TOPICS IN TOPOLOGY (“TOPOLOGIE IIT’), SOMMERSEMESTER 2024, HU
BERLIN

CHRIS WENDL

At the beginning of the semester, I wrote in this spot that these are not a set of lecture notes, but
merely a brief summary of the contents of each lecture, with reading suggestions and a compendium
of exercises. But who am I kidding: these are lecture notes! They are not very polished, and the
format is probably a bit annoying, but from at least week 3 onward they contain almost all of the
material that was covered in the lectures, and some that wasn’t.

PROLOGUE: NOTATION

Before getting into the content of the course, here is a glossary of important notation that is
used in the lectures, including some comparison with other sources such as [tD08, DK01, Wen23]
where different notation is sometimes used. This glossary will be updated during the semester as
needed, and it is not in alphabetical order, but there is some kind of ordering principle. . . maybe
you can figure out what it is.!

Categories.

e General shorthand: For any category %, I often abuse notation by writing X € € to mean
“X is an object in ¥”; many other authors denote this by “X € Ob(%)” or something
similar. For two objects X,Y € €, I write

Homg(X,Y) or sometimes just Hom(X,Y)

for the set of morphisms X — Y. The notation Mor(X,Y) is also frequently used in
many sources, and would make more sense linguistically, but it seems to be less popular.
Given two functors F,G : & — A, the notation

T:F—>gG

means that T is a natural transformation from F to G.

e Top: the category of topological spaces and continuous maps

e Top,: the category of pointed spaces and pointed maps, i.e. an object (X,z) is a
topological space X equipped with a base point z € X, and morphisms f : (X, z) — (Y,y)
are continuous maps X — Y that send x to y. This notation is common but not universal,
e.g. [tD08] uses a superscript 0 to indicate base points, so Top,, is called TOPY.

e Set: the category of sets and maps (with no continuity requirement)

e Set,: the category of pointed sets and (not necessarily continuous) pointed maps,
i.e. an object (X, z) is a set X with a base point x € X, and morphisms f : (X, z) — (Y,y)
are arbitrary maps X — Y that send x to y.

e Top™!: the category of pairs of spaces (X, A) and maps of pairs, i.e. an object (X, A) is
a topological space X equipped with a subset A c X, and morphisms f : (X, A) — (Y, B)
are continuous maps X — Y that send A into B. Despite the uniquity of this category,
there doesn’t seem to be any common standard notation for it; [tD08] calls it TOP(2), and

IThe notational glossary didn’t really get updated much after the first half of the semester, because I lost interest.
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similarly writes TOP(3) for the category of triples (X, A, B) with B ¢ A ¢ X, and so
forth. In [Wen23] I used a subscript instead of a superscript, but I'm changing it so that I
can also define the next item on this list.

Topffl: the category of pointed pairs of spaces, i.e. an object (X, 4, x) is a topological
space X equipped with a subset A € X and a base point x € A, and morphisms f :
(X,A,z) - (Y,B,y) are maps of pairs (X, A) — (Y, B) that also send x to y. I have
no idea what anyone else calls this, but it’s a subcategory of what [tDO08] calls TOP(3),
and is in any case clearly important since e.g. it is the domain of the relative homotopy
functors m,.

hTop, hTop,,, hTop™, hTop’®: the homotopy categories associated to Top, Top,,, Top™
and Topfk81 respectively, meaning we define categories with the same objects, but instead
of taking morphisms to be actual maps, we define them to be homotopy classes of maps
(respecting subsets and/or base points where appropriate, so e.g. pointed homotopy
for hTop,, and homotopy of maps of pairs for hTop™). This notation (or similar) for
homotopy categories is very common, but different from my Topology I-IT notes [Wen23],
which wrote e.g. TopZ instead of hTop,.

Diff: the category of smooth finite-dimensional manifolds without boundary, and smooth
maps

Grp: the category of groups and group homomorphisms

Ab: the category of abelian groups and homomorphisms, which is a subcategory of Grp
Ring © CRing D Fld: the category of rings with unit and its subcategories of commu-
tative rings and fields respectively, with ring homomorphisms (preserving the unit)
R-Mod: the category of modules over a given commutative ring R and R-module ho-
momorphisms. In [Wen23] I called this Mod”, and other variations such as Mod-R are
also common.

K-Vect: the category of vector spaces over a given field K and K-linear maps, i.e. this
is R-Mod in the special case where R is a field K. In [Wen23] I called this Veck.
Categories of (co-)chain complexes: given any additive category 7 such as Ab or R-Mod,

Ch(«) or sometimes simply Ch

denotes the category of chain complexes ... —» A1 — A, —» A,_1 — ... formed out of
objects and morphisms in o/, with the morphisms of Ch(/) defined to be chain maps.
There is a similar category CoCh(%/) of cochain complexes ... - A,_1 — 4,, > A,41 —
..., though T am not really happy with this notation and I doubt that anyone else is
either. In [Wen23] I denoted Ch(Ab), CoCh(Ab), Ch(R-Mod) and CoCh(R-Mod) by Chain,
Cochain, Chain® and Cochain® respectively. One sometimes sees a meaningless subscript
such as Ch,(«) added, but there are also meaningful subscripts that define important
subcategories such as e.g. Ch>o(&7), the chain complexes that are trivial in all negative
degrees.

Homotopy categories of chain complexes: analogously to the homotopy categories
of spaces, one can take the objects in Ch(«/) and define morphisms to be chain homotopy
classes of chain maps instead of actual chain maps. The internet seems quite insistent that
I should call the resulting category

K(27) := the (naive) homotopy category associated to Ch(«?),

even though I'd rather call it hCh(7), and in [Wen23] T wrote e.g. Chain™ instead of K(Ab);
on occasion I have even seen Ho(<7) in place of K(<). I have no idea what notation to
use for the homotopy category of cochain complexes. People who like derived categories
will tell you that there are other things more deserving of the name “homotopy category
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of chain complexes,” and I added the word “naive” above in order to avoid getting into
conversations about it with those people, which would be completely unnecessary for the
purposes of the present course.

e Topg, Topg 4, hTopp and hTopg ,: Given a space B, these are the various categories of
(unpointed or pointed) spaces over B with maps over B or homotopy classes thereof,
as defined in Week 4, Lecture 6. The notation used in [tD08] for Topy and hTopy is not
identical but sufficiently similar; I cannot find definitions in [tD08] for the pointed variants
Topg . and hTopp .

Topological constructions.

e X 11Y: This is how I write the disjoint union of two topological spaces (and similarly
for pairs of spaces), and most sensible people use either this notation or X u Y, but
[tDO08] instead writes X + Y and calls it the topological sum of X and Y, presumably
because—Ilike the direct sum of abelian groups and many other constructions that use the
word “sum”—it is a coproduct. The book by tom Tieck becomes significantly easier to read
once you realize this.

e X[]Y: the coproduct of X and Y, whatever that means in whichever category X and
Y happen to live in, so e.g. in Top, it means the same thing as X 1Y, though in Top,, it
means X v Y.

e [X,Y]: If X and Y are just topological spaces (i.e. objects in Top), then this denotes the
set of homotopy classes of maps X — Y, i.e.

[X, Y] = HOH’lhTOp(AX7 Y)

If X and Y are equipped with additional data (which may be suppressed in the notation)
and are thus objects in Top,,, Top™ or Top’®, then I use the same notation [X, Y] to mean
the corresponding notion of homotopy classes in each category, so e.g. in the context of

pointed spaces, I would write
[X, Y] = HOthop* (X, Y),

and similarly for (pointed or unpointed) pairs of spaces. This convention is popular but
not universal, e.g. [tD08] writes [X,Y]° for the set of pointed homotopy classes and uses
[X, Y] only to mean unpointed homotopy classes; [DK01] does the same but writes [X, Y]
instead of [X,Y]°.

e X vY and X AY: these are the wedge sum and smash product respectively of pointed
spaces, and mercifully, everyone seems to agree on what they mean and how to write them.

e Implied base points: for a pair of spaces (X, A), the quotient space X/A is often
interpreted as a pointed space, with the collapsed subset A as base point. Similarly, for
two pointed spaces X,Y, the set of pointed homotopy classes [X,Y] is viewed as a
pointed set (i.e. an object in Set,) whose base point is the homotopy class of the constant
map to the base point of Y.

¢ One-point spaces: the symbol * is often used to mean either a one-point space, the
unique point in that space, or sometimes a previously unnamed base point of a given
pointed space. It should usually be clear from context which is meant.

e [: this usually denotes the unit interval

I:=1[0,1],

as appears in domains of paths, homotopies etc.
e Homotopy relations: Given maps f,g: X — Y, I write

f;g
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to means that f and g are homotopic ([tD08] writes “f ~ ¢”), and

Fg
to mean that H is a homotopy from f to g, thought of as a path in the space of maps,
hence H : I x X — Y with H(0,-) = f and H(1,-) = ¢g. This can also mean e.g. pointed
homotopy or homotopy of maps of pairs if working in Top,, or Top™® respectively. Where
I write f 4 g, [tDO08] writes H : f ~ g.
e Homotopy commutative diagrams: I use a diagram of the form

z-J 4 x

o~ |

Yy 5 Q
to mean that o f and 1o g need not be identical but are homotopic, whatever that means
in whichever category the objects of the diagram live in, e.g. if they are pointed spaces it
means pointed homotopic, for spaces without base points it just means homotopic—it may
also mean chain homotopic if the objects are chain complexes. If T write the variant

7z -1, x

bl

y 5 Q
then it means that « is a homotopy (or chain homotopy as the case may be) from po f to
1 og. It wasn’t easy to figure out how to render this in LaTeX, so maybe that’s why most
textbooks don’t do it.

o Z(f), Z(f,g), cone(f): mapping cylinders, double mapping cylinders and mapping
cones (see Week 2, Lecture 3)

e CX, YX: the cone and suspension respectively of a space X. In the context of pointed
spaces the same notation may instead mean the reduced cone/suspension.

o P(f), P(f,9), F(f): the mapping path space of a map, double mapping path space
of two maps, and homotopy fiber of a map respectively, as defined in Week 3, Lecture 5.
These constructions are dual to Z(f), Z(f,g) and cone(f) respectively, in the sense that
they fit into analogous diagrams with all arrows reversed.

e [X,Y]p: For two spaces X,Y over another space B, this is the set of (unpointed or pointed)
homotopy classes of maps over B, i.e. morphisms in the category hTopg or hTopg ,.

1. WEEK 1
Lecture 1 (15.04.2024): Motivation and colimits.

e Motivational theorem on exotic spheres (Milnor 1956): There exists a smooth manifold ¥
that is homeomorphic but not diffeomorphic to S7. (In fact, Kervaire and Milnor proved
shortly afterwards that there are exactly 28 such manifolds up to diffeomorphism.)

e Outline of a proof (slightly ahistorical), with notions that will be major topics in this course
written in red:

(1) Pontryagin classes: Associate topological invariants py(E) € H**(X;Z) for each k € N
to every isomorphism class of vector bundles E over a given space X. Since every
smooth manifold M has a tangent bundle TM, we can define pi(M) := pp(TM) €
H*:(M;Z) as an invariant of smooth (but not topological) manifolds.
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(2) Intersection form and signature: For a compact oriented 4k-manifold M (possibly
with boundary), the intersection form is the quadratic form Qa; on H?*(M,0M;Z)
defined by

Qui(a) = Ca v a,[M]) € Z,
and it’s called the “intersection form” because it can be interpreted as a signed count of
intersections between two generic closed oriented submanifolds representing the class
in Hop(M;Z) Poincaré dual to a. The signature o(M) € Z is essentially the number
of positive eigenvalues minus the number of negative eigenvalues® of this quadratic
form.

(3) Hirzebruch signature theorem (8-dimensional case): For M a closed oriented 8-manifold,

o(M) = S (Tpa(M) = py (M) 0 py (M), [M]).

(4) (the clever bit) Construct a compact oriented smooth 8-manifold X with simply con-
nected boundary Y := 0X such that o(X) = 8, Ha(Y) and H5(Y') both vanish, and
the tangent bundle T'X is stably trivial, which implies its Pontryagin classes van-
ish. The construction can be described (key words: “plumbing of spheres”), and the
computations carried out, using only methods from Topology 2.

(5) Deduce via Poincaré duality, the Hurewicz theorem and Whitehead’s theorem? that Y
is homotopy equivalent to S7. By Smale’s solution to the higher-dimensional Poincaré
conjecture, it follows that Y is homeomorphic to S”.

(6) Argue by contradiction: If Y is diffeomorphic to S7, then one can construct a closed
smooth 8-manifold M by gluing X to an 8-disk along a diffeomorphism 0X =Y =
ST = oD8,

M:=X Ug7 ]D)S.
Methods from Topology 2 (e.g. Mayer-Vietoris) now imply p; (M) = 0 and o(M) = 8,
so Hirzebruch says

450 (M) = 45 - 8 = pa(M), [M]).

But the right hand side of this relation is a multiple of 7, and the left hand side is
not.
e Interpretation of a functor F : ¢ — % as a diagram in ¥ over _Z, constant functors
X : 7 — € as targets, the universal property and definition of the colimit colim(F)
e Interpreting direct systems as diagrams and direct limits as colimits
¢ Defining the quotient space X/A as colimit of the diagram

A — %

l

X

understood as a functor # — Top, where _¢# is a category with three objects and only
two nontrivial morphisms.

2What I really mean is: first rewrite Qs as a quadratic form on H2*(M, dM;Q) or H2*(M, 8M;R), which is a
vector space, so that by standard linear algebra, you can present it in terms of a symmetric linear transformation
and look at the eigenvalues of that transformation. One can define this in a more obviously invariant way by talking
about maximal subspaces on which Q) is positive/negative definite.

3A 3-dimensional version of this same argument is described in [Wen23, Lecture 57], using the theorems of
Hurewicz and Whitehead as black boxes.

4This is the one major black box in this proof that I do not intend to fill in, because that would be a whole
course in itself.
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Lecture 2 (18.04.2024): From coproducts to pullbacks and pushouts.

The limit lim(F) of a diagram F: 7 — ¢
Inverse limits as limits of diagrams
Important special cases of limits and colimits:
— Coproducts [ [, and examples in the categories Top (disjoint union), Top, (wedge
sum), Ab (direct sum) and Grp (free product)
— Products x (or []), and examples in Top
— Equalizers and co-equalizers, realization in Top as subspaces or quotient spaces
respectively
Word of caution: limits and colimits are not guaranteed to exist, e.g. in the category Diff
of smooth finite-dimensional manifolds without boundary, finite or countable coproducts
exist (and are the same thing as in Top), but uncountable disjoint unions are not second
countable and are thus not objects in Diff. Similarly, finite products exist in Diff but
infinite products typically do not.
Theorem: In any category %, all (co-)limits can be presented in terms of (co-)products
and (co-)equalizers, if they exist.
Proof sketch (co-limit case): Given F : # — € : o — X,, construct colim(F) as the

equalizer of two morphisms Y 19, 7 defined as follows. Write the set of all morphisms in
¥ as Hom(_#, #); we then take Y to be the coproduct

Y := H X4, where for ¢ € Hom(, B), X4 := Xa,
¢eHom( ¢, )
while Z is the slightly simpler coproduct

Z:= 1] Xs.

Be 7

For each a,8 € # and ¢ € Hom(a, ), let f4 : X4 — Z denote the composition of the
morphism ¢, : Xy = X, — Xg with the canonical morphism Xz — ]_[76] X, of the
coproduct; the universal property of the coproduct then dictates that the collection of
morphisms fy : X4 — Z determines a morphism f : Y — Z. Similarly, g : ¥ — Z is
determined by the collection of morphisms g4 : X — Z defined for each ¢ € Hom(c, 3) as
the compositions of Idx, : X4 = Xo — X, with the canonical morphism X, — ]_[76/ X5
Now check that the universal property is satisfied (exercise).

Upshot: In Top, colimits are quotients of disjoint unions, limits are subspaces of products.
Fiber products: presenting the fiber product of two maps f: X - Zandg:Y — Z in
Top as the “intersection locus”

X %, Y i={(z,y) e X xY | f(x) = g(v)}

with the obvious projections to X and Y.

Interpreting fiber products as pullbacks

Pushouts: presenting the pushout of two maps f: Z — X and g : Z — Y in Top as
“gluing spaces together” along a map:

X ju, Y = (X1Y) /f(z) ~g(z) for all z€ Z.

Question for thought: How many of these constructions of limits or colimits work in the
homotopy categories hTop or hTop,? (Hint: Do not try too hard to make sense of equalizers
and co-equalizers.)
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Suggested reading. The main definitions involving direct systems and direct limits can all be
found in [Wen23, Lecture 39], with the generalization to colimits explained in Exercise 39.24. If
you’re really serious about this stuff, you can also try reading [Mac71].

If you want to read more about exotic spheres, there’s a nice collection of relevant literature
assembled at https://www.maths.ed.ac.uk/"viranick/exotic.htm.

Exercises (for the Ubung on 25.04.2024). Since the Ubung on 25.04 was cancelled due to
illness, most of the exercises for Week 1 have now been supplemented with written answers and/or
some discussion.

Exercise 1.1. In what sense precisely are the limit and colimit of a diagram F : # — % unique,
if they exist?

Answer: If the limit or colimit exists (of which there is no guarantee, cf. Exercise 1.7), then
it is unique up to canonical isomorphisms. Precisely: Suppose X,Y € € are two objects, together

with collections of morphisms F(a) 2% X and F(«) Lo Y for all € ¥, such that both satisfy
the universal property for colim(F). Then there is a uniquely determined isomorphism

f:X =Y such that Yo =fop, forallae 7.

The existence and uniqueness of a morphism f satisfying this condition follows from the universal
property of X, and the fact that it is an isomorphism follows by reversing the roles of X and Y,
since Y also satisfies the universal property. For lim(F) there is a similar uniqueness statement,
proved in a similar way.

Note that in most categories, uniqueness “up to canonical isomorphisms” is the best that one
could hope to get from universal properties, as one will always have the freedom to replace a
given object playing the role of colim(F) or lim(F) with a different object that is isomorphic to
it. In practice, our favorite categories often come with canonical constructions that lead to specific
objects, e.g. the disjoint union (also known as the coproduct) of a given collection of topological
spaces is a specific space, not just an equivalence class of spaces up to homeomorphism. But
in various situations, limits or colimits can also arise from something other than the canonical
construction, and finding an isomorphism with that canonical construction may be harder than
explicitly verifying the universal property.

Exercise 1.2 (morphisms between (co-)products). Assume J is a set, and {X,}aes and {Yy}aes
are collections of objects in some category ¢ such that the products

7TX 7TY
BeJ BeJ

aeJ aeJ
and coproducts
i i
Xg -5 [ Xa , v, 5]V
aeJ BeJ aeJ BeJ

exist. In what sense does an arbitrary collection of morphisms {f, : Xo — Ya,}aes uniquely
determine morphisms

[Tre:[[Xa=]]Yer and  JJfe:[[Xa—]]Ya?
aeJ aeJ aeJ agJ aeJ aeJ

Argue in terms of universal properties, without using your knowledge of how to represent products
and coproducts in any specific categories.
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Answer: The morphisms [ [, fo and [[, fo are uniquely determined by the condition that the
diagrams

fﬁ H fa

Xg —— Y3 [I.Xe — 1], Ya
A
HO(XQMHO‘YQ XﬁLY5

commute for every 5 € J. One gets the existence and uniqueness of [ [ fo from the universal
property of the coproduct [ [, X, because the morphisms 135/ ofg:Xg—][,Ye make [[ Y, a
target of the diagram whose colimit is [ [, Xo. Similarly, the existence and uniqueness of [, fa
follows from the universal property of the product [ [, Y4, using the collection morphisms fz owé( :

HaXa g Yg.

Exercise 1.3 (finite limits and colimits). Show that in any category %, finite colimits always exist
if and only if all pushouts exist and % has an initial object (see Exercise 1.5). Dually, finite limits
always exist if and only if all pullbacks (also known as fiber products) exist and € has a terminal
object.’

Hint: By a theorem stated in the lecture, it suffices if you can express arbitrary (co-)equalizers
and finite (co-)products in terms of pushouts or pullbacks.

Solution: Note that the statement of this exercise has been revised; the original version had
two errors, one being its failure to mention initial and terminal objects, and the other an oversim-
plification of what it means for a limit or colimit to be finite—we need the category _# underlying
the diagram to have finitely-many morphisms, not just finitely-many objects.

With that understood, let’s assume all pushouts exist and that 4 also has an initial object
0 € ¥. If we can show that all finite coproducts and all coqualizers exist, then the theorem from
lecture uses these to construct a colimit for any diagram F : ¢ — % such that ¢ has only finitely
many objects and morphisms. (Regarding the errors in the original version: note that if # has
finitely-many objects but infinitely-many morphisms, then one of the coproducts needed for the
theorem from lecture is not finite.)

You should be able to convince yourself via an inductive argument that if the coproduct of two
objects X,Y € ¥ always exists, then all finite coproducts exist. So let’s show first that X [[Y
exists for arbitrary X,Y € €. At this point I find it helpful to think about how coproducts and
pushouts are constructed concretely in the example ¥ = Top: the coproduct of X and Y is their
disjoint union, and the pushout of a pair of maps f : Z —- X and g : Z — Y is a quotient of
that disjoint union by the equivalence relation such that f(z) ~ g(z) for all z € Z. If we want to
make that equivalence relation trivial so that the pushout turns out to be the same thing as the
coproduct, the solution is to choose the empty set for Z; the maps f, g are uniquely determined
by this choice, because the empty set is an initial object in Top (see Exercise 1.5). This suggests
that in our given category ¥ with initial object 0 € €, the pushout of the diagram

0— X

|

Y
should be the coproduct of X and Y’; note that only one diagram of this form is possible since

0 being initial means that the morphisms 0 — X and 0 — Y are unique. Now suppose P is the

5The word “finite” in this context refers to limits or colimits of diagrams F : # — ¢ such that ¢ has only
finitely many objects and morphisms.
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pushout of this diagram, equipped with morphisms ¢ : X — P and ¥ : Y — P, and suppose we
are given another object Z with morphisms f: X — Z and g : Y — Z. The diagram

>

—

—
~

!

N

_9,

then trivially commutes, since there is only one morphism 0 — Z, and the universal property of
the pushout gives rise to a unique morphism u : P — Z such that f = uwo ¢ and g = w o v, which
amounts to the statement that P with its morphisms ¢ and 1 also satisfies the universal property
of the coproduct X [[Y.

We show next that the coequalizer of an arbitrary pair of morphisms

X

f
/;\,xY
~Z

in ¥ can also be constructed as a pushout. Think again about how it works in the case ¥ = Top:
the coequalizer here is the quotient of Y by the equivalence relation such that f(x) ~ g(z) for all
x € X. If we instead take the pushout of f and g, the resulting space is too large: it is a quotient
of Y 1Y instead of Y, meaning that we glue together two copies of Y by identifying f(z) in one
copy with g(z) in the other copy for each x € X. But the correct space can be obtained from this
by making the equivalence relation larger, so that for every y € Y, y in the first copy gets identified
with y in the second copy. The way to realize this is by enlarging the domain of the pair of maps
used in defining the pushout: instead of the two maps f,g : X — Y, we consider the pushout of
the two maps flild,guild: XY — Y.

Let’s say that again without assuming @ = Top. We’ve already shown that the coproduct X [[Y
of two objects in 4 can be constructed, and if we write ix : X -» X [[Y and iy : Y —» X [[Y for
the canonical morphisms that coproducts come equipped with, then by the universal property of
the coproduct, every morphism ¢ : X — Y determines a unique morphism o [[Id: X [[Y - Y

for which the diagram

X]_[Y plI1d,
Y

commutes. Claim: Given two morhisms f,g: X — Y, a diagram of the form

X[y U9y

b |

y —%
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commutes if and only if ¢ = and po f = ¢ o g. To see this, we can enhance the diagram in two
ways using the universal property of the coproduct: first,

shows that if the given diagram commutes, then ¢ = p old = 1 o Id = 1. Assuming this, the
second enhanced diagram

X

x1py 44y

s |

y —Y 7

3

then proves po f = 1pog = ¢ og. Conversely, if one assumes ¢ = ¢ and po f = p o g, then
wo(f]]Id) and 1o (g]]Id) are two morphisms X [[Y — Z whose compositions with ix and iy
are identical, so the uniqueness in the universal property of the coproduct requires them to be the
same.

The result of the claim is that pushout diagrams for the two morphisms f[[Id: X [[Y - YV
and g]JId : X[[Y — Y are equivalent to coequalizer diagrams for f,g: X — Y. It is a short
step from there to the conclusion that an object Z with morphism Y — Z satisfies the universal
property of the coequalizer if and only if Z with two copies of that same morphism Y — Z satisfies
the universal property of the pushout.

For the dual case of this whole story, I will just say this: if 1 € ¥ is a terminal object, then the
uniqueness of morphisms to 1 implies that the pullback of the diagram

X

|

Y —— 1
satisfies the universal property of the product X x Y. Having shown that finite products exist, one
then obtains the equalizer of any pair of morphisms f,g: X — Y as the pullback of the diagram
X
Idxf -

X 459 x o« y
If finite products and equalizers always exist, then all finite limits can be constructed out of them.

Exercise 1.4. Let’s talk about some coproducts and products in algebraic settings.

(a) What is a coproduct of two objects in the category Ring of rings with unit? Try to describe
it explicitly.

(b) Same question about products in Ring. (This one is perhaps easier.)

(c) Show that two fields of different characteristic can have neither a product nor a coproduct
in the category Fld of fields.
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Answers: The coproduct of two rings A, B is their tensor product A ® B, equipped with the ring
homomorphisms

A£>A®B:al—>a®17 Bi—B>A®B:bv—>1®b.

As a set, A® B is the same thing as the tensor product of A and B as abelian groups; one then
gives it a ring structure by defining

(a®b)(d @) := (ad") ® (bV').

It is easy to check that the required universal property is satisfied. Perhaps more interesting is to
observe that in the more familiar categories Ab and R-Mod in which we are used to talking about
tensor products, they do not arise as colimits, and there is an obvious reason why they shouldn’t:
the only obviously canonical homomorphisms I can think of from a pair of abelian groups A and
B to their tensor product A ® B are the trivial ones. The big difference in Ring as that rings
have multiplicative units, and these give rise to canonical nontrivial morphisms from A and B
to A® B as described above. (For similar reasons, you also should not try to think of tensor
products as categorical products—for a more useful categorical perspective on tensor products, see
Exercise 1.9.)

The product in Ring is exactly what you’d expect: the product of rings.

For fields, the problem is that there are in fact no field homomorphisms at all between a pair
of fields with different characteristics. So for any fields A and B, the need to have morphisms
A,B — A]]B and A x B —> A, B means that neither the coproduct nor the product can exist
unless A and B have the same characteristic (which their product and coproduct must then also
have). For example, Zs and Q have no coproduct in Fld, though they do have a coproduct in Ring,
namely Zo ® Q, which is an extremely indirect way of writing the trivial ring. (Amusing exercise:
show that 1 = 0 in Zo ® Q. The elements 1 and 0 are never equal in a field.)

Exercise 1.5 (initial and terminal objects). In defining limits and colimits of diagrams ¥ : ¢ —
¢, the set of objects in ¢ is not required to be nonempty. When it is empty, we can think of
colim(F) is a coproduct of an empty collection of objects in %, and colim(F) is then called an
initial object in ¥. Similarly, the product lim(F) of an empty collection of objects is called a
terminal (or final) object in €.

(a) Reformulate the definitions given above for the terms “initial object” and “terminal object”
in a way that makes no reference to limits or colimits, and using this reformulation, give a
short proof that both are unique up to canonical isomorphisms, if they exist.

(b) Show that for any initial object 0 € &, the coproducts 0[[ X and X []O0 exist and the
canonical morphisms of X to each are isomorphisms. Similarly, for any terminal object
1 € &, the products 1 x X and X x 1 exist and their canonical morphisms to X are
isomorphisms.

(c) Describe what initial and terminal objects are in each of the following categories, if they
exist: Top, Top,, Ab, Ring, and Fld.

Hint: You might guess the last two from Exercise 1.4.

Answers: If 7 is the empty category, then there is a unique diagram F : ¢ — €, but it
carries no information. If we want to define a colimit of this diagram, then any object X € ¥
can be considered a target; there is no need to specify any morphisms since _# has no objects.
The condition of X being a universal target is, however, nontrivial: it means that for any other
target Y, there is a unique morphism u : X — Y such that. .. well, at this point we would normally
say that certain morphisms admit factorizations through the morphism u, but since ¢ has no
objects, there are no morphisms to be factored and thus no further conditions to impose. We are
left only with this: X € ¥ is an initial object if and only if for every object Y € €, there is a
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unique morphism X — Y. That’s the usual definition—we stated it in a much more roundabout
way by talking about coproducts over the empty category.

Here’s the dual version: X € € is a terminal object if and only if for every object Y € €, there
is a unique morphism Y — X.

With these definitions understood: if 0,0’ € & are two initial objects, then there is a unique
morphism 0 — 0/, and there is also a unique morphism 0’ — 0. Moreover, there are unique
morphisms 0 — 0 and 0’ — 0’, and both of those have to be identity morphisms, since identity
morphisms must always exist. It follows that the unique morphisms 0 — 0’ and 0’ — 0 are
inverse to each other, and are thus isomorphisms. The uniqueness of terminal objects up to unique
isomorphisms is proved similarly; there is only a slightly different reason for the uniqueness of the
morphisms 1 — 1’ and so forth.

Let’s consider the coproduct of an initial object 0 € ¥ with an arbitrary X € ¥. We claim that
X itself plays the role of the coproduct, together with the two morphisms

AN
v

0

X >
d

X

the first of which is determined by the condition that O is an initial object. Indeed, suppose Y is
given, along with a morphism f: X — Y and the unique morphism 0 — Y (for which there is no
freedom of choice). The dashed arrow in the following diagram is then uniquely determined,

0 f\
s
f
X
and this establishes the universal property of the coproduct. In this way of representing 0 [ [ X, the
canonical morphism X — 0] ] X is imply the identity morphism X — X, and thus an isomorphism.

Similar arguments prove the analogous statements about X [J0, 1 x X and X x 1.
Here is an inventory of initial and terminal objects in specific categories:

s
h<

e Top: the empty set ¢F is initial, and every one-point space * is terminal. Note that the
initial object in this case is not just unique up to isomorphism, but is actually unique,
i.e. there really is only one object in Top called . By contrast, the unique point in a one-
point space can be anything, and the collection of all possible one-point spaces is therefore
too large to qualify as a set; it is a proper class. Nonetheless, there is indeed a unique
homeomorphism between any two of them.

e Top,: every one-point space is both an initial and a terminal object.

e Ab: every trivial group is both initial and terminal. The answer in R-Mod is the same, in
case you’d wondered.

e Ring: this one’s more interesting. According to Exercise 1.4, tensor products are coproducts
in Ring, so an initial object R € Ring should be a ring with the property that R A =~ A =
A® R for all rings A € Ring; plugging in A := Z as a special case, one deduces R = Z.
And indeed, for any other ring B, a ring homomorphism Z — B is uniquely determined
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by the condition that it preserve the 0 and 1 elements. Terminal objects are trivial rings,
i.e. those in which 1 = 0.

e Fld: there are no initial or terminal objects in Fld, because as discussed in the answer to
Exercise 1.4(c), there do not exist any fields that admit homomorphisms either to or from
every other field (of arbitrary characteristic).

Exercise 1.6 (biproducts). Assume & is a category in which the sets Hom(A, B) of morphisms
A — B for each A, B € o are equipped with the structure of abelian groups such that composition
Hom(A, B) x Hom(B,C) : (f,g) — go f is always a bilinear map. (Popular examples are the
categories Ab of abelian groups and R-Mod of modules over a commutative ring R.) A biproduct
of two objects A, B € & is an object C € & equipped with four morphisms

A A
C
B B

(1.1)

that satisfy the five relations
(1.2) mata =14, 7wpip=1p, 7aip=0, 7pta=0, iamsa+ipng=1c.

In the categories Ab or R-Mod, an example of a biproduct of A and B is the direct sum A @ B
with its canonical inclusion and projection maps. The category <7 is called additive if every pair
of objects has a biproduct.

(a) Show that for any biproduct as in the diagram (1.1), C' with the morphisms i,ip is a
coproduct of A and B, and with the morphisms 74, 7p it is also a product of A and B.

(b) Show that in the categories Ab and R-Mod, every biproduct of two objects A, B admits
an isomorphism to A@® B that identifies the four maps in (1.1) with the obvious inclusions
and projections.

(c) A (covariant or contravariant) functor F : &/ — % between two additive categories is called
an additive functor if the map defined by F from Hom(A, B) to Hom(F(A), F(B)) or
(in the contravariant case) Hom(F(B), F(A)) is a group homomorphism for all A, B € <.
Show that additive functors send all biproducts in <7 to biproducts in Z.

Remark: Popular examples of additive functors Ab — Ab or R-Mod — R-Mod are @G, G®,
Hom(-, G) and Hom(G, -) for any fixed module G, as these arise in the universal coefficient theorems
for homology and cohomology.

Answers: Let’s show first that (1.1) and (1.2) make C' with the morphisms i4 : A — C and
ip : A = B into a coproduct of A and B. We need to show that the dashed morphism u in the
diagram

exists and is unique for any given object X € & with morphisms f4, fp from A and B respectively.
Start with uniqueness: if u is a morphism for which this diagram commutes, then using (1.2) and
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the assumption that composition is bilinear, we have
u=u(iama +ipnp) = (wia)ma + (uip)mp = fama + fB7B.

For existence, we then just need to define u by this formula and show that it satisfies ui4 = fa and
uip = fp, which also follows easily from the relations (1.2). The proof that C with the morphisms
w4, g is a product of A and B is similar.

For part (b), we already know that A @ B defines a biproduct of R-modules A and B, so what
we really need is a general result about uniqueness of biproducts up to isomorphism. We already
have such results for products and coproducts separately, but we cannot directly apply them
here, even though we know that biproducts are both; the trouble is that doing so will produce two
isomorphisms between any two biproducts of A and B, one that arises by viewing them as products,
and another by viewing them as coproducts. We want to see that those two isomorphisms are the
same one.

Concretely, let’s suppose that (1.1) and (1.2) are given, and that we also have a second object C”
and set of morphisms ¢4, iz, 7'y, 75 satisfying the same set of relations. We do not need to assume
&/ is Ab or R-Mod for this discussion, as it will make sense in any category for which biproducts
can be defined, but some intuition about direct sums may nonetheless be helpful for writing down
suitable morphisms between C and C”. Explicitly, define

fi=iyma+igng: C - ', and g =iamy +ipng: C' — C.
Using (1.2), we then have
gf = (iam'y +ipnp)(i'yma +igmE) = ia(myi's)ma +ia(mhi's)mp +ig(ngi'y)ma +ip(ngig)TE

=1iama +ipmp = 10,
and by a similar calculation, fg = 1, so f is an isomorphism with g = f~!. Using f to identify
C with C’ now transforms the morphism 74 : A — C into

fia = (iyma +igmp)ia =iy (maia) +ig(rpia) =iy : A > ',
and it transforms the morphism 74 : C' — A into
maf Tt =maliany +ipnly) = (maia)7y + (maip)ny =y 1 O — A,
and by similar calculations,
fip =ip, mpf "l =7

One can now appeal to abstract principles (i.e. the universal properties of products and coproducts)
to deduce that f is indeed the only isomorphism C' — C’ that relates the morphisms i 4,4y and so
forth in this way.

For a covariant additive functor F : &/ — 4, it is easy to check that F sends the four morphisms
of (1.1) to morphisms

F(4) F(4)

Flia) F(ma)
\f(c) /
F(ip) F(rB)
F(B) / \F (B)

in # that satisfy the five relations (1.2), making F(C) a biproduct of F(A) and F(B). The amusing
detail is what happens if F is contravariant: it still works, but the reversal of arrows means that
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some roles need to be switched, e.g. the diagram in £ arising from (1.1) must be written as

F(4) F(4)

NJw Sl

With F(7w4), F(rp) now playing the roles formerly played by i4,ip and F(ia), F(ip) playing the
roles of ma,7p, one easily checks that the five relations (1.2) are satisfied, so F(C) is again a
biproduct of F(A) and F(B), with contravariance having transformed inclusions into projections
and vice versa.

Exercise 1.7 (fiber products in Diff). As mentioned in lecture, the category Diff of smooth
manifolds is one in which many limits and colimits do not exist. An important example is the fiber
product of two smooth maps f: M — @ and g : N — @, which matches the usual topological
fiber product

M yx, N := {(z,y)e M x N | f(x) =g(y)} c M x N

if the maps f and ¢ are transverse to each other (written frg), because the implicit function
theorem then gives M xgNa natural smooth manifold structure for which the obvious projections
to M and N are smooth.® If, on the other hand, f and g are not transverse, then the examples
below show that all bets are off.

(a) Suppose F': P — M and G : F — N are smooth maps that define a target in Diff for the
fiber product diagram defined by f and g; in other words, the diagram

P-LsMm

le s

N%Q

commutes and consists entirely of smooth manifolds and smooth maps. Interpret this
diagram as defining a smooth map

u:P—->MxN

whose image lies in the topological fiber product M x N < M x N, and show that if
F and G satisfy the universal property for a fiber product in Diff, then u is a continuous
bijection of P onto M ,x N c M x N.

(b) Deduce that if M ;x, N c M x N is a smooth submanifold of M x N, then M ;x N
with its projection maps to M and N does in fact define a fiber product in Diff. (Note
that this may sometimes hold even if f and g are not transverse.)

(c) Consider the example M = N = @Q := R with f(z) := 22 and g(y) := y?, thus

fogNz{(x,y)eR2 | 2* = ¢}

6Transversality is a condition on the derivatives of f and g at all points € M and y € N such that flz) =gly) =:
p; writing the derivatives at these points as linear maps df (z) : To M — T,Q and dg(y) : Ty M — T,Q between the
appropriate tangent spaces, it means that the subspaces im df (z) and im dg(y) span all of T,Q. Choosing suitable
local coordinates near each point (x,y) € M Xy N, one can identify M Xy N locally with the zero-set of a smooth
map whose derivative at (z,y) is surjective if and only if the transversality condition holds, so that the implicit
function theorem makes M X N a smooth submanifold of M x N.
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You will easily convince yourself that this topological fiber product is not a manifold. Show
that the pair of maps f, g does not admit any fiber product in Diff. Note that this is a
stronger statement than just the observation that {z? = y?} < R? is not an object of Diff.
Hint: You can use parts (a) and (b) to show that if P is a smooth fiber product, then it
contains a special point p € P such that P\{p} is diffeomorphic to {z? = y*}\{(0,0)}.

(d) Here’s a weirder example: Let M = @ := R, define N :=  as a manifold of one point with
g: N — @ = R mapping to 0, and choose f: M =R — R = @ to be any smooth function
with

FH0) = {—1,-1/2,-1/3,..}u {0} U {...,1/3,1/2,1}.

(If you have doubts about the existence of such a function, try making minor modifications
to the function e~/ 3”2, or something similar.) Show that in this case, a fiber product in
Diff does exist, but is not homeomorphic to the topological fiber product.

Hint: What can you say about continuous maps from locally path-connected spaces to
fH0) cR?

Answers: For part (a), note first that a fiber product diagram in Diff can always also be interpreted
as a fiber product diagram in Top, so applying the universal property of the topological fiber product
M ¢x, N immediately gives us a unique continuous map u: P — M ;x N such that the diagram

P%Mfg
\&l
N

commutes, where the vertical arrows are the obvious projections. This diagram also gives us an
explicit formula for u: its composition with the inclusion M  x N < M x N is just

N

(F,G): P> M x N,

which is a smooth map since F' and G are smooth, though we cannot sensibly call it a smooth map
to M ;x N unless the latter is known to be a smooth submanifold of M x N.

We want to show that if P with the maps F' and G satisfies the universal property for a fiber
product in Diff, then the map u: P > M X N described above is a bijection. Indeed, pick any
point (z,y) € M 7%, N and consider the pullback diagram

« —2 5 M

bl

N%Q

where the labels “z” and “y” on arrows are used to indicate the images of maps from a one-point
space labelled . The latter is (trivially) a smooth O-manifold, and the maps defined on it are
(trivially) smooth, so this diagram lives in Diff, and the universal property of the fiber product P
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therefore produces a unique map u : * — P for which the diagram

. M
7
¥ —— P
k} le
N
commutes. The image of u : * — P is thus the unique point p € P satisfying u(p) = (F'(p), G(p)) =
(2,9)-

Part (b) follows almost immediately from what was said above: if M ;x N is a smooth subman-
ifold of M x N, then the map u: P — M ,x N obtained from any smooth fiber product diagram
by applying the universal property in Top is automatically also smooth, with the consequence that
M ;x, N also satisfies the universal property in Diff.

For the example in part (c), M ;x, N c R xR = R? is the union of the two lines {y = z}
and {y = —x}, so it is not globally a manifold, though it becomes a smooth 1-manifold if one

deletes the singular point (0,0). Suppose there exists a smooth manifold P and smooth functions
F,G : P — R such that the diagram

JRE N )

e )

R 2> R
defines a fiber product in Diff. By part (a), the smooth map (F,G) : P — R? is then a bijection
onto the set {y = tx}, so that there is a unique point p € P with F(p) = G(p) = 0. The manifold
P must be path-connected, because any point in {y = tz} can be joined to (0,0) by a smooth
path lying in one of the smooth submanifolds {y = x} or {y = —z}, and the universal property
will then produce a smooth map from this submanifold to P, whose image thus contains a path
from any given point to p. Now let ¥ := {y = £2}\{(0,0)} c R?, defining a smooth 1-dimensional
submanifold of R?, and observe that the restrictions to ¥ of the two projections R? — R define
a smooth fiber product diagram, and thus (since P satisfies the universal property) give rise to
a smooth map u : ¥ — P, which is inverse to the bijection P\{p} — ¥ defined by (F,G). This
shows that P\{p} and ¥ are diffeomorphic, thus P is a connected smooth manifold that can be
turned into a 1-manifold with four connected components by deleting one point. There is no such
manifold, so this is a contradiction.

For the example in part (d), we can identify M x N = R x » with R and thus identify the

topological fiber product with the set

M ¢x, N =f""0)cR,

carrying the subspace topology it inherits as a subset of R. It is not a manifold, because the
point 0 € f71(0) does not have any connected neighborhood. However, for any given smooth fiber
product diagram

PR
L, b
0
* —— R
P is a smooth manifold with a smooth function F': P — R whose image is contained in f~1(0),

and there is very little freedom in finding functions F' with this property: since P is locally path-
connected, F' must be locally constant. It follows that F' does factor through a smooth manifold
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with an obvious smooth bijection onto f~1(0): the manifold in question is f~*(0) itself, but with
the discrete topology instead of the subspace topology. Conclusion: the fiber product in Diff for
our given pair of maps is given by

f7H0) — R

| | b
+ —2 SR
where f71(0) in the corner is understood to carry the discrete topology and is thus a smooth 0-

manifold. Its obvious bijection to the topological fiber product (f~1(0) with the subspace topology)
is continuous, but not a homeomorphism.

Exercise 1.8. The following bit of abstract nonsense provides a useful tool for proving that
objects are isomorphic in various categories, e.g. one can apply it in hTop to establish homotopy
equivalences, or (as in Exercise 1.9 below) to deduce properties of tensor products from a universal
property.

In any category %, each object X € ¥ determines a covariant functor

Hom(X,:) : € — Set,

which associates to each object Y € € the set Hom(X,Y") of morphisms and to each morphism
f:Y > Zin € the map

Hom(X,Y) ELN Hom(X,Z) :gw— fog.

There is similarly a contravariant functor Hom(:, X) : € — Set for which morphisms f :Y — Z
induce maps
Hom(Z, X) EAN Hom(Y, X): g~ go f.

(a) Show that for any two objects X,Y € &, each morphism f : X — Y determines a natural
transformation Ty : Hom(Y,-) — Hom(X,-) associating to each object Z € & the set
map f* : Hom(Y,Z) —» Hom(X, Z), and that if f is an isomorphism, then the map f* is
bijective for every Z € ¢, i.e. Ty is then a natural isomorphism.”

(b) Show conversely that every natural transformation 7" : Hom(Y,-) — Hom(X, ) is T for a
unique morphism f : X — Y, which is an isomorphism of ¢ if and only if 7 is a natural
isomorphism. It follows that X and Y are isomorphic whenever the sets of morphisms
Hom(X, Z) and Hom(Y, Z) are in bijective correspondence for every third object Z, in a
way that is natural with respect to Z.

(c) Prove contravariant analogues of parts (a) and (b) involving the functors Hom(-, X) and
Hom(-,Y).

Solution: The interesting step is part (b), so let’s just talk about that. (One could give a quick
answer to part (a) more or less by mumbling the word “functor”.) Suppose a natural transformation
T : Hom(Y,-) —» Hom(X,-) is given, so for every object Z € €, T defines a set map

Ty : Hom(Y, Z) - Hom(X, Z)

which is required to fit into certain commutative diagrams as dictated by the word “natural”. In
particular, choosing Z := Y, we observe that T' determines a distinguished morphism f: X —» Y
by

f:=Ty(Idy) e Hom(X,Y).

7A natural isomorphism T : F — G between two functors F,G : &/ — £ is a natural transformation such
that the morphism T'(a) : F(a) — G(a) in £ associated to each object o € &7 is an isomorphism. It follows that T'
has an inverse, which is also a natural transformation T-1.6 > F.
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We claim now that, in fact, T = Ty. Indeed, given any Z € ¢ and g € Hom(Y, Z), naturality
implies that the diagram

Hom(Y,Y) — Hom(X,Y)

J{g* ig*
Hom(Y, Z) —2%+ Hom(X, Z)

commutes, hence

Tz(9) =Tz(goldy) = (Tz 0gx)(Idy) = (gx o Ty )(Idy) = g« f = go f = f*g = T(9)-

Now that we know all natural transformations arise in this way, and after verifying the formula
Ttog = Ty o Ty, it follows easily that the morphism f : X — Y has an inverse if and only if the
corresponding natural transformation 7 has an inverse.

