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Many stochastic programming models may
be rewritten into the form

min
{∫

�

f0(x, ξ )P(dξ ) : x ∈ X,

∫
�

fk(x, ξ )P(dξ ) ≤ 0, k = 1, . . . , K
}

, (1)

where X is a closed subset of R
m, � a closed

subset of R
d, the functions fk map from R

m ×
� to the extended real numbers R for k =
0, . . . , K, and P is a probability distribution
on �. The set X is used to describe all con-
straints not depending on P, and the set �

to contain the support of P. The integrands
fk are assumed to be lower semicontinuous
jointly in (x, ξ ) implying that all integrals in
problem (1) are well defined (although possi-
bly infinite).

Classical examples are linear two-stage
stochastic programs and optimization models
with probabilistic constraints. Linear two-
stage models appear for K : = 0 and f0 having
the representation

f0(x, ξ ) := 〈c(ξ ), x〉 + inf{〈q(ξ ), y〉 : W(ξ )y

= h(ξ ) − T(ξ ) x, y ≥ 0} (2)

by means of the infimum of a second stage
linear program where some of the coefficients
are affine functions of the d-dimensional
random vector ξ and the variable x is the
first stage decision. Models with probabilistic
constraints appear, for example, for K = 1,
f0(x, ξ ) = 〈c, x〉 and

f1(x, ξ ) = p − 1{ξ∈�:T(ξ )x≥h(ξ )}(ξ ),

where 1B denotes the characteristic function
of a set B in R

d and p ∈ (0, 1) is a prob-
ability level (see also Models and Basic
Properties).
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APPROXIMATION

Stability results for problem (1) with respect
to approximations Q of the original probabil-
ity distribution P (see Ref. 1 for a survey)
state that infimal values v(P) and v(Q) and
solution sets S(P) and S(Q) of the stochas-
tic programs (1) with distributions P and Q,
respectively, get close if the (uniform) dis-
tance of P and Q

dF(P, Q) = sup
f∈F

∣∣∣ ∫
�

f (ξ )P(dξ ) −
∫

�

f (ξ )Q(dξ )
∣∣∣,
(3)

with F = {fk(x, ·) : x ∈ X, k = 0, . . . , K} gets
small, the set X is compact, the objective
function x �→ ∫

�
f0(x, ξ )P(dξ ) is Lipschitz

continuous on X and a metric regularity
condition for the constraint set is satisfied.
The latter two conditions are only needed
if K ≥ 1. As we have seen before, typical
integrands f in stochastic programs are
nondifferentiable or even discontinuous. (For
simplicity, we assume here that all integrals
in problem (1) are finite for every x ∈ X and
for the probability distribution P and its
approximations Q.)

The most important way to approximate
P consists in utilizing discrete probability
measures Qn having finite support

supp(Qn) = {ξ1, . . . , ξn} ⊂ �,

for some n ∈ N. The elements of supp(Qn) are
often called scenarios. When replacing P by
Qn in problem (1), the (multivariate) integrals
in problem (1) reduce to weighted sums and
one obtains

min

{
n∑

i=1

qi f0(x, ξ i) : x ∈ X,

n∑
i=1

qifk(x, ξ i) ≤ 0, k = 1, . . . , K

}
, (4)

where qi = Qn({ξ i}) > 0 is the probability
that scenario ξ i occurs (i = 1, . . . , n). Clearly,
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2 SCENARIO GENERATION

we have
∑n

i=1 qi = 1. The structure of the
approximate stochastic programming prob-
lem (4) is very close to a standard (linear,
nonlinear, and integer) optimization model.
The only remaining difficulty consists in the
need of many evaluations of the functions fk
at the pairs (x, ξ i), i = 1, . . . , n, if the number
n of scenarios gets large. But, large n are
often unavoidable when recalling numerical
integration even in dimension d = 1 and all
the more for large d as in many applied
stochastic programming models, in produc-
tion, energy, transportation, and finance.
According to our stability considerations,
the number n, the scenarios ξ i ∈ � and
their probabilities qi for i = 1, . . . , n should
be selected such that for given ε > 0 the
(absolute) error satisfies

e(Qn) := sup
f∈F

∣∣∣ ∫
�

f (ξ )P (dξ ) −
n∑

i=1

qif (ξ i)
∣∣∣ ≤ ε,

(5)

with F defined earlier. Another and more
feasible condition consists in utilizing the rel-
ative error such that given ε ∈ [0, 1), we look
for a probability measure Qn such that

e(Qn) ≤ εe(Q1), (6)

where the measure Q1 consists of only one
distinguished scenario ξ with probability 1.
A more advanced requirement consists in
looking for Qn with the smallest number
n = nmin(ε, Qn) ∈ N of scenarios such that
Equation (6) holds. Sometimes even Q0 = 0
is considered in the literature [2] and, thus,
the criterion (6) is of the form

e(Qn) ≤ ε sup
f∈F

∣∣∣ ∫
�

f (ξ )P (dξ )
∣∣∣. (7)

