~ ,  

[qj(~(s),z(s))-~o(~(s),e(s))l'ds) <L~,(K). (ll~-r lip 

hence by Minkovski's inequality 

IIS(z)-S(zOUp<=z~(g)(u~.-~lt + llz-eltp) ( l < = p < ~ ) .  (13) 

(13) is obviously valid also for p = oo. Now we get from (12) and (13) 

[IS(z)-S(zOllp<Zq,(g)(l+L~(K).exp(Z~(g)))[lz-ellp (1 < p <  oo). (14) 

Finally abandonning the condition z(0)= ~(0)= 0, we obtain from (14) 

I IS (z ) -  S(z')LI, = I IS (z -  z ( 0 ) ) -  S ( e -  ~(0))11, 

< 2L.(2K) (1 + L,(2K)) exp(Z.(2g))) II z - ell ~. (15) 

We turn now to continuity properties of S, viewed as a mapping from 

D([0, 1]; R*): 

= ~z: [0, l]-~R*llimz(s)=z(t), and lira z(s) exists for all t~[0,  1]~ 
s~* sl"t J 

into/)([0, 1]; l~d), where both spaces are endowed with their Skorokhod topology 
[1,7]. 

Recall that the Skorokhod topology on D([0, 1]; R ~) is generated by the metric 
d defined by 

d(x, y)" = inf {max (ll x - y o 211 o0. II 2 - id II J } .  (16) 
2EA 

where A is the set of all mappings 2 from [0, 1] onto [0, 1] which are continuous 
and strictly monotonically increasing and id denotes the identity mapping on 
[0, i ] .  

Another metric generating the Skorokhod topology on D([0, 1]; R k) which is 
even complete, is given by 

do(x, y) : = in f {max(llx - y  o 211 oo, 1112111)}, (17) 
2~A 

where r is the set of all mappings 2 e A such that 

log2(t!-2(s)l  is finite. 1112111: = sup 
s # t  

(of. [1, p. 113], for a relation between d and do) 

Theorem 2. a) S is locally Lipschitz continuous as a mappina from 

(D([0, 1];Rk),do) to (D([0, 1];Rd),do) 

b) For each K > O, there exists an L > 0 such that 

d(S (z), S(z')) < Ld(z, z') (1 +, min (V (z), V(z')) 
(18) 

(llzltoo =<K, I1~11~ ~ K )  

(where V(z) denotes the total variation of z on [0, 1]) 
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Proof. In view of S(z)=S(z-z(O)), d(z-z(O),O)=llz-zO)l[~<~2llz[[o~, and 
d(z-  z (0), ~ -  ~(0)) < 2d(z, z') (the same with do instead of d) we may assume w.1. o. g. 
that z(0) = ~(0) = 0. 

a) With the same notation as in the proof of Theorem 1, we get for Ilzll ~ =< K, 
I1~11~ __<K, and each k s  4, noting that 2 is absolutely continuous, 

I~(O- G ~ 2(01 

= rt(~.(s),z(s))as- J ~(~(s),~(s))ds 
0 

t 

_--- I I~(~(s), z (s ) ) -  ~ (~  o ,~(s), e o .~(s))lds 
0 

+ I It/(r o 2(s), e o 2(s)l l1 -.s 
0 

<=L,(K) I~,(s)-~o2(s)lds+ [z(s)-~.o2(s)lds 
0 

+ c,(g)1114111' exp(lll2lll), (19) 

where C~(K) : = sup {[r/(a, fl) II1~1 < Cr I#1 _-< K}. N o w  (19) implies, by Gronwall's 
lemma 

II r Ca o 211 ~ ~ exp(L~(K)) (C,7(K) 1112111. exp(lll~lll)+ L~(K) IIz- ~o 2 II ~). (20) 

From this we obtain 

max( l lS(z ) -  S(z3 o All ~, IllAIII) 
<= (L~(K) (C(K) + L,(K)) exp(L~(K) + 1[[2[[[) + 1) max( l lz -  ~ o 2 [[ oo, [[[2l[I) �9 (21) 

Now taking the infmaum on both sides over all ,~ e A with [[121[[ =< 2K + 1, we get [in 
view of do(z, ~ <= do(z, 0) + do(~, 0)-_< 2K] 

do(S(z), S(~) <= (L~(K) (C(K) + L,(K)) exp(L,(K) + 2K + 1) + 1)do(z, ~ ,  (22) 

Thus we have proved part a) of the theorem. To prove part b), we proceed similar 
as in (19) and get, using integration by parts in the 2 "d estimate (see e.g., [15, 
p. 257]) 