One way to apply this result in homotopy theory is as follows. Suppose we are given a map
f: X — Y for which we can verify that for all spaces Z, the induced maps

[F Y, Zl - [X,Z]:g—>gof

are bijective. This means that the natural transformation on Hom-functors corresponding to f is a
natural isomorphism, therefore implying that f itself is an isomorphism, i.e. the conclusion in this
setting is that f is a homotopy equivalence. The variant in part (c¢) would imply similarly that if
the maps

f* : [Z7X] - [Z7Y] g fog
are known to be bijective for all spaces Z, then f is a homotopy equivalence.

Exercise 1.9 (tensor products). On the category R-Mod of modules over a commutative ring R,
the tensor product satisfies the following universal property: for any three R-modules A, B, C, the
natural map

Hom(A ® B, C) % Hom(A, Hom(B, C)), a(®)(a)(d) := P(a®Db)

is a bijection. Indeed,
Homgz (A, B; C) := Hom(A, Hom(B, C))

can be interpreted as the set of R-bilinear maps A x B — C, so the fact that « is bijective means
that every such bilinear map factors through the canonical R-bilinear map A x B - A® B and a
uniquely determined R-module homomorphism A ® B — C. In fact, « is not just a bijection; it
is also an R-module isomorphism, though we will not make use of this fact in the following. The
important observation for now is that « defines a natural isomorphism between the two functors
Hom(-®-,+) and Homs from R-Mod x R-Mod x R-Mod to Set, which are contravariant in the first
two variables and covariant in the third.

More generally, suppose € is any category for which the sets Hom(X,Y') can be regarded as
objects in & for every X,Y € €, and suppose ® : ¥ x € — % is a functor such that the functors
€ x € x € — Set defined by Hom(-®-, -) and Homy := Hom(-, Hom(-, -)) are naturally isomorphic,
so in particular, for every triple of objects X,Y, Z € &, there is a bijection of sets

Hom(X ®Y, Z) =~ Hom(X, Hom(Y, Z))

that is natural with respect to all three.

(a) Prove that there is a natural isomorphism relating any two functors ®,®' : € x € —» ¢
that satisfy the condition described above. In other words: tensor products are uniquely
determined (up to natural isomorphism) by the universal property.
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(b) Prove that ® is associative in the sense that the functors € x € x € — € defined by
(XY, Z2) » X® (Y ®Z) and (X,Y,Z) —» (X ®Y) ® Z are naturally isomorphic. Prove
it using only the universal property, i.e. do not use any knowledge of how ® is actually
defined in any specific categories.

Solutions: Both parts are applications of Exercise 1.8, which is the right tool for the job because
the universal property of ® does not tell us what X ® Y is, but instead tells us what other functor
Hom(X ®Y,-) is naturally isomorphic to, namely Homs(X,Y’; ) := Hom(X, Hom(Y,-)). If we are
given two versions ® and ® that both satisfy the universal property, we obtain from this a natural
isomorphism
Hom(X ®Y,-) ~ Hom(X ®' Y, ")

for every pair of objects X, Y € ¢, and therefore (via Exercise 1.8) an isomorphism X®@Y =~ X®'Y".

Associativity follows similarly because one can follow two chains of natural bijections that both
end at the same destination: for any spaces X,Y, Z, V we have:

Hom(X ® (Y ® Z),V) = Hom(X, Hom(Y ® Z,V)) = Hom(X, Hom(Y, Hom(Z, V))),
and also

Hom((X ®Y)® Z,V) ~ Hom(X ® Y,Hom(Z,V)) = Hom(X, Hom(Y, Hom(Z, V))).

Exercise 1.10 (tensor products of pairs). Let Top* denote the category of pairs of spaces and
maps of pairs. When defining the cross and cup products on relative homology and cohomology,
one often sees the product of two pairs defined as

(X, A)x(V,B)=(XxY,AxY uX xB).

(a) Why is this definition of x not actually a product (in the sense of category theory) on the
category Top™'? What do categorical products in Top™' actually look like?

(b) In the spirit of Exercise 1.9, I would like to argue that x as defined above should be
interpreted as a tensor product on Top”’l. Due to some subtle point-set topological issues
that I’d rather not get into until next week, it’s best for now to dispense with topologies and
work instead in the category Set™, whose objects are pairs (X, A) of sets with A ¢ X, and
whose morphisms (X, A) — (Y, B) are arbitrary (not necessarily continuous) maps X — Y
that send A into B. In this setting, how can you regard each of the sets Hom((X, 4), (Y, B))
as an object of Set™ such that there are natural bijections

Hom((X, A) x (Y, B),(Z,C)) =~ Hom ((X, A),Hom((Y, B), (Z, O)))
for all choices of pairs?

Answers: Categorical products require projection morphisms, but e.g. the projection map X xY —
X does not generally send A x Y U X x B into A, and thus does not define a map of pairs
(X,A) x (Y,B) - (X,Y). For a categorical product on Top™, the correct definition would be the
obvious one,
(X,A) x (Y,B):=(X xY,A x B).

If (X, A) and (Y, B) are objects in Set™, then Hom((X, A), (Y, B)) also becomes an object in

Set™ after singling out the subset
{6 € Hom((X, A), (Y, B)) | (X) € B} < Hom((X, A), (Y, B)).

It is then straightforward to check that set maps of pairs from (X, A) to Hom((Y, B), (Z,C)) are
in natural bijective correspondence with set maps of pairs from (X, A) x (Y, B) to (Z,C).

The case of this with A = B = C' = (J is often written in a more appealing way by using the

notation
XY := Hom(Y, X) in Set,
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so that Hom(X x Y, Z) = Hom(X, Hom(Y, Z)) becomes the so-called exponential law

ZX XY ~ (ZY)
Note that this is one of the few situations in which the categorical product can also sensibly be
called a tensor product; they are not the same thing in Setrel, but in Set they are.

The reason we removed topologies from the picture before starting this discussion was that one
needs to be very careful about defining the right topology on the set C'(X,Y") of continuous maps
X — Y between two spaces if one wants to have a natural bijection

C(XxY,Z2)=C(X,C(Y, 2)).

In fact, there is no right way to define the topology on C'(X,Y') so that this works for all spaces; one
must first restrict the category of spaces under consideration, and then make slight modifications
to the definitions of both C(X,Y) and X x Y as topological spaces. We will go into a little bit of
detail about this when it becomes necessary, as without it, one would miss out on some very clever
tools coming from stable homotopy theory.

2. WEEK 2

The lecture on 22.04.2024 was cancelled due to illness, so this week contains only one lecture.

Lecture 3 (25.04.2024): The homotopy category and mapping cylinders.

e The homotopy categories hTop (without base points) and hTop,, (with base points)
e Notation for diagrams that commute up to homotopy (see the notational glossary above)
¢ The double mapping cylinder of twomaps f: Z > X andg: Z —> Y,

Z(f,g) = (Xu( x Z)IJY)/~7 where (0,2) ~ f(z) and (1,2) ~ g(z) for all z € Z.

e Role of Z(f,g) as a weak form of pushout in hTop (it is called a homotopy pushout):
the diagram

z 1 i x

|~
Y —— Z(f,9)

commutes up to an obvious homotopy, though not on the nose (the obvious inclusions i x
and iy have disjoint images). Diagrams

z -1 x

gl e lsa
Y¥—oQ

determine maps Z(f, g) — @, constructed in an obvious way out of ¢, 1) and the homotopy
pof z 1 o g, so that the diagram

uj \
w[ /
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commutes (on the nose, i.e. not just up to homotopy).
e Special cases:
(1) Mapping cylinder of f: X — Y:

Z(f) = Z(ldx, f) = (I x Z) Uy Y,

where the gluing occurs along {1} x Z. Convenient feature: Z(f) deformation retracts
to Y, soiy : Y — Z(f) is a homotopy equivalence. We can therefore view every map
X — Y “up to homotopy equivalence” as inclusion of a subspace, namely ix : X —
Z(f). (This trick was used once at the end of Topologie II, cf. the last two pages of
[Wen23].)

(2) Mapping cone of f: X — Y: using the unique map ¢ : X — =, we define

cone(f):=Z(e, f) =CX vy Y,

where CX := (I x X)/({0} x X) is the usual cone of X.

(3) Suspension (unreduced): Not the most direct way to define it, but the familiar
suspension LX of a space X is also the double mapping cylinder of a pair of maps
from X to one-point spaces:

X — #

|~

#— VX

Here the two maps from = to XX have images at the opposite poles, which are points
obtained by collapsing I x X at {0} x X and {1} x X separately.
e Variant for hTop,,: If X,Y, Z are pointed spaces and f, g are pointed maps, defining a base
point on Z(f, g) requires modifying its definition by

Z(f,g):= <X v i’if v Y) /~, where (0,2) ~ f(2) and (1, 2) ~ g(z) for all z € Z.

Note: Quotienting I x Z is necessary because I x Z on its own has no natural base point,
but whenever Z, Z’ are two pointed spaces,

I xZ
pointed homotopies I x Z — Z' = pointed maps T A
&

Everything discussed above has analogues in which all maps are base-point preserving.
The pointed version is sometimes called the reduced double mapping cylinder, and one
can also derive from it special cases such as the reduced mapping cone and reduced
suspension, which we’ll have much more to say about later.

e Why is Z(f,g) not really a pushout in hTop?

(1) Our construction of the map u : Z(f,g) — @ uses more information than a diagram
in hTop: it uses the actual maps in the diagram (not just their homotopy classes),
plus a choice of homotopy. This doesn’t mean it cannot work, but is a hint that we
may be cheating.
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(2) (The real reason): The diagram

does not always uniquely determine [u] € [Z(f, g), Q] Example: The mapping cone
cone(a) of a degree 2 map a : S' — S!, say a(e?) := €2 if we think of S' as the
unit circle in C. Now cone(a) = RP? and the natural inclusion S' < cone(a) defines
the nontrivial element of 7, (RP?) = Z,. A homotopy pushout diagram

Sl —— «

o~
SlTQ

now means a choice of space (Q and homotopy class 3 € [S!, Q] such that 3 - 3 is
homotopic to a constant loop. The latter always holds if @) is simply connected, so
take @ := S2, and then observe that the diagram

1\

cone(a) —— S?

always commutes up to homotopy, since [S',S?] = # = [+, S?]. But [RP? 5?] has
more than one element, because there exist maps RP? — 2 having either possible
value of the mod-2 mapping degree (cf. Exercise 2.1).

e Theorem: There exists a category & whose objects are pushout diagrams (in Top)

4f>X

< N

such that
(1) Changing the maps f and g by homotopies produces isomorphic objects of Z;
(2) There is a functor & — hTop sending each pushout diagram to its mapping cylinder

Z(f,9)-
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e Proof sketch: Morphisms in & are diagrams

z— 1 . x

vy ~ %
NN
o I L x

v ;

\,6’/‘
Y/
including choices of homotopies ¢ and 1 as part of the data. The notion of composition

of such morphisms arises naturally by composing maps and concatenating homotopies.®
Such a morphism determines a homotopy pushout diagram

z 1 . x

lg ;[ J/iXIOO[
Y Z / /
iyrof (f.9)

and therefore also an induced map Z(f,g) — Z(f',¢'). It is a bit tedious but straight-

forward to check:

(1) The map induced by a composition of two morphisms in & is homotopic to the
composition of the two induced maps.

(2) If the maps «, 8,v all have homotopy inverses, one can use them to construct an
inverse morphism in Z.

Both only require the same ideas that are needed for proving e.g. that multiplication in the

fundamental group is associative. The second point implies, in particular, that the map

Z(f,9) — Z(f',¢') is a homotopy equivalence whenever «, 3, are.

Corollary: If f >~ fand g > g', then Z(f,g) and Z(f',¢’) are homotopy equivalent.

Theorem: Pushouts in hTop and hTop,, do not always exist.’
Proof sketch in hTop,: Fix the obvious base point in S! so that our previous degree 2 map
a: 81 — S preserves base points. A pushout diagram in hTop,, of the form

St ——

17]
SlT>P

then means a pointed space P together with an element in the 2-torsion subgroup of its
fundamental group

5€7T1(P)(2) = {76771(P) |’Yz ZO}-

81t seems likely that I'm oversimplifying this and ought to talk about “homotopy classes of homotopies” if I

really want the composition in & to be associative, but I do not want to give these details more attention than they
deserve. I am attempting to present a slightly more highbrow perspective on a sequence of lemmas in [tD08, §4.1-4.2]
that seem rather technical and tedious.

... which is why we need to use homotopy pushouts instead.
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Then P and f satisfy the universal property for a pushout in hTop,, if and only if for every
space @ and v € 71 (Q)(2), the map

[P, Q] = m(Q)(2) : ur> uyf
is a bijection. Assume this is true, and then consider the surjective map
SO(3) 2 8% : A — Aey,

where S? is the unit sphere in R? and e, es, e3 € R? denotes the standard basis. Taking
e1 as a base point in 52, we have

pt(er) = SO(2) = ST,
giving rise to an exact sequence of pointed spaces
5t <5 50(3) B 2.

We will see next week that the map p : SO(3) — S? has a special property: it is a fibration,
with the consequence that for every space P, the induced sequence of pointed sets

[P,S']% [P,SO(3)] 5 [P, 5%

is also exact, meaning the preimage of the base point under p, matches the image of i,.
(Here [X, Y] means the set of homotopy classes of pointed maps X — Y, so it is a set with
an obvious base point.) Combining this with the bijection that we deduced above from the
universal property of the pushout, we obtain an exact sequence

m1(S) 2y = m1(SO(3)) (2) = 71(S?)(2),

in which the first and last terms both vanish. But SO(3) = RP? and thus m; (SO(3)) = Z,
so the middle term does not vanish, and this is a contradiction.

e To do next week: Define what a fibration is and explain why the sequence of sets of
homotopy classes in that proof was exact.

Suggested reading. A more comprehensive treatment of mapping cylinders (including details
that I left out of the proof of the theorem about the functor &2 — hTop) can be found in [tDO0S,
§4.1-4.2]. This does not include the proof that pushouts in hTop, don’t exist; I found that in
[Cut21, Week 8 exercises].

Exercises (for the Ubung on 2.05.2024).

Exercise 2.1. Review the notions of the Zs-valued and Z-valued mapping degrees for maps
between closed and connected topological manifolds of the same dimension, as covered e.g. in
[Wen23, Lecture 35]. Then:

(a) Show that for every closed and connected topological manifold M of dimension n € N, the
set [M, S™] contains at least two elements, and infinitely many if M is orientable.
(b) Does the set [S™, M] also always have more than one element?

Exercise 2.2. Deduce from the properties of double mapping cylinders the standard fact that
there is a functor X : Top — Top assigning to every space X € Top its (unreduced) suspension XX .
Note: This is just intended as a sanity check. There is nothing especially nontrivial to be done
here, and there are also more direct ways to show that suspensions define a functor.

Exercise 2.3. Show that the mapping cone cone(f) of any homotopy equivalence f : X —» Y is a
contractible space.
Hint: Find a useful morphism in the category & of pushout diagrams.



26 CHRIS WENDL

Exercise 2.4. Show that for any two maps f: Z — X and g : Z — Y, the singular homologies
(with arbitrary coefficients) of the spaces X, Y, Z and Z(f, g) are related by a long exact sequence
of the form

= Hn1(Z(1,9)) = Hn(2) = Hn(X) @ Ho(Y) = Hn(Z(f,9)) = Hna(2) — -,

and describe explicitly what the two homomorphisms in the middle of this sequence look like.
Show that it also works with all homology groups replaced by their reduced counterparts, then
write down the special case of a mapping cone and check that what you have is consistent with
Exercise 2.3.

Hint: There is a relatively straightforward way to apply the Mayer-Vietoris sequence here, but you
could also deduce this as a special case of the exact sequence of the generalized mapping torus
derived in [Wen23, Lecture 34].

Exercise 2.5. Prove that pushouts in hTop do not always exist.

Hint: The proof carried out in lecture for hTop,, requires only minor modifications. Note that even
if X and Y are spaces without base points, the set of homotopy classes [X,Y] still has a natural
base point whenever Y is path-connected. (Why?)

Exercise 2.6. Give explicit examples of homotopic maps
f;f’:Z—>X and g;g’:Z—>Y

such that the mapping cylinders Z(f,g) and Z(f',¢') are not homeomorphic. (They will of course
be homotopy equivalent!)

Exercise 2.7. The join X #Y of two spaces X and Y is the double mapping cylinder Z(7x, mwy)
defined via the projection maps 7x : X xY — X and 7y : X xY — Y. Prove that the join of
two spheres is always homeomorphic to a sphere: concretely, for every m,n € N,

Sm " Sn ~ Sm+n+1.

Hint: Split the double mapping cylinder in half so that you see S™ % S™ as the union of two pieces
glued along boundaries that both look like S™ x S™. Can you think of two compact manifolds that
both have S™ x S™ as boundary? Stare closely at the two pieces, you might recognize them! Now
glue them together and ask: what is S™ = S™ the boundary of?

Exercise 2.8. Many constructions in homotopy theory have analogues in homological algebra,
and one of these is the mapping cone. For two chain complexes (A, 04) and (By, 0g) with a chain
map f : Ay — B, the mapping cone of f is the chain complex (cone(f)s,d) with

cone(f), := Ap—1 ® B, and 0:= <_6A 0 ) .
-f OB
The analogy to the mapping cone in Top goes through cellular homology: if X,Y are two CW-
complexes and f : X — Y is a cellular map, then the cone of f inherits a natural cell decom-
position whose augmented cellular chain complex CSW (cone(f)) is the cone of the chain map
fe 1 CSWV(X) - CCW(Y).10
Show that the mapping cone cone(f)s of a chain map f : A, — B, similarly plays the role
of a homotopy pushout in the category Ch of chain complexes and chain maps, with the role of a
one-point space played by the trivial chain complex 0, € Ch. Specifically:

10This was Problem 2(b) on the take-home midterm for last semester’s Topologie II course, but for Exercise 2.8,
you do not need to know about it.
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There is a natural chain map ig : By — cone(f)s such that the diagram

Ay — 04

o~
B*Tcone(f)*

commutes up to chain homotopy.
Any homotopy-commutative diagram in Ch of the form

Ay — 04

o
Be == D

naturally determines a chain map w : cone(f)s — Dy such that woip is chain homotopic
to .

If we were being strict about the analogy via cellular homology, then the trivial complex
0, in the diagrams above ought to be replaced by 5’EW(*), the augmented cellular chain
complex of a one-point space, which is not trivial: it has nontrivial entries in degrees 0
and —1, with the boundary operator giving an isomorphism between them. Explain why
this discrepancy does not matter, and nothing in the discussion above would change if we
used CSW () in place of 0.

Hint: None of this is hard. .. the quickest approach may be by guessing.

3. WEEK 3

Lecture 4 (29.04.2024): Introduction to fibrations.

The set of (free or pointed) homotopy classes [X,Y] as a pointed set (assuming Y is
path-connected in the unpointed case)

What it means for a sequence of three pointed sets to be exact

Motivational question: Given a map p : E — B and the inclusion i : F := p~1(x) — E,
what condition makes the sequence

[X, F] 2 [X, E] 25 [X, B]

exact for all other spaces X7

Definition of the homotopy lifting property (free case) and (free, i.e. unpointed) fibrations
p: E — B. (See next lecture for a precise roundup of the crucial definitions.)
Terminology: the base B and fibers Ej, := p !(b) c E of a fibration p: E — B
Example 1: covering spaces (discrete fibers, lifts of homotopies are unique, which does not
hold for more general fibrations)

Example 2: fiber bundles (to be studied later in this course): {Ejp}wep is a continuous
family of homeomorphic spaces (assuming B is path-connected)

— Example 2a: For M any smooth n-manifold, its tangent bundle TM = |, ,, T. M
is a fiber bundle whose fibers (the tangent spaces) T, M are all homeomorphic to R™.
(One can cook up examples with more interesting fibers e.g. by equipping each tangent
space with an inner product and taking the unit sphere in each—this produces a fiber
bundle with fibers homeomorphic to S"~!, a so-called sphere bundle.)

— Example 2b: The map p : SO(3) — S? that we used in Lecture 3 for showing that
pushouts in hTop, do not always exist. Observation 1: For base point e; € S?, the
fiber F' := p~1(e;) is a subgroup isomorphic to SO(2), thus homeomorphic to S*.
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Observation 2: That subgroup acts continuously (in fact smoothly), freely and tran-

sitively from the right on every other fiber, implying that all fibers are homeomorphic

(in fact diffeomorphic) to S*.
Remark: When we study fiber bundles in earnest, we will prove that they all have the
homotopy lifting property, and are thus fibrations. If you are already familiar with smooth
fiber bundles and connections, then you should believe this easily for the following reason:
any choice of connection on p : £ — B defines parallel transport maps which uniquely
determine a lift of any smooth homotopy X x I — B. (One has to work harder to also get
lifts of all continuous homotopies. . . for this, differential geometry is not enough.)
Theorem (already proved): For any fibration p : F — B with B path-connected, and any
space X, the induced sequence of free homotopy classes [X, F] — [X, E] — [X, B] is exact.
(Here the map F' — F is the inclusion of the fiber F' := p~1(by) c E over any chosen point
bo € B.)ll
Idea: If we can show that every map f : X — Y becomes a fibration after replacing X
with some space X' = X, then we can do this with the inclusion F' — E and thus extend

€

the exact sequence [X, F| — [X, E] — [X, B] one more term to the left. Then we can do
it again, and again, and extend the sequence as far as we want. . .
Example (path space fibrations): for (X,z) € Top,,, we define

— the free path space: C(I,X) := {continuous maps I — X} with the compact-open

topology

— the based path space: PX := P, X := {ye C(I,X) | 7(0) = 20}

— the based loop space: QX :=Q, X := {ye PX | v(1) = z¢}.
Notice: C(I,X) does not depend on a base point, and it has no natural base point of
its own. The spaces PX and QX do have natural base points defined by constant paths.
Define maps C(X,I) 2> X and PX - X by p(y) := (1); for the latter, we notice
p 1(z0) = QX c PX, making

0X - PX 54X

an exact sequence of pointed spaces.
Theorem: (1) C(I,X) % X and PX % X are fibrations. (2) The map C(I, X) 5 X is
also a homotopy equivalence. (3) The space PX is contractible.

The following is a digression, subtitled “The revenge of Topologie I":

e Why is p: C(I,X) — X continuous? More generally, is the map

ev: C(X,Y)x X ->Y:(f,z) — f(x)

continuous for all spaces X and Y? (One can show that it is always sequentially continu-
ous.)

¢ Counterexample: ev : C(Q,R) x Q — R is not continuous for the obvious (subspace)

topology on Q c R. Quick proof: If ev is continuous, then for every continuous fy : Q — R,
every 2o € Q and every neighborhood U < R of g := fo(z¢), there are open neighborhoods
foe O c C(Q,R) and zp € W c Q such that (f,z) € O x W implies f(x) € U. Without
loss of generality, the set O c C(Q,R) has the form

O={f|f(Ki)cViforalli=1,... N} c C(Q,R)

L1 the lecture I somewhat sloppily asserted that this statement was equally valid in the unpointed and pointed

cases, but in fact the pointed case involves some subtleties that I brushed under the rug. These gaps got filled in in
Lecture 5.
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for some finite collection of compact subsets K; ¢ Q and open subsets V; c R,i=1,..., N.
But since compact subsets of Q cannot contain any open subsets, one can then find two
irrational numbers a < b such that

Wo :=(a, ) nQc W

is a nonempty open subset of W disjoint from K; u ... u Ky. Now define a continuous
function f : Q@ — R that matches fy outside of Wy but takes a value f(x) ¢ U for some
x € Wp; this is easy since a,b ¢ Q. Then (f,x) € O x W but f(z) ¢ U, a contradiction.
Message: Q is a terrible topological space. The main problem: It is not locally compact.
Lemma 1: If X is locally compact and Hausdorff,'? then ev : C(X,Y) x X — Y is
continuous. (For the proof, see Exercise 3.3.)

The exponential law: For two sets X, Y (not necessarily with topologies), let X denote
the set of all (not necessarily continuous) maps Y — X. Then there is a natural bijection

ZXXY ~ (ZY)X,

identifying each map f : X x Y — Z with the map f : X — ZY defined by f(z)(y) :=
f(z,y).

Lemma 2: For all t(A)pological spaces X,Y, Z,if f : X xY — Z is continuous, then the
corresponding map f : X — ZY is a continuous map into C (Y, Z). The converse also holds
if Y is locally compact and Hausdorff. (Proof: see Exercise 3.3.)

Corollary (since [ is locally compact and Hausdorff): Homotopies X x I — Y are naturally
equivalent to continuous maps on X with values in the path space C(I,Y).*?

End of Topologie I digression.

Proof of the theorem on path space fibrations: see [DK01, Theorem 6.15], supplemented by
the following remark. In this proof, there are several maps and homotopies to be written
down, most of which are pretty straightforward, one just needs to think a little about why
they are continuous. Thanks to the digression above, the fact that I is locally compact
and Hausdorff ensures this.

Lecture 5 (2.05.2024): Replacing maps with fibrations. This lecture began with some
minor extensions and clarifications to the main definition from Lecture 4.

Definition: A map p : E — B has the (free) homotopy lifting property (HLP) with
respect to some class of spaces € < Top if the lifting problem

x ™ g

B
70 // P

XxI-2,p

12Whether the Hausdorff condition here is truly necessary depends on what definition one takes for the term
locally compact. 1 typically define locally compact to mean simply that every point has a compact neighborhood, but
many authors (such as tom Dieck [tDO08]) prefer a stricter definition in which the compact neighborhood can always
be assumed arbitrarily small: concretely, for every point z € X, every neighborhood of x contains a neighborhood of
x that is compact. The latter is the condition that one really needs for proving ev : C(X,Y) x X — Y is continuous,
but it is equivalent to the simpler definition whenever X is Hausdorff. I have no plans to consider any examples in
which X is not Hausdorff.

13'm not certain, but in the lecture I may have stated this wrongly and said homotopies X x I — Y are
equivalent to paths in the space C(X,Y), i.e. maps I — C(X,Y). The latter is not true in general unless X is also
locally compact and Hausdorff.
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is solvable for all X € ¥, i.e. given a homotopy H and an initial condition H, for a lift,
the lifted homotopy H exists. Here iy denotes the inclusion X = X x {0} — X x I.
Notation convention: For a homotopy H : X x I — Y, we will often write

Hy:=H(,t): X ->Y for each ¢t € I.

Definition: p : E — B is a free (Hurewicz) fibration if it satisfies the HLP with respect
to all spaces X € Top. The word “free” (or the synonyms “unpointed” or “unbased”) is
included in order to distinguish this from the pointed variant below, but will be omitted
whenever possible. The word “Hurewicz” will almost always be omitted, but is meant to
distinguish this from certain useful weaker conditions, such as:
Definition: p : £ — B is a Serre fibration if it satisfies the HLP with respect to all
CW-complexes X. Note that F and B do not need to be CW-complexes. This condition
is often easier to verify, and has some very nice applications to higher homotopy groups
(we’ll get there in a few lectures).
Definition: A pointed map p : E — B has the (pointed) homotopy lifting property
with respect to some class of pointed spaces ¢ < Top,, if the lifting problem
Ho
(X, %) ———— (E, #)

(X x I,{#} x I) == (B, %)

is solvable for all X € ¢’; in other words, we require the HLP but with maps and homotopies
replaced by pointed maps and pointed homotopies.

Definition: A pointed map p : E — B is a pointed (Hurewicz) fibration if it satisfies the
pointed HLP with respect to all X € Top,,.

Theorem (“the main property of fibrations”): Assume p : E — B satisfies the (free or
pointed) HLP with respect to some class € in Top or Top, respectively; in the free case,
assume also that B is path-connected, so that sets of (free or pointed) homotopy classes
[X, B] have natural base points in either case. Denote the inclusion i : F':= p~1(by) — E,
where by € B is the base point in the pointed case, or any chosen point in the free case.
Then for every X € %, the sequence

[X,F] % [X,E] % [X, B]

is exact.

Convenient fact (see Exercise 3.2): Pointed fibrations are also free fibrations after forgetting
their base points.

Inconvenient fact: If p : E — B is a free fibration, choosing base points # € B and
#+ € p~ () € E to make p into a pointed map does mot automatically make it into a
pointed fibration! On the other hand, actual counterexamples are not easy to find, mainly
because. . .

Sufficiently convenient fact: The aforementioned pointed map p : £ — B does however
satisfy the pointed HLP with respect to all “reasonable” pointed spaces. This means that in
practice, one rarely actually needs to worry about the distinction between free and pointed
fibrations. (Giving more details on this will require some discussion of cofibrations, which
is coming next week.)

Definition: A sequence of maps Z 3, X 4 ¥ has the homotopy type of a fibration
if there exists a fibration p : F — B with fiber inclusion i : F := p~!(¥) — E and a
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homotopy commutative diagram

7zt ,x I,y

F—+E-"'3B
in which the vertical maps are all homotopy equivalences. (Note: This definition is sensible

in either the free or the pointed case—for the latter, one takes all maps and homotopies
to be pointed.) It follows that sequences of the form

Q.27 [Q. X153 [Q,V]
are exact for all ) (assuming as usual in the unpointed case that Y is path-connected).
Remark: There are obvious generalizations of this conclusion for cases where p : E — B
only satisfies the HLP with respect to some smaller class of spaces %’; then one must also
assume () € ¥ in writing down such exact sequences.

e Convention: Unless the words “free” or “pointed” are included explicitly, every statement
in the rest of this lecture is meant to be valid for both cases, with closely analogous proofs
in either context.

e Theorem 1: For every map f : X — Y, there exists a space Z (the “homotopy fiber”

of f) and a map j such that Z 3, X L ¥ has the homotopy type of a fibration. In other
words, “every map is a fibration up to homotopy equivalence”. Proof at the end of the
lecture.
e The dual perspective on the HLP: For topological spaces X, Y, abbreviate
Y* .= C(X,Y)
with the compact-open topology.'* This makes X! the space of paths in X, and since I is
locally compact and Hausdorff, the evaluation map
ev: X x T — X :(y,t) = ~(t)
is a homotopy between evy := ev(+,0) and evy := ev(+,1); one can deduce from this (see
Exercise 3.3) that for every continuous map f: X — Y, the induced map
floXt =Yg foy
is continuous, thus defining a functor (-)! = C(I,-) : Top — Top. Moreover, the natural
bijection YX*! =~ (Y1)X identifies homotopies H : X x [ — Y with maps H : X — Y/
into path space, and this translates the HLP into the diagram

JILQEALENY
vl
Bl =, B.
Interpretation: the HLP is satisfied if and only if £ with its maps to F and B’ defines

a “weak fiber product” of the maps p: E — B and evy : B! — B, i.e. the map X — ET is
required to exist, but need not be unique (as an actual universal property would require).

4We had previously used the notation YX to mean all (not necessarily continuous) maps X — Y, but we are
now altering the definition of this notation in the context of topological spaces, because it’s a convenient shorthand.
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o Constructions of fibrations (proofs are straightforward and mostly consist of drawing some
diagrams and adding some dotted arrows):

(1)

(2)

Projection maps B x F' — B are always fibrations. (Note that here one can clearly

see the non-uniqueness of the lifted homotopy, outside of special cases such as when

F is a discrete space, which would make the projection a covering map.)

Path space: By a very slight extension of what we proved last time, the map
X7 x o x

is always a fibration.

Compositions: If p: ' — B and f: B — A are fibrations, then sois fop: E — A.

(Remark: If we didn’t already know this, we could now deduce from the first three

items on this list that the maps evg,ev; : X! — X individually are also fibrations.)

Products: Given two fibrations p; : F; — B; for i = 1,2, the product map p; X ps :

E, x E5 — B x By is also a fibration.

Pullbacks: Assume FE’ is a fiber product of p : E — B and another map f : B — B,

so we have a diagram

gL E

b

B —1.B
and E' can be identified with B’ ;x  E' ¢ B’ x E'so that f’ and p’ become the obvious
projections. For any b€ B’, writing E; := (p')~(b) c E’, it follows that

By, L B,

is a homeomorphism, thus we think of E’ as a union of the same collection of fibers
as I, but parametrized over B’ instead of B. Proposition: If p is a fibration, then so
is p’. (We then call p’ : E' — B’ the pullback of p : E — B via the map B’ — B, and
sometimes emphasize this by writing f*FE := E’. Tt is also often called an induced
fibration.) Sketch of proof: Given a homotopy X xI — B’, composing it with f gives
a homotopy to B, which can be lifted to E. The universal property of the pullback
determines from this a unique map X x I — E’, which turns out to be the lift we
need.

Path /loop spaces: Analogously to the free path space functor Top — Top : X +— X7,
the based path and loop spaces define functors Top,, — Top,, sending X to PX or Q.X.
Proposition: For any free fibration p : E — B, the map p’ : ET — B! is also a (free)
fibration; similarly for any pointed fibration p : E — B, the maps Pp: PE — PB and
Qp : QF — QB are pointed fibrations. Proof in the free case: The correspondence
YX*I ~ (Y1)X translates the HLP for p! : EY — B! with respect to a space X into
a lifting problem of the form

Xx] ——F

J{’L‘o x1d J{p )

XxIxI——B

which is solvable because p : E — B has the HLP with respect to X x I. The proofs
for the based path and loop spaces are Exercise 3.4.
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e Proposition: Every pointed fibration F' S EBB (we will often write the inclusion of the
fiber F' = p~1(x) c E as part of the data) determines a canonical pointed homotopy class
of maps

OB -% F.

Part 1 of the proof: The idea is the same as in covering space theory, where each based
loop v : I — B gets interpreted as a path and then has a (in this case non-unique) lift
¥ : I — E that starts at the base point but may end in some other point of F = p~!(x).
Since p : E — B has the HLP with respect to the space 2B, we can do this for all loops
at once by interpreting ev : QB x I — B as a homotopy and lifting it:

OB const E

~ 1
ev .~
\[ /// J/p '

OB xI = B

On OB, evg and evy are both constant maps to the base point of B, thus § :=¢év; : QB — F
takes values in F. (We will need some machinery developed next week in order to show
that the homotopy class of § is independent of the choice of lift.)

e Theorem 2 (just a preview of our goal for next week, with the caveat that the statement
may need minor modifications before it is strictly correct): For any pointed fibration
F 5 E 5 B, every triple of consecutive terms in the sequence of pointed (homotopy
classes of) maps

L EE B L ar M ar o S F L B2 B

has the homotopy type of a pointed fibration. (Note: Implicit in this sequence is the
observation that QF has an obvious identification with the fiber of QE 2% QB over the

base point of QB, such that Qi : QF — QF becomes its inclusion.)
¢ Remark: Theorem 2 gives us long exact sequences of sets of pointed homotopy classes

.= [X,Q%B] » [X,QF] > [X,QE] - [X,QB] - [X,F] - [X,E] - [X, B],
and since pointed fibrations are also free fibrations, the corresponding sequence of sets of
free homotopy classes is also exact wherever exactness makes sense (i.e. when the relevant

space is known to be path-connected).
e Definition: The (double) mapping path space of twomaps f: X - Zandg:Y — Zis

P(f,9) ==X ;Xopy Z' o0, %, Y = {(z,7,y) € X x Z' xY | v is a path in Z from f(z) to g(y)}.

This construction is “dual” to the double mapping cylinder, in the sense that it fits into all
the same diagrams but with the arrows reversed, e.g. with the obvious projections to X
and Y, the diagram

P(f,9) —= X
”Yl ~ |f
Y —— 7
commutes up to an obvious homotopy, and any homotopy commutative diagram of the

form
Q X

s

wl o
Y—g>Z
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naturally determines a map u: Q — P(f, g) for which the diagram

X
T
Q@ —— P(f.9)

N

Y

commutes. In summary: P(f,g) is a homotopy pullback of the maps f and g. (As with
homotopy pushouts: We are not claiming that P(f,g) defines an actual pullback in the
category hTop, which would require the homotopy class of u : @ — P(f,g) above to be
determined uniquely by the commutativity (up to homotopy) of the diagram. Exercise for
those who are so inclined: show that pullbacks in hTop do not always exist.)

e Remark: If f and g are pointed maps, then there is an obvious choice of base point for
P(f,g) that makes everything in the above discussion pointed. In contrast to the case of
mapping cylinders, this does not require any modification to the definition of the space
P(f,g) itself.

e Proposition: The map

(rx,my) : P(f,9) > X xY

is a fibration (and by composition, so therefore are the individual projections wx and 7y ).
Proof: It’s a pullback of the path space fibration Z! — Z x Z:

P(fvg) — ZI

(‘"XJTY)J( J{(evo,evl) )

XxY — ZxZ7
fxg

where the map P(f,g) — Z% is (z,7,y) — 7.
e Proof of Theorem 1: Define the mapping path space of f: X — Y as

P(f):=P(f,1dy) = {(z,7,y) € X x Y xY | 4(0) = f(z) and 7(1) = y}
={(z,7) e X x Y| 4(0) = f(x)}.

By contracting every path back to its starting point, we find a deformation retraction of
P(f) to an embedded copy of X, i.e. the map h : X — P(f) : x +— (x,consty(,)) is a
homotopy inverse of the projection 7x : P(f) — X : (x,7) — x. Moreover, 7x is a
fibration, and more importantly, so is the other projection

pi=my : P(f) =Y :(z,7) » (1),

which now fits into the commutative diagram

X s P(f)

e
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in which h is a homotopy equivalence. One can now take the fiber Z := p~1(x) < P(f)
with inclusion i : Z < P(f) and define j := 7x oi: Z — X, producing the diagram

79 ,x_ T,y

W o~ e

Z ' P(f) —— Y

in which the vertical maps are all homotopy equivalences.

e To do list for next week: Clarify in what sense the fibration P(f) 2 Y and homotopy fiber
7 associated to f : X — Y are unique, why the homotopy class of § : QB — F' is well
defined, where the long exact sequence in Theorem 2 comes from, why free fibrations with
added base points are almost as good in practice as pointed fibrations, and along the way,
what a cofibration is and what this whole story looks like with all the arrows reversed.
That will keep us busy enough.

Suggested reading. The main nontrivial things we did this week can be found in [DKO01, §6.2,
§6.4 and §6.9]. An unfortunate omission in both [DKO01] and [tD08] is the pointed variant of the
homotopy lifting property, but there’s a fuller discussion of this and the associated subtleties in
[Cut21, Week 6: Fibrations IV].

Exercises (for the Ubung on 16.05.2024). Thursday the 9th is a holiday, so we’ll talk about
these exercises (and probably some others) in the Ubung for the following week.

Exercise 3.1. The following are two examples of maps p : E — B with the property that all fibers
Ey, := p~1(b) are homotopy equivalent—we will see next week that this is a property that fibrations
must have, though in these examples, the fibers are not all homeomorphic, so they cannot be fiber
bundles. Determine whether each is actually a fibration.

(a) The projection E — R : (z,y) > x of the subset E := {(z,y) € R? | |y| < ||}
(b) The projection E — I : (z,y) — x of the subset E := (I x {0}) u ({0} x I).

Exercise 3.2. Prove that every pointed fibration becomes a free fibration after forgetting the base
points.

Hint: For any X € Top and Y € Top,, unpointed maps X — Y are equivalent to pointed maps
X, - Y, for a pointed space X, defined as the disjoint union of X with a one point space.

Exercise 3.3. For this exercise, let’s agree to call a space X locally compact if every neighbor-
hood of every point # € X contains a compact neighborhood of x.*® If you prefer the convention
that “locally compact” just means every point has a compact neighborhood, then feel free to add
the assumption that X is Hausdorff, which makes the simpler definition of locally compact equiv-
alent to the stricter one stated above. We assume as usual that the space C(X,Y’) of continuous
maps X — Y carries the compact-open topology. The first three parts below add up to the proofs

of two lemmas that were stated without proof in lecture.
(a) Prove that if X is locally compact, then the evaluation map ev : C(X,Y) x X —» Y :
(f,z) = f(x) is continuous.
(b) Prove that for any spaces X,Y,Z and any continuous map f : X x Y — Z, the map

f:X = C(Y, Z) defined by f(z)(y) := f(z,y) is also continuous, thus defining an injective
map

(3.1) C(X xY,Z) > C(X,C(Y,Z)): f > [

15T his definition presumes the term neighborhood of = to mean any set that contains an open set containing =z,
i.e. the neighborhood itself need not be open.
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Remark: One would ideally also like to know that the map (3.1) is continuous, but let’s
not worry about that for now.

(c¢) Prove that for two given spaces Y and Z, the evaluation map ev : C(Y,Z) xY — Z is
continuous if and only if the map (3.1) is surjective for all spaces X.
Hint: The identity map is continuous on all spaces.
Comment: It follows in particular that (3.1) is a bijection whenever Y is locally compact;
we have already made ample use of the special case Y := I in the lectures.

(d) Give a concrete example of three spaces for which the map (3.1) is not surjective.

(e) Writing X! := C(I, X) for the space of paths in X, show that for any continuous map
f:X — Y, theinduced map f/: X! - Y!:v for.
Remark: There is a quite easy way to deduce this from the previous parts of this exercise,
exploiting the fact that I is locally compact, but in fact, much more than this is true, and
it can be proved without using local compactness at all (see Exercise 5.9).

Before we continue, here is a definition: A continuous map q : X — X is called a quotient map
if it is surjective and the open sets U — X are precisely the sets for which ¢~ (/) < X is open.
Equivalently, ¢ is a quotient map if and only if it descends to a homeomorphism X/~ — X, for the
equivalence relation ~ on X such that z ~ y means g(z) = ¢(y). Most crucially, being a quotient
map means that in any diagram of the form

X

x 15 Y,

continuity of the map f implies that f is also continuous. (The converse is of course obvious, since
q is continuous.)

(f) Given two quotient maps p : X — X and q: Y - Y, can you show that the product map
p X q XxY —» XxYisalsoa quotient map? Give it a try, but do not try too hard. .. Once
you’ve gotten stuck and realized that it isn’t obvious, take a look at [Mun75, pp. 143-144].

(g) Prove that if Y is a space with the property that ev : C(Y,Z) x Y — Z is continuous for
every space Z, then for every quotient map ¢ : X5 X , the product

qxIdy:)W(xY—>X><Y

is also a quotient map. In particular, this is true whenever Y is locally compact.
(h) In last week’s Ubung, I sketched an approach to proving S™ x S™ =~ Sm*"+1 (Exercise 2.7)
that led to the more general formula

X#Y = (CX xY) uxxy (X x CY),

obtained by splitting the double mapping cylinder in the middle and reinterpreting the
quotients that one sees in the two halves. I also mentioned however that it is not so
obvious how generally this formula holds, because e.g. CX x Y is a product of a quotient,
which is not always homeomorphic to the corresponding quotient of a product. Can you
name some conditions on X and Y that will guarantee that the formula holds? (Your
conditions should preferably include the special case with X = S™ and Y = S™!)

Exercise 3.4. In lecture, we exploited the natural bijective correspondence between maps X — Y/
and maps X x I — Y to prove that for any fibration p : £ — B, the map p’ : El — B! is also a
fibration, give or take some minor details (e.g. the continuity of p! is provided by Exercise 3.3(e)
above).
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(a) Describe a pointed space P’'X associated to every pointed space X with the property
that there is a natural bijective correspondence between pointed maps X — PY to the
based path space and pointed maps P’X — Y. Moreover, there should also be a bijec-
tive correspondence between pointed homotopies X x I — PY and pointed homotopies
PPXxI->Y.

Achtung: The detail about homotopies will require you to think about products of quo-
tients, so Exercise 3.3(g) may be useful.

(b) Do the same thing as in part (a) for pointed maps/homotopies to the based loop space QY.

(c) Prove the result stated in lecture that for any pointed fibration p : E — B, the induced
maps Pp: PE — PB and Qp : QF — QB are also pointed fibrations.

Exercise 3.5. Prove that if X is path-connected, then the homotopy type of the based loop space
QX is independent of the choice of base point.

Exercise 3.6. Formulate an analogue for mapping path spaces P(f,g) of the theorem we pre-
viously proved about mapping cylinders Z(f,g) defining a functor from a category of pushout
diagrams to hTop. Convince yourself in this way that the homotopy type of P(f,g) only depends
on the homotopy classes of the two maps f: X > Zand g:Y — Z.

Exercise 3.7. The mapping path space P(f) = {(z,7) € X x Y! | v(0) = f(x)} of a map
f: X — Y can be described as the fiber product of the maps f: X - Y and evy: Y! — Y, so by
the universal property of the fiber product, the diagram

X1 i 1
— Y

levo levo

x 1 .y

determines a map u : X! — P(f). Show that f : X — Y is a fibration if and only if the map
u: X! — P(f) admits a right-inverse X : P(f) — X7; in this situation, A is sometimes called a
lifting function for the fibration f: X —» Y.

4. WEEK 4

Thursday this week is a holiday, so there is only one lecture and no Ubung.