The behavior of e(Qn) with respect to n ∈ N

and of nmin(ε, Qn) with respect to ε is of consid-
erable interest. In both cases, the dependence
on the dimension d of P is crucial, too.

It is not surprising that the behavior of
the two quantities depends heavily on the
set F of integrands as well as on the prob-
ability distribution P. Since the set F in its
present form is not very convenient to handle,

it might be an alternative to enlarge F in esti-
mates (5–7). But, one has to be careful in this
process as is shown next.

If F is the unit ball in the Banach space
Lip(Rd) of Lipschitz continuous functions on
� = R

d and if qi = 1
n , i = 1, . . . , n, one obtains

e(Qn) = Cn− 1
d , (8)

for some constant C depending only on P
under the weak assumptions that P is not sin-
gular with respect to the Lebesgue measure
on R

d and that the moment
∫

Rd ‖ξ‖1+δP(dξ )
is finite for some δ > 0 [3, Theorem 6.2].

The rate (8) suggests that the unit ball in
Lip(Rd) is too large and one should look for
function classes F satisfying more restrictive
conditions. One possibility is offered by
the classical Koksma–Hlawka inequal-
ity [4,5]. It states for an integrand f on
� = [0, 1]d that is of bounded variation V(f )
in the sense of Hardy and Krause that the
estimate∣∣∣∣∣

∫
�

f (ξ ) dξ −
n∑

i=1

qi f (ξ i)

∣∣∣∣∣ ≤ V(f )α∗(λd, Qn),

(9)

holds with qi = 1
n , i = 1, . . . , n and with the

so-called star-discrepancy α∗ defined by

α∗(P, Q) = sup
ξ∈ [0,1]d

|P([0, ξ )) − Q([0, ξ ))|,

where [0, ξ ) = ×d
i=1[0, ξi). For problem (1)

with K = 0 and � = [0, 1]d, the Koksma–
Hlawka inequality 9 leads to the estimate

e(Qn) ≤ sup
f∈F

V(f ) α∗(P, Qn)

= sup
x∈X

V(f0(x, · )) α∗(P, Qn).

If P = λd is the uniform distribution on
� = [0, 1]d and qi = 1

n , i = 1, . . . , n, it is
known [4, Chapter 3.1] that there exist seq-
uences (ξ i)i∈N with

α∗(P, Qn) = O(n−1(log n)d). (10)

Hence, compared with Equation (8), a much
better convergence rate for e(Qn) can be
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obtained under stronger assumptions on F.
Initiated by the pioneering work of Sloan
and Woźniakowski [2], the convergence rate
is further improved if the set F is bounded in
the weighted tensor product space

W(1,...,1)
2 ([0, 1]d) =

d⊗
i=1

W1
2([0, 1]), (11)

where W1
2 ([0, 1]) is the Sobolev space of abso-

lutely continuous real functions whose first
derivatives belong to L2([0, 1]). The space (11)
contains all real functions f on [0, 1]d, for
which all mixed partial derivatives ∂ |u|

∂ξu
f (ξu, 1)

exist for almost every ξu ∈ [0, 1]|u| and u ⊆
D = {1, . . . , d} and for which the weighted
norm

‖f‖d,γ

=
⎛
⎝∑

u⊆D

∏
j∈u

γ −1
j

∫
[0,1]|u|

∣∣∣ ∂ |u|

∂ξu
f (ξu, 1)

∣∣∣2dξu

⎞
⎠

1
2

is finite. Here, we denote by |u| the cardi-
nality of u ⊆ D, and by ξu ∈ [0, 1]|u|, the vec-
tor containing the components of ξ ∈ [0, 1]d

whose indices are in u. The weights (γj) are
positive and monotonically decreasing with
γ1 = 1 = ∏

j∈∅ γ −1
j .