I~ ( t ) -&oR( t ) l  
t 

< I I~(r z (s ) ) -  ~(r o.~(s), ~o ~(s))l~s 
0 

+ I~(~ ~ 2(0, ~.o 2~(t)) (t-2(t))[ + ! (s- ,~(s))d(~(~,  ~o  2) (s) 

<~L,~(K) Ir162 2(s)lds + I lz-go2t l |  

+ C,(K) l l2- idl l  ~o + 112-id[I oo' W(~(r ~ o  2). (23) 
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This together with the estimate 

V(q(r zOo 2) = V(t/({~, zO) =< L,r(K ) (C.(K) + V(D) (24) 

and Gronwall's inequality yields 

II ~ - r ~ 2 l] go < exp (L.(K)) (L.(K) II z -  e:o ,~ ]l | 

+ (L,(K) + 1) (c , (g)  + V(z')) 112- id II ~o) (25) 

from which we obtain (similar as in the proof of a)), assuming w.l.o.g, that 
V(z3 <= V(z), 

d(s(z), S(z')) 
<= ( L,,( K) + 1) ( L,~( K) + 1) ( Cn( K) + 1 + min(V(z), V(g-))) exp(L.( K) )d(z, z O. 

(26) 
Now (18) follows readily from (26), which completes the proof of Theorem 2. [] 

3. Exponential Growth of the Local Lipschitz Coefficients 

For questions like how an approximation rate of (random) inputs carries over to 
the outputs, one needs estimates on the growth of the local Lipschitz coefficients in 
Theorems 1 and 2. 
We are going to obtain such estimates under further assumptions on f and G. 

Proposition 2. Assume that f and G are uniformly Lipschitz continuous, that (Dgi)g J 
=(Dgj)gi (i,j= 1 . . . . .  k), and that G is bounded. 

Let 9(~, fl) be the solution of (3a). 

If  ~ (~, fl) is bounded and uniformly Lipschitz continuous, then 

a) ~o is uniformly Lipschitz continuous. 
b) C~(K) and L,(K) (appearing in the proofs of Theorems I and 2) are of linear 

growth. 

Proof. a) is immediate. As to b), we infer from the relation (see, e.g., [2, L6mme 18]) 

~(o~, fl) = (q~(tx, ill, - fl) (27) 

that ~- (e ,  fl) is bounded and uniformly Lipschitz continuous; hence ~ is of 

linear growth, which (by Gronwall's lemma) implies that C~(K) is of linear growth. 
This, in turn, shows that C~(K) is of linear growth. 

As q now turned out to be the product of two uniformly Lipschitz continuous 
functions, one of which is even bounded, we get for some constant c > 0  
(independent of K) and I~1 resp. I~1_-_ Q(K),  IPl resp. Iffl < K  the estimate 

Ir/(oq f l ) -  q(~, ff)l < c.  (K + 1) (t~ - cZ[ + If l -  ffl) (28) 

hence L~(K) is of linear growth. [] 

Theorem 3. Assume one of the following situations A)-D) : 
• ) k = d = l ; f and G are uniformly Lipschitz continuous, and 

O < rnl ~ lGl <- m2 < oo for some ma , m2 e I~. 
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B) k = d ;  f and G are uniformly Lipschitz continuous, (D93gj=(Dgj)g ~ 
(i,j  = 1, ..., k) ; G is bounded, G(x) is invertible for all x, and ct ~(G(~)) -  1 is bounded. 

C) k<=d; f and G are uniformly Lipschitz continuous, (Dg~)gj=(Dg)g i 
( i , j=  1, ..., k); there exist hi . . . . .  hd-~ ~ Ct(~fl; R a) such that (Dgi)hj=(Dh)g i 
(i = 1,..., k; j = 1 . . . . .  d -  k) and such that H:  = (g 1 . . . .  , ffk, h 1 . . . .  , ha- k) iS bounded, 
H(~) is invertible for all a, and ~ ( H ( o t ) ) -  1 is bounded. 

D) f and G are uniformly Lipschitz continuous, (Dg~)g~ = (Dg~)g~ (i,j = 1 ..... k); 
(Df)9,  = (Dg~)f (i = 1 . . . . .  k). 