Lecture 6 (6.05.2024): The transport functor.

e Recall: We constructed for every (unpointed or pointed) map f: X — Y a diagram
F(f) — - x Ly

SRR

F(f) —— P(f) —— Y

where the bottom row is a (free or pointed) fibration with fiber F(f) := p~1(x) < P(f)
(preimage of the base point * € Y if pointed, an arbitrary point if not), and all the vertical
maps are homotopy equivalences. We call F(f) the homotopy fiber of f : X — Y. We
also had a homotopy inverse h : X — P(f) of mx fitting into the diagram

F x 1,y

b b e

F(f) — P(f) —> Y
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which commutes on the nose (not just up to homotopy), where F' := f~1(x) ¢ X, thus
defining a comparison map

F - F(f)

from the “actual” fiber of f to its homotopy fiber.
Question: Does f : X — Y uniquely determine (up to what notion of equivalence?) the
fibration p: £ — Y in any diagram of the form

p

\/

For instance, if f : X — Y is already a fibration, are the two fibrations (and thus their
fibers) equivalent in some sense?'®

Inspiration from differential geometry: For a smooth fiber bundle p : E — B, any choice of
connection associates to each smooth path x NS y in B a parallel transport diffeomorphism

E, 5 B,

and it is compatible with smooth concatenation of paths: F,.g = Pg o P,. Connections
live in a contractible space of choices, so up to homotopy, P, is independent of this choice
and depends only on the (smooth) homotopy class of the path v. Given any smooth
homotopy H : X x I — B between maps Hy, H; : X — B, parallel transport determines
a correspondence

_E _E
lifts V l,, — lifts V l,,
x 2, pB x -1, B

defined by Hi(z) := Pr(z,.y 0 Ho(x). At the level of homotopy classes of lifts, this corre-
spondence is independent of choices, and depends on H only up to (smooth) homotopy
of homotopies. In homotopy theory, we have no smooth structures and cannot talk about
connections. .. but we probably can prove that things are unique up to homotopy!
Definition: Given B € Top, the category Topy of spaces over B has objects that are pairs
(X, f) with X a space and f : X — B a map, and the set of morphisms Hom((X, f), (Y, g))
consists of maps over B, meaning maps ¢ : X — Y that fit into the diagram

X —F 5y

N

Two such morphisms ¢, are homotopic over B if there exists a homotopy ¢ 4 Y
such that H; is a morphism (X, f) — (Y,g) for every t € I. This notion defines the
corresponding homotopy category hTopy, and isomorphisms in this category are called
homotopy equivalences over B. There are similar definitions for categories Topp , and
hTopg , in which all maps and homotopies are required to be pointed.

161 the lecture I stated this question a bit differently, involving a more complicated diagram, but I later realized

that that version was not exactly the question we are going to answer, nor is it the one that we really need to

answer.
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¢ Notation: Given two objects X,Y in Topg or Topp ,, we denote by
[X,Y]p := Hom(X,Y) in hTopy or hTopy , resp.

the set of homotopy classes of (unpointed or pointed) maps X — Y over B. We can also
write [(X, f), (Y, g)] s whenever the maps f : X — B and g : Y — B defining these objects
need to be specified.

e Definition: Given X,Y € Top, the homotopy groupoid II(X,Y) is a category whose
objects are maps f : X — Y, with morphisms

Hom(f,g) := {homotopies f & g}/ ~,
where the equivalence relation is “homotopy of homotopies™ H ~ H' means there is a
homotopy H 2 H of maps X x I — Y such that &, := ®(+,-,;s) : X x [ —» Y for each

s € I is also a homotopy f s g. Composition of morphisms is defined by concatenation
of homotopies. (Easy exercise: The equivalence relation makes this notion of composition
associative. The proof is essentially the same as the proof that multiplication in the
fundamental group is associative.)

e Remark: II(X,Y) is called a groupoid (and not just a category) because all of its morphisms
are invertible; one can always reverse homotopies.

e Special case: II(Y) := II(*,Y) is the fundamental groupoid of Y, and for each y € Y,
Hom(y, ) is then the (opposite of the) fundamental group (Y, y).!”

e For XY € Top,, there is a pointed variant of II(X,Y") whose objects are pointed maps
and morphisms are homotopy classes of pointed homotopies. Amusing exercise: Is II(#,Y)
interesting in the pointed case?

e Theorem: For every (free or pointed) fibration p : E — B and every space X (unpointed
or pointed), there is a well-defined transport functor

II(X, B) — Set
which associates to each map f : X — B the set [(X, f), (E,p)]s of homotopy classes of
maps over B; we can interpret these as homotopy classes of lifts f: X - Eof f: X — B.

To each homotopy class of homotopies f g g of maps f,g: X — B, it associates the map

(X, 1), (B, p)]s 5 [(X, 9), (B, )]y

which sends the homotopy class of the lift f to the homotopy class of a lift g obtained by
liftingH:X><I—>Btoah0m0t0pyITI:X><I—>Efr0m ftog.

e Remark: It is educational to try using the HLP to prove that Hy is independent of choices,
but you will get stuck at some point and notice that the lifting problem you need to solve
is more complicated than the one addressed by the HLP. We will deal with this next week,
after talking a bit about the homotopy extension property and cofibrations. For the rest
of this lecture, we take the existence of the transport functor as a black box and explore
some of its applications.

175 slightly annoying detail here is that while Hom(y, y) has a natural group structure defined by composition
of morphisms—which in this case means homotopy classes of concatenation of paths—the conventions of category
theory then force multiplication in Hom(y,y) to be defined by [a][8] := [B8 - «]. This is why, strictly speaking
Hom(y, y) is the opposite group of m1(Y,y), rather than 71 (Y,y) itself. For any group G with multiplication of
elements g,h € G denoted by gh € G, the opposite group G°P can be defined as the same set but with a new
multiplication law “” defined by g - h := hg, so there is no difference if G happens to be abelian, but in general G
and G°P are different (though isomorphic!) groups. One occasionally sees claims in the literature that the “correct”
definition of m1(Y,y) really should be what we normally call 71 (Y, y)°P, so that it matches Hom(y, y) rather than
its opposite group. But this idea does not seem to have caught on.
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e Theorem: For any fibration p : E — B and any two homotopic maps fo, f1 : B — B, the

pullback fibrations fJE — B’ and f;E — B’ are homotopy equivalent over B’. It follows
in particular that for every b € B’, there is a homotopy equivalence (fFE), — (ffE)s
between corresponding fibers.

Corollary (the case B’ := #): For a fibration p : E — B, any two fibers over the same
path-component of B are homotopy equivalent.

Proof of the theorem: For each i = 0,1 we have pullback diagrams

e 15 E

b

B - .B

Let B’ 1% B for t € I denote the family of maps defined by a given homotopy

F

fo~ fi1.

The family fFE 1°P9 B then defines a homotopy

H
foopo~ fiopo

of maps ffE — B, and using the transport functor, we obtain a bijection Hy that asso-
ciates to each homotopy class of lifts of fy o py a homotopy class of lifts of f; o pg. Since
fo: fFE — Eis alift of foopg : f§E — B, we can feed this into Hyx and thus obtain a lift
g: ffE — E of fi opo, and by the universal property of the pullback f*E, this uniquely
determines the map ®r : ffE£ — fiE in the following diagram

I g

By Exercise 4.1 below, this construction defines a functor
II(B’, B) — hTopg

which associates to each map f : B’ — B the induced fibration f*F — B’ and to each

homotopy class of homotopies f & g the homotopy class of maps over B’ represented
by ®r : f*E — ¢g*E as constructed above via the transport functor. Since morphisms
in II(B’, B) are all invertible, the maps ®r obtained in this way are all isomorphisms
in hTopg/, meaning homotopy equivalences over B’'.

Theorem: If E % B and ' % B are two fibrations and f : E — E’ is a homotopy
equivalence of spaces that is also a map over B (with respect to p,p’), then f is also a
homotopy equivalence over B.
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e Remark: Using Exercise 4.2 below, it follows that whenever we have two ways of replacing
amap f: X — Y by fibrations p; : F; — Y as in the diagram

Eo(*Xg)El
NS

the two fibrations must be homotopy equivalent over Y, and their corresponding fibers
therefore homotopy equivalent. In particular, all reasonable definitions of the term “homo-
topy fiber” give the same thing up to homotopy equivalence.

e Preparation for the proof: Given a map X Ly and a space F, f induces a map

v, £] L [XE] o= ffpi=gpof,

which is obviously bijective if f is a homotopy equivalence. If we are also given maps
q:Y — Band p: E — B, then for any map ¢ : Y — E over B, the diagram

fEpi=gpof

X*>Y*>E

rom

means that f also induces a map

(Y20, (B.p)]5 L5 [(X, *0). (E.p)]5

e Lemma: In the situation above, if p: E — B is a fibration and f : X — Y is a homotopy

equivalence, then the map [(Y,q), (E,p)]s EAR [(X, f*q), (E,p)]s is also bijective.

e Proof of the lemma: Given a homotopy inverse g : ¥ — X of X, choose a homotopy
Idy 4 fog,sothat go H is then a homotopy of maps Y — B from ¢ to go fog = g* f*q.
We claim that the diagram

(qoH) %

T

[(Y,9), (B, p)] s —— [(X, £*0),(E,p)]5 ——— [(Y,g*f*a), (E,p)],

commutes. The reason is that for any given map (Y, q) — (E,p) over B, the following
diagram reveals that there is an obvious choice of lift for the homotopy ¢ o H :YxI—>B
with initial condition ¢ : Y — E:

Y i E

B

Choosing po H : Y x I — F as the lifted homotopy, it defines a homotopy from ¢ to
po fog=g*f*p and thus proves the claim. Since (g o H)x is a bijection, it follows that
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f* is injective and g* is surjective. Using a homotopy of g o f to Idx, one can apply the
same trick again to show that the composition

T

[(X, £20), (E,p)] 5 —2— [(V.g* F*0), (B,p)]p —— (X, [*6* %), (E,p)]
is also bijective, implying that the same map ¢* is also injective, and thus bijective. Since
the composition g* f* in (4.1) is bijective, it now follows that f* is bijective.

e Remark: The proof of the lemma should remind you of the proof that homotopy equiv-
alences induce isomorphisms of fundamental groups (in spite of the annoying detail that
the homotopy inverse need not respect base points). In fact, there is a dual version of
this lemma for cofibrations, a special case of which involves homotopy classes of maps
S1 — X over a one point space, and the result in that case is precisely the isomorphism
of fundamental groups.

e The proof of the theorem about homotopy equivalence of fibrations now follows from
abstract nonsense; see Exercise 4.3 below.

Suggested reading. The notions of “spaces/maps over B” and the homotopy groupoid are intro-
duced in [tD08, §2.2 and §2.9], with the special case of the fundamental groupoid treated at length
in §2.5. My presentation of the transport functor is based essentially on [tD08, §5.6], though tom
Dieck only gives very brief sketches of proofs in that section, since it appears after the corresponding
discussion about cofibrations (which is formally similar).

In [DKO1, §6.6], you will also find a fairly down-to-earth proof of the fact that for the fibration
P(f) — Y constructed out of the mapping path space of any map f : X — Y, the associated
homotopy equivalence h : X — P(f) is also a homotopy equivalence over Y whenever f : X —» Y
itself is a fibration. This is less general than what we proved, because it applies only to a specific
fibration P(f) — Y rather than an arbitrary fibration over Y that fits into a suitable diagram with
f: X — Y. Unfortunately, the proof of the main theorem about the long exact fibration sequence
in [DKO1, §6.11] sneakily uses the more general version of this uniqueness result, so as far as I can
tell, this is a logical gap in the book.

Exercises (also for the Ubung on 16.05.2024).

Exercise 4.1. In lecture we used the transport functor to associate to any fibration p : £ — B
and any homotopy class of homotopies F' between two maps fo, f1 : B’ — B a homotopy class of
maps over B’ in the form

O*ELJ“{“E
BI

relating the two pullback fibrations p; : f*E — B’ induced by f; : B — B for ¢ = 0,1. Complete
the proof that this construction defines a functor

H(B/7B) g hTOpB/,
which associates to each map f : B’ — B the pullback fibration f*E — B’, with the important
consequence that the map ®r determined by a homotopy is always a homotopy equivalence over B’.

Hint: Consider a family of maps B’ J B parameterized by t € [0,2], which you can think of
as a concatenation of a homotopy from fy to fi; with a homotopy from f, to f,. Defining the
induced maps f{E — fFE and f{E — f3FE requires choosing lifts of certain homotopies of maps
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fGE - B (for 0<t<1)and f{E — B (for 1 <t < 2) respectively. Let these choices determine
how you can continue the lift of the homotopy of maps f§E — B over the interval 1 <t < 2, thus
defining the induced map fJE — fFE
Exercise 4.2. Assume p: F — Y is a fibration and f: X — Y is a map.

(a) Show that if ¢ : X — E'is a map for which the diagram

e

commutes up to homotopy, then ¢ can be replaced with a homotopic map X — FE that
makes the diagram commute on the nose.

(b) Deduce the basic uniqueness result about fibrations associated to a map f : X — Y,
namely that for any diagram of the form

E()(iX*}El

AN 574

in which pg : Eg — Y and p; : E; — Y are both fibrations, the two fibrations are homotopy
equivalent over Y.

Exercise 4.3. Suppose ¢ is a category and X Lyisa morphism in % with the property that
the maps
Hom(Y, X) AN Hom(X X) and Hom(Y,Y) AN Hom(X Y)

defined via f*p := @ o f are both bijections. Prove that f is an isomorphism of ¢’. Then use this
to finish the proof of the theorem stated in lecture that every homotopy equivalence £ — E’ that
is also a map over B for two fibrations E, £’ — B is also a homotopy equivalence over B.

5. WEEK 5

Lecture 7 (13.05.2024): Cofibrations.

e Tricky lifting problem 1: If p : E — B is a free fibration and we choose base points = € B
and * € p~1(¥) c F to make it a pointed map, then it satisfies the pointed HLP with
respect to a pointed space X if and only if the lifting problem

X x {0} u{s}xT ﬂHOUCOHSi E

X xT - Ll B

is solvable. Having H prescribed on {#} x I and not just on X x {0} means that the usual
(free) HLP does not guarantee a solution to this problem.

e Tricky lifting problem 2: Showing that the transport functor for a free fibration p: £ — B
is well defined requires solving the lifting problem

Xx(@IquIx{O})ﬂE

[ - ).

X xI? - ¢ B

‘Qa
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Here, G : X x I> > B : (z,s,t) — H®)(x,t) is a l-parameter family of homotopies

) ~
{Hy B Hq}ser between two fixed maps Hy, H; : X — B, the lift G is prescribed on

X x 8I x I because lifts of the two specific homotopies H(®) and H(™ have already been
chosen, and it is prescribed on X x I x {0} because we are also given a homotopy {Hés) }ser

of lifts of Hy. The existence of G then implies a corresponding homotopy {ﬁ[l(s)}sel of lifts
of Hl.

More general question: Given a free fibration p : E — B and a map j : A —» X, under
what conditions is the problem

|

E
i 0|

B

At
N

T

solvable? We refer to this in the following as problem (FLP), for “fundamental lifting
problem”.

Theorem FLP (the “fundamental lifting property”): Problem (FLP) is solvable whenever
j: A — X is a free cofibration (see definition below) and either j or p is a homotopy
equivalence.

Remark: We will only need a special case of Theorem FLP and thus will not prove it in
full generality. Notice that the case where j : A — X is the inclusion Y x {0} — Y x [ for
some space Y is simply the HLP with respect to Y. Since the map evg : Y/ — Y is always
both a fibration and a homotopy equivalence, the HEP defined below is another special
case.

Definition: A map j: A — X satisfies the (free) homotopy extension property (HEP)
with respect to a space Y if the lifting problem

is solvable for all given maps Hy and h. Interpretation: Since maps A — Y/ are equivalent
to homotopies A x I — Y, the diagram asks that for any given homotopy h: A x [ - Y
and map Hy : X — Y satisfying Hypoj = hg, there should exist a homotopy H : X xI - Y
satisfying H; o j = h; for all ¢. In other words, the problem

A s AxT

b e

X <y X xT

is solvable, allowing us to interpret X x I as a weak pushout of the maps ig: A <—> A x [
and j : A - X. (The word “weak” is included because the map H is not required to be
unique, and in typical examples it is not.) We will see in Exercise 5.2 that without loss
of generality, j : A — X is always the inclusion of a subspace A ¢ X, in which case H is
literally an extension of h: A x I — Y to the larger domain X x I.

e Definition: j: A — X is a (free) cofibration if it has the HEP with respect to all spaces Y.
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e Main application: Assume for simplicity that j : A — X is the inclusion of a subspace A c
X, and let g : X — X /A denote the quotient projection. Given a path-connected space Y,

we can plug the maps A & X % X /A into the contravariant functor [-, Y] : hTop — Set,
and obtain a sequence of homotopy sets

[X/A,Y] 45 x,v] 25 (4,7,

Theorem: This sequence is exact whenever j : A — X has the free HEP with respect to Y,
so in particular whenever it is a free cofibration. (The proof is an easy exercise.)
e Terminology: for a cofibration j : A — X, we call A the cobase and X/j(A) the cofiber.
e There is an analogous pointed homotopy extension property and thus a notion of

poi

nted cofibrations in which all maps and homotopies are required to be pointed. For

these, the theorem above is true for sets of pointed homotopy classes of maps to Y, and

the

presence of a base point removes the necessity of assuming Y is path-connected. (Note

that we never need any path-connectedness assumption on A4, X or X/A, in contrast to

the

case of fibrations.)

¢ Convention: As with fibrations, any statement we make about cofibrations without spec-
ifying the words free/unpointed or pointed/based should be understood to be valid in two
parallel versions, one in the category Top or hTop, the other in Top, or hTop,. This is,
however, possible less often with cofibrations than with fibrations, due to the more-than-
cosmetic differences between spaces such as X x I and (X x I)/({=} x I).

e Constructions of cofibrations (analogous to the list in Lecture 5 for fibrations; for proofs,

see

(1)

(2)

e Pro

Exercise 5.3):
Inclusions in coproducts: For all spaces A,Q € Top, the inclusion A — AL Q is
a free cofibration, and for pointed spaces A, Q € Top,, the inclusion A —> A v Q is a
pointed cofibration.
Cylinders: Inclusions of the form

X xI

{#} x I

are free or pointed cofibrations respectively, where i;(x) := (x, t).

Compositions: The composition of two cofibrations is a cofibration.

Coproducts: Given two (free or pointed) cofibrations j; : A; — X; for i = 1,2, the
map

XX ™ x 7 or X v X oy

j1Hj22A1HA2—>X1HX2 or j1Vj21A1VA2—>X1VX2

is a (free or pointed) cofibration respectively.
Pushouts: Assume X' is the pushout of two maps j: A —» X and f: A —» A’, giving
rise to the diagram

AL w

G

x 1 x

If j: A — X is a cofibration, then so is j' : A’ — X’. In this case we call 7/ : A’ —» X’
the cofibration induced from j : A — X by the map f : A — A’; this construction is
sometimes called change of cobase.

position: For any two maps f: Z — X and g: Z — Y in Top or Top,, the natural

inclusion of X 1Y or X v Y respectively into the (unreduced or reduced) double mapping
cylinder Z(f,g) is a (free or pointed) cofibration.
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Proof: Present it as the pushout of the maps Z11Z — Z x I and flig: Z1UZ - X1Y
in the unpointed case, or Z v Z — (Z x I)/({*} x I) and f vg: Z v Z — X vY in the
pointed case.

Corollary: Every map f : X — Y has the homotopy type of a cofibration whose cofiber
(known as the homotopy cofiber of f) is the mapping cone of f. Proof:

L}Y

d

X Z(f) —— Z(f)/X = CX ux Y = cone(f),

>

oy
—

=

where h: Z(f) — Y is the homotopy equivalence defined on Z(f) = ((X x I) LIY)/ ~ by
h([(z,t)]) := f(z) for (z,t) e X x I and h(y) :=y forye Y.

Remark: Following our usual convention, this result is equally valid in the unpointed and
pointed cases. In the latter version, Z(f) and cone(f) are the reduced mapping cylinder
and cone respectively.

In the following, we redefine the unreduced mapping cylinder of a map j: A — X by

Z(j) = Z(3,1d) = X u; (A x 1),

where A x I is glued to X along A x {0} instead of A x {1}.

Theorem: There is a natural map ¥ : Z(j) — X x I such that the following conditions are
equivalent:

(1) j: A— X is a free cofibration;

(2) ¥:Z(j) > X x I admits a right-inverse r : X x I — Z(j);

(3) j: A — X has the HEP with respect to the space Z(3).

(For the pointed version of this theorem and its consequences, see Exercise 5.1.)

Proof: Look at the diagram

Ay AxT

b

X 255 Z(5)

JxId

The top left square is a pushout square, with ¢4 and ¢x denoting the maps canonically
associated with the pushout. The universal property of the pushout implies that the maps
U and w exist and are unique; in light of uniqueness, it also implies that r o ¥ = Id if r
exists. The map r does exist (but need not be unique) if j has the free HEP with respect
to Z(j), and in that case, u o r solves the homotopy extension problem with respect to an
arbitrary given space Y.
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Remark: If j : A — X is the inclusion of a subspace A ¢ X (which is not a loss of
generality according to Exercise 5.2), then (5.1) shows that ¥ is the canonical bijection

Z(j) > X x{0}uAxI,

which need not be a homeomorphism in general because the subspace topology on X x
{0} A x I c X x I may be different from the topology of Z(j) = (X1 (A xI))/~. But if
A — X is a cofibration, then r restricts to X x {0} u A x I as a continuous inverse of this
bijection, meaning we have a homeomorphism Z(j) =~ X x {0} u A x I, and 7 can then be
interpreted as a retraction

XxIT-—-Xx{0juAdxlI.

Corollary: The inclusion A — X of a subspace A c X is a cofibration if and only if there
exists a retraction X x I — X x {0} U A x I.

Definition: For a closed subset A c X, we call (X, A) an NDR-pair (stands for “neighbor-
hood deformation retract”) if there exists a continuous function u : X — I and a homotopy
p: X x I — X such that

p1 = ldx, pila =1ds forallte I, and po({u<1})c A

Further, we call it a DR~pair if additionally © < 1 everywhere on X, in which case the
open subset {u < 1} is all of X and p is therefore a deformation retraction of X to A.
Lemma (see Exercise 5.4):
(1) If (X, A) and (Y, B) are NDR-pairs then sois (X x Y;A xY u X x B), and it is a
DR-pair whenever either of (X, A) or (Y, B) is a DR-pair.
(2) If A c X is a closed subset such that there exists a retraction r : X x I — X x {0} u
A x I, then (X, A) is an NDR-pair.
Corollary: For a closed subset A < X, the inclusion A — X is a free cofibration if and
only if (X, A) is an NDR-pair.
Proof: Cofibration = retraction = NDR-pair according to the lemma and the previous
corollary. Conversely, one easily checks that (I, {0}) is a DR-pair, so if (X, A) is an NDR-
pair, then (X x I, X x {0} u A x I) is a DR-pair, implying the existence of the required
retraction.
Theorem (a useful special case of Theorem FLP): The lifting problem (FLP) is solvable
whenever j : A — X is the inclusion of a subspace A ¢ X and (X, A) is a DR-pair. (For
applications to tricky lifting problems 1 and 2, see Exercise 5.5.)
Proof: Assume v : X — [ and p: X x I —» X make (X, A) a DR-pair, so in particular,
u™1(0) = A, p1 =Idx, pi|a =1da for all t € I and po(X) = A. The problem to be solved
is
A1, E
T
j 7 p-
X+ B
As an ansatz, we try to define h : X — FE in the form

h(z) = H(z,u(x)),
where H : X x I — F is a lift of the homotopy
H:X xI— B, H(z,t) :== gop(z,t).

The condition h(a) = f(a) for a € A is then satisfied if and only if Hy|4 = f, which we
can arrange by requiring the initial lift of the homotopy to be Hy := f o pg. The condition
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poh(x) = H(z,u(z)) = gop(x,u(x)) = g(x) is then satisfied if p(z, u(x)) =z forall x € X,
which is not necessarily true in general, but can be arranged without loss of generality.
Indeed, for each z € X, p(z,-) € X! is a path starting in A and ending at z, and is a
constant path for every x € A. It therefore suffices to reparametrize p by speeding up each
of these paths so that for each x ¢ A, p(x,-) reaches the end already by time ¢t = u(z) > 0.
(Exercise: Write this down explicitly and reassure yourself that the modified version of p
can be made continuous—in X\A and in the interior of A this is obvious, but one needs
to think more carefully about the boundary of A.)

Lecture 8 (16.05.2024): The Puppe sequence of a fibration.

e The Puppe exact sequence of a pointed map (X, zg) S, (Y, yo) is the sequence of

pointed maps
2 —Qi —Qr — [ T
s Loy M or(gn) Y ox Moy L p() S x Ly
All notation used here is clarified below.
Theorem 1: The Puppe sequence is natural (in the category-theoretic sense), and any three

consecutive terms in the sequence have the homotopy type of a pointed fibration.
Remark 1: The Puppe sequence induces long exact sequences of pointed homotopy sets

oo [2,9% ] = [Z,9F(f)] = [2,9X] = [Z2,QY] = [Z,F(f)] = [Z2,X] = [Z,Y]

for any pointed space Z. We will later derive exact sequences of higher homotopy groups
as special cases of this. Since pointed fibrations are also free fibrations, the corresponding
sequences of unpointed homotopy sets are also exact wherever exactness makes sense,
i.e. whenever the relevant spaces in the Puppe sequence are known to be path-connected.
If an unpointed map f : X — Y is given, one can apply the Puppe sequence after choosing
yo €Y and zg € f~1(yo) € X arbitrarily.

Remark 2: Naturality means that any diagram of pointed maps

x 1.y

b

x Ly
will induce maps between the corresponding terms of the Puppe sequences of f and f’,
and thus morphisms of exact sequences of homotopy sets. The proof is straightforward.
Ingredient 1: Mapping path spaces.
Redefine the based path space of X by'®

PX :={ye X" |y(1) =z},
Recall from Lecture 6 the mapping path space and homotopy fiber of f,
P(f):==X pxo, Y, F(f):= X yxey, PY,
which come with a natural base point (zo,const,,) € F(f) € P(f) and projection maps
F(f)c P(f) "= X (zy) e, P(f)T5Y: (2,9) = (D).
Since mapping path spaces are all pullbacks of fibrations of the form (evg,evy) : Z! —

Z x Z, these projections are all pointed fibrations, and F(f) is the fiber of 7y : P(f) = Y.
The map 7x : P(f) — X has homotopy inverse h : X — P(f) : x = (z,consty(,)), and

this is why F(f) 5 X L5 ¥ has the homotopy type of a fibration.

18We had previously defined it with v(0) = zo instead of v(1) = zo.
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e Lemma 1 (obvious): The natural embedding

QY 5 F(f) v — (0,7)

is a homeomorphism onto the fiber of the fibration 7¢ : F(f) — X.
Theorem 1 is now already proved for the last four terms in the sequence.

e Lemma 2: If f: X — Y is a pointed fibration with fiber F' := f~!(yo) < X, then the map
h:F — F(f) defined by restriction of h : X — P(f) is also a homotopy equivalence.
Proof: We deduced from the existence of the transport functor in Lecture 6 that h in this
situation is a homotopy equivalence over Y, i.e. an isomorphism in the category hTopy ,,
so it has an inverse in this category that restricts to a map F(f) — F that is a homotopy
inverse of h.

e Ingredient 2: Loop spaces.

The functor Q : Top, — Top, sends each space X to its based loop space QX =
{ve X' | 4(0) = (1) = xo} and each pointed map f : X — Y to the pointed map

Qf QX - QY iy for.

For any v € QX, let —y € QX denote the inverted loop ¢t — v(1 —¢), so that f: X - Y
also determines a map

—Qf QX > QY 1y —(fon),
satisfying
—Q(fog)=(-Qf)oQg=1Qfo(-Qg)
for any composable maps f,g. For iterated loop spaces, we denote

0’X = Q(OX), DX = Q*(QX) etc.,

and can thus view Q" : Top,, — Top,, as a functor for every n € N.

e Lemma 3: 2 descends to a functor hTop, — hTop,, i.e. homotopic maps X — Y induce
homotopic maps QX — QY.
Proof: Easy, though one should think a bit about why the obvious homotopies QX x I —
QY one defines are continuous (cf. Exercise 5.9).

e Lemma 4: For any pointed map f : X — Y, the maps Q2f := Q(Qf) and —Q(—Qf) from
02X to Q%Y are homotopic.

The proof of Lemma, 4 involves some subtleties that merit a continuation of the “revenge of Topolo-
gie I” digression from Lecture 4:

o Let’s say that a space X € Top is friendly'’ if the evaluation map ev: YX x X - Y :
(f,z) — f(x) is continuous for every other space Y € Top. According to Exercise 3.3, we
know:

— For all spaces X,Y, Z, there is a natural injection

(5.2) 72X (2K e f

defined by f(z)(y) := f(z,y).

— The map « is not surjective in general, e.g. one can find counterexamples with ¥ =
Q c R, carrying the subspace topology.

— The map « is bijective whenever Y is friendly.

— All locally compact spaces are friendly.

197¢’s not standard terminology, but I personally think it should be.
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We have already quite often made use of the fact that « is bijective in particular when
Y = I. Note that while ZX*Y and (ZY )X both have natural compact-open topologies, we
have not yet considered whether the map « or its inverse (when it exists) is continuous.
It will be a lot easier to understand loop spaces and iterated loop spaces if we can answer
this question.

Lemma 5: If X, Y and X xY are all friendly, then the map « in (5.2) is a homeomorphism.
(Note that there is no condition on Z.)

Proof sketch: To show that « is continuous, it will suffice if we can show that « lies in the
image of the natural map

C(ZY x X,27) - C(Z277 (7)),

which is just another case of o with different spaces. A natural map : ZX*Y x X — ZV
to consider in this situation is defined by

B(f,2)(y) == f(x,y),

and one easily checks that B = «, so « will be continuous if 5 is. Since the target of S is
another space of maps, we can iterate this trick by observing that S must be continuous if
it is in the image of the natural map

C(Z¥*Y x X xY,2) - C(ZXY x X,7Y),

which is yet another case of a with different spaces. Here we can try ev : ZX*Y x (X xY) —

7, which is indeed continuous since X x Y is friendly, and it satisfies év = /3, thus implying

that 3 is continuous, and therefore so is a. Similar tricks will imply that a~! is also

continuous, due to the assumption that X and Y are both friendly.

Lemma 6: If X and Y are both friendly, then the composition map
ZYXYX—C>ZX:(f7g)»—>fog

is continuous.

Remark: This is not the most general version I am aware of for this result, e.g. it is also a

standard exercise in point-set topology to show that c is continuous whenever Y is locally

compact, without any assumption on X. But I do not want to do that exercise here, and

we will not need the result at that level of generality.

Proof: Since the image of ¢ is a space of maps, we can again use the trick used in Lemma 5

and conclude that c is continuous if it is in the image of the natural map

C(Z¥ xYX xX,2) - C(zY¥ xYX,z%).

Defining x : Z¥ x YX x X — Z by k(f,g,2) := f o g(x) gives & = ¢, and the problem is
thus reduced to showing that x is continuous, which it is, because it is the composition of
the two maps

7Y x VX x X '8V 7Y v &, 7,

and these are both continuous because X and Y are friendly.

End of digression.

Proof of Lemma 4: Since I and I? = I x I are both locally compact (and therefore friendly),
we have a natural homeomorphism (X?)! = X!*, which gives rise to a homeomorphism of
the double loop space,

X = {a: ? > X | a(0I?) = {z}} c C(1%, X) = X©".
Under this identification, the maps Q?X — Q2Y defined by Q2f and —Q(—£f) become

(Q2f)(a) = foa, and —QU=Qf)(a) = foa, where a(s,t):=a(l—s,1—1).
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If we identify I? with a round disk and use rotations, we can find a continuous family of
homeomorphisms of pairs

{op: (I%,01%) — (I?, 6[2)}p such that vo =1d and ¢1(s,t) = (1 —s,1 — ),

el
and then define a homotopy H : QX x I — Q2Y from Q2f to —Q(—Qf) by

H(o, p) = aop,.
Since I? is friendly, one can use Lemma 6 to show that H is continuous.
Lemma 7 (the inductive step): If F 2, X L. ¥ has the homotopy type of a pointed
fibration, then so does QF A aox = ay.
Proof: Take a homotopy-commutative diagram relating F' — X — Y via pointed homotopy
equivalences to a pointed fibration F’ L ELB , plug the whole diagram into the functor
Q :hTop, — hTop,, carefully insert a few minus signs as needed, and then cite Exercise 3.4,
which tells us that QF' < QE 22 QB is also a fibration.
Remark: In the proof of Theorem 1, one needs to apply Lemmas 7 and 4 together, so that
e.g. after passing from

-3 f —Q(— sz)

2 —Qi
02x 2L o2y W ar() w0 0*x S oty

—Q(—Qig) can be replaced by 0%,
Combining the lemmas estabhshed so far, the proof of Theorem 1 is now reduced to showing

that the segment QX — { Qv 4, F(f) has the homotopy type of a pointed fibration.
This follows from the dlagram

\l l/

7Tf ‘—>P7Tf

Q*F(f),

which comes from identifying the fibration F(f) —> X via homotopy equivalence with
another fibration P(ry) = X formed from the mapping path space of 7. The following
details are nontrivial:

(1) Themap h: QY — F(my) defined as a restriction of the natural homotopy equivalence
h: F(f) — P(my) is in itself a homotopy equivalence, due to Lemma 2 and the fact
that 77 is a fibration.

(2) The maps QX — F(7;) defined by ir, and h o (—2f) are homotopic. (This is the
detail that forces the appearance of all the minus signs in the Puppe sequence.) Proof
by calculation: on close examination of all the definitions, one finds

F(ry) = {(z,8,0) € X x PY x PX | (0) = f(z) and a(0) = z},
with explicit formulas for the two maps QX — F(ns) given by

ir; (@) = (w0, consty,, ), ho (=Qf)(a) = (20, f oa(l — ), consty,).
A homotopy H : QX x I — F(ny) between them can be written in the form

Hp(a) = (Oé(p), Bp?ap) )
where for each p € I, we take o, € PX to be a traversal of « in the forward direction
from a(p) to its end point, while 3, € PY is a traversal of f o a backwards from
f(a(p)) to its starting point.
This completes the proof of Theorem 1.
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e Theorem 2: For any pointed fibration p : (E,z9) — (B,yo) with fiber inclusion F :=
p(yo) <> E, the sequence

2 .
PR p R or Hop %o L F L E 2 B,

has the same properties as the Puppe sequence in Theorem 1, where ¢ : QB — F is the
map that was defined (up to pointed homotopy) in Lecture 5 by lifting the homotopy
v:OB x I — B.

e Remarks on the proof of Theorem 2: The point is that since p : E — B is a fibration, its
fiber F' is homotopy equivalent to its homotopy fiber F'(p), allowing F'(p) to be replaced

with F in the Puppe sequence. One just needs to check what the map QB N F(p) turns
into after F'(p) is replaced with F'; see Exercise 5.8.

Coming next week: We do all this again with cofibrations, and then discuss the additional algebraic
structures that we have not yet observed in these sequences.

Suggested reading. The bulk of what we’ve done so far with cofibrations can be found in [tD08,
§5.1 and §5.3], or [May99, Chapter 6]. Cutler’s notes [Cut21, Week 2 and 4 exercises| contain a
more detailed treatment that carefully avoids assuming X is Hausdorff or A c X is closed, at the
cost of replacing NDR-pairs with something a bit more complicated.

My treatment of the Puppe fibration sequence was mostly based on [May99, Chapter 8], with
some input from [tD08, §2.4] for the point-set topological subtleties.

Exercises (for the Ubung on 23.05.2024).

Exercise 5.1. Write down an analogue of the diagram (5.1) for pointed cofibrations, in which Z(j)
becomes the reduced mapping cylinder and X x I is replaced by the quotient (X x I)/({x} x I).
Deduce from this a theorem characterizing pointed cofibrations A < X in terms of the existence
of a retraction of pointed spaces.

Exercise 5.2. A continuous map f : X — Y is called an embedding if it is injective and is a
homeomorphism onto its image f(X) c Y with the subspace topology. Embeddings can also be
characterized via the following universal property: an injective continuous map f: X — Y is an
embedding if and only if for every space Z and every (not necessarily continuous) map g : Z — X,
g is continuous whenever the composition f o g is continuous. Before proceeding, take a moment
to make sure you understand why these two versions of the definition are equivalent.

(a) Show that for any two maps f : Z — X and g : Z — Y, the natural inclusions of X and
Y into the (unreduced or reduced) double mapping cylinder Z(f, g) are embeddings.

(b) Prove the following dual version of the statement in Exercise 4.2(a): For any cofibration
j:A— X and maps f: A — Y and ¢ : X — Y such that the diagram

2N

X ——Y

commutes up to homotopy, ¢ can be replaced with a homotopic map X — Y that makes
the diagram commute on the nose.

(c) Use the universal property of embeddings to deduce from parts (a) and (b) that all cofi-
brations are embeddings.
Hint: What can you conclude from an embedding that is the composition of two other
continuous maps?



(d)

(g)

(a)
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Recall that a continuous map f: X — Y is a closed map if it sends all closed subsets of
X to closed subsets of Y; in particular, if f is a closed map, then its image f(X) c Y is
necessarily a closed set in Y. Show that if f is also an embedding, then the converse also
holds, i.e. the closed embeddings are precisely those embeddings f : X — Y whose images
in Y are closed.

Show that if j : A — X is a free cofibration and X is Hausdorff, then j is a closed
embedding.

Hint: You can now assume without loss of generality that A — X is a subspace with
inclusion j. We showed in lecture that whenever such an inclusion is a free cofibration,
there exists a retraction

X xT -5 (X x{0})u(AxI),

so for the inclusion X = X x{1} < X xI, it follows that x € A if and only ifroi; (x) = i1(x).
Use this to present A as the preimage of the diagonal subset for some map from X to a
Hausdorff space.

Remark: This has the convenient consequence that the cofiber X /A of a cofibration j : A —
X will be Hausdorff in all examples we ever want to consider (cf. [Wen23, Exercise 6.20]).
Under what assumptions on a pointed space X can you also conclude for a pointed cofi-
bration A — X that A is closed?

Addendum: I wrote this exercise with the idea in my head that one would need a stronger
assumption in order to ensure that the reduced cylinder (X x I)/({#} x I) is Hausdorff and
thus has a closed diagonal, but I was convinced in the Ubung that this is already true if
X is Hausdorff, so the answer is the same as in the unpointed case.

The natural statement dual to the result of part (c¢) would be that all fibrations p : E — B
are quotient maps (cf. Exercise 3.3), but this is unfortunately not quite true. Show that if
p: E — B is a fibration and the base B is locally path-connected, then p is an open map,
and is therefore a quotient map if and only if it is surjective. Can you find counterexamples
in which p is not a quotient map, either because it is not surjective or because B is not
locally path-connected?

Hint: Thanks to Exercise 4.2(a), you should have the freedom to replace p : E — B with
the natural fibration P(p) — B built out of its mapping path space.

Exercise 5.3. Prove the claims stated in lecture about constructions of cofibrations via inclusions
into coproducts or cylinders, compositions, coproducts of maps, and pushouts. If you don’t have
time for all of these, focus on pushouts.

Exercise 5.4. For an NDR-pair (X, A) with associated function v : X — I and homotopy
p: X xI— X, the data (u, p) are sometimes called an NDR-presentation of (X, A). Parts (a)
and (b) below give the proof of a lemma that was quoted in lecture; the precise formulas are
adapted from [May99, §6.4].

Prove that if (X, A) and (Y, B) have NDR-presentations (u, p) and (v, o) respectively, then
we obtain an NDR-presentation (w, ¢) of (X x Y, A xY u X x B) by setting

w(z,y) := min {u(x),v(y)}

o,y 1) = <p (x,t.mm{LZg}) o <y,t.min{1, “8‘5}) )

and in particular, (X x Y, A x Y u X x B) is a DR-pair whenever either (X, A) or (Y, B)
is a DR-pair.

and
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Remark: We are following a convention that min{1l,p/q} := 1 whenever ¢ = 0. Nonetheless,
it is not entirely obvious from the formula that ¢ : X xY x I — X x Y is continuous,
especially near points where x or y lies on the boundary of A or B respectively.

(b) Prove that if A ¢ X is a closed subset and r = (p,7) : X x [ —» X x [ is a retraction onto
the subset X x {0} U A x I, then (u, p) is an NDR-presentation of (X, A), where u: X — I
is defined by

u(zx) :=sup [t — 7(z,t)].
tel
What goes wrong here if you do not assume that A c X is closed?

(c) If (like most of us) you learned the basics of homology from [Hat02], then you may have
noticed some similarity between NDR-pairs and Hatcher’s notion of “good pairs”.?® They
are not quite equivalent notions, however; reread both definitions to make sure that you
understand why neither implies the other.?*

(d) Suppose A ¢ X is closed and is a deformation retract of an open neighborhood U c X
of A, and that X admits a metric (compatible with its topology) for which the distance
between A and X\U is positive. Show that (X, A) is then an NDR-pair.

(e) Show that all CW-pairs (X, A) are NDR-pairs.

Hint: Construct v : X — I so that it equals 1 on every cell closure does not touch A,
and also on a neighborhood of the center of every cell that is not contained in A. Start
with A U XY, then extend inductively from A u X" ! to A U X™ for each n € N.

(f) Let R’ denote the vector space || s R, equipped with the product topology; equivalently,

you can think of R’ as the set of all (not necessarily continuous) maps J — R, with the
topology of pointwise convergence. Show that if the set J is uncountable, then {0} = R’
is closed but is not the zero set of any continuous function u : R’ — I, and deduce that
the inclusion {0} — R” is not a cofibration.
Hint: If such a function u : R? — I exists, how can you characterize neighborhoods of the
form u=1([0,1/n)) for n € N? Use this to construct a sequence of functions f, : J — R
that satisfies u(f,) — 0 but converges pointwise to a nonzero function f : J — R. The
latter will be possible specifically because J is uncountable.

Exercise 5.5. Let’s start with something easy:

(a) Show that for every free cofibration j : A — X, any choice of base points that makes j
into a pointed map makes it also into a pointed cofibration.

Going from free to pointed fibrations is more complicated, and requires the following notion: A
pointed space X is called well-pointed if the inclusion of its base point {#} < X is a closed free
cofibration.

(b) Show that if p: E — B is a free fibration, then for any choice of base points that makes p
into a pointed map, it satisfies the pointed HLP with respect to all well-pointed spaces.
Hint: If (X, *) is well pointed, then (X x I, X x {0} u {*} x I) is a DR-pair. (Why?)

The result in part (b) is the reason why, in practice, one rarely needs to worry about the distinction
between free and pointed fibrations. It suffices for most purposes to restrict attention exclusively to
well-pointed spaces, and many books on homotopy theory impose this condition across the board,

20 atcher calls (X, A) a good pair if A c X is closed and is a deformation retract of some open neighborhood
Uc X of A.

21T will not suggest searching for examples that satisfy one of the definitions but not the other—in practice,
almost all of the examples of interest satisfy both. We will see when we study the homotopy-theoretic perspective
on homology that the role of good pairs is played in that setting by inclusions that are cofibrations.
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simply for convenience, even though it is often not really necessary.?’ Pointed spaces that are
not well-pointed are typically quite peculiar, cf. Exercise 5.4(f). One can improve part (b) to the
statement that for any closed free fibration p : E — B with a choice of base points such that p is
a pointed map and B is well-pointed, p : E — B is also a pointed fibration.?® There is also a dual
result, stating that any pointed cofibration j : A — X becomes a free cofibration after forgetting
the base points if both A and X are well-pointed. This result is apparently trickier to prove, but
we will not make any use of it in this course.?*

(c) Use DR-pairs to complete the proof that the transport functor for a free fibration is well
defined. But if you don’t like doing it that way, skip this and proceed to Exercise 5.6.

Exercise 5.6. As mentioned in lecture, the lifting problem

Xx@IxITulx{0}) ———= F

X xI? - G B

can indeed be solved by showing that (X x I?, X x (oI x I uI x {0})) is a DR-pair, but a few of
you ganged up on me after that lecture and convinced me (with some difficulty) that there is an
easier way, based on choosing a homeomorphism of pairs

(I%,01 x I U I x {0}) -2 (12,1 x {0}).

Draw enough pictures to convince yourself that such a map exists.

(a) Use the homeomorphism ® to reduce the lifting problem in the diagram above to an
application of the standard homotopy lifting property. This completes the proof that the
transport functor is well defined for every free fibration.

(b) What about the transport functor for pointed fibrations? Determine what lifting problem
needs to be solved in order for the transport functor in the pointed setting to be well-
defined, and use the homeomorphism ® to solve it.

Hint: The most useful way to view pointed homotopies X x I — Y in this context is as

221 have been noticing a tendency in the homotopy theory literature that strikes me as unhealthy. It seems to be
widely assumed that “most” of the important results in homotopy theory will not reliably work unless one restricts
to some “convenient” category of spaces that have better “formal” properties than Top or Top,. One of the common
restrictions is to consider only the well-pointed spaces within Top,,, the standard intuition (so far as I understand
it) being that this is what is required in order to make every result about fibrations or cofibrations equally valid
in the free and pointed cases. I find that intuition to be a dreadful oversimplification of reality. For example, one
cannot simply prove that the transport functor for a free fibration is well defined, and then immediately claim that
it is therefore also well-defined in the pointed case as long as everything is well-pointed; that summary does not
bear a close resemblence to the correct proof in the pointed case (see Exercise 5.6), in which well-pointedness is not
actually relevant at all. I have noticed several places in textbooks where well-pointedness is assumed without being
necessary, and this even seems to cause some confusion among experts (see e.g. https://math.stackexchange.com/
questions/175590/importance-of-well-pointedness-in-particular-for-the-pointed-mapping-cylinder-c). I
am therefore making a big effort to avoid imposing such assumptions when they are not truly relevant. In the case
of well-pointedness, the price we pay is that we must always keep in mind two parallel definitions of the HLP and
HEP—one for the free case and another for the pointed case—but this strikes me as the natural thing to do.

23For a proof of this statement, see [Cut21, Week 6: Fibrations IV, Prop. 1.8]. The proof uses the characteri-
zation of fibrations in terms of lifting functions (Exercise 3.7), which is the dual variant of the characterization of
cofibrations in terms of retractions. It also uses a weaker assumption than {x} < B being a closed cofibration; it is
sufficient in fact to assume that the base point in B is the zero set of a continuous function B — I.