By utilizing the weighted Koksma–Hla-
wka inequality,

∣∣∣ ∫
�

f (ξ ) dξ − 1
n

n∑
i=1

f (ξ i)
∣∣∣ ≤ discγ ((ξ i))‖f‖d,γ

with disc(ξ ) = ∏d
j=1 ξj − n−1 ∑

ξ i∈ [0,ξ ) i and the
weighted L2-star-discrepancy

discγ ((ξ i))

=
⎛
⎝ ∑

∅�=u⊆D

∏
j∈u

γj

∫
[0,1]|u|

disc2(ξu, 1) dξu

⎞
⎠

1
2

instead of α∗(λd, Qn) in Equation (9), it
became possible in Refs 2 and 6 to prove the
existence of a sequence (ξ i)i∈N such that for
any δ > 0 the estimate

e(Qn) ≤ C(δ)n−1+δ (12)

holds, where C(δ) is independent of n and
d if the weights (γj) satisfy the condition
supd

∑d
j=1 γj < ∞. While the results in Refs 2

and 6 were nonconstructive, it is reported in
Ref. 7 that certain shifted lattice rules attain
the optimal order (12) of convergence.

SCENARIO GENERATION TECHNIQUES

We briefly discuss here about four different
scenario generation techniques for stochas-
tic programs without nonanticipativity
constraints:

1. Monte Carlo simulation methods,
2. Quasi–Monte Carlo (QMC) methods,
3. Quadrature rules using sparse grids,
4. Optimal quantization (or discretiza-

tion) of probability measures.

Monte Carlo Simulation Methods

Monte Carlo methods are based on draw-
ing independent identically distributed (iid)
�-valued random samples ξ1(·), . . . , ξn(·), . . .
[defined on some probability space (
,A, P)]
from an underlying probability distribution P
(on �) and on using the law of large numbers
to obtain

lim
n→∞

1
n

n∑
i=1

f (ξ i(ω)) =
∫

�

f (ξ )P (dξ )

P-almost surely

for every real continuous and bounded
function f on �. Practically, iid samples are
approximately obtained by pseudorandom
number generators as uniform samples in
[0, 1]d and later transformed to more general
sets and distributions. This technique may
be applied, for example, to certain time series
models (calibrated to the available statistical
data) or to the statistical data directly.
For details, refer to the article Sampling
Methods in this encyclopedia.

Quasi–Monte Carlo Methods

The basic idea of QMC methods is to replace
random samples in Monte Carlo methods by
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deterministic points that are uniformly dis-
tributed in [0, 1]d. One possibility for defining
the latter property for a sequence (ξ i)i∈N is to
require that

lim
n→∞

1
n

n∑
i=1

f (ξ i) =
∫

[0,1]d
f (ξ ) d(ξ ) (13)

holds for all real continuous functions
f on [0, 1]d. Basic references for QMC
methods are Refs 4 and 8. With P = λd

(the d-dimensional Lebesgue measure) and
Q = Qn denoting the probability measure
with support supp (Qn) = {ξ1, . . . , ξn} and
with identical probabilities 1

n for all atoms,
the estimate (9) highlights the importance
of the star-discrepancy of the point set
{ξ1, . . . , ξn}

disc∗(ξ1, . . . , ξn) := α∗(λd, Qn)

in this respect. Hence, one should look for
low discrepancy sequences, that is, sequences
(ξi)i∈N such that disc∗(ξ1, . . . , ξn) is low for all
n. Such sequences have the property

1
2

n−1 ≤ disc∗(ξ1, . . . , ξn) = O(n−1(log n)d).

In particular, we refer to the sequences dis-
cussed in Refs 8 (Section 5.4) and 9, namely,
Faure, Sobol, and Niederreiter sequences. The
latter are special cases of so-called (t, d)-
sequences which in turn are based on (t, m, d)-
nets [4, Chapter 4]. The latter (t, m, d)-nets
and lattices [4, Chapter 5; 8, Section 5.3] rep-
resent (finite) low discrepancy point sets and
are, presently, the most important sources
for QMC methods.

If G : [0, 1]d → �, � ⊆ R
d, is almost every-

where continuous, then Equation (13) means
that the sequence (Qn) converges weakly to
λd and the continuous mapping theorem [10,
Chapter 5] implies that the sequence (QnG−1)
converges weakly to λdG−1. This fact allows
to apply QMC methods to many situations in
stochastic programming.