Then there exist constants C~, C2 > 0 such that, for z, ~ ~ L ~ ([0, 1]; ~k) 

IIS(z)-S(z31t~ < C1 exp(C2 max(llzll ~o, II~l[ co)) Itz-~ll~ (29) 
and for z, eeO([0, 1]; R ~) 

do(S(z ), S(z")) ~ C t exp(C 2 max(][z]l ~, Ilell ~))do(z, z') (30) 

d(S(z), S(z')) < C~ exp(C2 max(llztl ~, II ell ~)) (d(z, z') (1 + min(F(z),  V(z'))) (31) 

Proof. In situations A) and B), the assertions (29)-(31) follow directly from (15), (23), 
and (26) together with Proposi t ion 2 and the relation (see, e.g., [2, L6mme 18]) 

O-~ ((~' fl) G(~) = G(go(~, fl)). (32) 

Now let us assume C), and first fix j e { 1, ..., d -  k}. We conclude from 

O~o 
O-~ hj(rp(a, fl)) = Dhj(go (cx, fl)) ~ -  (o:, fl) 

= Ohj(~o(~, ,e)) G(q,(~, t0) 
= DG(q ) (c t ,  fl)) h./(q~(~, fl)) (33) 

that  F(a, p): = hj(9(g, fl)) is the (unique) solution of 

d 
F(~, P) = OG(q,(~, p))e(a, #) 

(34) 
F(~,0)=h~(~). 

Moreover,  it follows from (3a) that  

O aa ap ~(~' p) = OG(q,(~, ,8)) O q~(~, p) 
(35) 

d ~ o ( ~ , o ) = I .  
d 

(35) implies that  ~ ~o(a, fl)hj(a) is a solution of (34), and hence coincides with 

hj(~(a, p)). Combining this with (32) we get 

,O (36) a-~ ~o(~, p)= n(~)- 1H(~0(~, fl)). 

Now the assertions follow, as above, by Proposi t ion 2. 
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In situation D), we put/~: = (t, fl), and G(g): = (f(g) ,  G(g)), and consider the 
system ~q3 

q3(g, 0) = ~. (37) 

Then, obviously, S(z) (t) = (p(a, (t, z(t)). 
From this and the relation [2, L rmme  18] 

~fl (~t,~)l < K~(l~l+ l)exp(Kz,[ll) (38) 

we obtain, for all t ~ [0, 1], (with suitable 7(0 e [0, 1]) 

IS(z) ( 0 -  S(z') (01 

< O(a, (t, ~(t)z(t) + (1 - ~,(t))ff(t)) Iz(t) - ff(t)l 

< K~([al + l) exp(K2 max(llz II co, I[~ll ~o))Iz(t)- ~(t)[ (39) 

which obviously implies (29)-(31). [] 

4. An Application: Random Inputs and Convergence Rates 
of Approximate Solutions 

Lipschitz properties of the type (29)-(31) may be used to estimate how the 
convergence rate of random inputs, if these are large only with small probability, 
carries over to the outputs.  

For simplicity, we will concentrate on the case of cont inuous inputs with II tlo~, 
and will assume for the whole section (see Theorem 3 resp. Proposi t ion 2) the 
existence of some C1, Cz > 0 s.th. 

IIS(z)-S(z311 ~ ~ C1 exp(C2 max(llzl[~o, It:~11 ~)IIz-~ll  oo 
(40) 

(z, ~ e c(E0, 13; R~)). 

Theorem 4. Let z(to) and z,(o') (n e N) be random elements of C([0, 1]; Rk), defined 
on some probability space (O,sl, P), let F : R + ~ R +  be continuous, strictly 
monotonically decreasing with lim F(s)= 0 and 

S.--~ O0 

elllzll ~o > s3 <F(s)  (41) 

and let (~n) and (fin) be two positive sequences converging to zero, with 

P [ l l z -  z, II o~ > ~,3 = O(fl,). (42) 

Then there holds, for any Y > C2 (where C2 is as in (40)) 

P [ 11S(z) - S(zn)II ~o > ~n exp(yF-1 (fl,))] = O (fin). (43) 

Vroof. II z(e~) -zn(~o)ll ~o < ~n together with C1 exp(C2(llz(o)ll ,~ + ~n)) 
~eexp(rF-1(ft.)) implies, by (40), that  IIS(z(oJ))-S(z.(~o))ll~o <an e x p ( r F - ' ~ ) ) ;  

nce follows 

P [ II S(z) - s (z.)II ~ > ~. exp (TF-X (fin))] 
6 e [ l l z -  znlt~ > ~ j  + P [ C l  exp C2(llzll ~ + ~n)> exp ( rF - l~n ) ) ] .  (44) 
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To show (43), it is thus sufficient to check that the 2 na term in the r.h.s, of (44) is 
O~. ) .  

But for sufficiently large n this term is not larger than P[I]zll~ >F-:(J~.)], 
which by (41) is not larger than ft.. [] 

Corollary. Suppose one of the situations A ) , B ) , C) od D) of Theorem 3 (and hence 
the validity of (40)). 