24The full details take about three pages in [MP12, Lemma 1.3.4], where they appear together with a de facto
apology for having stated the result casually in [May99, §8.3] as if it were a self-evident fact with no need for
justification.
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pointed maps {)*(}—XXII — Y. This also applies to homotopies of pointed homotopies, which

you can view as pointed maps {):}><7XI;2 — Y. Now just check whether what you wrote down
in part (a) descends to the relevant quotients.

Without looking up the definition, what do you think the transport functor of a cofibration
A — X should be, and what extension problem needs to be solved in order to prove that it
is well defined? Solve it in the unpointed case by combining a well-chosen homeomorphism
with the knowledge that X x {0} u A x I is a retract of X x I. Then adapt your solution
to the pointed case by letting things descend to quotients.

Exercise 5.7. Without using any knowledge of fibrations, give a direct proof that for every pointed

map [ :

X — Y and every pointed space Z, the induced sequence of pointed homotopy sets

12, F(f)] &% [2,X] L5 [2,7]

is exact.
Comment: It is also possible—though tedious—to prove the exactness of the rest of the Puppe
sequence without using results about fibrations, and this is what [tD08, §4.7] does.

Exercise 5.8. Assume p: E — B is a pointed fibration with fiber inclusion F = p~!(x) < E.

(a)
(b)

Using the transport functor, complete the proof that the map § : QB — F described in
Lecture 5 is independent of choices up to pointed homotopy.

Theorem 2 in Lecture 8 (the Puppe sequence for a pointed fibration) follows from the
Puppe sequence of Theorem 1 in light of the following variation on the diagram (5.3):

\l /1/

t—>P

Here the nontrivial details are again that the map h : F' — F(p) is a homotopy equivalence
(because p : E — B is a fibration), and that the leftmost triangle in the diagram commutes
up to homotopy, i.e.
hod ~ i,
o > Zp

Prove the latter.

Hint: Try first to convince yourself that hod is actually just another version of the map 6,
namely the one associated to the fibration wp : P(p) — B. The goal is then to establish
that i, : QB — F\(p) is a valid explicit formula for § in the case of this particular fibration.
This will be obvious if you make an intelligent choice of lift of ev : QB x I — B to P(p).
Suppose p : E — B is a free fibration, base points zg € E and yy € B have been chosen
so as to make p a pointed map and to define the loop spaces 2B and QF, but p is not
necessarily a pointed fibration. Is the map § : QB — F still well defined (at least up to free
homotopy), and do consecutive terms in the sequence of Theorem 2 then have the (free)
homotopy type of a free fibration?

Comment: I currently believe the answers to these questions to be yes, but I have not
thought about it very much and could be missing some details; I would be interested if
someone comes up with a different opinion. The part that had me most concerned was the
inductive step, where in the pointed case, we used the fact (from Exercise 3.4) that pointed
fibrations remain pointed fibrations after applying the loop space functor. Can you prove
something similar about free fibrations?
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Exercise 5.9. The fact that Q : Top, — Top, descends to a functor hTop,, — hTop, can be
deduced from the following much more general phenomenon. For any fixed space Z € Top, one can
define a covariant functor

(V2 =C(Z,"): Top— Top: X — X? :=C(Z, X),
as well as a contravariant functor
70 = C(,2): Top = Top: X = 2% := C(X, 2).

The fact that both are functors depends on part (a) below, which is a straightforward exercise in
point-set topology:
(a) Show that for any continuous map f: X — Y, the induced maps

X2 Lv7 () = fepi=fop,

f
7¥ 575, 2 o) =frei=gof
are continuous with respect to the compact-open topology.

Let us now consider whether (-)# and Z©) each descend to functors hTop — hTop, i.e. does a
homotopy between two maps f,g : X — Y induce homotopies f# > ¢g? and Z7 >~ Z97 In each

case, there is an obvious way to write down the homotopies that one wants, but proving that they
are continuous maps takes some effort. It will turn out that they always are, but the amount of
effort required to prove it may depend on what assmption you are willing to impose upon Z.

(b) Show that the functor Z) descends to hTop — hTop.
Hint: You know from part (a) that for any homotopy H : X x I — Y, the map Z! : 7Y —
ZXxI is continuous. Exploit the fact that I is friendly, and also the existence of a natural
continuous map ZX*1 — (ZX)!; note that the latter might not be surjective if you don’t
assume X is friendly, but you will not need it to be surjective.

(c) Give a quick and easy proof that if Z is friendly, then the functor (-)# also descends to
hTop — hTop.

Part (c) covers the cases that typically arise in this course, such as proving that homotopies between
maps f,g: X — Y induce homotopies between the corresponding maps f, g’ : X! — Y on path
spaces, and the obvious restriction of that statement to loop spaces. If you want to know why such
things would still be true even if you didn’t know that I is locally compact, read on.

(d) Prove that for any three spaces X, Y, Z, the map
XZ2xY = (X xY): (py) = ¢, where  ¢¥(2) = (p(2),9)

is continuous.
Hint /caution: Do not attempt to derive this from any more general statement involving the
obvious bijection X% x Y4 =~ (X x Y')?, which is subtler than it looks (see part (f) below).
You should instead try a direct proof in the style of Topology I, using the definitions of
the compact-open and product topologies.

(e) Combine the results of parts (a) and (d) to give a general proof, without any assumption
on the space Z, that the functor (-)? descends to hTop — hTop.

(f) Here is why I told you what not to try in part (d). For any collection of spaces {Xa}acs
and another space Z, there is an obvious bijective map

1) 1

aeJ aeJ
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i.e. maps to a product space are in one-to-one correspondence with tuples of maps to its
factors. Prove that this map is continuous, and that its inverse is also continuous if Z is
friendly. Then consider the case where {X, }aes is a collection of just two spaces X and Y,
and try to give a direct proof that the inverse of the obvious bijection (X xY)? — X% xY?
is continuous, without assuming that Z is friendly or locally compact. Stop trying once
you realize that it isn’t so obvious.
Comment: According to [tD08, §2.4, Problem 8|, the inverse XZ x Y% — (X x Y)% is
indeed continuous whenever Z is Hausdorff.>

(g) Deduce from part (f) that for any collection of pointed spaces {X, }aes, there is a natural
pointed homeomorphism

0 <H Xa> ~ HQXQ.

aeJ acJ

6. WEEK 6

Again only one lecture this week, because Monday was a holiday.

Lecture 9 (23.05.2024): Adjunction and the cofiber sequence.

e Definition: The functor R : & — £ is a right-adjoint of the functor £ :  — &/ (thus
making £ a left-adjoint of R) if there exists a natural isomorphism between the two
functors & x % — Set defined by

(A, B) — Hom,, (L(B),A)  and (A, B) — Homg (B, R(A)).

In other words, there is a bijection Hom ., (L£(B), A) - Homg(B, R(A)) associated to
each A € & and B € % such that for every pair of morphisms ¢ € Hom. (A4, A") and
1 € Homg(B’, B), the diagram*°

Hom (L(B), A) —*— Homg(B,R(A))
@*ﬁ(w)*l lR(%@)*d’*
Hom, (L£(B'), A’) —*— Homg(B',R(4))

commutes. (Note that p,L(¥)* = L(¢)*p, and R(p)s1* = ¥Y*R(p)s, so the order in
which these compositions are written on the vertical maps in the diagram does not matter.
One sometimes sees the diagram written as two separate diagrams in which either ¢ or ¢
is taken to be the identity morphism.)

e Remark: A given functor need not have either a left-adjoint or a right-adjoint, and functors
that do have one or the other have special properties, e.g. one can show that every functor
that is a right- or left-adjoint of another one preserves all limits or colimits respectively (see
e.g. [Mac71, §V.5]). One can deduce from Exercise 1.8 (a version of the Yoneda lemma)
that for any functor that has a left- or right-adjoint, that adjoint is unique up to natural
isomorphism. This fact will not concern us here; we mainly just need to make use of certain
examples.

e Examples of adjoints:

25 am just passing this along as hearsay—I have not attempted to do the exercise in [tD08, §2.4] myself. I also
do not happen to know a counterexample in which the inverse really fails to be continuous. Evidently Z would in
this case have to be neither Hausdorff nor locally compact, which sounds pretty terrifying.

26T his version of the diagram assumes that £ and R are both covariant; there is an analogous version for the
case where both are contravariant.
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(1) For any G € Ab, the functors ®G and Hom(G, ) from Ab to itself are adjoints (left
and right respectively) due to the natural bijection

Hom(A ® G, B) =~ Hom(A, Hom(G, B)).

This adjunction is one way of expressing the universal property of the tensor product
on Ab, or similarly on R-Mod (cf. Exercise 1.9).

(2) The functor Top — Top, : X — X, := X 11 {+} is a left-adjoint of the forgetful
functor Top, — Top, i.e. the one that takes any pointed space and forgets its base
point. This follows from the natural bijection

Fi(X4,Y) := Homrop, (X4, Y) — Homrop(X, V) =: F(X,Y)

that sends each pointed map f : X, — Y to its restriction f|x. (See below for
remarks on the notation F and F,.)

(3) If Y € Top is friendly in the sense defined in the previous lecture, then the natural
injection
Homtop(X x Y, Z) = F(X x Y, Z) = Z°*Y

(6.1) — (2¥)% = F(X, F(Y, 2)) = Homrep(X, F(Y, Z))

becomes a bijection and thus makes the functors Top — Top defined by () x ¥ and
F(Y,-) adjoint to each other. The desire for this adjunction to hold without imposing
strong restrictions such as local compactness on Y is often cited as the main motivation
for working in the category of compactly generated spaces instead of in Top, which is
a standard convention in modern homotopy theory.?”
e Notation: Since our previous notation C(X,Y) = Y for the space of continuous maps
X — Y can be confused too easily with the notation for cones or chain complexes, I am
replacing it henceforth with

F(X,Y) := {continuous maps X — Y} = Y~ = Hom,p(X,Y)

for X,Y € Top, where the F stands for “function,” and when F(X,Y) is regarded as a
topological space, it should still be assumed to carry the compact-open topology unless
stated otherwise. When working in the context Top,, the same notation can also be used
to mean the space of pointed maps

F(X,Y) := {pointed maps X — Y} = Homrep, (X,Y)

for X,Y € Top,. For situations in which we need to discuss the pointed and unpointed
categories in the same context, we will distinguish them by writing the subscript + to
mean “pointed” and the subscript o (this is a small circle, not a zero) to mean “unpointed,”
thus

Fo(X,Y) := Homrop(X,Y),  [X,Y]o := Homyrop(X,Y),
F+(X,Y) := Homrop, (X,Y),  [X,Y]; := Hompyrop, (X,Y),

27VVorking; in the compactly generated category does two things in order to make (6.1) hold: first, it excludes
a pathological subclass of spaces that are not locally compact, and second, it slightly strengthens the topologies
assigned to X x Y and F(X,Y), without which they would not necessarily be compactly generated even when X
and Y are. The more naive idea of working only with locally compact spaces would be inadequate because it would
exclude F(X,Y) in most interesting cases, so e.g. we would no longer be allowed to talk about loop spaces. Having
(6.1) without restrictions on Y would be comforting, but I have not observed it to be truly necessary so far in this
course, and am thus stubbornly refusing to abandon Top until it is.
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and similar notation will be used below to distinguish between unreduced and reduced sus-
pensions/cones/cylinders. Needless to say, you will find many other notational conventions
different from this in various books.

e The smash product of two pointed spaces (X, xg) and (Y, o) is the quotient

XAY;=(X><Y)/({:c0}quXX{yo}),

regarded as a pointed space with the collapsed subset as the base point. The definition

is sometimes abbreviated by identifying the subset in the denominator with a wedge sum:

X AY = £2¥. The smash product gives rise to the pointed version of example (3) above:

(4) For X,Y,Z € Top,, letting maps X x Y — Z descend to the quotient X A Y turns
(6.1) into a natural injection

(6.2)  Hompep, (X AY,Z) = Fu(X AY,Z) = Fiu(X,F+(Y, Z)) = Homrop, (X, F4 (Y, 2)).

If Y is friendly, then this is a bijection, making the functors Top, — Top,, defined by
() AY and Fi(Y,-) adjoint to each other.

I will pause the lecture summary here and add some discussion of a subtle detail that I got slightly
wrong in the lecture. We showed in Lecture 8 that whenever not only Y but also X and X x Y
are friendly, the natural bijection F(X x Y, Z) =~ F(X, F(Y, Z)) is a homeomorphism. I claimed
in this lecture—and [tD08, Theorem 2.4.11] makes a similar claim—that trivial modifications of
the same proof make the natural bijection

Fo(X AY,Z) = Fu(X, Fi(Y, 2)

into a homeomorphism whenever X, Y and X A Y are all friendly. On closer inspection, I am
no longer sure if this is true, and some googling reveals that I am not the only one with this
uncertainty.?® I can still establish the homeomorphism under stronger hypotheses that are sufficient
for our purposes, and I will explain this below.

The trouble arises from the fact (mentioned slightly later in the lecture) that the smash product—
in contrast to the ordinary product x of unpointed spaces—is not associative without further
assumptions about the spaces involved. In fact, I also claimed in this lecture that associativity
holds under precisely the same hypotheses, namely that X, ¥ and X A Y are all friendly, but
unfortunately, my proof of that claim relied on 74 (X A Y, Z) = F (X, F1(Y, Z)) being a homeo-
morphism, so using it here would be circular reasoning. The version of that claim that appears in
the summary below is weaker than what I stated in lecture, but still covers the cases of interest.

Here is a statement that I am currently willing to stand behind, though I will not claim that it
is the most general valid statement of its kind. In the course of the proof, I will clarify why I am
uncertain about the more general version claimed in lecture.

Proposition 6.1. For any pointed spaces X,Y,Z € Top, such that X and Y are compact and
Hausdorff, the natural injection

Fo(X AY,Z) =% Fo(X, Fi(Y. 2))
s a pointed homeomorphism.

Proof, part 1. We prove first that « is continuous, which does follow by an adaptation of the same
argument as in the unpointed case, though one particular step requires additional care. The actual
assumptions needed for this part are that ¥ and X A Y are friendly, which certainly follows if X

285¢e https://math.stackexchange.com/questions/3934265/adjunction-of-pointed-maps-is-a-homeomorphism
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and Y are both compact and Hausdorff, because both spaces and their products are then locally
compact.’? In the following, we denote elements of a smash product X A Y by

[z,y]e X A Y

for representatives (z,y) € X x Y.

The first crucial observation is easily verified: if Y and Z are pointed spaces for which the
unpointed evaluation map ev : Fo(Y, Z) x Y — Z is continuous, then its restriction to F. (Y, Z) x
Y — Z is of course also continuous, and this restriction then descends to a continuous map

Fo(Y,Z) Y 5 7.

This works in particular whenever Y is friendly; so far so good.

Analogously to the unpointed case, the proof that o : F (X A Y,2) - Fo (X, F(Y,2)) is
continuous can be reduced to the fact—following from the observation that X A Y is friendly—
that

FiXAY,2)A(XAY) S Z

is continuous. In order to make use of the latter, one needs to apply twice in succession the fact
that continuous maps X AY — Z always have continuous (and in this case pointed) adjoints
X — F.(Y,Z), but here a tricky issue arises that is not relevant in the unpointed case: the smash
product is not generally associative, so we do not know whether 7 (X AY, Z) A (X AY) can freely
be replaced by (F+(X AY,Z) A X) A'Y without changing its topology. What saves the situation
is Exercise 6.1(d) below, which implies in light of the friendliness of Y that the canonical bijection
from the latter product to the former is at least continuous. Composing it with ev above thus gives
a continuous map

(Fs(X AY,Z) A X)AY = Z:[[f,2].y] = f([z,y]).
The adjoint of this map,
Fi(XAY,2)A X - Fi (Y, 2)

is therefore also continuous, and it assigns to each [f, ] the function y — f([z,y]) in F(Y, Z).
Performing the adjoint trick one more time then gives a continuous map

Fi(X AY,Z) - Fo (X, Fi (Y, 2)),
and that one is precisely a. O

Before proving also that a~! is continuous, let us clarify why it does not follow by a minor
adaptation of the argument for the unpointed case. The idea would have been to first prove the
continuity of the map

Fr(X, Fo(Y.Z)) AM(X AY) = Z 2 [f,[2.9]] = f2)(y),
whose adjoint is o~ !. Since X and Y are friendly, it certainly is true that the map
(Fr (X, Fe (Y, 2)) A X) AY = Z 2 [[f2],y] = f(2)()

is continuous, as this can be written as a composition involving two continuous evaluation maps.
We would thus be done if we knew that the canonical bijection

FiX, Fe (Y 2) AM(X AY) = (Fr(X, Fo (Y, 2)) A X) AY
29Recall that we are using the strict definition of local compactness, in which every point is required to have

a compact neighborhood that fits inside any other given neighborhood, thus local compactness does not follow
automatically from compactness, but it is a straightforward exercise to show that it does if the space is Hausdorff.
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is continuous, but unfortunately, Exercise 6.1 does not give us that unless F. (X, F,(Y,Z2)) is
friendly, which seems highly unlikely without imposing drastically restrictive additional conditions
on all three spaces.

But if X and Y are compact and Hausdorff, then we can take a different approach and deduce
the continuity of a~! from the knowledge that the corresponding map (ZY)X — ZX*Y in the
unpointed case is (since X and Y are also friendly) continuous. This requires a few technical
lemmas whose proofs are routine exercises in point-set, topology.

Lemma 6.2. For any spaces X,Y,Z and an embedding j : Y — Z, the induced map js :
F(X,)Y)—> F(X,Z): f jo fis also an embedding. O

In order to state a result dual to Lemma 6.2, recall that a continuous map f: X — Y is called
proper if it is a closed map and f~!(y) c X is compact for every point y € Y. It is common in
differential geometry to use a weaker variant of this condition that follows from it and is equivalent
for reasonable spaces (e.g. Hausdorff and second countable), namely the conclusion of the following
statement:

Lemma 6.3. For any proper map f : X — Y and any compact subset K c Y, the set f~1(K) c X
s also compact. O

The dual version of Lemma 6.2 is then:

Lemma 6.4. For any spaces X,Y,Q and a surjective proper map q : X — @Q, the induced map
q*: F(Q,Y) - F(X,Q) : f — foq is an embedding.

Quick proof. Surjectivity of ¢ implies that ¢* is injective, and one then needs to show that ¢* is
an open map to its image (with the subspace topology), for which it suffices to consider any set
O c F(Q,Y) of the form {f Q-Y | f(K) c V} for some K c ) compact and V c Y open,
and find a similar open set O’ ¢ F(X, Q) with the property that f € O implies f oq € O'. This is
easy since ¢ 1(K) c X is compact. O

Finally, there happens to be a relevant class of quotient projections that are always proper:

Lemma 6.5. For any space X and closed subset A c X, the quotient projection X — X /A is a
closed map, and is thus proper if A is also compact. O
Proof of Proposition 6.1, part 2. Let us distinguish o~ ! : F, (X, F (Y, Z)) —» F.(X AY, Z) from
its unpointed counterpart

Fo(X, FolY, 2)) = (27)% &5 25 Z 7 (X x Y, Z),
which we already know is continuous since X, Y and X x Y are friendly. By Lemma 6.2, the
obvious inclusion of F (X, F4(Y,Z)) into Fo(X, Fo(Y, Z)) is an embedding, so &~ ! restricts to
this subset as a continuous map
./—'.+(X,./_'.+(K Z)) - fO(X X KZ)a

and this restricted map takes its values in the image of the injective map
&
FolX AY,Z) D F (X AY,Z) 25 Fo(X <Y, Z)

induced by the quotient map X x Y -4 X A Y. Since X and Y are compact and Hausdorff,
{#} xY U X x {*} € X xY is a compact and closed subset, implying via Lemma 6.5 that ¢ is a
proper map, and by Lemma 6.4, ¢* : F. (X AY, Z) - Fo(X x Y, Z) is therefore a homeomorphism
onto its image. Composing the map Fy (X, F.(Y,Z)) — Fo(X x Y, Z) above with the continuous
inverse of that homeomorphism now gives ot : F (X, F.(Y,Z)) —» F+(X A Y,Z), which is
therefore continuous. d
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With that painful digression out of the way, we now return to the lecture summary.

e Lemma: If (X, A),(Y,B) € Top™® are pairs of spaces such that X and Y /B are friendly,
then the canonical continuous bijection

X xY

AquXxBH(X/A)A(Y/B)

is a homeomorphism.
Proof: Thanks to Exercise 3.3, friendliness makes the first two maps in the sequence

X xY = X xY/B — (X/A) x (Y/B) - (X/A) A (Y/B)

quotient maps, and the third one is a quotient map by definition, thus so is the composition.
e Example: The lemma tells us that smash products of spheres are spheres, since

D™ D" D™ x D" D" xD* D™t .
S™AST = A ~ = =~ ~ gmTn,
obm - oDhn T oD™ x Dru D™ x gD»  9(D™ x Dn) T gDhmtn

e Proposition (further properties of the smash product):
(1) The canonical bijection X A Y =Y A X is a homeomorphism. (Easy.)
(2) There is a natural homeomorphism X A (Y v Z) = (X AY) v (X A Z) induced by
the canonical bijection X x (Y11 Z) = (X xY) 11 (X x Z). (See Exercise 6.1.)
(3) The canonical bijection X A (Y A Z) - (X AY) A Z is a homeomorphism whenever
either of the following is true: (a) X and Z are friendly (see Exercise 6.1); (b) ¥ and
Z are compact and Hausdorff.

e Achtung: The smash product really is not associative in general on unfriendly spaces,
e.g. the spaces Q A (Q A N) and (Q A Q) A N are not homeomorphic. If you really want
to read a proof of this, see e.g. https://math.uchicago.edu/ may/REU2022/REUPapers/
Horowitz.pdf.

e Proof of associativity when Y and Z are compact and Hausdorff:

Knowing that adjunction gives a homeomorphism under these assumptions (Proposition 6.1)
makes it possible to deduce associativity from purely formal considerations. For an arbi-
trary pointed space (), we obtain a chain of natural bijections

Homop,, (X AY A Z),Q) = Homrop, (X, Fi(Y A Z, Q)) = Homep,, (X, Fi (Y, .7-'+(Z,Q)))
= Homrop, (X AY, ]-'+(Z,Q)) = Homop, ((X AY) A Z, Q),

where we should note that the second bijection depends on the correspondence F, (Y A
Z,Q) = F (Y, F.(Z,Q)) being not just a bijection but also a pointed homeomorphism,
and each depends in any case on a friendliness condition that follows from the assumption
that Y and Z are compact and Hausdorff. Exercise 1.8 now tells us that the natural
isomorphism in Set determined by these bijections corresponds to an isomorphism between
XAY AZ)and (X AY) A Z in Top,, and one only needs to unpack the definitions to
check that this isomorphism is the obvious map.

e Definition: The reduced suspension ¥X and reduced cone CX of a pointed space X
were mentioned in Lecture 3 as special cases of double mapping cylinders in the pointed
category, but we can now give more succinct equivalent definitions via the smash product,


https://math.uchicago.edu/~may/REU2022/REUPapers/Horowitz.pdf
https://math.uchicago.edu/~may/REU2022/REUPapers/Horowitz.pdf
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along with the reduced cylinder ZX:

X x1I
CX:=XAl=
AT X X0 o x T
X x1I
ZX =X AT, = ==
M=o
X x1

— 1~
YX:=XAS = X xalo <l
We are taking the base point of I to be 0 when viewing it as a pointed space, and defining
the base point of S by identifying it with I/0I. In writing ZX as a quotient, we have
omitted the part involving the base point of I, = I'11 {#}, and can do so without losing
any information since it gets collapsed to the same point as {} x I.
Notation: The cone, cylinder and suspension all have familiar unreduced variants, which
are the corresponding double mapping cylinders in the unpointed category (so e.g. the
unreduced cylinder is just X x I). In keeping with the previously described convention, we
will use the notation CX, ZX and XX to denote either the unreduced or reduced version
of these spaces in situations where we are working purely in the context of Top or Top,
respectively. When it is necessary to specify which one is meant, we will write

3. X :=reduced suspension, Yo X := unreduced suspension,

and similarly for cones and cylinders.?® It will be useful to notice that the reduced versions
are all naturally quotients of the unreduced versions, e.g. if X has base point * € X, then
X oo x 2 G

So{*} Co{*}

The fact that a one-point space has a contractible (unreduced) suspension/cone/cylinder
will play a useful role below.

Example: The formula S™ AS™ =~ S™*" produces a nice formula for the reduced suspension
of spheres that also happens to hold for the unreduced suspension, though this is more of
a coincidence than a general phenomenon:

»S" x~ gt thus S~ ynsY,

Since S' is compact and Hausdorff, one can apply associativity of the smash product and
write the n-fold reduced suspension of any pointed space X as

YX =X A(ST AL AS) =X AS™

Since S', I and I are all friendly spaces, we now observe three important examples of
adjunction relations that are special cases of the fourth one above:
(5) Fo(C4X)Y) = F (X, F+(I,Y)) = F4 (X, PY), where PY is the based path space
of Y with paths starting at the base point;
6) Fi(Z,. X,Y) = Fy (X, Fi(I,,Y)) = Fu (X, Fo(1,Y)) = Fy (X, Y1), where we view
the free path space Y/ as a pointed space with base point the constant path at * € Y
(7) Fr(ZLX,Y) = Fo (X, Fo(SLY)) = Fo (X, Q7).
Remark: These adjunction relations also descend to hTop,, producing useful natural bi-
jections such as

2+X =

[+ X, V], = [X,QY],.

301 earlier lectures I also occasionally wrote SX for the unreduced suspension, as I have usually done in Topology

1 and 2 in the past. I am switching to X now because that notation is more prevalent for the reduced suspension
in homotopy theory books, and I don’t want to use different notation for the unreduced and reduced versions when
it isn’t necessary.
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e Lemma (valid in free and pointed versions): If A < X is a closed cofibration, then so are
YA YX,CA—> CX and ZA — ZX.
Proof for suspensions (the most important case): We give different arguments for the
pointed and free cases. The pointed case is essentially dual to Exercise 3.4(c), and follows
as an easy consequence of adjunction: YA — ¥ X satisfies the HEP with respect to an
arbitrary pointed space Y due to the fact that A — X satisfies it with respect to QY. This
simple argument is not available in the free case due to the lack of a right-adjoint of X,
but since we are assuming A c X is closed, we can argue in terms of NDR-pairs: if (X, A)
is one, then since (I, dI) clearly also is, sois (X x I, X x 0I v A x I). Now one checks that
the functions defining an NDR-presentation of the latter descend to the quotient in which
X x {0} and X x {1} are separately collapsed to points, which turns X x 07 u A x I into
YA and thus determines an NDR-presentation of (XX, 3 A).

e Recall an important fact about fibrations p : E — B: for any space B’, there is a functor
II(B', B) — Topp that sends each map f : B’ — B to the induced fibration f*EF — B’

and sends each homotopy class of homotopies fy 5 f1 of maps B’ — B to a homotopy
equivalence over B’:

fiE —2 B
BI

This was constructed in Lecture 6 using the transport functor. A useful detail that follows
from the construction (and was discussed in the Ubung on 23.05.2024) is that if we write
the pullback squares for both induced fibrations as

[FE L E

b poiem

B ,p

then fi o @ is homotopic to f{.
e Corollary: For any pullback square

et E

b b

B —1.,B
in which p : E — B is a fibration, if f : B’ — B is a homotopy equivalence, then so is
f i f*E—> E.
Proof: Use a homotopy inverse g : B — B’ of f and a homotopy Id L f o g to produce
the diagram

*E=F -2, g¢pp 2 prp L F

\]gu g l# f pr

B’ B

in which f'og’ o ®p > Id. Since @ is an isomorphism in hTop, it follows that f’ has a

right-inverse and ¢’ has a left-inverse in hTop. Reversing the roles and using a homotopy
of g o f to the identity then shows that both are isomorphisms. (I have written all this
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in the unpointed category for simplicity of notation, but it works equally well for pointed
spaces.)

Corollary of the corollary: If p : E — B is a fibration and B is contractible, then the
inclusion of its fiber F' — FE is a homotopy equivalence.
Proof: Apply the previous corollary to the pullback of p : E — B via the inclusion
[s} > B.

Dualizing the above discussion (see Exercise 6.8) gives a similarly important theorem about
cofibrations: if A — X is a cofibration and A is contractible, then the quotient projection
X — X/A is a homotopy equivalence.

Corollary: For any well-pointed space X, the natural quotient projections

Y XY, X = %, C. X ->C X = Cc,;o{):}, Z. X > 7, X = ZO{):}

are all homotopy equivalences.
Proof: Well-pointed means that {#} — X is a closed free cofibration, thus so is 3,{#} —
Y. X, with a contractible cobase (and similarly for the cone and cylinder).
Working in either Top or Top,, the Puppe cofiber sequence of a map f: X — Y is the
sequence of maps

X v 25 cone(f) 255X = vy 2 S cone(f) =¥ w2x 2L w2y

ey

where i; := iy denotes the natural inclusion of Y into the mapping cone of f : X - Y, ¢¢
is the quotient projection that arises from the obvious identification of cone(f)/Y with £X,
and the minus signs in front of maps such as ¥ f : ¥X — XY mean they are composed
with an inversion map such as

XY = XY (y, )] = [(y, —1)].

Theorem: The cofiber sequence is natural, and any three consecutive terms in the sequence
have the homotopy type of a cofibration. In particular, choosing any space @) (which should
be assumed path-connected if we are working without base points) and plugging the cofiber
sequence into the contravariant functor [-, Q] gives an exact sequence of pointed sets

— [¥2X, Q] — [Zcone(f), Q] — [2Y, Q] — [EX, Q] — [cone(f), Q] — [V, Q] - [X, Q].

Just a few remarks on the proof: The inductive step follows from the lemma that suspen-
sions of cofibrations are cofibrations. It should be clear already that the first three terms
have the homotopy type of a cofibration: one only needs to replace Y with the mapping
cylinder of f, and the cofiber of the cofibration X — Z(f) is then the homotopy cofiber
cone(f) that appears as the third term. Terms two through four are also not a problem, be-
cause 7y already is a cofibration. The main step is thus to understand terms three through
five; see Exercise 6.9 below. In the background of that step is an important theorem about
cofibrations that is dual to a theorem we derived from the transport functor for fibrations:

given a diagram

X%Y

in which ¢ and j are cofibrations and ¢ is a homotopy equivalence, ¢ is also a homotopy
equivalence under A, meaning it has a homotopy inverse with homotopies to the identity
that also fit into similar diagrams. It follows in particular that ¢ descends to a homotopy
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equivalence X/A — Y /A; this is why the notion of the homotopy cofiber of a map is
well-defined up to homotopy equivalence.

Suggested reading. Honestly I’'m not sure what to suggest: I have found myself deeply unsat-
isfied with most textbook accounts I've read of the material we covered this week, which is why I
ended up writing more detail than usual in my lecture summary. For a similar but slightly flawed
account of the topological subtleties behind the smash product, you can look at [tD08, §2.4]. The
treatment of the cofiber sequence in [May99, §8.4] is decent, though concise (as befits the title of
the book), and I see one or two details on which May’s approach does not seem to adapt in a
straightforward way for the unpointed case (which is, to be fair, less important).

Exercises (for the Ubung on 30.05.2024).

Exercise 6.1. The first three parts of this exercise are aimed at proving the distributive law for
the smash product with respect to finite wedge sums. After that, we address the tricky question
of associativity.

(a) Show that for any (finite or infinite) collection of pointed quotient maps {gn : Xo — Y }aer,

the map
\/qa : \/Xa—>Y

aeJ aeJ
determined by the universal property of the coproduct is also a quotient map.
Hint: You can prove this without knowing the definitions of “wedge sum” and “quotient
map,” so long as you know what universal properties characterize them.
(b) Show that for any three pointed spaces X,Y, Z and the quotient projection ¢ : Y11 Z —
Y v Z, the map
Idxg: X x(Yuz)->Xx (Y v Z2)
is also a quotient map. Do you think the statement will remain true if you replace Y 11 Z
with an infinite disjoint union?
Comment: I'd love to know how to give a purely “formal” proof of this, but I don’t—the
proof that I know requires getting your hands dirty with open sets.
(c) Deduce that for any three pointed spaces, the canonical bijection

XAY Vv =(XAY)v((XAZ)

is a homeomorphism.
Hint: Identify both with quotients of X x (Y 11 Z), which is naturally homeomorphic to
(X xY)u(X x 2).

(d) Show that the canonical bijection

(XAYVANZ->XA(Y AZ)

is continuous whenever 7 is friendly, and its inverse is continuous whenever X is friendly; in
particular, it is a homeomorphism if (but not only if) both X and Z are locally compact.
Hint: There are canonical continuous bijections to both of these spaces from a certain
quotient of X xY x Z.

(e) Show that for any two pointed spaces X,Y, there is a canonical continuous bijection
(X AY)—> X AXY, where ¥ denotes the reduced suspension. Show moreover that this
bijection is a homeomorphism whenever either X or Y is compact and Hausdorff.

Exercise 6.2. Recall that a one-point space {#} is both an initial object and a terminal object in
Top,, (cf. Exercise 1.5).

(a) Compute X A {«} for an arbitrary X € Top, without using the definition of the smash
product; use only its adjunction property.



68 CHRIS WENDL

(b) Is there a pointed space E € Top, with the property that X A E and E A X are naturally
homeomorphic to X for every X € Top,?

Exercise 6.3. The join X # Y of two spaces was defined in Exercise 2.7 as a special case of a
double mapping cylinder, and like all mapping cylinders, it has both an unreduced and a reduced
variant.
(a) To what familiar construction is the unreduced join X # S° for X € Top homeomorphic?
(b) Same question about the reduced join X * S for X € Top,.

Exercise 6.4. Recall from Exercise 5.5 that a pointed space is called well pointed if its base point
is a closed subset whose inclusion is a free cofibration.

(a) Show that for any closed free cofibration A — X, the quotient X /A with its obvious base
point is a well-pointed space.

(b) Is the reduced suspension of a well-pointed space always also a well-pointed space?

(c) Is Xy := X 11 {«} € Top, a well-pointed space for every X € Top?

Exercise 6.5. The forgetful functor Top — Set sends each topological space X to its underlying
set, forgetting the topology. Show that this functor has both a left-adjoint and a right-adjoint
Set — Top. What are they?

Exercise 6.6. Suppose R : & — A is a covariant functor with left-adjoint £ : & — &7, and let
Hom , (£(X),Y) -2 Homg(X,R(Y)) : f — f
denote the resulting natural bijection of Hom-sets for each X € 8 and Y € «&.
(a) Show that there are natural morphisms

Y -2 RL(Y), and  LR(X) -5 X
for X € o/ and Y € £ such that the diagrams
Homy(Z,Y) — Homy (L(Z), L(Y)) Hom (X, Q) —— Homg(R(X), R(Q))
a and .
o o b
Homg(Z, RL(Y)) Hom gy (LR(X), Q)

commute for every X,Q € o and Y, Z € A. Here, the word “natural” means that ® and
¥ should define natural transformations relating the identity functors on % and ¢ to the
functors RL : B — B and LR : of — o respectively.
Hint: It would be possible to deduce the existence of ® and ¥ from abstract nonsense in
the spirit of Exercise 1.8, but you might find it easier to just guess what ® and ¥ are and
then check if you are right. What morphisms can you imagine they might be adjoint to?
You will need to use the naturality of .

(b) Applying the result of part (a) to the specific functors £ := ¥ and R := 2 from Top, to
itself gives rise to pointed maps

X 2 0nx and YOxX L X

that are canonically associated to every pointed space X. Write down explicit formulas for
these maps. R

(c) Is it true in general that f € Homy(£(X),Y) is an isomorphism if and only if f €
Homg(X,R(Y)) is an isomorphism?

Exercise 6.7. In this exercise, ¥ : Top,, — Top, denotes the reduced suspension functor, and
cone(f) is the reduced mapping cone of a pointed map f.
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(a) Show that X preserves pushouts, i.e. for any two diagrams of the form

7z 1. x w7z 2y vx
lg . lw and lEg o lch,
y Y p sy 2, vp

if the diagram on the left is a pushout square, then so is the diagram on the right.
Hint: The only thing you actually need to know about X here is that it is a left-adjoint;
you don’t even really need to know what its right-adjoint is. This is a special case of the
general phenomenon that left-adjoint functors preserve colimits, and similarly, right-adjoint
functors preserve limits, so e.g. §) preserves pullbacks. (We saw already in Exercise 5.9
that ) preserves products.)

(b) Show that for any pointed map f : X — Y, there is a natural pointed homeomorphism
Y cone(f) = cone(Xf).

Exercise 6.8. Fill in the details of the proof of the theorem (used in Lecture 9) that for any
cofibration A — X such that A is contractible, the quotient projection X — X /A is a homotopy
equivalence.

Exercise 6.9. The proof of exactness for the Puppe cofiber sequence of a map f: X — Y hinges
on the claim that the rightmost triangle in the following diagram commutes up to homotopy:

Yy Y cone(f) kl

\T T /

Z(iy) 4> cone(if)

This diagram makes sense in two parallel versions, with the mapping cones and cylinders un-
derstood as the unreduced variants if we are working in Top, and the reduced varisnts if we are
working in Top,. The maps labelled i are the obvious inclusions into mapping cones or cylinders,
maps labelled ¢ are the quotient projections that collapse those included subspaces to a point,
h: Z(if) — cone(f) is the obvious homotopy inverse of the inclusion cone(f) — Z(is), and —=Xf
is the composition of Xf : ¥X — XY with the inversion map XY — XY : [(y,t)] — [(y, —1)].
Prove the claim about the rightmost triangle.

Hint: If you can draw a useful picture of the space cone(iy), it may become almost obvious how
the desired homotopy of maps cone(iy) — XY should be defined, and why the minus sign appears
in the diagram.

7. WEEK 7
Lecture 10 (27.05.2024): Group and cogroup objects.

e For a pointed map f: X — Y and any other pointed space @), we now have two long exact
sequences of pointed homotopy sets, the fiber and cofiber sequence respectively:

— [Q, Y] =" [Q,QF ()] >

Q’Lf (erf
o 22x,Q) P [ eone(), @) 27 5,01 X 12X, Q1 L [eone(f), Q1 1> [v, Q] 5

Note: We have gotten rid of the minus signs, because this does not affect the exactness of
the sequences.

mam”mman”“mﬂm 5 1@, x1L5 [0,7]
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Theorem: For all pointed spaces Z,Q and n > 1, the sets [Q,Q"Z] and [X"Z, Q)] have
natural group structures, which are abelian for n > 2, such that their base points are
identity elements and all maps between such terms appearing in the fiber and cofiber
sequences are group homomorphisms.

Remark: An exact sequence in Grp carries a lot more information than an exact sequence

in Set,. You can’t conclude e.g. from the exactness of {*} - A J, B that f is injective if
the maps are only pointed set maps, but you can if they are group homomorphisms!
Example 1: Taking Q = S° in the fiber sequence produces the homotopy groups

m(2) = [S°,Q"Z] = [¥"S°, Z] = [S™, Z],

where we’ve used adjunction to exchange Q2" for X" and recalled the observation that
¥n5% ~ Sn. The theorem gives m,(Z) a group structure for every n > 1 (though mo(Z)
is only a pointed set), and makes it abelian for n > 2. We will discuss applications of the
fiber sequence to the higher homotopy groups in the next lecture.

Example 2: We will later see that for every n > 0 and abelian group G, there exists a
CW-complex K(G,n) such that

QK(G,n) = K(G,n—-1) and [Z,K(G,n)] = H"(Z; Q)

for all CW-complexes Z. If one took this as a definition of cohomology, one could derive
its abelian group structure from the theorem above since

[Z,K(G,n)] = [Z,VPK(G,n+2)]

Notice, by the way, that if you insert @ := K(G,n) into the cofiber sequence, you obtain
terms such as

[Z*Z, K(G,n)] = [Z2, %K (G,n)] = [Z, K(G,n— k)] = H"*(Z;G),

which gives a hint that the cofiber sequence reproduces the long exact sequence of a pair
in cohomology. (One can also derive homology long exact sequences from the cofiber
sequence, but it requires more cleverness.)
Idea for a “group like” structure on 2X: Use concatenation of loops to define a multipli-
cation map

QX x OX 55 QX,

along with the inversion map
QX—i>QX:ar—>—oz:=a(l—-),

and interpret the base point of QX as an identity element, i.e. the image of the unique
pointed map

{#} =5 0X.
Proposition 1 (vague version): The maps m, ¢ and e described above satisfy the axioms of
a group structure “up to homotopy”.
Definition: Assume .7 is a category in which all finite products exist (including the “empty”
product 1 := Hg X, which is a terminal object; cf. Exercise 1.5). A group object in <7 is a
tuple (X, m, e, 1) consisting of an object X € &7 equipped with morphisms m : X x X — X,
e:1— X and i : X — X that satisfy the following axioms:

(1) Identity: mo (e x Idy)omy" =Idx and mo (Idy xe) omy' = Idy, where mx denotes
the canonical projection from 1 x X or X x 1 to X (which is an isomorphism since 1
is terminal).

(2) Associativity: mo (m x Idx) = mo (Idx xm)
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(3) Inverse: mo (Idx,i) = mo (i,Idx) = eoe, where € : X — 1 denotes the unique
morphism to the terminal object.

We call X abelian if it additionally satisfies moo = m, where for any two objects Y, Z € &7,
we denote 0 := (7z,my) : Y x Z — Z x Y in terms of the projection morphisms 7y, 7z
from the product Y x Z to Y and Z respectively.

There is a category Grp(</) whose objects are group objects in o7, such that morphisms
from (X, mx,ex,ix) to (Y,my,ey,iy) are morphisms f : X — Y that commute with the
structure morphisms, i.e.

fomx =my o(f x f), foex =ey, foix =iy of.

Examples:

(1) A group object (G, m,e,1) in Set is just a group, with gh := m(g,h), g~" :=i(g), and
e(*) defining the identity element. (Note that a terminal object in Set is a set {*} of
one point.) Thus Grp(Set) = Grp.

(2) Similarly, Grp(Top) is the category of topological groups, and

(3) Grp(Diff) is the category of smooth Lie groups.

Brief nonessential digression: It can also be useful to define other algebraic structures
within the context of categories other than Set: for example, an H-space (named after
Heinz Hopf) is an object of hTop, equipped with two morphisms m and e satisfying the
identity axiom listed above, but without assuming associativity or the existence of inverses.
The argument behind the fact that [X"Z, Q] and [Z, Q" Z] are abelian for n > 2 will also
imply restrictions on the topologies of H-spaces, notably that their fundamental groups
must be abelian. Interesting factoid: the classic algebraic theorem that there are only four
real finite-dimensional division algebras (R, C, the quaternions and the octonions) was
deduced from a topological result, proving via K-theory that S™ can only be an H-space if
ne{0,1,3,7}.

Proposition 1 (precise version): For every X € Top,, the loop space X with the maps
m, e, i described above is a group object in hTop,, and this defines a lift of the functor
Q :hTop, — hTop,,

-1

Grp(hTop,,)

AN
hTop*L>hTop>,<

where the downward arrow is the “forgetful” functor that forgets the group object structure.
In particular: The continuous pointed map Qf : QX — QY induced by any pointed map
f: X — Y is automatically also a morphism of group objects in hTop,. (This is nearly
immediate from the definitions of the group structure morphisms.)
Proposition 2: For any covariant functor F : &/ — 2 that preserves finite products, each
group object (X, m, e, i) in o/ determines a group object (F(X),F(m),F(e), F(i)) in £
and thus defines a functor F : Grp(«/) — Grp(Z#).
Remark: The condition “preserves finite products” means in part that for any two objects
X,Y € o with product X x Y € &, the object F(X x Y) € £ is a product of F(X) and
F(Y) in the category-theoretic sense. This condition is needed in order to interpret the
morphism F(m) as

F(X) x F(X) = F(X x x) 2% 7(x).
The condition also means that for a terminal object 1 € o7, F(1) is likewise a terminal
object of &, making F(e) a morphism from a terminal object to F(X).
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e Corollary (applied to the functor [Q,] : hTop, — Set,): For every Q, X € Top,, the set
[@, Q2X] has a natural group structure such that for all homotopy classes of pointed maps
f: X =Y, the induced map (2f)s : [@, 2X] — [Q, QY] is a group homomorphism.

e Remark: In any category, one can apply Proposition 2 to the functor F := Hom(Q, ") :
o/ — Set for any chosen object @) € <7 since there are always natural bijections

Hom g (Q,Y x Z) = Hom(Q,Y) x Hom(Q, Z)

and Hom(Q,1) = {*} is a terminal object in Set. One checks from the definitions
that each morphism f : Y — Z in & then determines a group homomorphism f* :
Homg (Z, X) — Hom (Y, X).

e Proposition 3 (abstract nonsense): Assuming 7 admits all finite products, for each object
X € 4/, there is a canonical one-to-one correspondence between group object structures
(m,e,i) on X and lifts of the contravariant functor Homy (-, X) : & — Set to a functor
&/ — Grp whose composition with the forgetful functor Grp — Set is Hom (-, X).

Proof sketch: Assuming Hom,(Q, X) is a group for each @ € & with multiplication
denoted by [x], and that f* : Homg(Z, X) — Hom4 (Y, X) is a group homomorphism for
each morphism f:Y — Z in &/, we use the group structure on Hom g (X x X, X) to define
the morphism

m = m X m € Homy (X x X, X)

in terms of the projections m,m : X x X — X to the first and second factor of the
product. Similarly, define i € Homg (X, X) to be the inverse of Idx with respect to the
group structure on Homg (X, X), and define e to be the identity element in the group
Hom,, (1, X). Now just check that the axioms are satisfied.

e Question: For a contravariant functor F : &/ — % such as Homy(-,Q) : &/ — Set (or
more specifically [-, Q] : hTop, — Set for a pointed space Q), what kind of structure on an
object X € &/ makes F(X) into a group?