Quadrature Rules Using Sparse Grids

Again, we consider first the unit cube [0, 1]d

in R
d. Let nested sets of grids in [0, 1] be

given

�i = {ξ i
1, . . . , ξ i

mi
} ⊂ �i+1 ⊂ [0, 1] (i ∈ N),

for example, the dyadic grid �i = { j
2i : j =

0, 1, . . . , 2i}. Then, the point set suggested by
Smolyak [11]

H(q, d) :=
⋃

∑d
j=1 ij=q

�i1 × · · · × �id (14)

is called a sparse grid in [0, 1]d and points in
H(q, d) are also called hyperbolic cross points.
In case of dyadic grids in [0, 1], H(q, d) con-
sists of all d-dimensional dyadic grids with
product of mesh size given by 1

2q [12].
The corresponding tensor product quadra-

ture rules for q ≥ d on [0, 1]d with respect to
the Lebesgue measure λd are of the form

I(q, d) =
∑

q−d+1≤|i|≤q

(−1)q−|i|
(

d − 1
q − |i|

)

×
mi1∑
j1=1

· · ·
mid∑
jd=1

f
(
ξ

i1
j1

, . . . , ξ id
jd

) d∏
l=1

ail
jl

,

(15)

where |i| = ∑d
j=1 ij and the coefficients ai

j
(j = 1, . . . , mi, i = 1, . . . , d) are weights of one-
dimensional quadrature rules. Even if the
one-dimensional weights are positive, some
of the weights in Equation (15) are nega-
tive. Hence, an interpretation as scenario-
based (discrete) probability measure is no
longer possible. We note that the results in
Ref. 13 (as extension of Ref. 2, see Section
1) apply to such tensor product quadrature
rules.

Optimal Quantization of Probability Measures

Let D be a metric distance of probability mea-
sures on R

d, for example, the Fortet–Mourier
metric ζr of order r (to be used in the next
section), the minimal Lr-metric 
r used in
Ref. 3 or some other metric [14] such that
the underlying stochastic program behaves
stable with respect to D. Furthermore, let P
be a given probability distribution on R

d. We
are looking for a discrete probability mea-
sure Qn with support supp(Qn) = {ξ1, . . . , ξn},
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Qn({ξ i}) = pi, i = 1, . . . , n, such that it is the
best approximation to P in the sense

D(P, Qn) = min{D(P, Q) : |supp(Q)|
= n, Q(Rd) = 1}. (16)

In many cases, the distance D(P, Q) may be
reformulated as a real function � defined on
[0, 1]n × R

dn. It attains its global minimum
subject to the standard simplex constraint for
the first n variables at (p1, . . . , pn; ξ1, . . . , ξn).
Unfortunately, the function � is nonconvex
and often nondifferentiable, hence, minimiz-
ing it is not an easy task.

We refer to Refs 15–17 for developing
algorithmic procedures for minimizing �

globally, for example, stochastic gradi-
ent algorithms, stochastic approximation
methods, and stochastic branch-and-bound
techniques.

The methodology of optimal quantization
may be extended to multistage stochastic pro-
grams by incorporating constraints describ-
ing the tree structure [15,16].

SCENARIO REDUCTION

Let P be a probability measure on R
d

having N scenarios ξ i with probabilities pi,
i = 1, . . . , N. We consider P as approximation
of the original probability distribution of a
stochastic program that has to be solved
computationally. Owing to running time
requirements N might be too large and we
have to look for an approximation Qn of P
whose support consists of only n < N scenar-
ios out of {ξ1, . . . , ξN}. Then two questions
arise: (i) Which of the N scenarios should be
deleted and (ii) which probabilities should be
assigned to the n remaining scenarios?

We review below the stability-based
approach for (optimal) scenario reduction
developed in the articles [18–20]. It is based
on considering the distance dF(P, Qn) (see Eq.
3 in the section titled ‘‘Approximation’’) and
in determining Qn as best approximation of P
with respect to dF among all probability mea-
sures whose supports consist of n scenarios
out of {ξ1, . . . , ξN}. An equivalent formulation
of this best approximation problem is as
follows: Let QJ denote a probability measure

on R
d with supp(QJ) = {ξ i : i ∈ I \ J} for some

index set J ⊂ I : = {1, . . . , N} and let qi be
the probability of the scenario indexed by
i for every i ∈ I \ J. Then the minimization
problem

min
{

dF (P, QJ) : J ⊂ I, |J| = N − n,

qi ≥ 0, i ∈ I \ J,
∑

i∈I\J

qi = 1
}

(17)

determines some index set Jn and weights
qi ∈ [0, 1] such that the probability measure
Qn := QJn with scenarios ξ i and probabilities
qi for i ∈ I \ Jn solves the best approxima-
tion problem. The formulation (17) of optimal
scenario reduction leads immediately to a
decomposition into an inner and an outer
minimization problem, namely,

min
J

{
inf

q

{
dF (P, QJ) : qi ≥ 0, i ∈ I \ J,

∑
i∈I\J

qi = 1
}

: J ⊂ I, |J| = N − n
}
.