Let z be a (k-dimensional) standard PHener process, (z.) be a sequence of 
stochastic processes with piecewise continuously differentiable paths, and (an) be a 
positive sequence converging to zero, s.th., for some q ~ 1, there holds 

e[l lz-zn[I  :o > ~.] = O(n-q) . (45) 

Let x be the solution of (5) resp. (6), and x.(~o) be the solution of (1) with input z,(m) 
(recall that x = S ( z) and x. = S ( z.) ) . Then there holds,for any ~ > C2 (where C2 is as 

in (40) )  P [ II x - x. II | > ~. e x p ( ~ , ~ ) ]  = 0 (n-r (46) 

Proof. Noting that the distribution of z is the same as that of - z ,  and using the 
oo  

reflection principle I-4, p. 171] as well as the well known estimate ~ e-'2/2dt 

< 1 e_S:/2 (which is proved by differentiation) one obtains the estimate 
s 

PEIIzllo~>s]<2kP[ sup zl(t)>s] 
LO~t< 1 J 

4k 1 S2, 2 =4kP[zl(l)>s]<- ~ - e -  ~ = :F(s) .  (47) 
- - 'V2~z s 

For  sufficiently large n, F-1(n-~)<=V~qlogn; now (46) is immediate from 
(43). [] 

Example 2. a) Let z = z(~, t) be a Wiener process, and consider the "polygonal 
approximations" z.(og) defined by 

, , ,  ) 
�9 < - t < - - ~ - - ; j = 0  . . . .  , n - 1  . 

Then there holds [16, Lemma 3] 

e [ l l z - z ,  lloo>~J~2eexp(-2n~ 2) (e>0)  (48) 

which implies that 

p[llz-z~ll~>an-~/2(logn)l/2]=O(n -q) for all q > l ,  and a=a(q)" 
(49) 

b) The following statement is an easy consequence of a deep result of Komlos 
et al. [12]: 

Let {v.}.~ be a sequence of i.i.d, random variables with mean zero, variance 
one, and E[exp(cv~)] < ~ for some c > 0 ,  and put 

s . ( t ) : = ~ n (  J v , + ( t - J ) v j + , ) ( J < t < J + l  " _ = - - n - - - ; l = 0 , . . . , n  - 1 )  ,__Z 
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Then there exists, on some probability space, a Wiener process z and a 
sequence (g.) having the same distribution as (s.), such that 

P1,]t~n-zlloo>om-I/21ogn-l=O(n -q) for all q=>l, and 0~=0c(q) (50) 

c) Gorostiza and Griego 1,10] show 

P[ilu,-zlloo>om-1/ZOogn)5/2]=O(n-q ) for aU q > l ,  and ~=~(q), (51) 

where z is a Wiener process and (Un) is a sequence of"uniform transport processes", 
i.e. the slopes of the (continuous and piecewise linear) paths of u, change after 

and exp(n2)-distributed time-intervals from + -1 to T- 1 ( the  initial independent 
n n , \ 

slope at t = 0 being _+ n'  each with probability ~ . 

In each of the cases a), b), c) we get by the above Corollary, for any y > C2 and 
q_>_l, 

P I'll x - x~ I I oo > n-1 /2  exp (7 ~ ) 1  = O (n - ~). (52) 

Remark 2. a) Noting that e x p ( ~ V ~  logn ) = O(n -~) for all 6 >0,  let us mention that 
(52) re-establishes the assertion of I-8], Theorem 1 in its original rather than its 
weakened 1,9] version, its assumptions on f and G being those of our Theorem 3A 
(except time dependence of f and G, which could also be built into Theorem 3). 

b) For the polygonal approximation zn of a Wiener process z (Example 2a), 
one can show, using (48), that 

E[llz,,-zll~J1/P=O(n-lr2(logn) 1/2) (p> 1). (53) 

From (53), (40), H61der's inequality and the facts that IIz.lro~__<llzll| and 
E[exp(C. Llzll~)] < oo for all C > 0 ,  there follows 

E[l[x- x,,llp ]l/p-- O(n- 1/200gn)1 /2  ) . (54) 

C) A (weak) convergence rate of a sequence of binomal processes towards a 
Poisson process z (w.r. to the Skorokhod metric d) has been obtained by Dudley 
[3]; in view of Theorem 3 (31), the fact that lizlloo= V(z) and the estimate 

II z [I ~ > n] < ~ (if z is a Poisson process with rate 00, an analog of Theorem 4 and P 1, 
/1. 

its corollary can be formulated also in this case. 
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Note  added in proof. For the case of continuous inputs with U I[ | and d=k= 1, {'19, Example 1] 
covers a situation not included in Theorem 1, and gives a (nontrivial) condition under which S is 
even uniformly Lipschitz continuous (so that the results of [18] are then applicable). 