¢ Predefinition: Given a category <7, the opposite category /°P is the category that has
the same objects as &/ but with

Hom gor (X,Y) := Homy (Y, X)

for every XY € &/°P = o/, i.e. the sets of morphisms are the same but all arrows are
reversed. This is the definition one needs if one wants to talk about functors without
ever saying the words “covariant” and “contravariant”: one can then define a contravariant
functor from &7 to some other category £ to be a covariant functor from &7°P to 4.
Exercise: An object is terminal in /°P if and only if it is initial in <7, and a product of
two objects in &/°P is canonically equivalent to a coproduct of the same objects in .

e Definition: Assume &7 is a category in which all finite coproducts exist (including an initial
object 0 € &7). A cogroup object in 7 is then a group object in &7°P. More concretely,
reversing the arrows of the structure morphisms of a group object in o7 °P realizes a cogroup
object in o as a tuple (X, u, €,¢) with structure morphisms

x5x[[x, x50 X-5X

that satisfy analogues of the axioms satisfied by a group object, but with arrows reversed,
products replaced by coproducts, and the terminal object 1 replaced by an initial ob-
ject 0. Let CoGrp(«?) denote the category of cogroup objects of &7, where morphisms are
morphisms in &/ that commute with the cogroup structure morphisms.

e Remark (why you’ve perhaps never heard of a cogroup before): The initial object in Set
is &, thus a cogroup object (X, u,€,t) in Set must be equipped with a continuous map
€: X — J, which is only possible if X = ¢#. The situation in Set, is slightly better, but
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not much (exercise). Interesting examples of cogroup objects are only possible in categories
that are quite different from Set, e.g. homotopy categories, in which the freedom to have
diagrams commute only up to homotopy allows for more possibilites.

e Dual of Proposition 2:*! Assume F : &/ — 2 is a contravariant functor that takes finite
coproducts to products (and thus takes any initial object to a terminal object in particular).
Then for any cogroup object (X, p,¢€,¢) in o7, the morphisms

7 7()

F(X) x F(X (XHX) W rx), 1=2rFO0) Y Fx), Fo) Y Fx)
make (F(X), F(p), F(e), F(¢)) into a group object in 2.

Remark: The hypothesis about finite products and coproducts is satisfied in particular
by Homg (-, Q) : &/ — Set for any fixed object @ € &7, which includes the special case
[-,Q] : hTop, — Set that appears in the cofiber sequence.

e Remark: There is similarly a dual version of Proposition 3, characterizing cogroup object
structures on X € & in terms of lifts of the covariant functor Homg, (X, -) : & — Set to a
functor valued in Grp.

e Dual of Proposition 1: The reduced suspension functor ¥ : hTop, — hTop, admits a
unique lift to a functor

CoGrp(hTop,,)

s

hTop,, —= hTop,

such that for every X,Y € Top,, the induced group structure on [XX, Y] matches the one
it inherits from the adjunction relation [XX,Y] = [X, QY] and the group object structure
of QY.

Proof: For any given X € Top,,, the existence and uniqueness of a suitable cogroup object
structure on XX can be deduced from a dual version of Proposition 3 after defining the
group structure of each [XX,Y] for each Y € Top, to match that of [X,QY], and then
observing that for each pointed map f :Y — Z, the induced map

[£X,Y] L5 [2X, 7]

is a group homomorphism, which follows via adjunction from the fact that Qf : QY —» QZ
is a morphism of group objects in hTop,,. It is not hard to write down explicit structure
morphisms p: XX - YX vYX,e: X - {+} and + : X — XX that do the trick; for
€ there is no choice to be made since there is only one pointed map to {x}, ¢ will be the
inversion map [(z,t)] — [(x,1 — t)] that appeared in our original version of the Puppe
cofiber sequence, and p is best described with a picture that can be found e.g. in [tD08,
p. 91]. One then checks easily that for every pointed map f : X — Y, the induced map
Yf XX — XY commutes with the cogroup structure morphisms, thus producing a lift of
Y : hTop, — hTop,, to CoGrp(hTop,,).

e To clarify next time: Why do all these groups become abelian as soon as €2 or X is applied
more than once?

317 gidn’t articulate this statement precisely in the lecture because I was running out of time, but the idea was
lurking in the background of everything I said about cogroup objects. I'm including the explicit statement here in
case it doesn’t seem obvious, though the proof is more-or-less immediate from the definitions.
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Lecture 11 (30.05.2024): Higher homotopy groups. The beginning of this lecture wraps
up the previous lecture’s discussion of group and cogroup objects before talking about the higher
homotopy groups in earnest.

e Example: We have two equivalent constructions of the group structure on 71(X) =

[$°,QX] = [£5° X] = [S", X]:
(i) Using the group object structure QX x QX = QX defines the product of two
homotopy classes of pointed maps «, 3 : S° — QX as

[a][B] := [m o (o, B)]-

(ii) Using the cogroup object structure %.5° 45 389 v 189 defines the product of two

homotopy classes of pointed maps «, 3 : £5° — X as

[a]l8] := [(@ v B) o ]

We intentionally defined p : 5% — £5% v 5% (and more generally p: XY — XY v XY
for every Y € Top,,) so as to make these two products identical.
Example: Things are more complicated for mo(X) = [S?, Q?X] = [£5°, QX] = [£259°, X] =
[S2, X], because we can think of two ways of defining products that are not obviously
equivalent. Since m2(X) = [SY, Q2X] has an obvious identification with the set of path-
components of 92X, we can use elements of 22X as representatives, and think of these as
maps
a: (I?,01%) — (X, +),
where for each s € I, a(s) € X denotes the loop ¢t — af(s, t).
(a) Using the usual recipe to make 02X = Q(QX) into a group object defines a product
# on mo(X) by concatenation of loops in X, which means concatenation of maps
I? — X with respect to the s variable, treating the ¢ variable as an extra parameter.
Equivalently, this is the product on [£S% QX] arising from the fact that $S° is a
cogroup object.
(b) We could instead use the group object structure of QX to define one on Q?X by

02X x 02X = Q(OX x QX) 28 Q(QX) = Q2X.

Elements of QX are functions of the ¢ variable, so this defines a product X on 72(X)
that concatenates maps I?> — X with respect to ¢ while treating s as an extra param-
eter. Equivalently, this product on [£SY, QX] arises from the fact that QX is a group
object, ignoring the fact that ¥.S° is a cogroup object.
Lemma (follows immediately from a picture of I? partitioned into four squares): The
products * and [x] on 7o (X) satisfy the relation

(@ B)B (7 *0) = () * (BRI).

Corollary (easy algebraic exercise, see [tD08, Prop. 4.3.1]): The products # and [X] on m5(X)
are identical, and both are commutative.

The next result reveals that what we are describing here is a much more general phenom-
enon.

Proposition 4: Suppose X is a cogroup object and Y is a group object in some category <.
Then the group products = and [X] defined on Hom 4, (X,Y") via the cogroup structure of X
or the group structure of Y respectively are the same, and they are commutative.

Proof: Given four morphisms «, 3,7, € Hom(X,Y), we can construct a morphism

X]_[XLYxY
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as F:= (a][B,7]]9), which can equivalently be written as (o, ) [ [(8,d). Composing it
with the cogroup morphism p: X — X [][X and group morphism m : Y x Y — Y and
writing (m o F') oy = m o (F o u) then produces the two sides of the identity (7.1).
Corollary (via Proposition 3 from last time): All the “natural” definitions of a group object
structure (in hTop,) on Q"X for n > 2 are equivalent, and they are abelian.

Corollary of the corollary: The n group products defined on m,(X) via concatenation with
respect to each of the n coordinates on I™ are all identical, and for n > 2, the group is
abelian.

Commentary: I have reproduced the corollary above with the same vague wording that I
used in the lecture—the word “natural” in this case was not intended in its precise category-
theoretical sense, and making the statement more precise is tricky without getting too
verbose, but I'll make an attempt here, inspired in part by questions I received after the
lecture. The point is this: for an arbitrary pointed space X, we have used concatenation
to define a recipe for making 2.X into a group object in hTop,, and we are regarding that
recipe as the “natural” one; there might be other ways to make 2X into a group object based
on completely different ideas, but if so, then they are not relevant to this discussion, and the
word “natural” was thus meant to exclude them. For Q2X = Q(Q2X)—and more generally
for Q" X for any n > 2—one then has the choice of whether to apply the established recipe
as it stands, thus ignoring the fact that QX already is a group object, or alternatively, to
ignore the recipe but reuse the existing group object structure of QX in order to define one
on Q(QX). I would also consider the latter a “natural” thing to do, and the first message
of the corollary is that it doesn’t matter which of these approaches we choose. The second
message is that the fact of having multiple choices in this construction for n > 2 has a
nontrivial algebraic consequence, forcing the resulting group object structure to be abelian.
In the general setting that we are considering here, the key feature beyond Propostion 4
that leads to these conclusions is adjunction, i.e. the fact that we can always choose freely
whether to define the product on a set [X,QY] = [£X,Y] in terms of the group object
structure of QY or the cogroup object structure of XX, without the result depending on
this choice. It’s worth noting, however, that this is not the only useful and interesting way
to apply Proposition 4, and it can also have consequences involving group-like structures
that have nothing to do with concatenation, such as:

Theorem: For any pointed space X that is a group object in hTop,,, 71 (X) is abelian. This
applies in particular whenever X is a topological group with the identity as its base point,
which means it is a group object in Top,, (and therefore automatically also in hTop,,).
Quick proof: The standard definition of the product on 7 (X) = [£5°, X] can be expressed
via the cogroup object structure of ©.SY, but according to Proposition 4, one would get
the same product (which is therefore commutative) by ignoring the suspension and using
the native group object structure of X instead.

Exercise: Find a more elementary proof of this result in the case where X is a topological
group. (You have probably seen one in a previous course.)

Consider a pointed pair of spaces (X, A), meaning = € A c X, with inclusion map j : A —
X. Feeding the Puppe fiber sequence into [S?, -] and using adjunction to write [S°, Q" X] =
[27S0 X] =[S, X] = 7, (X) and similarly for A and the homotopy fiber F(j), we get a
long exact sequence

s m3(X) — [£25°, F(j)] — ma(A) L5 ma(X) — [£S5°, F(j)]

— m(A) L5 m(X) — [S°, F(j)] — mo(A) L5 mo(X)
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The entire sequence is exact in the category Set,; removing the last three terms makes it
also an exact sequence in Grp, and all of the groups from 79(X) backwards are abelian.
The maps to and from the terms [$"S°, F(j)] are induced by the natural inclusion i; :
QX — F(j) and projection® p; : F(j) — A respectively, where making sense of the former
requires rewriting 7, 1(X) = [X"T18° X] as [£"S°, QX].

Interpretation of [X"S° F(j)]: Since j : A — X is an inclusion, we can identify the
mapping fiber F(j) with the space

F(j)={ve X' | v(0) e Aand v(1) = s} c X',

which makes i; : QX — F(j) € X! the obvious inclusion and p; : F(j) — A the restriction
to F(j) of the map evg : X! — X : v — 7(0). Identifying S° with dI gives a natural
homeomorphism X"S% = ["/dI™, so that maps X"S° — F(j) can be regarded as maps
I" — X! that satisfy certain constraints; by adjunction, these are equivalent to maps
a: 1"t =]" x I - X, and the constraints they satisfy are firstly
a(0I™ x I) = {x},

which ensures that the corresponding map I — X' descends to the quotient I™/9I" =
¥ S0 and secondly

a(I™ x {0}) c A, and a(I™ x {1}) = {=},

which make the map I" — X! take values in F(j) < X!. We can rewrite this more
succinctly after noticing that one of the boundary faces I™ x {0} < 6I™"! of the cube
evidently plays a special role, so let us identify

I":= 1" x {0} c 91" ! c [T,
and denote the union of the rest of the boundary faces of I"*! by
J" = oIt I\,

so that I"™ n J" = ¢0I". We have now identified [X"S°, F(j)] with the set of homotopy
classes of maps I"*! — X that send 0I""" into A and the subset J" < dI"*! to the base
point, in short,

Tng1(X, A) = [E"S%, F(j)] = {maps of triples (I"*!,01"*! J") —> (X, A, *)}/homotopy.

This is our official definition of the relative homotopy groups; to be precise, 7, (X, A)
is a pointed set for every n > 1, a group for n > 2, and is also abelian for n > 3. Note
that there is no general definition of mo(X, A). The group structure can be described
via concatenation in any of the first n variables on the cube I™*!; variable n + 1 is not
appropriate for this purpose because it does not come from the n-fold suspension £"S°,
but rather from the homotopy fiber F(j), and this is why (X, A) has no natural group
structure.

A nicer geometric picture of 7, (X, A): notice that there is a homeomorphism of pointed
pairs

([n/Jn’Infl/aInfl) ~ (Dn’snfl)

for any choice of base point * € S"~! = D" < D", which turns , (X, A) into

{pointed maps of pairs (D", S"~') — (X, A)} /homotopy.

321 would normally call this projection map 7, and probably did so in the lecture, but I’ve changed the notation

here so that it doesn’t get confused with a homotopy group.
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This motivates the notation for m,(X, A) as a generalization of m,(X), the latter being
identified in this picture with m, (X, {#}). The only reason not to make this the official
definition of 7, (X, A) is that from this perspective, we do not clearly see any suspensions
or loop spaces, making it far less obvious what the group structure of =, (X, A) should be
(for n = 2).

The conclusion of this discussion is that for any pointed pair (X, A) with inclusion j : A —
X, there is a natural long exact sequence

o (X)) S (X, A) T 1 (A) 2 (X)) s mo(X, A)
L w1 (A) L5 1 (X) 25 (X, A) 25 mo(A) 25 1o (X),

in which the last three terms are in general only pointed sets (don’t let the subscript on
m1(X, A) fool you!), but the rest are groups, all abelian from 72(X) backwards. The maps
ix : Tp(X) = mp(X, A) in this sequence are what you think they should be (see Exer-
cise 7.3). The maps 0y : T, (X, A) > m,—1(A) are (p;)s : To(X, A) = [E" 1S F(5)] —
[Xn 189 Al = m,_1(A), induced by p; = evy : F(j) — A, so explicitly, if we identify
I"=1 = ["=1 x {0} ¢ OI" in order to represent an element [a] € 7,(X, A) as a homotopy
class of maps a : (I", 01", 0I™\I"~) — (X, A, *), then

dela] = [alm-1] € [I""1/01"1, A] = [2771S°, A] = 1 (A).

Choosing a homeomorphism (I™/J™, I" /6I"!) = (D", S™!) so as to represent [a] €
7.(X, A) via a pointed map of pairs « : (D", S"~1) — (X, A) puts this formula in the more
appealing form

0x[a] = [a|opn] € [S"H A] = 7, 1(A).
Theorem: For any pointed fibration p : F — B with fiber inclusion j : F' — FE, there is a
natural long exact sequence

= m3(B) -2 mo(F) L5 mo(E) 25 ma(B) - 11 (F)
5, 1 (B) 25 1y (B) =5 m0(F) 25 mo(E) 25 m0(B),
where the connecting maps § : 7, (B) — m,_1(F') can be written as
dla] = [a]gn—] € [S"7H, F] = moa(F)

for any [a] € 7, (B) = m,(B, {#}) written as the homotopy class of a map of pointed pairs
a: (D", 8" %) — (B, {x},)), along with a choice of pointed lift

E

~ 7
o lp-
.

.

D" —*- B

Proof: Take the Puppe sequence of p : E — B (Theorem 2 in Lecture 8), remove the minus
signs since they do not affect exactness, feed the whole thing into [S°, -], and unpack the
definitions.

Dependence on base points: Assume () € Top,, is a well-pointed space, and for any X € Top
and z € X, let

[Qv X]I = [(Q7 *)7 (X7 x)]Jr

denote the set of pointed homotopy classes of maps @ — X such that z is considered the
base point of X. The free cofibration * < @ determines a transport functor II(X) — Set,
which is defined on the fundamental groupoid II(X) = II(#, X) of X; recall that the objects
of the latter are the points of X (equivalently the maps * — X), and morphisms from x to
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y are homotopy classes of paths from = to y. The transport functor assigns to each point
x € X the set [@, X]., and to each homotopy class of paths NS y with fixed end points a
bijective map

V# [Q?X]x — [QvX]yv
which sends [Hy] — [H1] for any choice of (free) homotopy H : Q x [ — X with H(*,t) =
~(t) for all ¢ € I, i.e. an “extension” of the homotopy v : * x [ — X.

e Tlluminating exercise (see Exercise 7.4 below): Verify that the bijection v4 : [Q, X], —
[Q, X], is automatically a group isomorphism whenever @ is a cogroup object in hTop,,
and that in the special case @ := S1, it is the same isomorphism 71 (X, z) — (X, y) that
you saw in Topology 1. Applied to Q := X" S° = S”, this shows that the isomorphism class
of each m,(X) for a path-connected space X is independent of the choice of base point.

e Theorem: If f : X — Y is a (free) homotopy equivalence, then for each € X and
y:= f(x) € Y and every well-pointed space @, the induced map

[Q,X]. 25 [Q, V],

is a bijection. (Note that if @) is a cogroup object in hTop,, then fy is also automatically
a group homomorphism, and therefore an isomorphism; this applies in particular to the
maps m,(X,z) = m,(Y,y) for n > 1.)

Proof: Essentially the same as the special case Q = S', which was probably the first
nontrivial theorem of algebraic topology that you saw proved (i.e. that m; is a homotopy
type invariant). The tricky detail is just that the homotopy inverse g : Y — X of f need
not respect base points, so writing g(y) := z € X, we obtain a sequence of maps

[Q, X]. 25 [, V], 25 [Q, X]..

But a homotopy H of Idx to go f then determines a path ~(t) := H(#,t) from « to z, and
composing the maps H; : X — X with any given pointed map ¢ : (Q, *) — (X, z) produces
a free homotopy of maps Q — X that match ~ at the base point, so by construction,

Gufs = Y# >

proving that g, fx is a bijection, and therefore that f, is injective and g, is surjective.
Since f o g is also homotopic to the identity, applying the same argument to

[Q,Y], 25 [Q, X]. 25 [Q, Y],

then proves that g, is also injective, and therefore invertible, and it follows that f is also
invertible.

e Next task: prove that the converse of this theorem also holds when X is a CW-complex
(Whitehead’s theorem).

Suggested reading. Most of our usual sources discuss group and cogroup objects in the specific
context of the category hTop,, even though it takes almost no extra effort to frame them in the
more general context that I opted for in the lectures; on the other hand, most of them also discuss
more general algebraic objects in hTop,, such as H-spaces (which do not need to be associative or
have inverses). The nicest presentation I've seen was in Cutler’s lecture notes [Cut21, H-Spaces I],
and despite minor differences in the level of generality, it’s fairly close to what we did in the lectures.
For the higher homotopy groups, one can look at either [tD08, Chapter 6] or [DKO01, §6.13 and
§6.15], both of which include more details than are logically necessary, partly in an effort to make
their theorems about m, semi-independent of the general theory of fibrations and cofibrations.
(Example: A version of the bijection v4 : [Q, X], — [Q,X], determined by a homotopy class
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of paths z < y is constructed in [DKO1, Lemma 6.56], with a hands-on proof that would be
completely unnecessary if one took for granted that the transport functor of a cofibration exists.)

Exercises (for the Ubung on 6.06.2024).
Exercise 7.1. Describe all possible cogroup objects in the category of pointed sets.

Exercise 7.2. Prove the following claims stated in Lecture 10:

(a) If X is a group object in a category <7, then the map f* : Homy(Z, X) —» Homy (Y, X)
induced by any morphism f:Y — Z in & is a group homomorphism.

(b) The morphisms m : X x X - X, i: X — X and e : 1 —» X defined in terms of group
structures on the sets Hom (Q, X) for each @ € & in the sketched proof of Proposition 3
satisfy the axioms of a group object in <.

Note: The assumption that f* : Homy (Z, X) —» Hom (Y, X) is a group homomorphism
for each morphism f:Y — Z in & will be crucial here.

(c) If for some reason you don’t have enough to do this week, write down the dual version
of Proposition 3 characterizing cogroup object structures on X € & in terms of group
structures on the sets Hom (X, Q) for each Q € <, and prove it.

Exercise 7.3. We didn’t explictly discuss this in the lectures, but it will not surprise you to
learn that the relative homotopy groups m, (X, A) define functors on the category Top™® of pointed
pairs of spaces. In particular, any pointed map of pairs f : (X,A4) — (Y, B) induces a map
fe o m(X, A) = m,(Y, B), which is a group homomorphism for n > 2. Stare at the definitions
long enough until you feel you understand why this is true. Then:

(a) Show that there is a natural bijection between the relative 7, (X, {#}) and absolute 7, (X)
for each X € Top, and n > 1, which is a group isomorphism for n > 2, and that under
this identification, the maps m,(X) — m,(X, A) appearing in the long exact sequence
of relative homotopy groups become the maps induced by the inclusion of pointed pairs
(X, {#}) = (X, A).

(b) Convince yourself that the long exact sequence of relative homotopy groups is natural with

respect to morphisms in Top’”.

Exercise 7.4. This exercise concerns the bijection v : [@Q, X, — [Q, X], defined in Lecture 11
for any well-pointed space () € Top,, and any homotopy class of paths z Lyin X.

(a) Show that if Q) is a cogroup object in hTop,, then v : [Q, X]; — [Q, X], is automatically
a group isomorphism.

(b) Show that in the special case Q = S, 4 : m1 (X, z) — m1(X,y) can be expressed in terms
of concatenation of paths via the explicit formula

vglali= [yt aq]
(c) Can you similarly write down an explicit description of v4 : m,(X,z) — m,(X,y) for
n = 27 Try to describe it with a picture.

Exercise 7.5. For any path-connected covering®® map p : X > X ofa pointed space X, give two
proofs that the induced homomorphism

Tn, ()? ) 2, T (X)
is an isomorphism for each n > 2 and is injective for n = 1. Use covering space theory for the first

proof, and the long exact sequence of a fibration for the second.

331 originally formulated this exercise with the stronger assumption that p : X — X is the universal cover, which
seems to be the special case that gets applied most often. But there is actually no need to assume X is simply
connected.
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Exercise 7.6. For a pointed fibration p : E — B with fiber F := p~!(%) c E, there is a pointed
map of pairs p : (E, F) — (B, {*}) which (in light of Exercise 7.3) induces a map

(B, F) 25 7, (B)

for each n > 1. Show that this map is in fact a bijection.

Hint: Many books give a direct proof of this result using the homotopy lifting property, and then
use it to deduce the exact sequence of homotopy groups for a fibration from the exact sequence of
relative homotopy groups. We have done things the other way around, and you should be able to
deduce this isomorphism from the exact sequences.

Exercise 7.7. The long exact sequence of homotopy groups for a fibration p : E — B also works
under more general hypotheses: it suffices in fact to assume that p : E — B is a Serre fibration,
meaning that it satisfies the homotopy lifting property with respect to all CW-complexes, but not
necessarily with respect to all spaces. This is useful, because proving that a given map is a Serre
fibration is easier in practice than proving the stronger hypothesis of a Hurewicz fibration. It also
should not surprise you, because the homotopy groups 7, (X) are defined in terms of [@, X] for a
very restrictive class of spaces @, all of which are CW-complexes. See how much of the proof of
this more general exactness result you can piece together.

Remark: You can find many books that give fairly direct proofs of the result for Serre fibrations,
but that would unnecessarily duplicate a lot of effort that we have already made in this course.

Exercise 7.8. Below are some computations that can be carried out with the aid of the exact
sequence of homotopy groups for a fibration. You should take it for granted that the fibrations men-
tioned actually are fibrations; this will become mostly obvious when we get around to studying fiber
bundles. The first two parts are preparatory computations that can be carried out using methods
from previous semesters, e.g. the mapping degree, or the simplicial approximation theorem.
(a) Prove that m,(S™) # 0 for every n € N.
Comment: We will soon be able to prove m,(S™) = Z, but it does not follow easily from
anything we’ve covered so far.
(b) Prove that 7 (S™) =0 for 0 < k < n.
(c) Identifying S?"*! with the unit sphere in C"*!1 = R?"+2 for n > 1, the quotient projection
C"*+1\{0} — CP" restricts to the sphere as a fibration
52n+1 i) (CP",
known as the Hopf fibration. Prove that the induced map 72,1 1(S?"*!) — 72, 41(CP")
is an isomorphism, implying via part (a) that 7, 1(CP™) is nontrivial. (The most famous
case is n = 1, where we have CP' =~ S2, thus 73(S?) is nontrivial.)
Comment: CP" is a manifold of dimension 2n, so this result stands in marked contrast to
what happens in homology, where Hy (M) vanishes for every manifold M of dimension less
than k.
(d) For each n > 1, the fibration SO(3) — S? mentioned in Lecture 3 generalizes to a fibration

SO(n) £ §m 1,
defined by letting matrices in SO(n) act linearly on a chosen base point in the unit sphere
Sn~1 < R™. Deduce from this fibration that 71 (SO(n)) = Z for every n > 3, and describe
a specific loop in SO(n) that is not nullhomotopic.
Hint: You may want to start by recalling how SO(3) is related to RP?.
(e) Regarding S?"~! again as the unit sphere in C" = R?", we can let the group U(n) act
linearly on a chosen base point in S$?"~! to define a fibration

U(n) £ g1
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for each n > 1. Deduce from this that 7;(U(n)) =~ Z for every n > 1, and describe a
specific loop that generates the group.

8. WEEK 8

Lecture 12 (3.06.2024): Weak homotopy equivalences.

e For Q,X € Top, with @ well pointed, the transport functor of the cofibration * — @Q
defines an action of the group 71 (X) on the set of pointed homotopy classes [Q, X]:

m(X) x [Q, X]y = [@, X1+ = (W], [F]) = 7] - [f] := el f1-

Exercise: For Q := S, this defines the action of 71 (X) on itself by conjugation.

Recall that v4[f] = [¢] if and only if there is a free homotopy f X g with H(x,t) =~(t)
for all ¢, and the cofibration condition ensures that such a homotopy exists for any given
v and f. It follows that two pointed maps @@ — X are freely homotopic if and only if their
pointed homotopy classes are related by the action of 71 (X), which proves:

e Theorem: The map [@, X ]+ — [Q, X]o defined by forgetting the base point descends to
an injective map

[Q. X]+ /m(X) = [@, X1,

which is surjective if X is path-connected.

e Corollary: For ) well-pointed and X simply connected, two maps Q — X are pointed
homotopic if and only if they are freely homotopic, i.e. [Q, X]+ = [Q, X]o-

e Definition: A map f: X — Y is a weak homotopy equivalence if for every x € X and
y := f(x), the induced map f, : 7, (X, x) — 7,(Y,y) is bijective for all n > 0.

e Proved last time: Homotopy equivalences are also weak homotopy equivalences. In fact,
f being a homotopy equivalence implies that f, : [Q, X, — [Q,Y], is bijective for every
well-pointed space @, so in particular when @ is a sphere of any dimension.

e It is obvious (by thinking about morphisms and isomorphisms in hTop) that for any ho-
motopy equivalence f : X — Y and any space @, f induces a bijection on free homotopy
classes

[Q, X]o 25 (@, V]..

Exercise (sanity check): The maps [@Q, X]. ELN [Q,Y], are also equivariant with respect
to the m-action, i.e. for any [v] € m1 (X, x) and [¢] € [@, X]., one has

e (][9] = fe] - felel-

(I call this a “sanity check” because if you assume f is a homotopy equivalence between path-
connected spaces and combine the bijectivity of fy : [@Q, X], — [Q,Y], with the theorem
stated above, equivariance implies that f, descends to the quotient by the mi-action as a
bijection between sets of free homotopy classes. That’s a much more complicated proof of
a statement that was already obvious, but it reassures us that all the things we’re proving
are consistent with each other.)

e “Cofibrant” theorem: A map f : X — Y is a weak homotopy equivalence if and only
if the induced map f, : [Q,X] — [@,Y] of free homotopy classes is bijective for every
CW-complex Q.

Remark: Below we will prove only the “=" direction of this theorem, which is what we
need immediately for applications. For the converse, see e.g. [Whi78, Theorem IV.7.17].
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e Corollary (Whitehead’s theorem):** If X and Y are spaces that are homotopy equivalent

to CW-complexes, then every weak homotopy equivalence X — Y is also a homotopy
equivalence.
Remark: Since homotopy equivalences are also weak homotopy equivalences, the theorem
in this form follows immediately if one can prove it under the assumption that X and Y
are actual CW-complexes. But allowing spaces that only have the homotopy types of CW-
complexes widens the range of applicability, and the theorem is often applied in this form:
for example, all topological manifolds have this property, but it is unknown (specifically for
non-smoothable manifolds of dimension four) whether all manifolds actually admit cell de-
compositions. For “infinite-dimensional” spaces such as loop spaces, one cannot reasonably
expect a cell decomposition, but Milnor [Mil59] showed for instance that QX is homotopy
equivalent to a CW-complex with countably-many cells whenever X is. Similarly, combin-
ing a result of Palais [Pal66, Theorem 14] with some general properties of CW-complexes
(e.g. [Hat02, Prop. A.11]), one finds that most naturally occurring infinite-dimensional
manifolds—such as spaces of maps from one smooth manifold to another, or of sections of
a smooth fiber bundle—have the homotopy types of CW-complexes.

e Deducing Whitehead from the cofibrant theorem: Assuming X and Y are CW-complexes
and f: X — Y is a weak homotopy equivalence, the cofibrant theorem tells us that

[X,X] 25X, Y] and  [V.X]25 VY]

are bijections. One then finds a homotopy inverse of f in the unique homotopy class
[g] € [Y, X] such that f«[g] = [Idy] (cf. Exercises 1.8 and 4.3).
e Lemma 1 (toward the proof of the cofibrant theorem): If A ¢ X and the inclusion A — X
is a weak homotopy equivalence, then 7, (X, A,x) = 0 for every n = 1 and z € A.
Proof: Immediate from the long exact sequence of relative homotopy groups. (However,
since you’ve probably only seen this argument before in the context of abelian groups or
R-modules, you should take a moment to convince yourself that it still works on the portion
of this exact sequence that may contain nonabelian groups and/or pointed sets.)
Remark: The converse is also almost true, one just needs to be a bit careful about the last
two terms in the exact sequence, e.g. it is clearly true if one adds the assumption that X
and A are path-connected.
e Lemma 2: For any space X or pair of spaces (X, A) and each n >
(1) m(X,x) = 0 for every x € X if and only if every map S™ =
extension to D" *1.
(Proof left as an exercise.)
(2) T, (X, A, z) =0 for every = € A if and only if every map of pairs (D", S~ 1) — (X, A)
is homotopic rel S"~! to a map whose image is contained in A.%°
Proof: Given f : (D", S" 1) — (X, A), choose x := f(*) € A to make f a pointed map
of pairs, the condition 7, (X, A,z) = 0 then implies that f is homotopic as a pointed
map of pairs to the constant map, thus giving a homotopy H : D" x I — X such that

1,
oD"t! X admits an

Hlpnx oy = f, H(S" 1 xI)c A, and H|{*}XIQD”X{1} =z.

34The theorem is due to J.H.C. Whitehead, the inventor of CW-complexes, not George Whitehead, the author
of [Whi78].

35Useful jargon: A homotopy H : X x I - Y is a homotopy rel A (short for “relative to A”) for some subset
A c X if the restricted maps H¢|4 : A — Y are the same for all t € .



TOPICS IN TOPOLOGY (“TOPOLOGIE IIT'), SOMMERSEMESTER 2024, HU BERLIN 83

Now foliate D™ x I by a l-parameter family of n-disks with identical boundary at
S™~1 x {0}, producing a homotopy from f to

9= H|Sn*1><lu]D)“'x{1}’

which we can regard as a map D" — X since S" ! x [ u D" x {1} =~ D". By
construction, g has image in A, and each map in the new homotopy matches f at the
boundary.

(Proof of the converse left as an exercise.)

e Compression lemma: Suppose (X, A) is a CW-pair, and (Y, B) is a pair of spaces such
that 7, (Y, B) = 0 for every n > 1 and the map mo(B) — m(Y") induced by the inclusion
B — Y is surjective. Then any map of pairs f : (X, A) — (Y, B) is homotopic rel A to a
map g : X — Y with image contained in B.

Intuition: We would see this immediately (and with no assumptions about (X, A)) if we
assumed that B is a deformation retract of Y, because we could then compose f with the
deformation retraction. Requiring (X, A) to be a CW-complex instead of an arbitrary pair
is the price we pay for weakening the assumption that there is a deformation retraction.
Proof: This follows a standard technique of constructing maps on a CW-complex X by
starting with its O-skeleton X° and then extending inductively to the other skeleta X° c
X' c X2 c...c X. We claim there exists a sequence of maps f =: f_1, fo, f1., f2, ... :
X — Y such that for every n,

(1) fulX™) < B;

(2) f». is homotopic rel X™ U A to fr11-

The latter implies that there is a pointwise limit g := lim,,_,, g, : X — Y which matches
fn on the n-skeleton for each n, and we can construct a homotopy H from f to g rel
A by piecing together the infinite sequence of homotopies f_1 ~> fo ~ f1 ~» ... such
that H(-,1 —1/2") = f,_1 for each n > 1. (The resulting map is continuous because
the topology of a CW-complex is defined the way that it is, i.e. the restriction to each
finite-dimensional skeleton is continuous.) To prove the claim by induction, assuming f, 1
has already been constructed, first construct f, and the homotopy f,—1 ~> f, on each
n-cell e” ¢ X\A so that f,(e™) < A: this is possible for n = 0 because mp(A) — 7p(X) is
surjective, and for n > 0 it is possible due to Lemma 2 and the assumption m,(X, A) = 0.
Since X™ U A — X is a cofibration (Exercise 5.4), both f,, and the homotopy f,—1 ~ fn
can then be extended to the rest of X.

e Proof of the cofibrant theorem (=): Assume f: X — Y is a weak homotopy equivalence.
After replacing Y with the (unreduced) mapping cylinder Z(f), which is (both strongly
and weakly) homotopy equivalent to Y, and replacing f : X — Y with the inclusion
ix : X — Z(f), we can assume without loss of generality that f is the inclusion of a
subspace X < Y. For any given CW-complex (), applying the compression lemma to
the map of pairs (@, ) — (Y, X) then shows that the map f, : [Q,X] — [Q,Y] is
surjective. Injectivity amounts to the statement that if ¢,1 : Q@ — X are two maps
that are homotopic as maps into Y, then they are also homotopic as maps into X, i.e. a
homotopy H : Q@ xI — Y can be modified without changing H|gxar to produce a homotopy
Q x I — X. Just apply the compression lemma to H : (Q x I,Q x dI) — (Y, X).

e Easy application of Whitehead’s theorem: For any space X with the homotopy type of a
CW-complex, X is contractible if and only if 7, (X, x) vanishes for all n > 0 and z € X.
Proof: Apply Whitehead’s theorem to the unique map X — {}.

e Cautionary examples:
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Assuming X and Y are CW-complexes, just having isomorphisms 7, (X) = 7,(Y)
for every n > 0 does not suffice to conclude that X and Y are homotopy equivalent.
Counterexample: take X := 52 x RP? and Y := RP? x S3. Both are path-connected
and have fundamental group Zs, and they also have the same universal cover S? x S3,
implying via Exercise 7.5 that their higher homotopy groups are the same. But by
a straightforward Topology 2 exercise, their homologies are different, so they are not
homotopy equivalent. What we are missing in this example is an actual map X — Y to
serve as the weak homotopy equivalence in Whitehead’s theorem—the isomorphisms
Tn(X) = m,(Y) would need to come from such a map, otherwise the theorem does
not apply. (In the application above for contractible spaces, we got lucky because the
unique map X — {x} served as a weak homotopy equivalence, even though no such
map was mentioned in the statement itself.)

The Warsaw circle is a popular example of a non-contractible space X for which
(X)) vanishes for all n > 0; clearly, it must not have the homotopy type of a CW-
complex. To construct it, start with the graph in R? of the function y = sin(1/x) for
0 < z < 1, the so-called topologist’s sine curve, and take its closure, which includes
the compact interval {0} x [—1,1]. Now draw an embedded curve in R?, starting at
the point on the graph with z = 1, then circling around to the other side of the y-axis
without touching the closure of the graph, and rejoining it at the origin. No continuous
path can move through the entirety of the portion of X that contains infinitely-many
oscillations, and one can deduce from this that 7, (X) = 0 for all n. The fastest way
I can think of to see that X is not contractible is through the observation that X is
the intersection of a nested sequence X; D Xo D X35 D ... D X of open neighorhoods
that are all homotopy equivalent to S!, and X can therefore be identified with the
inverse limit of this sequence in Top. There are invariants in algebraic topology that
can detect this fact, because they behave well with respect to inverse limits: singular
cohomology is not one of them, but Cech cohomology is, so X cannot be contractible
because H'(X;Z) ~ H'(S%;Z) ~ H'(S';Z) ~ Z. A more elementary argument for
the non-contractibility of X is outlined in Exercise 8.1 below.

Lecture 13 (6.06.2024): CW-approximation.

(1)

(2)
(3)

e Definition: Assume n > 0 is an integer, and all spaces and maps below are in the unpointed
category.

A map f: X — Y is an n-equivalence if for every choice of base point x € X, writing
y := f(x) € Y, the induced map f, : 7 (X, z) — m(Y,y) is bijective for 0 < k < n
and surjective for k = n. (In particular, f is a weak homotopy equivalence if and only
if it is an n-equivalence for arbitrarily large n.)

A pair of spaces (X, A) is called n-connected if the inclusion map A — X is an
n-equivalence.

A space X is called n-connected if 7, (X) =0 for all k =0,...,n.%¢

Remark 1: In the third definition, there is no need to mention base points, because
“mo(X) = 0” means that X is path-connected, and its homotopy groups are therefore
independent of the base point up to isomorphism. Similarly, if X is path-connected, then
there is no need to mention base points in defining what it means for f : X — Y to be an n-
equivalence, as the surjection mo(X) — mo(Y") forces Y to be path-connected as well. Note

36 usual, for a group G, the statement “G = 0” should be understood as an abbreviation that means “G is a

trivial group”. If G is not a group but is a pointed set such as mo(X) or m1(X, A), then “G = 0” means that G has
only one element.
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however that f can be an n-equivalence without either of X or Y being path-connected,
and (X, A) can be n-connected while X and A each have multiple path-components; in
such cases, the detail that all choices of base points must be allowed is important (see the
next remark).

Remark 2: The long exact sequence of relative homotopy groups yields the following equiv-
alent formulation of the second definition: The pair (X, A) is n-connected if and only
if for all choices of base point © € A, mp(X,A,z) = 0 for k = 1,...,n and the map
mo(A, z) — mo(X, z) induced by the inclusion is surjective. There’s a slight subtlety here
due to the fact that the last three terms in the long exact sequence are not groups: for any
fixed choice of base point x € A, the vanishing of w1 (X, A, z) implies that the preimage
of the base point under the map mo(A,z) — m(X,x) contains only the base point, but
this does not imply in general that the map mo(A,x) — mo(X, ) is injective. (Exercise:
Find a counterexample!) Inspecting the definitions of these sets, one finds however that
mo(A,z) — mo(X,z) must indeed be injective if w1 (X, A,x) vanishes for all choices of
x € A. There is of course nothing in the long exact sequence to guarantee the surjectivity
of mo(A) — mp(X), so the latter needs to be mentioned explicitly whenever characterizing
n-connected pairs in terms of the relative homotopy groups.

Remark 3: X is n-connected if and only if the inclusion {z} — X of each point z € X
is an n-equivalence. Or equivalently: X is n-connected if and only if it is path-connected
and the inclusion {x} < X of some point z € X is an n-equivalence.

Compression lemma (sharp version): Assume (X, A) is a CW-complex such that dim(X/A) <
n for some integer n > 0, meaning that X\ A contains no k-cells for k¥ > n, and assume
(Y, B) is an n-connected pair of spaces. Then every map of pairs (X, A) — (Y, B) is ho-
motopic rel A to a map with image in B.

Proof: The case n = o0 was proved in the previous lecture, but the argument given there
also proves this statement, one only needs to pay attention to where precisely the condition
(Y, B) = 0 is needed and for which values of k.

Theorem 1: 7 (S™) = 0 whenever k < n.

Since S™\{*} = R is contractible, this follows easily from...

Lemma: For k < n, every map S* — S™ is homotopic (without loss of generality via a
homotopy that is fixed on a neighborhood of some chosen base point) to one that is not
surjective.

Proof 1: By the simplicial approximation theorem (see e.g. [Wen23, Theorem 41.14]),
f: S* — S™ is homotopic to a simplicial map for suitable triangulations of S¥ and S™,
and the image of this simplicial map is then contained in the k-skeleton of S™, which cannot
be everything if n > k.

Proof 2: By standard perturbation results in differential topology (see [Hir94]), f : S¥ —
S™ is homotopic to a smooth map ¢ : S¥ — S™, and Sard’s theorem then implies that
almost every point p € S™ is a regular value of g, which means g~ (p) = & when n > k.
In either version of the proof, it is an easy exercise to modify the argument so that the
homotopy leaves f unchanged on some neighborhood of a chosen point.

Theorem 2: If (X, A) is a CW-pair and n > 0 an integer such that all k-cells of X with
k < n are contained in A, then (X, A) is n-connected.

Very useful corollary: For any CW-complex X and each n > 0, the inclusion of the (n+1)-
skeleton into X induces an isomorphism 7, (X" *!) ~ 7, (X).

Remark: This is a property that homology and cohomology also have, and it makes many
computations more manageable. A word of caution, however: for a CW-complex X with
finite dimension dim X < n, it does not follow that 7, +1(X) = 0, quite unlike the situation
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for homology and cohomology. (For instance, m3(S?) # 0, as shown in Exercise 7.8.)
Computing higher homotopy groups would be much easier if this were true.

e Theorem 2 can be proved in three steps, with increasing generality:

(1) Suppose £ > n, X! ¢ A and X = A U e’ has only one cell outside of A, of
dimension £. For k < n, any map f : (D¥, S¥~!) — (X, A) then descends to a map
Sk ~ DF/oDF — X/A =~ S¢ and since ¢ > k, it follows that f is homotopic rel
some neighborhood of dD* to a map whose image misses at least one point y € ef.
A deformation retraction of D*\{y} to 0D’ then produces a homotopy of f rel S¥~!
to a map with image contained in A, showing via Lemma 2 in the previous lecture
that 7, (X, A) = 0. The surjectivity of mp(A) — mp(X) just means that every path-
component of X contains points in A, and this is obvious.

(2) Suppose X countains only finitely-many cells that are not in A. Then there is a finite
sequence of cellular inclusions A =: Xy — X; — ... — Xy := X such that each
Xj+1 is obtained from X; by attaching one cell of dimension greater than n. For any
choice of base point, the induced maps m(A) — 7 (X) now factor into compositions
of maps m,(X;) — m,(X;41) which are bijective for £ < n and surjective for k = n
due to Step 1.

(3) In the general case, the surjectivity of mop(A) — mo(X) is still obvious because every
path-component of X must contain a O-cell, which is assumed to lie in A, thus it
suffices to prove m(X,A) = 0 for all ¥ = 1,...,n and all choices of base point;
equivalently, one needs to prove that every map f : (D¥, S¥~1) — (X, A) is homotopic
rel S*~! to a map into A. Let X’ ¢ X denote the subcomplex consisting of all cells in
A plus the (since D* is compact) finitely many in X\A that intersect f(DF). Step 2
now applies to (X', A) and proves 7 (X', A) = 0 for all choices of base point, which
guarantees the existence of the desired homotopy.

Cellular approximation theorem: For CW-pairs (X, A) and (Y, B), every continuous map
of pairs f : (X, A) — (Y, B) is homotopic rel A to a map g : X — Y such that for every
n=0,g(X"uvA) cyYru BT

Corollary 1: Every map of pairs between two CW-complexes is homotopic (as a map of
pairs) to one that is cellular.

Proof: Apply the theorem first to f|4 : A — B, regarded as a map of pairs (4, ) —
(B, &), thus making this restriction a cellular map. Since A — X is a cofibration, the
resulting homotopy can be extended over X to define a homotopy from f to some map
whose restriction to A is a cellular map A — B. Applying the theorem again then modifies
this outside of A to a cellular map X — Y.

Corollary 2: If two cellular maps f : X — Y are homotopic, then they are also cellularly
homotopic, i.e. there exists a homotopy H : X x I — Y from f to g that is also a cellular
map with respect to the natural product cell decomposition of X x I.

Proof: Given any continuous homotopy H : X x I — Y from f to g, apply the theorem
to the map of pairs H : (X x I, X x 0I) — (Y,Y), using the fact that for the obvious cell
decomposition of I with a single 1-cell attached to two O-cells at the end points, X x 01 is
a subcomplex of X x I.

Proof of the theorem: We construct a sequence of maps f =: f_1, fo, f1, f2,... : X = Y
such that for every n,

(1) fu(e™) c Y™ for every n-cell e” ¢ X\ A4;

(2) fa > frnr1rel AU X™

37A slightly incorrect version of this statement appeared in this spot for a long time before it got corrected

shortly after the end of the semester. Many thanks to the students who pointed out the error.
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The condition f,(e™) € Y™ can be achieved because by Theorem 2, (X, A u X™) is n-

connected. As in our proof of the compression lemma in the previous lecture, there is

then a pointwise limit g := lim,, .. f, that matches f, on the n-skeleton for each n, and
concatenating the infinite sequence of homotopies on successively smaller segments of the
interval gives a homotopy from f to g rel A.

Definition: A CW-approximation (X', ¢) of a space X consists of a CW-complex X’

and a weak homotopy equivalence ¢ : X' — X.

CW-approximation theorem:

(1) Every space X admits a CW-approximation (X', ¢).

(2) If X is n-connected for some n > 0, then its CW-approximation X’ can be chosen to
have only one 0-cell and no k-cells for k =1,...,n.

(3) Given spaces X,Y with CW-approximations (X', ¢) and (Y’, 1) respectively, and a
map f : X — Y, there exists a unique homotopy class of maps f’ : X' — Y’ such
that focpzz/JOf’.