(18)

In particular, the approach becomes powerful
if solutions and the infimum DJ(F, P) of the
inner problem may be determined explicitly
for any index set ∅ �= J ⊂ I. In that case, the
optimal redistribution of the N probabilities
pi, i ∈ I, to the n scenarios indexed by I \ J
is known and it remains to solve the outer
(combinatorial) optimization problem

min{DJ(F, P) : J ⊂ I, |J| = N − n} (19)

at least approximately. Problem (19) is
known as n-median problem and as NP-hard.

Unfortunately, for many function classes
F, it is impossible to determine DJ(F, P) as
well as the optimal redistribution explic-
itly. In particular, this is true for models
with probabilistic constraints and for two-
stage mixed-integer stochastic programs in
which case (rectangular, polyhedral) discrep-
ancies appear as distances dF [21,22]. For
discrepancies, however, the inner problem
may be solved by linear programming [21].
For two-stage linear stochastic programs, the



6 SCENARIO GENERATION

integrands f0(x, · ) in Equation (2) are often
proportional to certain elements of

Fr(�) = {f : � → R : |f (ξ ) − f (ξ̃ )| ≤ cr(ξ , ξ̃ ),

∀ξ , ξ̃ ∈ �},

for some r ∈ N and with the (cost) function cr
defined by

cr(ξ , ξ̃ ) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖
(ξ , ξ̃ ∈ �)

(see Refs 1 and 23). The corresponding dis-
tance ζr := dFr is known as Fortet–Mourier
metric of order r. In the latter case the inner
problem is explicitly solvable, and it holds

DJ(Fr, P) =
∑
j∈J

pj min
i�∈J

ĉr(ξ i, ξ j) (20)

qi = pi +
∑
j∈J

i(j)=i

pj and

i(j) ∈ arg min
i�∈J

ĉr(ξ i, ξ j), i ∈ I \ J, (21)

that is, the redistribution rule consists in
adding the probability of a deleted scenario
indexed by j ∈ J to the probability of a
remaining scenario that is nearest to ξ j with
respect to the distance ĉr on supp (P). The so-
called reduced cost ĉr has the representation

ĉr(ξ i, ξ j) := min

{

−1∑
k=1

cr(ξ ik , ξ ik+1 ) : 
 ∈ N,

ik ∈ I, k = 1, . . . , 
, i1 = i, i
 = j

}
.

Two simple heuristic algorithms for solving
Equation (19) are proposed in Refs 19 and
20: the forward (selection) and the backward
(reduction) heuristic. To give an idea of the
heuristics, we give a short description of the
forward algorithm. Its basic idea originates
from the simple structure of Equation (19)
with Equation (20) for the special case n = 1.
It is of the form

min
u∈{1,...,N}

N∑
j=1
j�=u

pjĉr(ξu, ξ j).

If the minimum is attained at u∗, the index
set J = {1, . . . , N} \ {u∗} solves Equation (19)
for n = 1. The scenario ξu∗

is taken as the
first element of supp(Q). Then the separable
structure of DJ is exploited to determine the
second element of supp(Q) while the first
element is fixed (see Fig. 1). The process is
continued until n elements of supp(Q) are
selected.

Forward algorithm for scenario reduction

Step 0: J[0] := {1, . . . , N}.
Step k: uk ∈ arg min

u∈J[k−1]

∑
j∈J[k−1]\{u}

pj min
i�∈J[k−1]\{u}

ĉr(ξ i, ξ j),

J[k] := J[k−1] \ {uk}.
Step n+1: Redistribution with J := J[n] via (21).

Similarly, the idea of the backward algo-
rithm is based on the second special case
of problem (19) with expression (20) for n =
N − 1.