Corollary: The CW-approximation X’ of any given space X is unique up to homotopy
equivalence.

Proof of (3): By the cofibrant theorem, the map v, : [X',Y'] — [X’, Y] is a bijection, and
[#] := ¢35 '[f o ¢] is thus uniquely determined.
Setup for the proof of (1): The construction can be carried out separately for each path-
component of X, so without loss of generality, assume X is path-connected, and fix an
arbitrary choice of base point; path-connectedness will imply that nothing important de-
pends on this choice. The space X’ and map ¢ : X’ — X are then constructed as the
colimit of a sequence

X(l) X(Q) ce X(n) ce Colimn_,% X(n) =: X'

with the following propertes:

(1) Each X(,) is a CW-complex;

(2) Each X, 1) is obtained from X, by attaching (n+1)-cells to the n-skeleton of X,;

(3) The maps ™ induce surjections o} : 74 (X)) — 7x(X) for every k, which are also
injective whenever k < n.

The first two conditions imply that the colimit X’ can be realized as a CW-complex such

that each X, is a subcomplex of X’ containing its n-skeleton. It follows via Theorem 2

that the inclusion X, ;) < X’ is an n-equivalence, so in light of the third condition, the

diagram

14

T (X(n+1)) T (X")

80:+1 ‘A

T (X)

112

proves that ¢ is a weak homotopy equivalence.

Initial step in the construction: For each n > 1, choose a set of pointed maps {f, : S* —
X}aes, with k, := n such that the set of pointed homotopy classes {[fo] € mn(X) | @ €
Jn} generates m,(X). Assuming the index sets Jp,,J, to be disjoint for m # n, write
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J := U, en Jn and define

1
Xy = \/S’“ 5 X, where ol i= \/fa.

acd aed

We should understand Xy as a CW-complex with the base point as its O-skeleton, and
for each n > 1 and « € J,,, an n-cell attached to the O-skeleton. Since the classes [fo] for
all o € J,, generate m,(X), the map ¢y, : m,(X(1)) — mn(X) is surjective for every n, and
manifestly also bijective for n = 0.

e Inductive step:*® Assume that X(j) and ¢* with the desired properties have already been
constructed for all k& < n. We now construct X, ) and ©" ! by adding (n + 1)-cells to
X(n)y and extending " so as to destroy the kernel of the map to 7, (X). This will leave
the n-skeleton unchanged, so the inclusion X(,) — X(,,1) will induce an isomorphism
(X)) = m(X(ng1)) for each & < n, ensuring that the map to 74(X) remains an
isomorphism. To define X(,,41), choose a collection of pointed maps {go : S" = X(n)}ack
such that the set {[go] € m,(X(,)) | @ € K} generates the kernel of ¢} : 7, (X)) = T (X).
By the cellular approximation theorem, we can assume after a homotopy of each g, that it
is a cellular map. (Note: We should use a cell decomposition of S™ with one 0-cell and one
n-cell such that the 0-cell is its base point, which is therefore also a subcomplex; applying
the cellular approximation theorem relative to that subcomplex then forces the resulting
homotopy to be pointed.) Now define

X(nJrl) = X(n) U (U €Z+1> ,

aeK

meaning more precisely that for each o € K, we attach an (n + 1)-cell e”*! via the

cellular attaching map g, : S™ — X("n) c X(n)- This makes X, 1) a CW-complex with
X(ny © X(n41) as a subcomplex that contains its entire n-skeleton. Since each }[g.] €
7, (X) vanishes by assumption, " : X,y — X can now be extended over each of the
new cells e?*! by choosing an extension of ¢" o g, : S — X to D"*!, giving rise to a
map ¢" ! : X(,,1) — X that extends ¢". It should be clear that ¢i*" : m.(X(11)) —
(X)) is still surjective for every k, but the presence of the extra (n + 1)-cells makes the
maps g, : S" — X(,) nullhomotopic after composing them with the inclusion X,) —
X(n+1), and it follows that the kernel of o} : m,(X(n)) — 7n(X) is also annihilated by
the map 7,(X(,)) = (X (n+1)). But the latter is also surjective since, by Theorem 2,
(X(n+1), X(n)) is n-connected, so this implies that @t Tn(X(n+1)) = mn(X) is injective.

e Statement (2) in the theorem should now be obvious: if 74 (X) =0 for k = 1,...,n, then
there is no need to include any cells of those dimensions in the construction described
above. Note that if you combine this detail with Whitehead’s theorem, you get some
fairly non-obvious consequences by taking CW-approximations of spaces that are already
CW-complexes, e.g. every n-connected CW-complex is homotopy equivalent to one whose
n-skeleton is a single point.

387 am taking the liberty of writing up a slightly simpler version of this part of the proof than what I explained
in the lecture. Instead of forcing pairs of maps S™ — X(,,) to become homotopic to each other by attaching reduced
cylinders Z4S™, this version focuses specifically on elements of the kernel of ¢ : mn(X(n)) — 7n(X), and adds
(n + 1)-cells in order to make individual maps S™ — X(n) generating this kernel nullhomotopic. The argument in
lecture was based mainly on [May99, §10.5], whereas this one is a hybrid of that with [Hat02, Prop. 4.13].
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Suggested reading. Our treatment this week of the 1 (X)-action on [@, X ]+ and the relationship
between [Q, X]+ and [Q, X], was based in part on [DKO01, §6.16], though the presentation by
Davis and Kirk seems a bit more effortful because they avoid using knowledge of the transport
functor. I do like the treatment of the cofibrant theorem and Whitehead’s theorem that appears in
[DKO1, §7.9]; Davis and Kirk place this material right in the middle of their chapter on obstruction
theory, but it does not actually require knowledge of the rest of that chapter. Up to some minor
details that were altered in this writeup but not in the lecture itself, our treatment of cellular and
CW-approximation followed [May99, §10.4 and §10.5], though most presentations of these topics
seem to be quite similar, so you can read something nearly equivalent in e.g. [Hat02, §4.1]. One
caveat about May’s presentation: in place of the compression lemma, May prefers to use a more
general technical result that he calls “HELP” (the Homotopy Extension and Lifting Property)—he
surely has his reasons for this, but I personally prefer the compression lemma, and have not yet
found understanding the HELP to be worth the effort that it requires.®”

Exercises (for the Ubung on 13.06.2024).
Exercise 8.1. Let X c R? denote the Warsaw circle.

(a) Show that for any compact, path-connected and locally path-connected space @, every
map f : @ — X has its image contained in a subset of X homotopy equivalent to a
compact interval; in particular, the image of f will not enter some region of X in which
the oscillations become arbitrarily wild. (This proves that 7,(X) = 0 for all n > 0.)

(b) While part (a) shows that there are no interesting maps S™ — X for any n > 0, there
is a fairly obvious map f : X — S! that heuristically resembles a map of degree 1; more
concretely, f sends the compact interval {0} x [-1,1] € X to a base point * € S* and maps
the rest of X bijectively to S\{#}. Show that f is not homotopic to a constant map, thus
proving that X is not contractible.

Hint: If f were nullhomotopic, then it would admit a lift to the universal cover R — S*.

Note that you cannot conclude this from the usual lifting theorem in covering space theory,

because X is not locally path-connected—however, you can still use the fact that the

covering map R — S! is a fibration. Deduce a contradiction from the existence of this lift.
Remark: We will see later that there is a natural bijection between [X, S'], and the singular coho-
mology H*(X;Z) whenever X is a CW-complex. But the Warsaw circle clearly has H (X;Z) = 0
(why?), thus demonstrating the failure of this correspondence in general for spaces that are not
CW-complexes.

Exercise 8.2. We say that p : E — B has the homotopy lifting property (HLP) with respect to
a pair of spaces (X, A) if the problem

is always solvable, i.e. given any homotopy H : X x I — B, along with a lift I;TO : X > FE of
Hy = H(-,0) and a lifted homotopy h : A x I — E defined on the subset A ¢ X, H admits a lift

391t is unclear to me whether this is really what May meant to say, but the exposition in [May99, §10.3]
seems to suggest that one could deduce the basic result about inclusions of CW-subcomplexes being cofibrations
(cf. Exercise 5.4(e)) as a special case of the HELP. That would be nice, but I don’t think it’s true; the reality is that
the proof of the HELP (which May sketches in only two lines, using the words “induction over skeleta” to make it
sound easy) inevitably requires choosing extensions of homotopies defined on subcomplexes, which is something of
a headache if you haven’t already proved beforehand that they are cofibrations.
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H : X x I — E that matches Hy on X x {0} and hon A x I. Show that the following conditions
on p: ' — B are all equivalent to the assumption that p: E — B is a Serre fibration:

(i) p has the HLP with respect to the disk D" for every n > 0;
(ii) p has the HLP with respect to the one point space {#} and the pair (D", S" 1) for every
n=1;
(iii) p has the HLP with respect to all CW-pairs (X, A).
Hint: You can get from (i) to (ii) via a clever choice of homeomorphism of pairs. Then use induction
over the skeleta to get to (iii).

Exercise 8.3. The following application of Serre fibrations is borrowed from a famous paper of
Gromov in symplectic geometry [Gro85]. All the spaces mentioned below have obvious topologies
as subsets of finite-dimensional vector spaces, and with a little bit of differential geometry, one can
show that they are all smooth submanifolds. It follows in particular that they are triangulable,
and are thus CW-complexes; that is the only detail from the past two sentences that you’ll actually
need to know.

Fix a real vector space V of even dimension 2n for some n € N, and define the space of complex
structures on V by

J(V):={J:V >V linear | J> = -1} .
We wish to compare this with the space of linear symplectic structures on V, defined as
Q(V):={w: V@V - R bilinear | w(v,w) = —w(v,w) for all v,w and w(v,-) # 0 for all v # 0} .
We say that J € J(V) is tamed by w € Q(V) if the condition
w(v,Jv) >0 for all v # 0

is satisfied. We say that J is compatible with w if it is tame and additionally the positive bilinear
form

v, wy = w(v, Jw)
is symmetric, thus defining a real inner product on V.

The following example shows that every J € J (V) is compatible with some w € Q(V): regarding
C™ as a real 2n-dimensional vector space, multiplication by i defines a real-linear transformation
that we can view as an element i € J(C"), and with a bit of linear algebra, it is not hard to show
that all complex structures on V are equivalent to this one via suitable choices of basis. One can
then use the standard Hermitian inner product { , ) on C" to write down an example of a linear
symplectic structure w € Q(C™) compatible with ¢, namely

w(v,w) := Reiv, w).

We will see in this exercise that up to homotopy, there is a natural homotopy equivalence J (V) —
Q(V) sending each J to an w that tames it. This correspondence has important consequences
linking symplectic and complex geometry: roughly speaking, it implies that all purely homotopy-
theoretic questions about symplectic structures on smooth manifolds are equivalent to questions
about almost complex structures.

In order to set up the correspondence, define the intermediate spaces

X7(V)i={(w,]) e V) x J(V) | J is tamed by w},
X (V)= {(w,J) e V) x J(V) | J is compatible with w} .
(a) Convince yourself that the projection map ps : X7(V) —» J(V) : (w,J) — J is a Serre
fibration, and its fibers are contractible.

Hint: The contractibility of the fibers is the easy part—what kind of subset is the set of all
w € Q(V) that tame a given J € J(V')? For proving that the projection is a Serre fibration,
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first use Exercise 8.2 to make the condition you need to establish as simple as possible.
It may then be helpful to observe that tameness is an open condition, and if you’ve seen
partitions of unity before, you may also recognize that this is a good place to use one.

(b) Deduce that the map py : X7(V) — J(V) is a homotopy equivalence.

Before we continue, you’ll need to accept as a black box that the corresponding statements about
the projection py : X(V) — J(V) are also true: it is a Serre fibration, and it has contractible
fibers, implying that it is a homotopy equivalence. The contractibility of the fibers is quite easy
to see; proving the homotopy lifting property takes a bit more work, since compatibility (unlike
tameness) is not an open condition, but there are linear-algebraic tricks for dealing with this, the
details of which would be too much of a digression. Those tricks also imply, in fact, that the other
projection p; : X (V) —» Q(V) : (w,J) — w is yet another Serre fibration with contractible fibers.
Take these facts as given in the following.
(c¢) Prove that the inclusion X7 (V') — X (V) and the projection p; : X7(V) - Q(V) : (w,J) —
w are also homotopy equivalences.
(d) Deduce that for any given w € Q(V), the set of all J € J(V) that are tamed by w is
contractible.

Exercise 8.4. Prove the following relative version of the CW-approximation theorem: for any
pair of spaces (X, A), there exists a CW-pair (X', A’) and a map of pairs ¢ : (X', 4") — (X, A)
such that both of the maps X’ — X and A’ — A defined by ¢ are weak homotopy equivalences.
(What can you say in this case about the induced maps 71 (X', A’) - 7, (X, A)?)

9. WEEK 9
Lecture 14 (10.06.2024): Homotopy excision, part 1.

e Motivational question: What has stopped us so far from computing 7, (S™) by induction
on n, the same way that one computes H, (S™;Z)? Most of the ingredients for such an
argument are in place: we know the case n = 1, we have homotopy invariance, and we
have long exact sequences of pairs in which 7, (CX) will vanish for any cone CX. What’s
still missing is excision.

e The excision question: Given B c B < A ¢ A ¢ X, when does the inclusion (X\B, A\B) —
(X, A) induce an isomorphism on m?

Equivalent formulation: Given subsets A, B — X whose interiors cover X, and a base
point in A n B, when is the map 7x(A,A n B) — 7(X, B) induced by the inclusion
(A, An B) — (X, B) an isomorphism?

e Definition: For k > 2, a k-ad of spaces (X;Aq,...,Ar_1) consists of a space X and
subsets Ap,..., Ay 1 € X. It is a pointed k-ad if it is equipped with a base point
* € Ay n ... N Ap_1, thus making (X, A;) a pointed pair for each j = 1,...,k —1. A
map of k-ads f: (X;A1,...,Ap_1) = (X5 A4),..., A}, ;) isamap f: X — X’ such that
f(A;) © A for each j = 1,...,k — 1. There are similarly obvious definitions for pointed
maps of k-ads and homotopies of such maps, leading to categories of pointed or unpointed
k-ads and associated homotopy categories. A k-ad for k = 2 is just a pair of spaces in the
usual sense; for k = 3 and k = 4, they are called triads and tetrads respectively.*’

e Homotopy excision theorem (Blakers-Massey): Suppose (X; A, B) is a triad with X = AuB
and C := An B # &, such that (A4, C) is m-connected and (B, C) is n-connected for some

4011 the lecture 1 defined the term “k-ad” to mean what I am actually calling a ?(k + 1)-ad” in this writeup. I'm
pretty sure the terminology as written here is better, since it would seem silly for the terms “2-ad” and “triad” to
be synonymous. In practice, we are only actually interested in pairs, triads and (occasionally) tetrads.
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m,n = 0, and suppose also that either m > 1 or C is path-connected. Additionally, assume
one of the following situations:
(i) The interiors of A and B form an open covering of X.*!

(ii) X is a CW-complex with A, B,C c X as subcomplexes.
Then for all choices of base point in C, the map 7 (A, C) — m(X, B) induced by the
inclusion (A,C) — (X, B) is bijective for all k = 1,...,m + n — 1 and surjective for
k=m+n.

¢ Remarks: One could easily deduce case (ii) in the theorem from case (i), but I have chosen
to state it separately because proving case (ii) directly is slightly easier, and anyway, the
important applications we discuss will only require case (ii). In the lecture I neglected to
mention the possibility of allowing (A, C') to be only 0-connected while C'is path-connected;
that is the assumption stated in [Hat02, Theorem 4.23|, whereas [May99, §11.1] assumes
(A,C) is at least 1-connected while allowing C to be disconnected. Note that while our
assumptions technically allow m = n = 0, the statement is vacuous in that case due to
the lack of definitions for relative my. The version stated in [May99, §11.1] also includes a
conclusion about the induced maps 7 (C) — m(A) and mo(B) — 7o(X), which I have not
bothered to state here.

e Corollary (Freudenthal suspension theorem): For any well-pointed space X that is n-
connected for some n > 0, the map

(X)) = [BFS0, X] =5 [2F180 BX] = 7041 (5X)

defined via the reduced suspension functor ¥ := ¥, is bijective for all k = 0,...,2n + 2
and surjective for k = 2n + 1.

e Proof of Freudenthal: Well-pointedness implies that up to homotopy equivalence, we can
replace reduced suspensions and cones with their unreduced counterparts, which lend
themselves better to excision arguments. We regard both the reduced and unreduced
suspensions ¥ X as quotients of X x I and decompose them as a union of two (reduced or
unreduced) cones

YX=CXu(lCX,
where CX is a quotient of X x[0,1/2] and C'X is a quotient of X x[1/2,1],s0 CXnC'X =
X x {1/2} = X. The inclusions X = X x {1/2} - CX — ¥X and X = X x {1/2} —
C'X — XX are automatically pointed maps in the reduced case, and in the unreduced
case, we can place the base points on the cones and suspensions to make this so. Denote
the summit of the unreduced bottom cone by p € C, X < ¥, X. We then have a commuting

diagram
b
e (X) - 1 (24 X)
O | = l;
7Tk+1(Cf~_X,X) 7Tk+1(E+X,C+X) ’

e e

M1 (CoX, X) —== mes1 (BoX\{p}, CoX\{(p}) —— Thr1(ZeX, CoX)

in which all unlabeled arrows are induced by inclusions, and ¢ denotes the quotient pro-
jections from unreduced to reduced cones/suspensions. The top vertical arrows are both
bijections due to long exact sequences that contain homotopy groups of cones, while the

41Many authors call (X; A, B) in this situation an excisive triad. I prefer to avoid this term for now, because
when we talk about homology later on, I will want the word “excisive” to mean something a bit more general.
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bottom vertical and bottom left horizontal arrows are bijections because they are induced
by homotopy equivalences; in the case of the two maps labelled ¢, this follows from well-
pointedness, and one can use the 5-lemma to deduce bijections of relative homotopy groups
from bijections of absolute ones. It remains only to investigate the map on 7 induced by
the inclusion

(X X\{p}, Co X\{p}) = (3o X, Co X).

Viewing ¥, X as the union of the interiors of A := X, X\{p} and B := C, X with intersection
An B = C,X\{p}, the n-connectedness of X makes (4, An B) = (. X\{p}, Co X\{p}) =
.€e.

(CIX,X) an (n + 1)-connected pair since the inclusion X — C’/X induces a surjection
Tm (X) = 7 (CLX) = 0 for all m and a bijection for m < n. Similarly, the inclusion

X 15 0, X\{p} — CoX

induces surjections/bijections on ,, precisely when C, X\{p} — C.X = B does, making
the pair (B, An B) also (n+1)-connected. The stated result then follows from the excision
theorem.

Remark: There are easy counterexamples to the claim that 7, (X) = 7,41 (ZX) without
some dimensional assumption relating k£ and the connectedness of X, and from this one
deduces that the dimensional conditions in the excision theorem cannot be dropped, in
contrast to the more powerful excision property satisfied by homology and cohomology.
One such counterexample is

0 = ma(R) = mo(S") & m3(5?),

where 0 = m3(R) = 7m2(S!) comes from viewing the contractible space R as a covering space
of S* (see Exercise 7.5), and 73(S?) # 0 is deduced from the Hopf fibration (Exercise 7.8).
Corollary: 7,(S™) =~ Z for every n € N.

Proof: Since S™ is (n — 1)-connected, Freudenthal implies that ¥ : 7, (S™) — m,41(S™*1)
is an isomorphism for every n > 2, and the problem is thus reduced to proving 7 (S?) = Z.
For this, one can use the Hopf fibration p : S — CP' = C u {00} = S2, whose fibers are
homeomorphic to S* (see Exercise 7.8): we then have a long exact sequence

o m(8%) — m(82) T 11 (8Y) — 1 (S%) — ...

7

and since S® is 2-connected, dy : m2(S?) — 71(S1) = Z is therefore an isomorphism.
Remark: Although Freudenthal does not imply it, one can deduce from the computation
above that X : 71 (S?) — m5(S5?) is also an isomorphism. To see this, you should first recall
what you’ve learned in previous courses about the integer-valued degree of maps S™ — S™
and convince yourself that for every n € N, the map

mn(S") = Z: [f] — deg(f)

is a group homomorphism. Since ¥ sends the identity map S' — S! to the identity map
5% — 52, the image under ¥ : 71 (S1) — m(S?) of a generator of m(S!) = Z is therefore a
primitive element of 72(S?) = Z, and thus a generator. One also deduces in this way that
the map [f] — deg(f) is in fact an isomorphism 7,,(S™) — Z for every n € N.

Lemma: Cases (i) and (ii) of the excision theorem both follow from the following variant
of case (ii) with stronger hypotheses:

(ii))> X is a CW-complex with subcomplexes C = A n B < A,B c X such that the

m-skeleton of A and the n-skeleton of B are both contained in C.
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Proof: The idea is to construct a CW-approximation of triads
(XA, B") % (X; A, B),

namely so that (X’; A, B’) is a triad of CW-complexes satisfying the strengthened hy-
pothesis, and ¢ defines weak homotopy equivalences X’ — X, A’ - A, B — B and
A" n B" =: C' - C. One constructs this by first constructing a CW-approximation
C' of C, and then extending it to two CW-approximations of pairs (A’,C’) — (A, C) and
(B',C") — (B,C) in the sense of Exercise 8.4. This is a straightforward extension of our
proof of the CW-approximation theorem in Lecture 13, and the assumption that (A, C) is
m-connected gives us the freedom to begin the induction with (m+1)-cells when expanding
C’ to A’; the n-connectedness of (B, () has a similar implication for (B’,C”). One then
defines X’ as the pushout A’ ucr B, with ¢ : X! — X as the unique map extending the
previously defined weak homotopy equivalences A’ — A and B’ — B. What is not obvious
from this construction is why ¢ : X’ — X should be a weak homotopy equivalence, and in
fact, this would not be true in general without the assumptions on X = A u B stated in
the excision theorem. Below we discuss cases (i) and (ii) separately.

Why ¢ : X’ - X is a weak homotopy equivalence in case (ii):

Since we are talking about CW-complexes, the word “weak” can be removed, as White-
head implies that the maps A" — A, B’ — B and C’ — C defined by ¢ are homotopy
equivalences. Another helpful detail is that up to homotopy equivalence, the pushouts
X' = A ue B" and X = A ug B can be replaced by homotopy pushouts, i.e. mapping
cylinders, producing a diagram

Z(C'— A, - B'") —— Z(C — A,C — B)

| |

X' =AuveB —*% s AucB=X

in which the vertical arrows are quotient projections that collapse the cylinders. Equiva-
lently, the map Z(C' — A,C — B) — X is determined by a reinterpretation of the strictly
commutative pushout diagram

C——A
B——X
as a diagram in hTop with the trivial homotopy between the two composed inclusions, and
similarly for the map Z(C’' — A’,C' — B’) —» X’. Maps from homotopy pushouts to
pushouts defined in this way are not always homotopy equivalences, but these are, due
to the fact that C — A and C' — A’ are cofibrations (see Exercise 9.4). With this
understood, we can interpret the map between the two mapping cylinders as induced by
an isomorphism in the category of pushout diagrams discussed in Lecture 3, which implies
that it is a homotopy equivalence.
Why ¢ : X’ - X is a weak homotopy equivalence in case (i):
After replacing the pushout X’ = A’ ug: B’ with a homotopy pushout and citing Exer-
cise 9.4, we are free to assume that X’ is also covered by the interiors of A’ and B’. We
can then apply a general theorem that is stated and proved in [May99, §10.7], and I will
attempt below to summarize a less technical variation on May’s proof of that theorem.
The main idea is one that you have seen before in the context of other excision theorems:
subdivision.
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e Weak homotopy theorem for excisive triads: Assume f: (X'; A’, B’) — (X; A, B) is a map
of triads such that X = A U B, X’ = A’ U B’, and the restrictions of f to maps A’ — A,
B - Band C' := A n B — An B =: C are all weak homotopy equivalences. Then
f: X" — X is also a weak homotopy equivalence.

Proof: We start with a standard mapping cylinder trick...the diagram

! (X; A, B)

\ 2

(221 b ), z(s' () 5 B))

(X' A, B)

tells us that without loss of generality, we are free to assume f is an embedding. A quick
remark about this: your first naive guess for the triad of mapping cylinders might have
been

(Z(f); AV ESNWAY: N B)),

but one cannot guarantee in general that the interiors of the two subsets in this triad
cover Z(f). Replacing A’ and B’ with the larger sets f ~(A) and f~1(B) fixes this problem,
and does so without changing the homotopy type of the triad of mapping cylinders.

With that out of the way, assume f is the inclusion of a subset X’ ¢ X with A’ c A
and B’ ¢ B. The goal is then to show that 7 (X, X') = 0 for every k € N and every choice
of base point in X', or equivalently, that every map

(I%,01%) =5 (X, X')

is homotopic rel 0I* to one whose image lies in X’. The assumption about open coverings
makes possible the following: after subdividing I* into sufficiently small subcubes and tak-
ing suitable unions of those cubes, we can equip the pair (I*, 0I*) with a cell decomposition
in which it contains subcomplexes

Ke=KinKpc Kia,Kpc KqauKp=1F
such that
o(K4) C A, o(Kp) C B, o(KanoI*yc A', and o(Kgnol*)c B'.

Having done this, we construct the desired homotopy of ¢ in three steps:

(1) Homotop ¢|x. rel KcnoI* to a map whose image lies in C; this requires an induction
over the skeleta using the compression lemma, which is applicable because C’ — C' is
a weak homotopy equivalence. The homotopy can then be extended to the rest of I*
since K u 0I¥ < I* is a cofibration.

(2) Homotop ¢|x, rel Ko u (Ka ndI%) to a map whose image lies in A’; this follows by
a similar argument as in step 1 and is possible because A’ — A is a weak homotopy
equivalence.

(3) Homotop ¢l rel Ko u (KpndI*) to a map whose image lies in B’; likewise possible
because B’ — B is a weak homotopy equivalence.

e This lecture concluded with a definition of the homotopy groups of a triad, but I'm deferring
that to the writeup of the next lecture, where they are actually used.

Lecture 15 (13.06.2024): Homotopy excision, part 2.

e Loose end from last time: We need to prove the homotopy excision theorem for case (ii)’,
meaning that X = A ug B is a CW-complex with subcomplexes A, B and C = An B
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such that A and B have only high-dimensional cells outside of C; specifically, A™ c C and
B" c C.

Definition: If (X, A) is a pointed pair of spaces, let F(A — X) < X! denote the homotopy
fiber of the inclusion, i.e. the space of paths in X that begin in A and end at the base point.
We observe that any inclusion of pairs (4,C) — (X, B) gives rise to a natural inclusion
of homotopy fibers F(C — A) — F(B — X). Recall that the relative homotopy groups
were defined in Lecture 11 as

(X, A) = m 1 (F(A — X))
for Kk > 1. For &k > 2, we can now also define the homotopy groups of a pointed triad
(X; A, B) in any of the following equivalent ways:
(X5 A, B) =70 (F(F(C — A) > F(B — X)))
= m—1 (F(B — X),F(C — A))
= [ I7H Ih oI W I5™h), (X5 A, B, #)]

where in the third line, we single out two specific (k — 1)-dimensional faces of the boundary
of the k-cube,

=12 x {0y x I,  IEt.=T11 < {0}

The description in the third line follows from that of the first line by identifying pointed
maps %" 28 = [¥72/91%"2 — Y with maps of pairs (I*"2,0I*"2) — (Y, #) and inter-
preting paths in the path space X’ as maps I? — X, thus giving

(9.1) F(F(C— A) — F(B — X)) = {maps (I*;{0} x I,I x {0},rest of 0I%) — (X; A, B, %)},

which is a pointed space with the constant map I2 — # € X as base point. There is an
obvious group structure for 7 (X; A, B) whenever k > 3, and it is abelian for k& > 4, while
m2(X; A, B) is only a pointed set.

There is a more geometric characterization of 7 (X; A, B) via maps defined on the pointed
triad (Dk;]]])’i_l,]])’i_l), where S*~1 = 0D* is decomposed as a union of two disks ]D)’;_1
that intersect at their common boundary oD% = S¥~2 < S¥~!, which contains the base
point. The basic observation is that if we quotient out the boundary region

K :=oIM\(I5 v 1Y) c or*

on which the tetrad maps I* — X described above are required to be constant, then one
can choose a homeomorphism of I*/K to DF that identifies the resulting quotients of I 1’2_1
and Ig_l with ]D)ﬁ_1 and D*~! respectively, giving

m(X; A, B) = [(DF; DE- DF=1) (X A, B)] .

The group structure of 7 (X; A, B) for k > 3 is less clear from this perspective, but it’s
good for pictures.

For another useful characterization of 7 (X; A, B), one can foliate the square I? by paths
from {0} x I to I x {0}, giving a new interpretation of the iterated homotopy fiber (9.1)
as a space of paths in

P(A,B) :={ye X' | 7(0) € A and 7(0) € B} X1

which contains a natural embedding of C' = A n B as the set of constant paths. Note that
P(A, B) has a natural description as the homotopy pullback of the inclusions A — X and
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B — X, appearing in the homotopy-commutative diagram

P(A,B) =% A

o~ |
B—— X

whereas C' = A n B can likewise be interpreted as the strict pullback of the same pair of
inclusions. Elements of the space (9.1) are thus equivalent to paths in P(A, B) that begin
in C c P(A, B) and end at the base point, thus

7T]€(X;A7B) = kal(P(A, B),C)

This is the characterization we will use in the proof of the excision theorem.
¢ The long exact sequence of relative homotopy groups of the pair (F'(B — X), F(C — A))
can now be written as

.o 73(X,B) » m3(X; A, B) - ma(A,C) - m(X, B) » ma(X; A, B) » m(A,C) - m (X, B)

e Homotopy excision theorem (symmetric version): Assume the same hypotheses as in the
homotopy excision theorem, except that arbitrary values m,n > 0 are allowed and there
are no connectivity assumptions on C. Then for all choices of base point in A n B,

m(X;A,B) =0 forall k=2,...,m +n.

e Remark: The additional hypothesis in the original excision theorem that either m > 1 or C
is path-connected is needed in order to make the map 71 (A4, C) — 71 (X, B) surjective, since
the latter cannot be deduced from the long exact sequence above. Proving this surjectivity
is a straightforward exercise that might remind you of the proofs of the simplest cases of
the Seifert-van Kampen theorem (see Exercise 9.1). The rest of the theorem then follows
via the long exact sequence from the symmetric version stated above.

e Setup for proving the symmetric excision theorem: Assuming k < m + n, we need to show
that m,_1(P(A, B),C) vanishes for all choices of base point in C, or equivalently, that
every map

f:(DF1,8%2) - (P(A, B), O)

is homotopic rel S*~2 to a map with image lying in C. By adjunction, such maps are
equivalent to maps DF~! x I — X that can only touch finitely many cells of X, so by
induction, it suffices to consider the special case when A and B each contain only one cell
in addition to C,

X =ePuCuel,
where A =C ueP, B=Cuel p>mandq>n,hence k +1 < p+ ¢g. Choosing points
x € eP and y € e, there is now a deformation retraction implying that the inclusion

(X34, B) = (X; X\{y}, X\{z})
is a homotopy equivalence of triads, and we are therefore free to make the replacements
A= X\, Bi=X\fa}, Ci=X\{z,y}.

What comes next is the exceptionally clever part.

e Dimensional lemma (this is where the assumption k + 1 < p + ¢ is required): The map
f : D*! — P(A, B) is homotopic rel S¥~2 to a map with the property that for each
z € D* 1 the path f(z) € P(A, B) c X! does not hit both  and y.
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e Proof of the theorem (assuming the dimensional lemma):

Since all of the paths f(z) € X! miss at least one of x or y, we can choose a continuous
function u : D*~' — I such that

u(z) = 0if f(z) hits v, u(z) = 1if f(z) hits z.

Asamap f:DF! — X7 f is clearly homotopic rel S*72 to the map f/ : D*~! — P(A, B)
which sends each z € D*~! to the constant path living at the point f(2)(u(z)). We
claim that this is in fact a homotopy of maps D*~! — P(A, B) and that f’ takes values
in C, meaning that none of the constant paths f’(z) live at = or y. Indeed, one defines
the homotopy {fs : D*"! — X7} ./ such that for each s € I and 2z € D*~1) fi(2) is a
reparametrization of f(z) over subintervals that shrink to zero length as s — 1. Now
observe:

— If u(z) ¢ {0,1}, then f(z) misses both x and y, and therefore so does f,(z) for every
sel.

— If u(z) = 0, then f(z) may hit y but it misses x, and f’(z) lives at the point f(z)(0) €
A = X\{y}. The fact that f(z) misses x guarantees also fs(z)(1) € B = X\{z} for
every s, and that f/(z) is also contained in C = X\{z, y}.

— If u(z) = 1, one reaches a similar conclusion with the roles of x and y reversed.
Proof of the dimensional lemma: All versions of this proof appeal at some stage to a general
position argument, and there are various ways to carry out the details, but the quickest
in my opinion is to make some use of smoothness. By adjunction, f : D*~! — P(A, B) is
equivalent to a map of tetrads

(DF1 x I;DFL % {0}, DFL % {1}, 8¥2 x I) -5 (X, A, B, C),
and up to a C°-small homotopy, we can assume via standard perturbation results in dif-
ferential topology (see [Hir94]) that f is a smooth on some neighborhood of the subsets
f~Y(z) and f~1(y), where it can be regarded as a map into the smooth manifold e? = DP
or e? = D7 respectively. The map

DF L x 12 Es X % X i (2,8,1) (f(z,s),f(z,t))
is then also smooth near F~!(z,y), and in light of the dimensional condition
dim(DF ! x I?) =k +1 <p+ ¢ = dim(e? x e?),

Sard’s theorem implies that almost every point (z’,y’) near (z,y) is not in the image of F'.
Using isotopies of RP and R? near x and y respectively, we are free to assume after a further
homotopy of f that (z,y) instead of (2',y') is a point that F' misses, and f now has the
desired property.

This completes the proof of the homotopy excision theorem. The application m,(S™) =~ Z was
discussed in the previous lecture; the remainder of this lecture covers two more applications.

e Theorem 1: Given a set J and an integer n > 2, consider the pointed space

X = \/ Sm
aeJ
and the inclusions % : S™ — X associated to each « € J, which induce homomorphisms
i : mp(S™) = 7, (X) and therefore determine (via the universal property of the coproduct)
a homomorphism

P :=Pis: P ma(S") - mu(X).

aeJ
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The map @ is an isomorphism; in particular, 7, (X) is thus isomorphic to the free abelian
group generated by J.

Proof: Assume first that .J is finite, and consider the product space Y := [] ;5™
Viewing S™ as a CW-complex with one 0O-cell and one n-cell gives X a cell decomposition
with one O-cell and an n-cell associated to each « € .J, and the product Y likewise inherits
a product cell decomposition whose n-skeleton has a natural identification with the wedge
sum X. Moreover, Y only has cells in dimensions that are divisible by n, so X is also its
(2n — 1)-skeleton, and it follows that (Y, X) is (2n — 1)-connected. Since n > 2 and thus
2n—12n+1, (Y,X) is also (n + 1)-connected, so that the long exact sequence of the
pair (Y, X) gives an isomorphism

0=mni1(YV, X) — mp(X) = 1, (V) — 7, (Y, X) = 0.

There is an easy general formula for homotopy groups of product spaces: the projections
p® Y — S” for each o € J induce homomorphisms p¢ : m,(Y) — m,(S™) and thus (by
the universal property of the product) a homomorphism

Y= Hpi‘ (YY) — 1_[ T (S™),
« aed
which is easily shown to be an isomorphism in general. But since J is finite, the latter
product is the same thing as the direct sum, and one can now check that ¥ and ® are
inverses.

The case where J is infinite follows easily from the finite case due to the fact that every
map from D* or S* to X can intersect at most finitely many cells, which in this case means
finitely many copies of S™ in the wedge sum, beyond the base point.

Theorem 2: Assume A — X is a free cofibration, the pair (X, A) is m-connected and A is
an n-connected space for some m,n > 0. Then for all choices of base points in A, the map

Gx : TR(X, A) > (X /A)

induced by the quotient projection ¢ : (X, A) — (X /A, A/A) is bijective for k = 1,...,m+n
and surjective for k =m +n + 1.
Proof: Assuming A — X is a free cofibration gives us the freedom to use its unreduced
homotopy cofiber cone(A — X) = CA us X is a stand-in for the actual cofiber X /A,
since the natural comparison map cone(A — X) — X/A is a homotopy equivalence
(cf. Exercise 9.4). A more direct description of this homotopy equivalence is as the quotient
projection

cone(A — X) =CAus X - cone(A — X)/CA,
since the inclusion X < cone(A — X) descends to a natural homeomorphism of X /A to
the quotient at the right. Consider the diagram

(X, A) —— m(cone(A — X),CA) —2 7 (cone(A — X)/CA) = mp(X/A)

NT T
= ~ b

7 (cone(A — X))

in which the unlabelled arrows are induced by inclusions, the up arrow is bijective due to
a long exact sequence containing the homotopy groups of the contractible space C'A, and
the diagonal arrow labelled “g,” is also bijective for the reasons stated above. The map
(X, A) = 7, (X /A) is consequently bijective or surjective if and only if the same holds
for the map induced on 7 by the inclusion

(X,A) — (cone(A — X),CA).
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Viewing cone(A < X) as the union of C'A with an open neighborhood of X, the excision
theorem applies whenever k& < m + n + 1 since (X, A) is m-connected and (CA, A) is
(n + 1)-connected.

Highlights from the Ubung. It’s worth mentioning two interesting results about Serre fibrations
that were discussed in the Ubung this week.

First, the long exact sequence of homotopy groups for a Serre fibration p : E — B with fiber
inclusion j : F = p~!(*) — F is a special case of an exact sequence of the form

o [22X, Bl & [2x, Pl 3 [2X, E] 2 [2X, B] 3 [X, F] 2 [X, E] % [X, B],

which can be defined for any CW-complex X, and makes sense in part because ¥ X is also a CW-
complex for every n > 0. (This implies for instance via adjunction that Q"p : Q"E — Q"B is also a
Serre fibration for every n > 0.) The most non-obvious detail about this sequence is how to define
the connecting maps 0y; our definition in the stricter setting of Hurewicz fibrations p : £ — B
relied on a homotopy class of maps § : Q2B — F defined via the transport functor, but this only
works if p : F — B has the homotopy lifting property with respect to B, which is generally not
a CW-complex. One can show however that for any Serre fibration, there is still a well-defined
transport functor associated to homotopies H : X x I — B whenever X is a CW-complex, and this
is enough to give a definition of 9, : [XX, B] — [X, F'] after interpreting pointed maps X — B
as pointed homotopies between the constant map X — B and itself; lifting such a homotopy gives
a homotopy from the constant map X — FE to a map that takes values in the fiber F', whose
homotopy class is well defined because it comes from an application of the transport functor for
homotopies of maps X — B. Once the definition of d, is in place, it is a straightforward exercise
to verify the exactness of the sequence.

The second result to mention is the following, which is a nearly immediate consequence of the
long exact sequence of a Serre fibration and Whitehead’s theorem:

Theorem. Suppose f: X — Y is a surjective Serre fibration: then f is a weak homotopy equiv-
alence if and only if the fibers f~'(y) are weakly contractible for every y € Y. In particular, if
X, Y and the fiers f~(y) are all homotopy equivalent to CW-complexes, we conclude that f is a
homotopy equivalence if and only if every fiber f=1(y) is contractible.

The surjectivity assumption is only meant to preclude silly examples in which the induced map
mo(X) — mp(Y) fails to be surjective. This theorem is quite popular in several areas of differential
geometry and topology, where almost all interesting spaces (even infinite-dimensional ones) have
the homotopy type of CW-complexes, and we therefore obtain a practically checkable criterion for
certain maps to be homotopy equivalences. It can be applied for instance in Exercise 8.3.

Suggested reading. The literature contains an abundance of unreadable proofs of the homotopy
excision theorem, and what I eventually presented in lecture was something of a hybrid between
[May99, §10.6 and Chapter 11] and [MV15, §4.4.1]. I made a conscious decision to use some black
boxes from the smooth category in order to avoid getting bogged down with technical details in the
proof of the dimensional lemma—in [Hat02, §4.2] and [tDO08, §6.9], you can see some other ways
of doing the same job without venturing into the smooth category, but the details are inevitably
tedious. (To be fair, the proof of Sard’s theorem is also somewhat tedious, though in principle it
can be understood by any student with a solid first-year analysis background.)

Hatcher’s treatment of the standard applications of excision is relatively readable, in spite of
my minor complaint about failing to make clear why he can get away with using reduced and
unreduced suspensions interchangeably. (Hint: It’s because of cofibrations!)

I only recently discovered the book [MV15], which has some interesting things to say about the
wider significance of the homotopy excision theorem from a more category-theoretic perspective.
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For a book that tries to express everything in terms of square-shaped diagrams involving terms
like “homotopy cocartesian,” I find it surprisingly readable.

Exercises (for the Ubung on 20.06.2024).

Exercise 9.1. Fill in the gaps between the proofs of the standard homotopy excision theorem and
the symmetric version about the vanishing of the triad groups m(X; A, B), i.e. show that under
the given hypotheses, the map 71 (A, C) — 71 (X, B) is surjective for all choices of base points.

Exercise 9.2. Here’s an exercise that we really should have done last week, but better late than
never. Suppose p : E — B is a Serre fibration whose fiber inclusion F' — FE is pointed homotopic
to a constant. Show that 71 (F) is abelian and

Tn(B) = mp(E) @ 71 (F)

for every n > 2.

Hint: Turn the long exact sequence of homotopy groups into a split short exact sequence. You can
construct a splitting out of a homotopy of F' — F to the constant map.

Remark: One obtains some real-life applications of this formula from the quaternionic and octo-
nionic versions of the Hopf fibration

§P—>S5TH St and ST SV DB SE
which are discussed e.g. in [Hat02, Examples 4.46 and 4.47]. These imply that m7(S*) and m15(S®)
each contain Z as direct summands.

Exercise 9.3. The following example illustrates another contrast between homotopy groups and
homology: the homotopy groups of a finite CW-complex need not be finitely generated. Let n > 2.

(a) Describe the universal cover of S* v S™.

(b) Show that 7, (S* v S™) is a free abelian group with a countably infinite number of gener-
ators.

(c) Show however that m,(S1 v S™) contains an element whose orbit under the action of
71 (St v S™) generates the whole group. In fancier language: , (S v S™) is isomorphic to
the free Z[m1(S! v S™)]-module with one generator.

Exercise 9.4. A pushout square

CLA

lg Jja
B 25 X
in Top or Top,, can always also be interpreted as a commuting diagram in hTop or hTop,, respec-

tively, so that this data together with the trivial homotopy between j4 o f and jp o g naturally
determines a map u : Z(f,g) — X for which the diagram

A
iAj X
Z(f,9) —— X

commutes strictly. You should recall from Lecture 3: the map u is not uniquely determined by this
diagram alone, because Z(f, g) and the embeddings i4 and i do not actually define a pushout in
hTop or hTop,; nonetheless, the maps j4, jp and the choice of homotopy ja o f ~» jpog determine
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u in a canonical way. In this particular setting, if we identify X with the space A uc B obtained
by gluing A and B together along the maps f and g, then

Z(f,9) =Au; (CxI)uy,B—> Auc B

becomes the obvious quotient projection that leaves A and B alone but flattens the cylinder C' x I
to C. This description strongly suggests that u should be a homotopy equivalence, though that isn’t
always true: you may have recognized this already, because if you take B to be a one point space,
then Z(f, g) becomes the mapping cone of f : C' — A, also known as its homotopy cofiber, while X
becomes the actual cofiber A/f(C'), and u is now the natural comparison map from the homotopy
cofiber to the cofiber of f, which we’ve seen is a homotopy equivalence if f is a cofibration, but
not in general. This observation suggests a conjecture that turns out to be correct, and we used it
in our proof of the homotopy excision theorem for CW-complexes: the natural map Z(f,g) - X
from the homotopy pushout to the actual pushout is a homotopy equivalence whenever either f or
g is a cofibration. Let’s prove this.

(a) Back in Lecture 6, we proved a theorem stating that for any two fibrations p : £ — B
and p’ : £/ — B with the same base, if f : E — E’ is both a homotopy equivalence
and a map over B, then it is also a homotopy equivalence over B, with the important
implication that it then also defines homotopy equivalences between the fibers of p and
those of p’. The dual theorem is a fact that we have used several times behind the scenes,
but never had time to discuss explicitly in lecture: Given a pair of cofibrations j : A — X
and 7' : A — X’ with the same cobase, any map f : X — X’ that is both a homotopy
equivalence and a map under A is also a homotopy equivalence under A, and therefore
descends to the cofibers as a homotopy equivalence X/A — X'/A. Here, f : X — X'
is called a “map under A” if j' o f = 7, and the term “homotopy equivalence under A”
implies that it has a homotopy inverse g : X’ — X and homotopies of go f and f o g to
the identity through families of maps that all satisfy similar compatibility relations with
respect to 7 and j’. The proof of the theorem is an application of the transport functor for
cofibrations, completely analogous to the way that we proved the corresponding theorem
about fibrations. If you have never yet thought through the reasons why it works, do so
now.

(b) Consider a pair of pushout squares

f /

c— .4 c L u
lg | le and lg’ ) J/jfé
B X B % X'

that have the same space C in the top left corner. In what sense does a pair of maps
p:A— A" and ¢ : B— B’ under C uniquely determine a map X — X'?

(c) Notice that the double mapping cylinder Z(f,g) can also be constructed by gluing the
single mapping cylinder Z(f) = A uy (C x I) to B along the map C x {1} = C % B, and
thus also fits into an honest pushout square of the form

C < 7(f)
N
B —* Z(f,9)

Use this observation together with the theorem described in part (a) to show that if f :
C — Ais a cofibration, then u : Z(f,g9) — X is a homotopy equivalence.
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Exercise 9.5. Recall from Exercise 6.6 that every pointed space X comes equipped with a canon-
ical map ® : X — QXX. Show that the following statement is equivalent to the Freudenthal
suspension theorem: For X well-pointed and n-connected, the map ® : X — Q¥ X is a (2n + 1)-
equivalence.

Exercise 9.6. Assume X is a CW-complex whose (n — 1)-skeleton for some n > 2 is a single
point, regarded in the following as a base point, and such that all (n + 1)-cells eg“ c X"*! have
base-point preserving attaching maps ¢g : S™ — X™. Show that the map

T (X™) = ma(X)

induced by the inclusion X" — X is surjective, and its kernel is the subgroup generated by the
homotopy classes of the attaching maps [¢g] € m,(X™) for all (n + 1)-cells egH.
Hint: The group m,4+1(X"T1/X™) is easy to compute. Can you replace m,+1(X" T X") with

Tnp1(X™TL/X™) in the long exact sequence of (X" X™)?

10. WEEK 10
Lecture 16 (17.06.2024): Hurewicz homomorphisms.

rel

e In the following, Top'® denotes the category of pairs of spaces (X, A) with A ¢ X, with
maps of pairs as morphisms; taking homotopy classes of maps of pairs gives the associated
homotopy category hToprel. Choosing a base point * € A and requiring maps of pairs (and
homotopies thereof) to preserve the base point gives similar categories Top'® and hTop™.
For convenience, we sometimes identify Top with the subcategory of Top™ consisting of
pairs of the form (X, ); similarly, Top, embeds into Topfkel as the pairs of the form
(X, {#}).

e Axioms of a (generalized) homology or cohomology theory: A homology theory

hy is a collection of covariant functors {h, : Top™ — Ablnez equipped with natural

transformations hy, (X, A) =5 h,_1(A) for each n € Z and (X, A) € Top™ that satisfy
the following set of axioms. (For a cohomology theory h*, one instead has contravariant

functors h™ and natural transformations h™(A) = h"*t1(X, A) satisfying obvious analogues
of the axioms—I will concentrate on the covariant case, and usually only mention the
contravariant case when there is something non-obvious about it.)
— (HTP) homotopy: The functors h,, descend to the homotopy category as functors
hTop™ — Ab.
— (LES) exactness: For each (X, A) € Top™ and the natural inclusion maps i : A < X
and j: X = (X, ) — (X, A), the sequence

s i (A) 5 B (X) 25 b (X, A) 25 By (A) —> .

is exact.

— (EXCQ) excision: If X = AU B and there exists a continuous function v : X — I that
equals 0 on X\B and 1 on X\A, then the homomorphisms h, (A, An B) — h,(X, B)
induced by the inclusion (A, A n B) — (X, B) are isomorphisms."”

42This formulation of the excision axiom is slightly nonstandard, as one would usually only require the weaker
hypothesis that X is covered by the interiors of A and B. On the other hand, the stronger hypothesis is equivalent
to the weaker one in every application of excision you’re ever likely to think about, e.g. whenever X is metrizable,
or in any other situation where Urysohn’s lemma holds. It will be convenient to have the stronger hypothesis when
we talk about homotopy-theoretic constructions of cohomology theories.
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— (ADD) additivity: For any collection of spaces {X, € Top}aes and their natural
inclusions i* : X, — HﬁeJ X3, the induced maps

Pig: P hn(Xa) — by, (]_[Xa)

are isomorphisms. For a cohomology theory, one instead requires the induced maps

[JG@*:n" (HJ@) — [[r"(Xa)
«@ (a7 (03
to be isomorphisms.

The homology/cohomology groups h,(#) or h™(x) of a one-point space # are called the
coefficient groups of the theory.

e We call hy or h* an ordinary (or sometimes “classical”’) homology or cohomology theory
if in addition to the axioms above, it satisfies

— (DIM) dimension: h,(*) = 0 (or h"(x) = 0) for all n = 0.

We will not normally assume the dimension axiom unless it is explicitly needed, though of
course it is satisfied by the standard examples that you have seen before, namely singular
homology and cohomology. An interesting example of a homology theory without the
dimension axiom is bordism, whose coefficient groups h,(*) give the answers to nontrivial
questions about the classification of closed n-manifolds up to the bordism equivalence
relation, e.g. in oriented bordism theory, h4(*) is nontrivial due to the existence of closed
oriented 4-manifolds that are not boundaries of any compact oriented 5-manifolds (one can
use Poincaré duality and the Euler characteristic to show that CP? is such a manifold).

e Some easy exercises:

(1) For finite disjoint unions, one can derive (ADD) from (LES) and (EXC). This is why
the additivity axiom did not appear in the foundational book by Eilenberg and Steen-
rod [ES52]. It was added later by Milnor [Mil62] in order to extend the computation
of homology for CW-complexes from compact to infinite complexes.

(2) Combining (ADD) with (LES) and the 5-lemma produces a variant of the additivity
axiom for disjoint unions of pairs [ [ (Xa, 4a) := ([ [, Xa, [ [, 4a)-

e The reduced groups associated to a homology or cohomology theory are defined via the
unique map € : X — # to the one-point space as

Bin(X) := ker (hn(X) LR hn(*)) C ho(X),  B™(X) := coker <h”(*) < h”(X)> — h"(X)/im(e*),

and for pairs (X, A) with A # &, hy (X, A) := hy, (X, A) or h"(X, A) := h"(X, A).
Easy exercise (diagram chasing):

(1) The homomorphisms induced by continuous maps X L ¥ restrict to maps TLn(X ) 2L

hn(Y), or in the case of cohomology, descend to maps h™(Y) i h™(X). This makes
the reduced theories into functors on ToprCl (which automatically descend to functors
on hToplrel and are therefore invariants of homotopy type).

(2) The connecting homomorphisms 0x : hp(X,A) — h,_1(A) always have image in
n_1(A), or in the case of cohomology, the maps 0* : h"(A) — h"*+1(X, A) descend
to well-defined maps h"(A) — h" (X, A). It follows that the long exact sequences
of pairs (X, A) also define exact sequences of the corresponding reduced groups.
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e Any choice of map i : * — X defines a right-inverse of € : X — # and thus defines splittings
of the short exact sequences

0 Tn(X) o hn(X) B hp(s) = 0, 0= h"(x) S h(X) B 7(X) - 0,

making each unreduced group (non-naturally) isomorphic to the direct sum of its reduced
counterpart with the corresponding coefficient group. Note that since h,(*) can be non-
trivial for any n, one does not generally conclude from this that the reduced and unreduced
theories match outside of degree 0, unless the dimension axiom holds.

e Useful observation (equally valid for homology or cohomology): while h,,(*) can in principle
be nontrivial for any n € Z, %n(*) vanishes by construction, and therefore so does fNLn(X )
whenever X is a contractible space. It follows via the reduced long exact sequence of the
pair (X, #) that the inclusion (X, &) — (X, ) induces a natural isomorphism

hn(X) = hy(X, %) for any pointed space X.

e Exercise: For all spaces X and all generalized homology theories, there are natural isomor-
phisms 7y (X) = Tpp1 (S X).
Remark: In ordinary homology, one also has H,(X) = H,,.1(X,X) for all n > 1, but that
relies on the knowledge that H,(+) = 0 for n > 0, so it is not always valid in generalized
homology theories.

e Theorem: For any free cofibration A — X, the quotient projection (X, A) — (X /A, A/A) =
(X /A, #) induces natural isomorphisms*?

B (X, A) = hy(X /A, %) = ha(X/A),

and similarly for cohomology theories.

Proof: We use the same setup as in Theorem 2 of the previous lecture, but with the
added advantage that excision is valid without any dimensional conditions. The benefit of
assuming A — X is a cofibration is that the projection of the unreduced mapping cone
cone(A — X) = CAuUX toits quotient by CA c cone(A — X) is a homotopy equivalence.
The desired isomorphism then follows from the diagram

hn(X,A) —=— hy,(cone(A — X),CA) —— hy,(cone(A — X)/CA, #) == h,(X/A, )
?Ln(cone(A — X)) —= %n(cone(A — X)/CA) —— hn (X /A)

in which all maps are induced by the obvious inclusions or quotient projections, the up
arrows are all isomorphisms due to long exact sequences, the leftmost arrow is an isomor-
phism by excision, and the map in the bottom row is an isomorphism by the homotopy
axiom.

e Corollary (pointed additivity theorem): For any collection of well-pointed spaces {( X, o) €
Top, }aes with inclusion maps i : X, — V,BeJ X3, the induced homomorphisms

P is : P ha(Xa) _>';in<\/xa>

are isomorphisms.
Proof: Well-pointedness implies that the inclusion [ [ {zo} < ][, X« is a free cofibration,

13You may recognize this as a variant of a result about the homology of “good pairs” that is proved and used
extensively in [[at02]. Good pairs serve in elementary algebraic topology as an ad-hoc way of deriving some benefits
from the theory of cofibrations without needing to delve into the homotopy-theoretic subtleties of that theory.
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so combining the theorem with the relative version of the additivity axiom gives a sequence
of natural isomorphisms

Qa-)%n( (—Bh (Xo {za}) = (]_[Xa,]_[{xa}> =, (HX /]_[{xa}>

and the quotient at the right is precisely the wedge sum \/_ X,.

Exercise (via the 5-lemma again): The pointed additivity theorem also generalizes to
arbitrary wedge sums \/_(Xa,4q) = (V, Xa: V, Aa) of pointed pairs (X,,A,) €
Topffl, i.e. pairs with base points such that both of the 1nc1usions x — A, and * — X,
are free cofibrations.

Setup for Hurewicz maps: In the following, assume (Q, B) € Top’® is a well-pointed pair
and is also a cogroup object in hTop’®, so that for any other pointed pair (X, A) € Top’,

the set
[(Q’ B)’ (X’ A)]+

of pointed homotopy classes of maps of pairs (@), B) — (X, A) has a natural group struc-
ture.
Example 1: For n > 1 and A = {+} c X, choosing

(Q,B) := (8", %) := (I"/oI", 01" JoI")

makes [(Q, B), (X, A)]+ the group m,(X). The cogroup object structure of (S™, *) comes
from the natural identification of 1" /0I™ with the reduced suspension %"S°.

Example 2: For n > 2, identify the cube I"~! with I"~! x {0} in the boundary of I" and
define

(Q,B) := (D", 5™1) (["/W I 1/(9]" 1)

with the collapsed boundary of I" ! understood as the base point + € S7~1 < D". As we’ve
previously observed, this pair really is homeomorphic (though not in a canonical way*?) to
the standard presentation of (D", 0D™), and the group [(Q, B), (X, A)]+ is then 7, (X, A).
Our usual definition of the group structure on 7, (X, A) does not refer to a cogroup object
structure on (D", S"~!), but one can equivalently define this group structure in terms of
a cogroup morphism

(Dn’Snfl) LN (]Dn v ]D)n,Sn71 v Sn71)7

defined as a quotient projection after identifying the wedge sum with a quotient of (D™, S™)
in which the subset {1/2} x I"~! < I™ is also collapsed to a point.
Theorem: For any homology theory h, and any chosen class ¢ € h,(Q, B), the map

[(Q, B). (X, A)]1+ —2> ha(X, A) : [f] = fuc

is a group homomorphism.

Remark: This theorem does not say that h,(Q,B) — h,(X,A) : ¢ — fyc is a group
homomorphism, which is obvious.

Proof: The product on [(Q, B), (X, A)]+ is defined in terms of a coproduct morphism

p:(Q,B)—(QvQ,BvB)by
L1+ [g] = [(f v g)oul € [(Q,B), (X, A)]+

44T he lack of a canonical homeomorphism between S™ or D™ and the corresponding quotients of I"™ means that

we are abusing notation by writing these quotients in this way, but for present purposes, it is a very convenient
abuse of notation.
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for any two pointed maps of pairs f, ¢ : (Q, B) — (X, A). One convenient feature of the
category Topfkel is that its terminal objects are also initial objects, namely the one-point
pairs (#, ), so the only possible choice for the identity morphism in the cogroup structure
is €: (Q,B) — (#,*). The identity axiom for the cogroup structure then means that the
diagram

(Q v B v *) = (QvB)

Id Tld ve=:p'

(@ B) ——— (QvQ,Bv B)

1d = J{evld::p2
(* v Q, VB) = (QaB)

commutes up to pointed homotopy of maps of pairs. This implies the commutativity of
the triangle at the left in the following diagram,

hn(Q, B) —* 5 ho(Q v Q,B v B) Y% p (X, 4)

hn(Q, B) @ hy(Q, B)

in which A(c) := (¢, c) is the diagonal map, and the vertical map (pL,p2) is the inverse
of the isomorphism il v i2 that appears in the relative version of the pointed additivity
theorem.?® Feeding in ¢ € h,(Q, B) at the left and following the top row of the diagram
produces ®([f]#[g]), while following instead the diagonal arrows from left to right produces
(o ®a)(e:) = fuc + guc = B([f]) + @([g])-

e Now assume hy := H, is an ordinary homology theory with coefficient group Ho(*) = Z,
e.g. it could be singular homology with integer coefficients, though for the main result
stated below, it could also be a different theory. By one of the main theorems proved in
Topology 2, this gives us the freedom to replace H,(X) for any CW-complex X with its
cellular homology HEW (X;7Z) with integer coefficients. The quotients of cubes I" that we
decided to call S™ and D™ above have natural cell decompositions with a single n-cell, and
the n-chains defined via that cell give us canonical generators*®

[5"] e HSW(S™, % Z) =~ HSW(5™) =~ H,(S") =~ H,,(S", %) ~ Z

and

[D"] e HSWY (D", S" 1 Z) ~ H,(D",S"!) ~ Z,
such that the connecting homomorphism in the long exact sequence of (D", S™ 1) satisfies

0+[D"] = [S"1].
These give rise to the absolute and relative Hurewicz maps
T (X) = Ha(X, %) = Ha(X) : [f] = fuS"]
T(X, A) = Hy(X, 4) : [f] = f2[D"]

457 have no idea whether this is useful, but the fact that (p}k,pi) is an isomorphism requires only the finite
version of the additivity axiom, which follows already from exactness and excision.

46y slightly concerned that I may not have paid enough attention to orientation conventions to guarantee that
the relation 04 [D"] = [S™~!] holds without some annoying signs. If not, then one should make minor modifications
to my definitions to make sure this relation holds.
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The theorem above implies that these are group homomorphisms for n > 1 in the absolute
case and n > 2 in the relative case, and it is easy to verify from the definitions that they
satisfy a naturality condition with respect to pointed maps of pairs (X, A) — (Y, B). The
formula 0,[D"] = [S™~!] implies moreover that they give rise to maps between the long
exact sequences of homotopy and reduced homology groups of any pointed pair (X, A).
Hurewicz theorem (absolute version): Suppose n > 2, H, is an ordinary homology theory
with coefficient group Z, and X is an (n — 1)-connected space with the homotopy type of a
CW-complex. Then Hy(X) = 0 for all k < n, and the Hurewicz map @ : m,,(X) — H,,(X)
is an isomorphism.

Remark: We did not assume in this statement that H, must specifically be singular homol-
ogy, but if one adds that assumption, then the theorem is also true for all (n—1)-connected
spaces X, without needing to assume the homotopy type of a CW-complex. This is due to a
special property that the singular homology and cohomology theories have: weak homotopy
equivalences X — Y also induce isomorphisms Hy(X) > H,(Y) and H*(Y) S H*(X),
thus by CW-approximation, the theorem becomes valid for all spaces as soon as it is known
for CW-complexes. Morally, the reason for the singular theory to be an invariant of weak
homotopy type is that singular n-simplices o : A™ — X in any space X can be interpreted
as maps of n-dimensional CW-complexes to X, and are therefore subject to the compres-
sion lemma. (For a complete proof based on this idea, see [Hat02, Prop. 4.21].) Invariance
under weak homotopy equivalence does not follow from the Eilenberg-Steenrod axioms,
and e.g. the example of the Warsaw circle (see Exercise 8.1) shows that it does not hold for
Cech cohomology, which is nevertheless a completely valid ordinary cohomology theory.
Remark: We excluded n = 1 in the statement of the Hurewicz theorem because the
statement is not true in that case without modification, but you already know what is true
instead, namely that for X path-connected, ® : m (X) — H;(X) is surjective and descends
to the abelianization of 71(X) as an isomorphism.

Proof of the theorem: Using CW-approximation and Whitehead’s theorem, we can replace
X with a homotopy equivalent space that is a CW-complex consisting of a single 0-cell €,
some n-cells e, some (n + 1)-cells egH with pointed attaching maps ¢g : S™ — X", and
arbitrary additional cells of dimension greater than n + 1 whose presence does not affect
the computation of either m,(X) or Hy(X) for k < n. Using cellular homology, the lack
of cells of dimension k& = 1,...,n — 1 implies immediately that ﬁk(X) =0 for Kk <n. The
n-skeleton X" is now a wedge of n-spheres, and we used the homotopy excision theorem
to compute 7, of such a space in Theorem 1 of the previous lecture: the answer was the
free abelian group on the set of n-cells, which is simply the cellular n-chain group

T (X") = CSWV(X;Z),

with a precise isomorphism 7, (X") — CSW(X;Z) that sends the homotopy class of the
characteristic map (D", S"~1) — (X", %) of each n-cell " to the corresponding generator
of CSW(X;Z). Note that since there are no (n — 1)-cells, all chains in CSWV(X;Z) are
cycles, and the resulting quotient projection CSW(X;Z) — HSW(X;Z) = HSW (X Z) fits
together with the isomorphism 7, (X™) — CSW(X;Z) described above into a commutative
diagram

T (X") ———— 7, (X)

= s

CSW(X;Z) —— HSW(X;Z)
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where the map in the top row is induced by the inclusion X™ — X and & is the Hurewicz
map (after identifying HSW (X;Z) with H,(X)). Since (X, X™) is an n-connected pair,
the map 7,(X"™) — m,(X) in this diagram is surjective, and its kernel is described in
Exercise 9.6: it is the subgroup generated by the attaching maps [¢g] € m,(X™) of all the
(n + 1)-cells egH. The isomorphism 7, (X") =~ CSW(X;Z) identifies this subgroup with
the image of the cellular boundary map 0V : CSW(X;Z) — CSW(X;Z), which is the
kernel of the quotient projection CSW(X;Z) — HSW(X;Z), thus implying that ® is an
isomorphism.

Lecture 17 (20.06.2024): From Hurewicz to Eilenberg-MacLane.

(10.1)

e Hurewicz theorem (relative version): Suppose n > 2, H, is an ordinary homology theory

with coefficient group Z, A # & is a simply connected space, and (X, A) is an (n — 1)-
connected pair of spaces with the homotopy type of a CW-pair. Then Hy (X, A) = 0 for
all k < n, and the Hurewicz map @ : 7, (X, A) —» H,(X, A) is an isomorphism.

Remark: As in the absolute version, CW-approximation allows us to lift the assumption
about (X, A) being homotopy equivalent to a CW-pair if we use singular homology, which
is (for slightly nontrivial reasons that are independent of the axioms) an invariant of weak
homotopy type.

Proof of relative Hurewicz: Assume without loss of generality that (X, A) is a CW-pair.
Since (X, A) is (n —1)-connected and A is 1-connected, Theorem 2 from Lecture 15 implies
that the quotient projection (X, A) — (X/A, =) is an (n + 1)-equivalence, so in partic-
ular, the induced map 7, (X, A) — 7,(X/A) is an isomorphism for every k < n. The
corresponding maps Hy(X, A) — Hy(X/A) are likewise isomorphisms since 4 — X is a
cofibration. Applying the absolute Hurewicz theorem to X /A, the result now follows from
the naturality of the Hurewicz maps with respect to the quotient projection:

Wk(X,A) i) Wk(X/A)

T

Hy(X,A) —=— Hy(X/A)

Remark: If A is path-connected but not simply connected, then the proof above fails
because (X, A) — (X/A, *) is only an n-equivalence, so the map 7, (X, A) — 7, (X/A) is
surjective but may not be injective. The diagram (10.1) then implies that the Hurewicz
map 7w, (X, A) - H,(X, A) is surjective and has the same kernel as 7, (X, A) — m,(X/A).
It is easy to see in fact that this kernel is sometimes nontrivial: in particular, it contains
[f] — [g] for any two maps of pairs f,g : (D", S"!) — (X, A) that are freely but not
necessarily pointed homotopic. By a mild extension of the discussion of free vs. pointed
homotopy classes in Lecture 12, one can define a natural action of m1(A) on 7, (X, A) that
gives rise to a bijection

7rTL(‘XF7 A)/ﬂl(A) = [(]D)nﬂ Sn71)7 (Xa A)]O'

It follows that the kernel of the Hurewicz map 7, (X, A) — H,(X, A) contains the normal
subgroup generated by all elements of the form [f] — yx[f] for [f] € mp(X, A) and [v] €
71(A), and one can show (but we will not do so here) that the kernel is in fact precisely
that subgroup. The Hurewicz map thus descends to an isomorphism

T (X, A) = H, (X, A),
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where 7/, (X, A) denotes the quotient by the aforementioned subgroup: intuitively, this is
the “largest” quotient of 7, (X, A) in which freely homotopic maps of pairs are considered
equivalent. We summarize:

e General Hurewicz theorem (see e.g. [Hat02, Theorem 4.37]): Suppose n > 2, H, is an
ordinary homology theory with coefficient group Z, A # J is a path-connected space, and
(X, A) is an (n — 1)-connected pair of spaces with the homotopy type of a CW-pair. Then
Hy(X,A) = 0for all k < n, and the Hurewicz map in degree n descends to an isomorphism
O 7 (X, A) - H,(X, A).

e Remark: A minor modification to the statement above puts the absolute case n = 1 into
this framework as well: the largest quotient 7j(X) of m1(X) in which freely homotopic
loops are considered equivalent is the abelianization of 71 (X).

e Homology Whitehead theorem: Assume X,Y are simply connected spaces that are homo-
topy equivalent to CW-complexes.*” Then a map f : X — Y is a homotopy equivalence if
and only if the induced maps fx : Hy(X) — Hy(Y) are isomorphisms for all n > 0.
Proof: By replacing Y with the mapping cylinder Z(f), we can assume without loss of gen-
erality that X ¢ Y and f is the inclusion map, so f is a weak homotopy equivalence (and
therefore also a homotopy equivalence by Whitehead’s theorem) if and only if 7, (Y, X)
vanishes for every n > 1. Assuming f, : H,(X) — H,(Y) is an isomorphism for every n,
the long exact sequence in homology gives H,,(Y, X) = 0 for every n, and (Y, X) is automat-
ically 1-connected since X and Y are simply connected. We proceed by induction: if (Y, X)
is (n — 1)-connected for some n > 2, then Hurewicz implies 7, (Y, X) = H,(Y,X) = 0,
thus it is also n-connected.

¢ Remark: The theorem above admits various generalizations that relax the condition that
X and Y are simply connected, though this condition must be handled with care, and
the result is certainly false without some such assumption (cf. Exercise 10.2). One way to
generalize is by assuming X and Y are simple spaces, which means that their fundamental
groups are allowed to be nontrivial but they act trivially on the higher homotopy groups,
the idea being that the quotient groups 7, (Y, X) appearing in the general Hurewicz the-
orem should then reduce to the usual 7, (Y, X). The details of this generalization are not
so straightforward, however, because the simplicity of X and Y for X < Y does not im-
mediately imply that 71(Y") also acts trivially on 7, (Y, X). A proof of this version of the
theorem is sketched e.g. in [Fral3, Prop. 6.6], but it uses a certain amount of technology
that we haven’t covered, such as Postnikov towers. In any case, the simply connected
case is by far the most popular version of this theorem for applications, and if one really
wants to remove assumptions on 71(X) and 7 (Y"), then the most natural language for it
is homology with local coefficients.

¢ Eilenberg-MacLane spaces: For spaces X that satisfy m,(X) # 0 for at most one value
of n > 0, we will use the following notation:

— Writing “X = K(G,n)” means X is a CW-complex (with a 0-cell as a base point)
satisfying m,(X) = G and 7 (X) = 0 for all k # n.

— Let us call X a weak K(G,n) and write “X = KV(G,n)” if it satisfies the same
condition on its homotopy groups as a K(G,n), but without assuming that X is a
CW-complex.

170y if you want to use singular homology in particular, then you could instead just assume that X and Y are
simply connected spaces that need not have anything to do with CW-complexes: the conclusion would then be that
f: X —> Y is a weak homotopy equivalence if the induced maps Hn(X;Z) — Hn(Y;Z) are isomorphisms.
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One finds minor differences in conventions in different books: not everyone requires a
K(G,n) to be a CW-complex, though most of the interesting applications add this as-
sumption. The term “weak K(G,n)” is especially nonstandard (I made it up), but we’ll
find it useful. Note that K (G, n) is not the name of a unique space, though we often abuse
notation and pretend that it is. We will see in the next lecture that spaces with this name
are at least unique up to homotopy equivalence.

Theorem: Assume n > 0 is an integer and G is a pointed set which is also a group if n > 1
and abelian if n > 2. Then K(G,n)’s exist.

Proof: For n = 0, just take K(G,0) to be G with the discrete topology. For n > 1, G is
assumed to be a group, and we start by choosing any generating subset J c G. The wedge
sum X" :=\/ ., S™ is then an n-dimensional CW-complex with 7, (X™) isomorphic to
the free group on the set J if n = 1, or the free abelian group on J if n > 2. For
n = 1, this follows from the Seifert-van Kampen theorem, and the n > 2 cases were the
first application we carried out after proving the homotopy excision theorem. Since J
generates G, the free (or free abelian) group on J comes with a surjective homomorphism
p: m(X™) — G, and the next step is to attach enough (n + 1)-cells to kill the kernel
of that homomorphism, producing an (n + 1)-dimensional CW-complex X"*! which is
still (n — 1)-connected and comes with a group isomorphism p : 7,(X"*!) — G. Next,
attach enough (n + 2)-cells to kill 7,1 completely; this does not change 7 for k¥ < n, and
produces an (n + 2)-dimensional CW-complex that satisfies all of the previous conditions
plus 7,1 (X"*2) = 0. Now continue inductively by attaching higher-dimensional cells to
kill all the groups 7y, for k > n. (The result is typically an infinite-dimensional CW-complex
if one does not get very lucky.)

Example 1: S* is a K(Z,1). (This is one of the lucky cases.)

Example 2: It is instructive to think through the inductive procedure described above for
constructing a K (Z,2). Since Z requires only one generator, one can start with X2 := S2,
having one 0-cell and one 2-cell. Now 7 (.S?) is already the correct group, so there is no need
to attach any 3-cells, but m3(S?) = Z is generated by the Hopf fibration p : $% — CP' =~ §2,
thus we can attach a single 4-cell along the map p : S° — CP" in order to kill it, producing
X% := 82 Uet. You have probably seen an example before of a CW-complex with three
cells having dimensions 0, 2 and 4: the most popular such example is CP?, and I will ask
you to take it on faith for a moment that that is indeed what X* is. If you believe this,
then the Hopf fibration p : S° — CP? with fibers S! shows that m4(CP?) is trivial, so we
do not need any 5-cells, but the same fibration also proves ms(CP?) = 75(S°) = Z, so one
must next attach a 6-cell to kill 7r5((C]P’2), producing a 6-dimensional CW-complex X with
one cell in each even dimension. Maybe you can now guess where this is leading. . .
Theorem: CP” =e® ue? uet u... = colim, ,, CP" is a K(Z,2).

Proof: Start with the corresponding infinite-dimensional colimit of spheres, i.e. the colimit
of the sequence

S0 St 8% s colimy,_y, S™ =: 8%,

where each S™ is the unit sphere in R"*! and its inclusion into S™*! is defined via the
inclusion R"*!1 = R"*! x {0} — R"*2. Each sphere thus appears inside the next one as
an “equator”, and it is easy to give every S™ a cell decomposition with two cells in each
dimension so that these inclusions become cellular maps. We observe that since S* has
the same (n + 1)-skeleton as S™*! for any given n > 0, we have

T(S7) 2 1, (™) = 0,
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i.e. S is weakly contractible, and by Whitehead’s theorem therefore also contractible
(though we will not need to know this below). Restricting attention to the odd dimensions,
one also has Hopf fibrations p : §?"*1 — CP" which are compatible with a similar sequence
of inclusions

CP! - CP? - ... < colim,,_,,. CP" =: CP*,

in which each CP" is a quotient of C"*! and the inclusion into C is determined by
Crtl = €+ x {0} — C"*2. Concretely, the sequence of Hopf fibrations for different
values of n fit together into a diagram

]P)'rl+1

S3 S5 g2+l o
lp lp lp )
CP! CP? CP* — ...

and by restriction to finite-dimensional subcomplexes, this uniquely determines a map
p:S* — CP*

whose fibers are also homeomorphic to S'. The latter follows immediately from the fact
that it is true in finite dimeneions, because every point in CP* belongs to CP" c CP*
for some n sufficiently large, and the preimage of that subset under p : S* — CP” is
precisely S?"*1 < §*. It is similarly easy to show that p : S* — CP” is a Serre fibration
(though I would not attempt to prove that it’s a Hurewicz fibration, much less a fiber
bundle!): to establish the homotopy lifting property with respect to disks D, one can use
the knowledge that every map D* x I — CP”* has image contained in a finite subcomplex,
which in this case means CP" for some n < oo, and the condition then follows from the
fact that p : S?"*! — CP" is a fibration. The statement that CP™ is a K(Z,2) now follows
from the exact sequence

0 = 70(S7) 25 7, (CP?) 25 1,1 (SY) — T (57) = 0.

Theorem: For any CW-complex X, any integer n > 0 and any abelian group G, there
exists a natural bijection

[X7 KW(G7H)]O = HgW(Xv G)

identifying homotopy classes of maps from X to any weak K (G, n) with cellular cohomology

classes of degree n in X with coefficients in G.

Proof sketch: Let’s abbreviate Y := KV(G,n), and assume n > 1 (the case n = 0 is easy).

(1) Every map f: X — Y is homotopic to a pointed map that is constant on X!,
Proof: Induction over the skeleta X* for k = 0,...,n— 1, using the fact that 7, (Y) =
0.

(2) Two maps f,¢g : X — Y are homotopic if and only if their restrictions fo X™ are
homotopic.
Proof: Inductively, assume f, > f— on X, for some k > n. Using the fact that

X* < X is a cofibration, we can then adjust f_ by a global homotopy so that
f+ = f- on X*. Now for any (k + 1)-cell e£*1 < X*+1 with characteristic map
®,, : (DFFL SF) — (Xk+1 X*) the maps f+ o ®, match on S¥, so we can define a
map g : S¥*! — Y by decomposing S¥*! into two disks D*™ U D¥! with common
boundary S* = DEF! A DR = oDAT! = S+ and setting

1= (e 0 B0) U (J- 0 By) : DH Uge DI = §41 Sy,
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Since mx41(Y) = 0, g can be extended to a map D¥*2 — Y, and this extension
gives rise to a homotopy fy o ®, ~» f_ o ®, rel S¥*. Doing this for all (k + 1)-
cells produces a homotopy from f; to f_ on X**! and continuing inductively, one
eventually constructs a global homotopy from f to f_.

(3) We associate an obstruction cocycle

¢ € Cow(X;G) = Hom(CSW(X;Z), G) = {functions {n-cells of X} — G}

to each map f : X — Y such that f|xn—1 = % For each n-cell ¢! € X with
characteristic map @, : (D", S""1) — (X", X"~!), the map f o ®, : D" — Y sends
S"=1 to the base point, so it represents a class in 7,(Y) = G, and we can set
vr(en) i=[fo®]em(Y)=G.
For simplicity, let’s assume for the moment that n > 2, as we can then also characterize
@y as follows. Since f|xn»-1 is constant, it descends to a pointed map from the (n—1)-
connected quotient space X /X" 1 to Y, and since X"/X" ! is a wedge of n-spheres
containing one for each n-cell, we can identify 7, (X"/X"!) with CSW(X;Z) and
define
CW(X:Z) = mo(X™/ XY Y% 1 (v) = G

Observe that fy : m,(X"/X"~1) — 7, (Y) also factors through the map 7, (X" /X"~1)
7, (X /X" 1) induced by inclusion, and we can now appeal to a fact that was also used
in our proof of the Hurewicz theorem: the kernel of that map is precisely the image

of the cellular boundary map 0V : CSWV (X;Z) —» CSW(X;Z). Indeed, we have a
diagram

7Tn+1(Xn+1/Xn_1a Xn/Xn—l) Ox 7T.n()(n/)(n—l) 7Tn(Xn+1/Xn_1)

I 1 -

7Tn+1(Xn+1/Xn CCW(X Z) X/Xn 1) ,

;T / \W lf*

o (X:2)
where the top row comes from the long exact sequence of a pair, and all unla-
belled maps are induced by obvious inclusions or quotient projections. The vertical
map in the upper right is bijective because (X/X"~ !, X"*1/X"=1) is an (n + 1)-
connected pair, while the one in the upper left is bijective due to Theorem 2 in
Lecture 15 because the pair (X"*1/X"~1 X"/X"~1) is n-connected, X"/X"~! is
(n — 1)-connected, and n + 1 <n + (n — 1) + 1 = 2n. The isomorphisms with cellu-
lar chain groups can be described explicitly in terms of the canonical isomorphisms
T, (D", 8" 1) = 7, (D", S") = Z and the maps ®, : D"/S" 1 — X"/X"" 1 and
Oy D"+1/S" — X"*1/X™ induced by characteristic maps of n-cells e and (n + 1)-
cells eB ! respectively: these give us

P (@a)s: @ m (D)) = CIV(X;Z) S m (X7 /XY,

a encXmn
D@s)s: D (DS = CIN(XGZ) 5 mupa (XX,
B eg'HCX"‘H

The fact that the map CSY (X;Z) — CSW(X;Z) in the diagram is 0°WV can then be
deduced by computing its matrix elements with respect to each choice of generators
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egH and e: composing the connecting morphism 0, with a characteristic map ®g
produces a class represented by the corresponding attaching map ¢g : S™ — X",
whose coefficient for the generator e} is then computed as the degree of its composi-
tion with the quotient projection X" — X™\(X™\e?) = D"/S"" !, i.e. the incidence
number of eg“ and el. With this understood, the main message of the diagram is

that
prod”V =0,

or in other words, dp; =0 ¢€ Cg:}“vl(X; G), s0 @5 is a cellular cocycle. Some modifica-

tions to this discussion are needed when n = 1: one issue is that the groups in the top
row and 7,(X/X"!) can no longer be assumed abelian, but as luck would have it,
the fact that m1(Y) = G is assumed abelian guarantees that fy : m,(X/X"™!) — G
descends to the abelianization, allowing us to replace all of the nonabelian groups
with their abelianizations and still have a well-defined diagram. The other issue is
that the quotient projection inducing the vertical map in the upper left corner is only
a 2-equivalence when n = 1, so that the map induced on 7 may not be bijective,
but it is still surjective. This is enough to reach the same conclusion: ¢ o d°W still
vanishes, and ¢y is therefore a cocycle.

Claim: Two maps f,g: X — Y that send X" ! to the base point are (freely) homo-
topic if and only if the cocycles ¢f and ¢, represent the same class in Héy (X; G).
Proof: If there is a homotopy H : X x I — Y from f to g, then the same argument as
in the first step allows us to assume without loss of generality that H is constant on
(X x )"t = X"t x oI 0 X" x I. It follows that for each (n —1)-cell e} ' ¢ X
with characteristic map @4 : (D"~1, S"72) — (X", X"~2), the composition

@B xId

(D" x I,oD" " x 1)) 55 (X" x I, X" x ol u X" 2 x I) 25 (Y, %)

represents a class
Y (ef™) = [H o (®p x Id)] € m,(Y) = G,

thus defining a cochain g € Cg\jvl(X; G). For each n-cell e c X, the map H o (P, x
Id) : D™ x I — Y then implies a relation between elements of m,(Y) = G obtained by
restricting this map to the various parts of (D™ x I), namely

pr(ea) = pglen) = £u(der),

thus 5 — g = X0¢H.

Conversely, for any given cochain ¢ € Cgy' (X;G), one can define a homotopy H :
X" 1 x I — Y from f to g over the (n — 1)-skeleton such that H is constant on
X" 2 x I and [Ho(®sx1d)] = w(eg_l) for each eg_l c X; this is trivial since f and
g are constant on the (n — 1)-skeleton. The nontrivial part is to determine whether
this homotopy can be extended to the n-skeleton of X: that is possible if and only
if the resulting maps d(D"™ x I) — Y associated to each e — X represent the trivial
element of 7, (Y) = G, and this is equivalent to the condition ¢ —¢, = +§¢. Having
extended the homotopy to the n-skeleton, it then extends globally due to step 2.

Suggested reading. Most of what we said about generalized homology theories this week follows
easily from arguments that you probably already saw in Topology 2, but they are also covered

e.g. in [tD08, Chapter 10], including the isomorphism h (X, A) = hy(X/A) for cofibrations A — X

(Proposition 10.4.5 in tom Dieck), which you probably hadn’t seen before in precisely that form.
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Most books prove the Hurewicz theorem specifically for singular homology, which I find slightly
frustrating, because it doesn’t strike me as the most natural context for it. From my perspec-
tive, Hurewicz is most naturally a theorem about the relationship between cellular homology and
homotopy groups on CW-complexes—the oft quoted version for arbitrary spaces then follows by
combining it with two other theorems that are of independent interest: CW approximation, and
the theorem that singular homology is an invariant of weak homotopy type. (The latter is a theo-
rem that we haven’t had time for in this course, but e.g. the proof found in [Hat02, Prop. 4.21] is
not difficult to follow, and a more formal treatment is given in [tD08, §9.5].) With that one caveat,
the proof of Hurewicz in [Hat02, §4.2] is pretty close to what we did in lecture, and if you also
want to understand the relative case when 7 (A) # 0, Hatcher will probably give you the shortest
path from here to there. (Another proof of the general theorem can be found in [tD08, §20.1], and
for m1(A) = 0 it’s also pretty similar to what we did, but tom Dieck’s inductive argument for the
case m1(A) # 0 really only seems to make sense for singular homology.)

Our proof that the Hurewicz map is a homomorphism worked in a much more general context
than can be found in most books, but the argument in the books is still essentially the same,
e.g. [Hat02, Prop. 4.36] phrases it in terms of the explicitly-defined group structure of m,(X, A),
but what Hatcher uses is really just the axiomatic properties of the underlying cogroup object
structure of (D™, $" 1) in hTop’”. Replacing (D", $"!) with an arbitrary well-pointed pair (Q, B)
that is a cogroup object in hTop’f,c81 makes no substantive difference to the argument.

For proving the bijection [X, K(G,n)] =@ H&w(X;G), several books (e.g. [Hat02,tD08]) take
a less geometric and more axiomatic approach, which is different from what we’ve done so far,
though it is on our agenda for next week.’® A concise sketch of the more geometric approach
appears in [May99, §18.5], and [DKO01, §7.7] gives full details, though only after introducing some
more general notions from obstruction theory that we have not yet discussed.

Exercises (for the Ubung on 4.07.2024). Note that there will be no Ubung on 27.06.2024,
because it is a dies academicus. I may consider adding written solutions for some of these exercises
if we end up with another backlog.

Exercise 10.1. Show that if X is a K(G,1) for some group G, then for each n > 2, m, of its
n-skeleton is a free abelian group.

Hint: Replace X with its universal cover, which also has a cell decomposition and has the same
higher homotopy groups as X.

Exercise 10.2. A space is called acyclic if its reduced singular homology (with integer coefficients)
vanishes. This is certainly true for contractible spaces, though acyclic spaces are not always
contractible, e.g. [Hat02, Example 2.38] describes a compact 2-dimensional cell complex that has
a nontrivial fundamental group but vanishing cellular homology. Assume in the following that X
and Y are homotopy equivalent to CW-complexes.
(a) Show that if X is acyclic, then it is contractible if and only if it is simply connected.
(b) Show that the mapping cone of the unique map from X to a one-point space is contractible
if and only if X is acyclic.
Remark: We showed in Exercise 2.3 that every homotopy equivalence has a contractible
mapping cone. In light of the present exercise, the existence of acyclic but non-contractible
spaces shows that the converse is false.
(c) Show that if X and Y are both simply connected, then every map f : X — Y with a
contractible mapping cone is a homotopy equivalence.

18The following passage on p. 394 of [Hat02] boggles my mind: “It is possible to give a direct proof of the
theorem, constructing maps and homotopies cell by cell. This provides geometric insight into why the result is true,
but unfortunately the technical details of this proof are rather tedious. So we shall take a different approach...”
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Exercise 10.3. Show that every closed and connected surface ¥ with infinite fundamental group
has a contractible universal cover, and is therefore a K(G,1) for G := m(X). Spaces X with
mr(X) = 0 for every n > 1 are also called aspherical.

Remark: If you remember the classification of surfaces, you may notice that this result applies to
every closed and connected surface with only two exceptions, namely S? and RP?.

Exercise 10.4. For h, a generalized homology theory with coefficient groups G,, := h, (%), com-
pute hy(S™).

Remark: As you might suspect, the computation of any generalized homology theory on a CW-
complex X is determined by its coefficient groups G,,, as with ordinary homology, though the full
story is more complicated due to the possibility of hi,(S™) and hj (D", S"~!) being nontrivial in
arbitrary degrees. In a nutshell, the collection of all the cellular homologies HSW (X; G,,) forn € Z
determine h,(X) via the Atiyah-Hirzebruch spectral sequence.

Exercise 10.5. Assume (X, A) is a CW-pair, with A assumed path-connected but not simply
connected, and assume also that all cells in X\ A have dimension at least n > 3."° The following is
one step in a proof of the general Hurewicz theorem, based on the same ideas as our proof in the
absolute case. Show that m,(X"™ u A, A) can be identified with the free abelian group on the set of
n-cells in the universal cover of X (with its natural cell decomposition) whose projections are not
in A. Can you also explicitly describe the action of 71 (A) on m,(X"™ U A, A) from this perspective?
Comment: Up to minor details, this is Lemma 4.38 in [Hat02], though I highly recommend trying
to work it out yourself before reading what Hatcher says. The case n = 2 is more complicated,
for reasons that you will notice when you try to answer the following quesiton: does the universal
cover of A naturally live inside the universal cover of X ?

Exercise 10.6. Show that for any CW-complex X of finite dimension n > 1, there is a natural
bijection between the set of unpointed homotopy classes [ X, S™] and H"(X;Z). Taking for granted
that smooth manifolds are triangulable, deduce from this the Hopf degree theorem: For every
closed, connected and oriented smooth n-manifold M, two maps f,g : M — S™ are homotopic if
and only if deg(f) = deg(g) € Z.

Hint: S™ is not always a K (Z,n), but it has enough in common with a K (Z, n) for present purposes.
Remark: For a completely different proof of the Hopf degree theorem, working within the smooth
category, see [Mil97].°

11. WEEK 11

Lecture 18 (24.06.2024): (Co-)homology on the pointed category.
e Clarification: When we say “X = K(G,n)” (or “X = KY(G,n)”), we mean that X is
a pointed CW-complex (or in the weak case, just a pointed space) with 7, (X) = 0 for
all £ # n, and X is also equipped with the additional data of a choice of isomorphism
T (X) —> G. This extra data was implicitly in the background of everything we said about
KY(G,n) in the previous lecture, e.g. the construction of cell complexes with the correct
homotopy groups included a construction of such an isomorphism, and the correspondence
between [X, KV (G, n)] and Hi&yw(X; @) depends on having such an isomorphism at hand

497 have modified the statement of this exercise: The original version only assumed the weaker hypothesis that
(X, A) is an (n — 1)-connected CW-pair, but I realized after discussing this in the Ubung that the statement may
become false if X\ A is allowed to contain (n — 1)-cells. Up to homotopy equivalence, an (n — 1)-connected CW-pair
can of course be replaced by one that has the stronger property stated here, and that fact is useful in the proof of
the general Hurewicz theorem.

5074 is a law of nature that I will find an excuse to recommend that book at some point in every sufficiently
advanced class that I teach...I suppose Functional Analysis may have been an exception.
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so that the cellular cohomology of X with coefficients in 7, (K% (G, n)) can be identified
with Hiw(X;G). A K(G,n) with this extra structure is called a polarized K(G,n) in
[tDO08]. T will not use this term, but we will always assume that the extra structure has
been chosen, so that m,(K(G,n)) and G may be treated as the same group whenever
convenient.

e Recall: In the previous lecture, we constructed for every CW-complex X, every n > 0 and
every abelian group G a bijective map”!

[X, K¥(G,n)] = Hew(X;G) < [f]+ 5],
where the homotopy classes on the left hand side are unpointed, the representative f :
X — KY(G,n) is chosen so that it maps the (n — 1)-skeleton of X to the base point

of K¥(G,n), and the obstruction cocycle ¢y : CSW(X;Z) — G is defined on each n-cell
e” ¢ X with attaching map @, : (D*, 5" 1) —» (X, X" 1) as

pr(er) :=[f o ®y] € m(K¥(G,n)) = G.