SCENARIO TREES FOR MULTISTAGE
STOCHASTIC PROGRAMS

The special feature of multistage stochastic
programs (see Two-Stage Stochastic

Programs: Introduction and Basic
Properties) consists in imposing information
constraints on the decisions. The information
flow is modeled by a filtration of σ -fields
At, t = 1, . . . , T, which is associated to the
stochastic input process ξ = (ξt)T

t=1 defined
on a probability space (
,A, P). Typically, it
is required that the σ -field At is generated
by the random vector (ξ1, . . . , ξt). Then the
information or nonanticipativity constraint
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Figure 1. Illustration of selecting the first, second,
and third scenario out of N = 5.

means measurability of the decisions xt
with respect to At for every t = 1, . . . , T.
Mostly, t = 1 refers to the present. Thus, ξ1
is deterministic and A1 = {∅, 
}.

Clearly, any scenario-based approxima-
tion of the underlying probability distribu-
tion P of ξ has to reflect the growth of
the σ -fields. Hence, the scenarios need to
be tree-structured. In general, there are two
ways to generate scenario trees, namely, (i)
a tree-structure is prescribed and scenarios
are generated via conditional distributions
for increasing t starting with a root at t = 1,
or (ii) in a first step, a number of scenarios is
generated for the whole horizon t = 1, . . . , T
based on the distribution P and according to
some method reported in the section titled
‘‘Scenario Generation Techniques.’’ Secondly,
a tree structure is generated successively by
bundling scenarios.

Several specific techniques for generating
scenario trees are known from the literature.
We refer to the survey [24] and the more
recent articles [15–17,25–34]. Most of them
are discussed in the introduction of Ref. 26.

Finally, we review an application of sce-
nario reduction techniques (see the section
titled ‘‘Scenario Reduction’’) to generate
scenario tree. We consider an original
(nonstructured) scenario set {ξ1, . . . , ξN},
satisfying the root condition ξ i

1 = ξ∗
1 ,

i = 1, . . . , N, and the parameter sets {1, . . . , t}
for increasing t and start at t = 2 with
the reduction of the original scenario set
restricted to t = 2. This leads to (say) k2
remaining scenarios and certain clusters
Ck

2 of scenarios for k = 2, . . . , k2 that are
associated to one of the remaining scenarios
via the next neighbor property. In general,
we obtain (disjoint) partitions or clusters

Ct := {C1
t , . . . , Ckt

t } , (kt ∈ N)

of the index set I = {1, . . . , N} for every
t = 2, . . . , T. The following forward algorithm
leads to a scenario tree process ξtr whose
structure may be controlled by certain
tolerances εt, t = 2, . . . , T.

Algorithm: Forward scenario tree generation

Step 1: Initialization
Set C1 = {I}, k1 = 1 and t := 2.

Step 2: Cluster computation Let Ct−1 = {C1
t−1, . . . , C

kt−1
t−1 }. Perform scenario reduction w.r.t. the

Fortet–Mourier metric ζr for every scenario subset {ξ i
t }i∈Ck

t−1
separately for every k ∈

{1, . . . , kt−1} and only with respect to the tth component. Define index sets Jk
t and Ik

t of deleted and remain-
ing scenarios and mappings ik

t : Jk
t → Ik

t such that

ik
t (j) ∈ arg min

i∈Ik
t

ĉr(ξ i
t , ξ j

t ) , (j ∈ Jk
t ),

according to the rule (21). Define the partition Ct and the mapping αt : I → I by

Ct :=
{

α−1
t (i)

∣∣∣ i ∈ Ik
t , k = 1, . . . , kt−1

}
and αt(j) =

{
ik
t (j), j ∈ Jk

t ,
j, else.

(22)

Ct is a refinement of the partition Ct−1. If t < T perform the cluster computation for t = t + 1 and go to Step 2.

Step 3: Tree generation According to the partition CT and the mapping αT (see Eq. 22) the scenario tree
process ξtr is defined such that its kth scenario is

ξk
tr =

(
ξ ∗

1 , ξ
α2(i)
2 , . . . , ξαt(i)

t , . . . , ξ
αT (i)
T

)
for some i ∈ Ck

T
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with probability qk := ∑
i∈Ck

T
pi for every k = 1, . . . , kT . The error at step t is given by

errt :=
kt−1∑
k=1

∑
j∈Jk

t

pj min
i∈Ik

t

ĉr(ξ i
t , ξ j

t ).

Hence, the generation procedure may
be controlled by the condition errt ≤ εt for
every t = 2, . . . , T. We refer to Ref. 26 for
further information and some computational
experience.
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