One can check from the definition that this bijection is natural with respect to X, so for any
map 1 : X — Y between two CW-complexes—we can assume via cellular approximation
that it is a cellular map without loss of generality and thus preserves (n — 1)-skeleta—the
bijections for X and Y fit into a diagram

[V, K™(G,n)] —=— HEw(Y:G)

v |+

[Xa KW(G,n)] — HgW(Xv G)

In other words, if we ignore the fact that Hy (X;G) is an abelian group and just regard
it as a set, then our bijections define a natural isomorphism between the contravariant
functors CW — Set defined by [-, K¥ (G, n)] and Hyw (+; G), where CW < Top denotes the
subcategory whose objects are CW-complexes, with continuous maps as morphisms. Note
that both functors also descend to functors hCW — Set, where the homotopy category of
CW-complexes hCW is defined as usual by replacing continuous maps with their homotopy
classes.””

e Examples: The two explicit examples of Eilenberg-MacLane spaces we saw in the previous
lecture now give natural bijections

HY(X;7) = [X,S"], H?*(X;7) = [X,CP™]

for every CW-complex X, and we observe that whenever X is compact, a map X — CP*
is actually just a map X — CP™ for some n » 0 sufficiently large. For any weak K(G,n),
we also have

[X, QK™ (G, n)] = Hiw' (X;G),

511t only just now occurred to me that we omitted the step of proving that the map [X, K% (G, n)] — HEw (X5 G)
is surjective, but this follows from similar arguments. In fact, given any cocycle ¢ € Cf, (X; G), one can construct
amap f: X — KY(G,n) with f|yn—1 = * whose obstruction cocycle ¢y is ¢. Proof: First extend the constant
map X"~ ! — KY(G,n) to each n-cell e? < X so that [f o ®a] = @(e?) € mp(KV(G,n)) = G. The condition
ép(eg"'l) = J_rtp(t?cweg"'l) = 0 for each (n+1)-cell eg"'l < X then implies that f can also be extended to the (n+1)-
skeleton, because for the attaching mapping ¢g : S — X™ of eg+17 fowg: S — KY(G,n) is nullhomotopic.
Once this is done, f can be extended to all higher-dimensional skeleta because 7, (KV(G,n)) = 0 for k > n.

52 A sensible alternative definition for the category CW would be to take cellular maps as morphisms, but the
cellular approximation theorem makes this unnecessary: by our definition, Héw(-; G) is a well-defined functor on
both CW and hCW because every morphism in CW is homotopic to a cellular map, and two cellular maps are
homotopic if and only if they are cellularly homotopic.
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because by adjunction,
T (QKY(G,n)) = [EX S, QKY (G, n)]4 = [ZFT1S KY(G,n)]y = mee1 (K (G, n)),

proving that QK (G, n) is always a weak K(G,n —1). (The fact that QK (G, n) is not a
CW-complex in any natural way was our main motivation to introduce the notion of weak
K(G,n)’s.)

Principle: The naturality of the bijection [X, K¥(G,n)] — HZw(X;G) implies corre-
spondences between structures defined on cellular cohomology and structures defined on
the K(G,n)’s “up to homotopy”. A few examples of this are illustrated below.

Example 1: Since a K(G,n) is in itself a CW-complex, we have

[K(G’ n)v K(G’ n)] = HgW(K(G7 ’I’L); G),

and if we assume the two spaces labelled K(G,n) on the left hand side are the same one,
then this determines a distinguished class

in € Hew (K(G,n); G)

corresponding to the homotopy class of the identity map K(G,n) — K(G,n).
Exercise (using naturality): For any CW-complex X, the map

[X, K(G,n)] = Hew (X;G) : [f] = f*en

is precisely the natural bijection that we have already constructed; this is just another
formula for it. One can therefore derive all cohomology classes of CW-complexes in a
given degree n with given coefficients G from a single distinguished cohomology class of
a K(G,n)!

(Note: One cannot similarly express the bijection [X, K™ (G,n)] = Hgw(X;G) via such
a formula in general, because if K% (G,n) is not a CW-complex, then we do not have a
correspondence [K¥(G,n), K¥(G,n)] = H"(KV(G,n); G) and thus have no way to define
a distinguished cohomology class ¢, in KV (G,n).)

Example 2: Suppose ¢ : G — H is a homomorphism of abelian groups. For any CW-

complex X, this determines a natural chain map Hom(CSW (X;7Z), Q) 2% Hom(CSW(X;7Z), H)
and therefore a natural transformation

n @ n
Hiw (5 G) = Hiw (5 H),

where both sides are regarded as contravariant functors hCW — Ab. Under the natural
bijections, ® therefore also defines a natural transformation

[ K™ (Gn)] =5 [ K(H,n)]

of contravariant functors hCW — Set. Since any K(G,n) is also an object of hCW, we
then have in particular an induced map

[K (G, n), K(G,n)] =5 [K(G,n), K¥(H,n)],

and assuming all the K(G,n)’s on both sides to be the same space, we obtain from this a
distinguished (unpointed) homotopy class of maps ¢ : K(G,n) - KV (H,n), defined by

[¢] := ®u[ld] € [K(G,n), K™(H,n)].

Using naturality, one then deduces:
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e Theorem: Suppose Y is a K(G,n) and Z is a weak K(H,n) for two abelian groups G, H.
Then every group homomorphism ¢ : G — H naturally determines a homotopy class of
unpointed maps ¢ : Y — Z such that for all CW-complexes X, the diagram

[X,K(G,n)] 2 [X,K™(H,n)]

E E

He (X3 G) —2— Hig (X3 H)

commutes.

e Remark (pointed vs. unpointed): For n > 1, one could just as well regard [¢] € [K (G, n), K¥(H,n)]
in the theorem above as a pointed homotopy class, because the fact that m (K™Y (H,n)) is
abelian (and in fact trivial if n > 2) implies via the theorem at the beginning of Lecture 12
that the natural map [K(G,n), KV (H,n)]+ — [K(G,n), K¥(H,n)], forgetting base points
is a bijection. (Note that this depends on the fact that K(G,n) is well-pointed, being a
CW-complex with a 0-cell for a base point.) This is clear for n > 2 since w1 (KY(H,n))
is then trivial, while for n = 1, it follows from Exercise 11.1 below. For n = 0, one can
carry out the same argument using pointed homotopy and reduced cohomology thanks to
Exercise 11.2, giving rise to a pointed homotopy class of maps K(G,0) — KV (H,0); this
just amounts to the statement that the unpointed map described above maps the base
point of K(G,0) to the same path-component as the base point of K% (H,0), and is thus
homotopic to a pointed map.

e Remark (induced maps on 7,): Exercise 11.3 below implies that for each n > 1, a map
¢ : K(G,n) »> KV (H,n) is uniquely determined up to homotopy by the induced homomor-
phism ¢y : G = 1, (K(G,n)) - 7, (K¥(H,n)) = H. Exercise: For the map ¢ described
above, the induced homomorphism on 7, is ®. (One can also say this for n = 0, and the
proof in that case is elementary.)

e Corollary 1: For every n > 0, one can define functors Ab — hTop and Ab — hTop,, that
associate to each abelian group G a K (G, n) and to each group homorphism ¢ : G — H the
(unpointed or pointed) homotopy class of the map ¢ : K(G,n) — K(H,n) as explained
in the theorem above and subsequent remarks.”® These functors are not unique (since
constructions of K(G,n)’s are not unique), but they are each canonical up to natural
isomorphism.

e Corollary 2 (the case when ® is an isomorphism): There is a natural pointed homotopy
equivalence between any two spaces that are both K(G,n)’s for some n > 0 and abelian
group G.

e Corollary 3 (using ® = Id and the fact that QK (G,n + 1) is a weak K(G,n)): For any
K(G,n) and K(G,n + 1), there is a natural weak homotopy equivalence

K(G,n) -5 QK (G,n + 1)

defined up to pointed homotopy.
Remark: According to [Mil59], QK (G, n+1) is also homotopy equivalent to a CW-complex,
so by Whitehead’s theorem, € is actually a homotopy equivalence. This knowledge however
is seldom actually useful.

e Trivial observation: Every abelian group G admits a unique group object structure (m, e, 7)
in the category Ab, and the group structure that it induces on G matches the native

5311 the lecture I described this only as a functor to hTop, and replacing hTop with hTop, makes no difference
for n = 1 due to Exercises 11.1 and 11.2. For n = 0, one gets a slightly stronger and cleaner statement by working
in the pointed category.
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group structure of G. Indeed, a group object structure in Ab means that we have group
homomorphisms

GxG-2 G, 0-% G, G -5 G,

where 0 € Ab denotes the trivial group, which is conveniently both an initial and a terminal
object in Ab, so that there is only one possible choice of identity morphism e : 0 — G. The
identity axiom for a group object structure then means m(g,0) = m(0,g) = g for every
g € G, and since m is a homomorphism, it follows that

m(g,h) =m((g,0) + (0,h)) =g+h

for every g,h € G; the uniqueness of inverses now implies via the inverse axiom that
1 : G — G can only be the map g — —g. Note that it’s important here to assume G is
abelian, as the inverse map i : G — G would otherwise not be a morphism in the correct
category.

Another (almost) trivial observation: The functors from Ab to hTop or hTop, in Corollary 1
preserve finite products, since K(G,n) x K(H,n) is clearly a K(G x H,n), and for the
terminal object 0 € Ab, one can take K (0,n) to be {«}, which is a terminal object in both
hTop and hTop,. We can therefore feed the group object structure of G into such a functor
and conclude:

Corollary 4: For every n > 0 and abelian group G, every K(G,n) has natural group object
structures in hTop and hTop,, such that the bijection [X, K(G,n)]o & Hgw(X;G) and
its pointed variant [X, K(G,n)]; = ﬁgW(X; G) outined in Exercise 11.2 become group
isomorphisms.

Quick proof: One sees as follows that the group object structure of K (G, n) determines the
same group structure on [X, K(G,n)] as H&w (X;G). If we forget the group structure of
HEw(X;G) and just regard it as a set, then our natural bijection identifies the covariant
functor Hw(X;-) : Ab — Set with a composition Ab — hTop — Set of two covariant
functors

a KoM gan) 9L x k@)

both of which preserve finite products, so feeding the group object structure of G into
this composition produces the same result as feeding it into H@w (X;-) : Ab — Set. But
H{w(X;-) is actually a functor Ab — Ab, implying that this procedure makes Hy (X; G)
into a group object in Ab rather than just Set. According to the trivial observation
above, there is only one such structure, and it reproduces the native group structure
of Hiw(X; Q).

Remark: One can extend this line of thought quite a bit further and deduce e.g. that
whenever G is a module over a commutative ring R, K(G,n) naturally becomes an R-
module object in hTop and hTop, (figure out for yourself what the definition of that notion
is). The existence of the cup product on cellular cohomology with coefficients in a ring R
likewise corresponds to homotopy classes of maps K (R, m) A K(R,n) —» K(R,m +n) that
can be used to give a purely homotopy-theoretic characterization of the cup product.
Question motivated by the correspondence [X, K(G,n)] = H™"(X; G):

What properties does a sequence {E,} of spaces need to have so that h"(X) := [X, E,]
defines a (generalized) cohomology theory? Note that if the F,, come with base points and
we prefer to work with pointed homotopy, we can do this by replacing X with X, = X11{x},
since [X,Eplo = [X+,En]+. One reason to prefer pointed spaces is that the bijection
[X, K(G,n)]o =@ H&w(X;G) does not generalize in an obvious way to relative cohomology
groups H{y (X, A; G), and pointed spaces will turn out to provide an elegant remedy for
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this. But the axioms we have for (co-)homology theories thus far do not pay any attention
to base points, so we need a new set of axioms that does.

Axioms of a (generalized) pointed homology or cohomology theory: A pointed homol-
ogy theory hy is a collection of covariant functors {}Nln : Top, — Ab},cz equipped with
natural suspension isomorphisms

B (X) 25 g1 (854 X)

for each n € Z and each well-pointed space X € Top,, that satisfy the following set of
axioms. (For cohomology, one speaks of contravariant functors h" Top,, — Ab, and I will
again comment on this variation below only when there is something non-obvious to say.)
— (HTP,) homotopy: The functors }Nln descend to the pointed homotopy category as
functors hTop, — Ab.
— (COF,) cofibration (or exactness): For every pointed cofibration A — X of well-
pointed spaces and every n € Z, the sequence

B (A) —> hp(X) —> hn(X/A)

induced by the inclusion A — X and quotient projection X — X /A is exact.
— (ADD,) additivity: For any collection of well-pointed spaces {X,, € Top, } and their
natural inclusions * : X, — \/BGJ X3, the induced maps

Dis s Dhn(Xa) — hu(\/ Xa)
are isomorphisms, or for a cohomology theory, the maps
[T6*: ﬁ”(\/xa) — [ (Xa)

are isomorphisms.

— Remark 1: The notational resemblance to reduced (co-)homology is not accidental,
and pointed theories are also sometimes called reduced theories, though the context is
a bit different, as the reduced homologies in Lecture 16 were functors on Toprel rather
than Top,. A precise relationship between the two concepts denoted by ﬁ* can be
derived from the theorem below. N

— Remark 2: The definition above allows h, to be defined for all pointed spaces, but
only really assumes that it has good properties when the spaces are well-pointed.
There are versions of this definition in which well-pointedness doesn’t appear, but we
will see below why it is important if one wants to have a nice relationship between
pointed and unpointed theories. It is also often sensible to speak of (co-)homology
theories defined on smaller subcategories of Top,, such as the category CW, of pointed
CW-complexes (which are all well-pointed), or to assume ?L* is defined on all pointed
spaces but only required to have good properties (notably the axioms (COF,) and
(ADD.) and the existence of suspension isomorphisms) on CW-complexes.

— Theorem (and of course there is also a variant for cohomology):

(1) Any pointed homology theory 71* determines an unpointed homology theory by
defining

ho(X, A) = Tln(coneo(A — X)) = ﬁn(coneJr(AJr — X+))
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for every n € Z and (X, A) € Top™, with connecting homomorphisms given by

T

B (cone  (Ay = X)) = hn(B4 Ay ) =5 by 1(A4) = b1 (comes (@ — A)),

where ¢ : coney (A4 — Xy) — coney (Ay — X4)/X, =S AL is the quotient
projection.
(2) Any unpointed homology theory hy determines a pointed homology theory by
defining
B (X, %) := hp(X, {#})
for every n € Z and (X,*) € Top,, with suspension isomorphisms defined
for well-poined (X, ) € Top, in terms of the usual isomorphisms 7Ln(X ) =~

hni1(X.X) for (unpointed) reduced homology, i.e.

T

//\

(X, {#}) = T (X) P

hn+1(E+X) — hn+1(E+X7 {*})

P*T; Q*Tg

Pns1(CoX', X) =5 Mgt (BoX, CoX) < hpi1(SeX)

(Here, the connecting homomorphism J, and maps induced by inclusions are
isomorphisms due to the usual axioms of unpointed homology, and the quotient
projection ¢q : ¥, X — ¥, X from unreduced to reduced suspension is an isomor-
phism so long as (X, ) is well-pointed. For spaces that are not well pointed,
this diagram still defines a map o4, but there is no guarantee that it is an
isomorphism.)

e Remarks on the theorem:

(i) We have seen the functor Top — Top, : X — X, := X 1 {*} before, and you will
easily convince yourself that the unreduced mapping cone of A — X and the reduced
mapping cone of A; < X, are naturally pointed homeomorphic; the base point of
cone, (A — X) is taken to be the summit of the cone since A and X are not equipped
with base points of their own. You might be a bit surprised to see cone,( — A)
identified with A, but this becomes clear if you think of the mapping cone as a
double mapping cylinder for maps @& < A and @ — #.°* The succinct expression
for the absolute unpointed homology derived from a pointed homology theory thus
becomes N

hn(X) = hn(X-‘r)

(ii) The pointed spaces cone,(A — X) and ¥, A, that appear in the definition of an
unpointed homology theory derived from a pointed one are always well-pointed, for
all (X,A) e Top*l. This follows essentially from the fact that the inclusions of X,
Y and X 1Y into the unreduced double mapping cylinder of two maps Z — X
and Z — Y is always a free cofibration. Analogously to the natural identification

54By the same token, the cone of the empty set is a one point space, not the empty set; in this way, Cs :
Top — Top, becomes a well-defined functor without needing to make an exception for the empty set. A similar
but more jarring example is that the quotient X/ is defined to be X4, thus producing a well-defined functor
Top*® — Top, : (X, A) — X/A. This makes sense if you think of X/A in general as the pushout of the maps
A — X and A — %, but we are still forced to accept a “quotient projection” X < X that is not surjective.
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of cones (A — X, ) with cone,(A — X), the reduced suspension ¥, A, is closely
related to the unreduced suspension of A, but is not exactly the same thing: it is the
quotient of ¥, A in which the summits of both cones are identified, and therefore serve
as a natural base point (which ¥, A on its own does not have).

Up to minor details (and natural isomorphisms), the correspondences ?L* — hy and
hy — ?L* described in the theorem are inverse to each other. For instance, suppose l~z*
is given, and we define another homology theory for pointed spaces (X, ) € Top,, by
?Ln(X, ) 1= h,(X, {z}), where h, has been defined from h,, via the stated prescription,
thus

lAzn(X, x) = ﬁn(coneo({x} — X)) = iNLn(cone+({x, wf o> X)),
Inclusions of a single point {z} < X have the appealing property that their mapping
cones are the same as their mapping cylinders, so there is an obvious homotopy equiv-
alence cone,({z} — X) = Z,({z} — X) — X. Unfortunately, this is an unpointed
homotopy equivalence (its obvious homotopy inverse X < cone,({z} — X) is not
a pointed map), which is not quite good enough for the pointed homology theory h.

But we can get more mileage out of describing lAzn(X ,x) in terms of the reduced cone:
the latter is the homotopy pushout in the following diagram in hTop,,

) > X,

¢ coney ({z, 4} = X,)

while the strict pushout in Top,, for the same two maps is a quotient of the coproduct
X4 v {+} = X, that identifies the two points x,* € X, i.e. it is X, with x € X as
the base point:

fa, o) —— X,

| |

x —— (X, 1)

Viewing the latter as a diagram in hTop,, with the trivial homotopy then determines
a pointed map ¢ : coney ({z,+} — X,) — X i.e. the quotient map that collapses the
cylindrical part of the double mapping cylinder, and we know from Exercise 9.4 that
q is a pointed homotopy equivalence if {z,*} — X, is a pointed cofibration. The
latter is true whenever {x} — X is a free cofibration, meaning (X, z) is well pointed,
so if we are willing to restrict our attention to well-pointed spaces, then the pointed
homotopy axiom now gives a natural isomorphism %n(X ,x) = hy (X, x).

One can similarly (and more easily) see that going from an unpointed homology theory
hs to a pointed theory %* and then back produces an unpointed theory

\fan(X, A) = ?Ln(cone(A — X), #) := h,(cone(A — X), {«})

that is naturally isomorphic to the original h,. Indeed, the axioms of an unpointed
homology theory make the following maps induced by inclusions into isomorphisms:

hn(X, A) —=> hy,(cone(A — X),CA) <— hy(cone(A — X), *).

Here, the map on the left is a standard application of the homotopy and excision axioms,
while the one on the right is an isomorphism due to the usual combination of homotopy
invariance, exactness and the 5-lemma.
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One more remark: Defining h, (X, A) as the pointed homology of a homotopy cofiber
cone(A — X) is dual to the way we defined relative homotopy groups ., (X, A), namely
as absolute homotopy groups of the homotopy fiber F(A < X). This is a hint that the
role played by the Puppe fiber sequence in the background of the homotopy groups will be
played in the homology/cohomology context by the Puppe cofiber sequence.

Proof of the theorem: The pointed theory hy,(X,*) := hy(X,{#}) derived from an un-
pointed theory h, is naturally isomorphic to the latter’s reduced variant, and the axioms
for hs thus follow easily from the properties of reduced homology that we discussed in
Lecture 16. The most interesting is perhaps the cofibration axiom, which follows directly
from the exactness axiom of hy due to the natural isomorphisms h,(X/A) = h,(X, A)
that hold whenever A — X is a cofibration.

If instead we start with a pointed theory h, and then define h,, by the stated prescription,
the homotopy axiom is easily verified because homotopies of maps of pairs (X, A) — (Y, B)
induce pointed homotopies of maps cone(A — X) — cone(B — Y'). The additivity axiom
is, similarly, an almost immediate consequence of its pointed variant. The interesting part
is proving excision and exactness. The next lemma explains why there was surprisingly no
need to mention excision in the list of pointed axioms: defining h,, (X, A) in terms of map-
ping cones makes excision an automatic consequence of the pointed homotopy axiom. We
will then see that the exactness axiom follows easily from a combination of the cofibration
and pointed homotopy axioms with the Puppe cofiber sequence.

Lemma: Suppose X = A u B and there exists a continuous function v : X — I that equals
0 on X\A and 1 on X\B. Then the inclusion

cone(A n B — A) — cone(B — X)

is a pointed homotopy equivalence.
Remark: This is the moment to recall that our statement of the excision axiom in Lecture 16
explicitly assumed the existence of such a function v : X — I, which is a slightly stronger
hypothesis than in standard versions of the axiom, though equivalent in all cases of practical
interest. The inclusion of that hypothesis was specifically motivated by this lemma.
Proof of the lemma: Write points in cone(B «— X) as equivalence classes [x,t] of tuples
(z,t) € X x I, where we assume z € B for t < 1 and [z,0] = [y,0] for all z,y € B. The
formula

9([z,t]) := [2, u(z)t]
then gives a well-defined pointed map cone(B — X) — cone(A n B — A) since it sends
[z,t] to the summit of the cone whenever x ¢ A and fixes [z, 1] for every z € X\B =
A\(A n B). Using a linear homotopy of u : X — I to the constant function with value 1,
one similarly constructs families of pointed maps showing that ¢ is a pointed homotopy
inverse of the inclusion.
Proof of exactness: For any given pair (X, A) € Top™, it suffices to prove that the top row
of the following diagram is exact at each of its interior terms:

hn(A) —— hp(X) ———5 (X, A) —— b (A) ——— hoi(X)

~

F(A+) —— n(X1) —— ha(cone (A = X)) Fn1(As) —— T 1(X5)

T <o

hn(S4Ay) —— ha(S1Xy)
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All pointed spaces appearing in this diagram are well pointed, all unlabelled maps are
induced by obvious inclusions, and the diagram commutes due to the naturality of the
suspension isomorphisms o, and the way that these isomorphisms determine the definition
of d4. The crucial observation is now that if we follow the bottom terms in the diagram
from left to right but remove the functor ?Ln, what we’re looking at is the first five terms
of the Puppe cofiber sequence for the pointed inclusion A, — X :

A+ — X+ — COne+(A+ — X+) — E+A+ — E+X+ — ...

In particular, any consecutive three-term subsequence has the homotopy type of a pointed
cofibration, so the exactness of the top row now follows directly from the pointed homotopy
and cofibration axioms.

e Exercise: Work out the proof of the cohomological variant of the theorem, in particular the
detail involving exactness of the unpointed theory. Since cohomology and homology are
“dual” to each other, you may be intuitively expecting the Puppe fiber sequence to replace
the cofiber sequence, but that intuition is wrong; the cofiber sequence is again what you
need.

Lecture 19 (27.06.2024): Stable homotopy groups and spectra. Caveat: In this lecture,
I am making less of an effort than usual to ensure that everything I’'m saying is strictly correct
and stated with all the necessary hypotheses (but not more than necessary). This is because
different books often say slightly different things with subtly different assumptions (some of which
they don’t state explicitly), and the subtleties typically do not get explained in the books, so as a
novice in homotopy theory, I have not yet had time to figure out what my official take on it is.

e Recall the Freudenthal suspension theorem: For X € Top, well-pointed and n-connected
(n = 0), the map 7,(X) — mr41(2X) defined via the reduced suspension functor ¥ is
bijective for all k < 2n + 1, and surjective for k = 2n + 1.

e Corollary 1: For any well-pointed space X and k > 1, ¥*X is (k — 1)-connected. (Obvious
for k = 1, then proof by induction on k using Freudenthal.)

e Corollary 2 (using Corollary 1): For any well-pointed space X and n > 0, the map

T k(EFX) = o er (BFF1X)

is an isomorphism whenever n + k < 2(k—1) +1 =2k —1,i.e. for all k >n + 1.
In other words, the sequence

Tn(X) =5 Tni1 (BX) =5 mnaa(D2X) —> ... —> T n(SFX) —> ..

eventually stabilizes if X is well pointed. The following definition treats this sequence as
a direct system of groups and captures their isomorphism types for arbitrarily large k.
e Definition: For n € Z, the nth stable homotopy group of a pointed space X is

78 (X) 1= colimp_, . Ty r(ZFX).

Interpretation: Elements of the ordinary homotopy groups m,(X) are represented by
pointed maps of spheres to X, and are considered equivalent if they are homotopic. The
stable homotopy groups weaken this equivalence relation, and allow two non-homotopic
maps of spheres to X to be called equivalent if they become homotopic after sufficiently
many “stabilizations,” meaning applications of the suspension functor.

e Remark: Since finitely-many terms in the direct system can be discarded without changing
the direct limit, 75 (X) is well defined for any n € Z, including n < 0. If X is well pointed,
however, then the corollaries of Freudenthal above imply 72 (X) = 0 for n < 0, while for
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n =0, m5(X) = 1,41 (3%X) for any k sufficiently large. Note also that since 71, (X) is
always abelian for k > 2, 75(X) is abelian for every n € Z.

Functoriality: Each 7} is naturally a functor Top,, — Ab, because pointed maps f : X —» Y
give rise to sequences of maps

k
Tnan(SPX) C (R

that determine a map f; : 75(X) — 75 (Y) between the corresponding colimits.

Suspension isomorphisms: A natural homomorphism oy : 7 (X) — m_(XX) is deter-
mined by the diagram

D Tk (5P X) —E s e (SFTIX) 75 (X)
lE lE la*
C—— T (OFTIX) 2 e (BRT2X) —— L —— 7 (2X)

But the direct systems on both rows are the same up to a shift, so their colimits are
necessarily isomorphic, and o, is an explicit isomorphism; one can derive an inverse
751 (XX) — 75 (X) to o, by adding upward diagonal arrows representing identity maps
to the diagram. The invertibility of o, thus follows from a purely formal argument that
would work in any category, but one can also see it more explicitly from Freudenthal if X
is well pointed, because then the vertical maps are all isomorphisms for sufficienly large k.
Theorem: The stable homotopy groups =7, : Top, — Ab satisfy the axioms of a pointed
homology theory.

Remark: The theorem seems to give hope that 75 (X) could be computed for any CW-
complex X, and in principle, such a computation will follow from the Atiyah-Hirzebruch
spectral sequence if one can first compute all coefficient groups of the theory and then
compute the cellular homology with respect to these coefficient groups. The unpointed
homology theory determined by 7} according to the previous lecture has absolute homology
groups h,(X) := 73 (X ) for X € Top, so its coefficient group in degree n € Z is

B (%) = 75 (S°) = colimp_,ee Ty (2FS%) = colimy_, . T4 (S%),

which is isomorphic to 7, 4(S*) for any k sufficiently large. We know that these groups
are sometimes nontrivial for n > 0, thus h, does not satisfy the dimension axiom, i.e. it is
a generalized rather than an ordinary homology theory.

Bad news (or interesting news, depending on your point of view): The groups 73 (S?) are
not known in general, and their computation is considered to be one of the great open
problems of algebraic topology.

Proof of the theorem: The axiom (HTP,) is obvious from the definition. For the axiom
(COF,), we need to show that whenever A — X is a pointed cofibration of well-pointed
spaces, the induced maps 75 (A) — 73 (X) — 75 (X/A) form an exact sequence. This is a
consequence of the long exact sequence of relative homotopy groups, because by Theorem 2
in Lecture 15, the vertical map (induced by a quotient projection) in the diagram

Trk(EFA) —— o (BFX) ———— 1k (X, B4 A)

\ l

Tk (SEX/SFA) = 1 i (SF(X/A))

is an isomorphism whenever n + k < 2k — 2, meaning k& > n + 2. The result then follows
because exactness of sequences is preserved under direct limits. For the axiom (ADD,),
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one can start with the following lemma: If there is a collection {X,}qes of well-pointed
spaces such that the natural map

@ rixa) — 7 (\ Xe)

o aeJ
fails to be an isomorphism, then it also fails for some such collection in which J is finite.
This is true for roughly the same reason why it sufficed to prove Theorem 1 in Lecture 15
for finite wedge sums: every compact subset of \/_ X, intersects at most finitely many of
the spaces X, beyond their base points, and this applies in particular to the images of maps
Stk V,, X or homotopies between such maps. But recall that for finite collections,
additivity in an unpointed homology theory follows already from the other axioms, namely
(EXC) and (LES). Knowing this, one also deduces finite additivity in the pointed theory
from the fact that it is satisfied in the unpointed theory. If this proof of additivity seems a
bit cheap, I'll remind you that there is some serious machinery behind it: we’re using the
fact (proved in the previous lecture) that the unpointed homology theory determined by
a pointed theory satisfies the exactness axiom, and the main result behind that was the
Puppe cofiber sequence.”

e Definitions:

(1) A spectrum F consists of a sequence of pointed spaces {E,, € Top, } that are defined
for sufficiently large integers n and equipped with pointed maps e : ¥ F,, —» E,, 1.

(2) A spectrum F is an -spectrum if the spaces E,, are defined for all n € Z and are
pointed CW-complexes, and the maps € : E, — QFE, 1 adjoint to e : XE,, — F,41
are weak homotopy equivalences for all n.

¢ Remarks:

(1) There is a major lack of consensus about the details of the two definitions given above.
Many sources place stronger conditions on a spectrum and call the notions defined
above prespectra to indicate the lack of stronger conditions. Some also would require
all the spaces in a spectrum to be CW-complexes, which I have decided to require for
Q-spectra (because I can imagine needing the condition in that context) but not for
spectra (because I don’t see a need, even though the condition would hold for most
of the examples we discuss). For Q-spectra, some sources also drop the word “weak”
in front of “homotopy equivalence”; actually, we could also do this without changing
anything, since we are assuming the E,, are CW-complexes, and [Mil59] then tells us
that the QF,, 1 are also homotopy equivalent to CW-complexes. But that knowledge
makes no practical difference in the main applications, so we’re leaving in the word
“weak”.

(2) While I do not see a need for our purposes to assume that the spaces F,, in a general
spectrum are CW-complexes, I can vaguely imagine good reasons to assume that they
are well pointed. I have not checked enough details to verify whether this condition
would be truly useful or necessary, but for safety, you might want to assume that it
holds, and it definitely does hold in all the examples that will be important for us.

(3) It is conventional to assume that the structure maps e : XE,, — E, 11 in a spectrum
are actual maps rather than just homotopy classes of maps, though for our purposes,
having them defined only up to homotopy would be just as good. They can be

551y [Hat02, Prop. 4F.1], there is a different proof of finite additivity based on the product complex trick that
we used in Theorem 1 of Lecture 15 to compute 7, (S™ v ... v S™). But either I’'m missing something basic, or
that trick is not actually applicable in the present situation and what it says there is complete nonsense. If you
understand it, feel free to explain it to me.
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defined canonically as maps in some of the examples below, while in others, only
their homotopy classes are canonical, so that realizing them as maps requires some
arbitrary choices.

In the definition of spectra that I wrote down in lecture, E,, was required to be defined
for all n € Z, but in fact this is not true in any of the examples below (they require
n = 0), and it doesn’t need to be. For the applications we want to discuss, it suffices
if I, is defined for every integer n greater than some threshold.

e Examples of spectra:

— The Eilenberg-MacLane spectrum K (G, -) associated to an abelian group G con-

sists of choices of a sequence of Eilenberg-MacLane spaces {K (G, n)},>0 together with
maps e : LK (G,n) —» K(G,n+1) whose adjoints live in the canonical homotopy class
of maps € : K(G,n) —» QK(G,n+1) arising from the fact that QK (G, n+1) is a weak
K(G,n). These adjoints are weak homotopy equivalences, so if we extend the spec-
trum K(G,-) to n < 0 by formally defining K(G,n) := {+} with the unique pointed
maps X{x} — {x}, K(G,") becomes an Q-spectrum. (Note that the based loop space
of any discrete space is another one-point space, so the maps K(G,n) - QK(G,n+1)
are automatically also homotopy equivalences for n < 0.)

The suspension spectrum X*X of any pointed space X can be defined as the
sequence of spaces {X" X },,=¢ together with the identity maps ¥¥"X — ¥"T1X. An
important special case is the sphere spectrum X°*S°, whose spaces are all spheres
¥nSY% ~ S Suspension spectra are typically not Q-spectra: for a given pointed
CW-complex X, it is a straightforward exercise to show that 3°X is an (2-spectrum
if and only if the Freudenthal suspension theorem holds for X without dimensional
restrictions, which is clearly false for the sphere spectrum since e.g. mo(S*) % 73(S52).
On the other hand, Freudenthal does imply (via Exercise 9.5) that for well-pointed X,
the suspension spectrum 3°*X is at least asymptotically an Q-spectrum as n — o0, in
the sense that € : "X — QX" X is a (2n — 1)-equivalence.

A special case of the following operation turns the sphere spectrum into an arbitrary
suspension spectrum. The smash product of a spectrum E = {E,,} with a pointed
space X defines a new spectrum E A X with spaces {F,, A X} and maps

S(Ep AX) — (SE) A X S B AKX,

\_/

€
where the first map in this composition is the canonical bijection L(E, A X) =

SUA(E, A X) = (St A E,) A X = (ZE,) A X, which is continuous because S! is
friendly (cf. Exercise 6.1). By this definition, $°S% A X = £°*X.

e Proposition 1: There is a natural operation that converts any spectrum E = {E,} into an
Q-spectrum E' = {E!}.
Remark: I’'m being intentionally vague about the precise meaning of the word “natural” in
this statement. It has one, but defining it would require a proper definition of the category
of spectra, which involves some subtle issues and we have no pressing need to get into them
here.
Proof: I'll give a few details here that did not fit into the lecture. Let us pretend at first
that we had not required the spaces in an )-spectrum to be CW-complexes, and just focus
on constructing spaces E], with weak homotopy equivalences E;, — QE] ;. The idea is to
define E), for every n € Z as the direct limit of the sequence

e Qe 2 0% . k v
E, —QF,.1 — Q°E 90— ... — colimg_, . V' Epp =1 E,,
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with the understanding that if £, is only defined for n larger than some threshold ng € Z,
then we are free to begin the sequence with the term Q¥FE,, ;. for any k > ng —n. A map

E!, — QF! ,, is then determined by the diagram

Vi,n

k ke k+1
Jﬂ’“é J{Q’““é i;

s QU By k) T8 QO 1 (1)) —— - —— colimg_, (0 E,Hmk) 7

QE’

Qi n+1

in which ¢y, : QOFE,,x — E! for each k,n denotes the natural map to the colimit, and
the map colimg_, Q(QkE(nH)Jrk) — QE] | comes from using the maps Qi) 11 to view
QF] ., as a target of the direct system in the second row. The first two rows are in
fact the same direct system up to a shift, and therefore have isomorphic colimits, making
the induced map E/ — colimg_4 Q(QkE(nHHk) a pointed homeomorphism; as in our
construction of the suspension isomorphism for the stable homotopy groups, one could
derive an inverse of this map by adding upward diagonal identity arrows to the diagram.
It would be tempting to claim that the other vertical map colimg_,, Q(QkE(n+1)+k) —
QFE] ., is also a homeomorphism due to some general principle, e.g. that the functor
preserves colimits and QF;, , is therefore also a colimit of the second row—that sounds
nice, but it is false, because right-adjoint functors such as {2 generally preserve limits, not
colimits. The good news is that direct systems (over directed sets!) in the category Top,
have one or two extra properties that are useful for this situation, telling us that the passage
to the colimit is sufficiently compatible with the functor €2 for our purposes: Exercise 11.4
implies that the map colimy_ Q(Q*E(,11)41) — QE, . is at least a weak homotopy
equivalence. We have therefore constructed weak homotopy equivalences E], — QF; |,
whose adjoint maps X E;, — E],,; we take to be the structure maps of our new spectrum.
There is clearly no reason to expect that the spaces E!, constructed in this way are CW-
complexes, but we can now get the desired 2-spectrum by replacing them with CW-
approximations (Exercise 11.4).

e Proposition 2: For any Q-spectrum F = {E,}, the spaces E,, admit unique group object
structures in hTop, such that for every CW-complex X, the composition

(11.1) [X, En]e =5 [BX,SE,] <5 [9X, Epialy

is a group isomorphism. Moreover, the resulting group objects in hTop, are all abelian.
Remark: This proposition was my main motivation for insisting in the definition of Q-
spectra that the spaces E,, should be CW-complexes.

Proof: Since the E,, are CW-complexes, it will suffice to make them group objects in
the subcategory hCW, < hTop,, which has the same morphisms as hTop, but only CW-
complexes as objects. For any CW-complex X and each n € Z, the composition in (11.1)
is equivalent via adjunction to the map

[X, Enly =5 [X,QE, 1]y
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which is a bijection due to the cofibrant theorem since € is a weak homotopy equivalence.”®
If we use the natural group object structure of the loop space QF,,+1 to make [X, QF, 1]+
into a group, it follows that there is a unique group structure on [X, E, ] making this
bijection a group isomorphism, and the maps [Y, E,,] — [X, E,,] induced by pointed maps
X — Y are then also group homomorphisms. Proposition 3 in Lecture 10 then produces on
E,, aunique group object structure in hCW,, (and therefore also hTop,,) that reproduces this
group structure on [X, E,,] for every pointed CW-complex X. Defining this for every n,
we then observe that the groups [X,QF,+1] = [2X, E,4+1] are always abelian due to
Proposition 4 in Lecture 11, because they inherit the same group structure from the cogroup
object ¥X and the group object E, 1. It follows that [X, E,] is also abelian for every
pointed CW-complex X, and FE,, is therefore an abelian group object.

e In the previous lecture, we equipped the Eilenberg-MacLane spaces K(G,n) with the
unique group object structures (in both hTop and hTop,) for which the natural bijection
[X,K(G,n)]o = H&y(X;G) becomes a group isomorphism for every CW-complex X.
Since K(G,+) is an Q-spectrum, you should now be wondering whether that group object
structure is the same as the one coming out of the construction above. This must be true if
and only if it makes the bijective map [X, K(G,n)]+ — [2X, K(G,n+1)]4 defined in (11.1)
into a group isomorphism for every pointed CW-complex X. According to Exercise 11.2,
that bijective map is equivalent to a map ﬁ[gw(X) — ~83V1(ZX), so there is an obvious
candidate for what that isomorphism might be. I will leave it as an exercise to prove that
that’s what it is.

e Theorem: For any Q-spectrum E = {E,},

W (X) = [X, Bals
with suspension maps o, defined by

h(X) = [X, Enly =5 [X,QF, ]y = [BX, Engi]s = b (3X)

defines a pointed cohomology theory on the subcategory CW, < Top, of pointed CW-
complexes.

Remark: The reason to restrict to CW-complexes in this statement is the suspension
maps, because if we are only assuming that the maps € : E,, — QFE,, ;1 are weak homotopy
equivalences, then the easy extension of the cofibrant theorem to pointed homotopy sets
makes oy : h"(X) — h"t1(2X) as defined above a bijection whenever X is a CW-complex,
but it would not tell us this for spaces that are not CW-complexes. It follows that the
corresponding unpointed cohomology theory h, will satisfy the unpointed axioms when
restricted to CW-pairs, which is enough to do all the things that we usually do with
axiomatic homology, e.g. computing it on all CW-complexes in terms of cellular cohomology
and the coefficient groups h™(#). It is possible—but not obviously useful—that we could
say more by using the knowledge from [Mil59] that QE,, ;1 is also homotopy equivalent to
a CW-complex, but this would require some careful discussion of the distinction between
pointed and unpointed homotopy equivalence, which I would rather not get into if I don’t
have a really good reason.

Proof of the theorem: Actually, it’s obvious that the axioms of a pointed cohomology
theory are satisfied. The most interesting one is (COF, ), which is now just a restatement

56\Minor detail: The homotopy sets in the present context are pointed, while the cofibrant theorem as proved
in Lecture 12 gave a bijection between unpointed homotopy sets. In fact, an easy modification of the same proof
shows that if the weak homotopy equivalence is also a pointed map, then it also induces a bijection between pointed
homotopy sets. This only requires applying the compression lemma in a slightly more careful way so that it produces
pointed homotopies, which is possible because the base point of the CW-complex X is a subcomplex.
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of the “main property” of cofibrations, i.e. that they contravariantly induce exact sequences
of homotopy sets.

Example: The Eilenberg-MacLane spectrum K(G,-) gives rise to a pointed cohomology
theory iNz"(X ) = [X,K(G,n)];+ for CW-complexes X, and therefore also an unpointed
theory given by h™(X) := h"(X,) = [X,, K(G,n)]; = [X,K(G,n)]s, so its coefficient
groups are

G  forn=0,

h(x) = h™(S°) = [S°, K(G,n)]+ = m0(K(G,n)) = {o for n = 0.

This computation shows that h* satisfies the dimension axiom, and is therefore naturally
isomorphic on CW-pairs (X, A) to the cellular cohomology H¢w (X, A; G). If we hadn’t
already given a direct proof that [X, K(G,n)]o and Hiw(X; G) are naturally isomorphic,
we could have derived one in this way from the axiomatic framework: we would have instead
had to give a more direct proof of the existence of natural weak homotopy equivalences
K(G,n) - QK(G,n + 1), showing that K(G,-) is an Q-spectrum. This is the approach
taken in [Hat02,tD08].
Remark: It is interesting to note that according to the Brown representability theorem, all
pointed cohomology theories on CW-complexes arise from ()-spectra as in the construction
above. There is a proof of this theorem in [Hat02, §4.E].
Definition: The homotopy groups of a spectrum FE = {FE,} are defined for each n € Z
by

7Tn(E‘) := colimy_, 7Tn+k(Ek:)7
i.e. the direct limit of the sequence of (mostly) abelian groups defined by

L 7Tn+k-(Ek — Tn+k+1 Ek—+1 —_— Tn+k+2 Ek+2) —_— ...

\ E*T \ e*T
7Tn+k+1(EEk 7Tn+k+2(EEk+1)

For example, plugging in the suspension spectrum X*X = X*S% A X of a space X re-
produces the stable homotopy groups of X. Since the stable homotopy groups define a
homology theory, this hints at a more general way to construct homology theories out of
spectra. . .

Theorem: Any spectrum E = {FE,} determines a pointed homology theory hy defined by

hn(X) := 1 (E A X),

with suspension isomorphisms oy : fin(X) — hni1(SX) determined by the sequence of
maps Tpk(Ex A X) > Tpipi1(Er A 2X) defined as the compositions

Toik(Bix A X) =5 M1 (S(Bk A X)) — Tgni1(By A £X),
in which the second homomorphism is induced by the canonical bijection ¥(Ex A X) =
(Ex A X)ASY— Ep A (X ASY) = Ej, A (XX), which is continuous since S* is friendly.
Corollary: Here is a somewhat exotic-looking formula for the singular homology of any
CW-complex X with coeflicients in an abelian group G:

H,(X;G) = my(K(G, ") A X)) = colimy_yeo Tk (K (G k) A X1).
Brief remarks on the proof of the theorem: We proved the special case E = £*5° when we

talked about the stable homotopy groups, and I would feel dishonest claiming that the gen-
eral case is a completely straightforward extension of this, but indeed, most of the essential
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ideas appeared there. I will admit that this is one point where I can clearly see the appeal
of working in the compactly-generated category, though I would be surprised if it is truly
necessary. For instance, in the proof that the suspension maps o, are isomorphisms, one
needs to consider in particular whether the map 41 (S(Ek A X)) = i1 (Er A XX)
induced by the canonical bijection (Ex A X) A ST — Ej A (X A S!) is an isomorphism. In
the compactly-generated category this is obvious, because product topologies are adjusted
in a way that makes the smash product associative without restrictions.””

e The point of expressing H,(X;G) as a homotopy group of a spectrum is not that this
makes it easier to compute, but rather that the same perspective can lend us insight into
the computation of other (generalized) homology theories. In particular, the coefficient
groups of bordism theory are computed by expressing them as homotopy groups.

Suggested reading. Much of what we talked about this week is discussed in [tD08, §7.6 and §7.7],
as well as [Hat02, §4.3 and §4.F]. I recommend reading Hatcher’s take on homology theories derived
from spectra (and the connection with stable homotopy groups in particular) before attempting to
understand tom Dieck.

Exercises (also for the Ubung on 4.07.2024).

Exercise 11.1. In this exercise, X is a CW-complex with a 0-cell as a base point, and G is a
group, which need not generally be abelian.

(a) Suppose f: X — K¥(G,1) is a map that sends the 0-skeleton of X to the base point of
KY(G,1),and v : (I,0I) —» (K% (G, 1), =) is a pointed loop whose homotopy class lies in the
center of G = 71 (K"V(G,1)). Show that there exists a free homotopy H : X xI — K¥(G, 1)
of f to itself such that for every O-cell x € X, H(x,-) is the path ~.

(b) Show that if G is abelian, then the action of 71 (K™Y (G, 1)) = G on [X, KV (G, 1)]; is trivial;
in particular, the natural map [X, K¥ (G, 1)]; — [X, K¥(G,1)], defined by forgetting base
points is a bijection.

Hint: You can prove this by induction on the skeleta of X, but you might notice that the
initial step in the induction is the tricky part. That’s what part (a) is meant to help with.

Exercise 11.2. You may or may not have noticed, but the definition of the bijection [X, K¥(G,n)],
H{w(X;G) given in lecture didn’t strictly make sense in the case n = 0, since one cannot tech-
nically define an element of mo(K"Y(G,0)) as a homotopy class of maps f o ®, : (D", oD°) —
(KY(G,0), ).
(a) Give a sensible definition of a natural bijection [X, K™ (G,0)]o — H2w(X;G) for CW-
complexes X and abelian groups G, and verify that it is indeed a bijection.
(b) Show that for pointed homotopy classes, there is similarly a natural bijection

[X, K¥(G,n)]y — Hew(X, {=}G)

for all n > 0, abelian groups G and pointed CW-complexes X, thus identifying sets of
pointed homotopy classes with reduced cellular cohomology.

Remark: The result of Exercise 11.1(b) is convenient to know for this, but it is also possible
to solve this problem more directly and deduce Exercise 11.1(b) from it. Try to think about
it from both perspectives.

57My educated guess is that the map (Bl A X) A ST — Ep A (X A S1)is at least a homotopy equivalence if X
(and possibly also E%?) is well pointed, and that would be good enough. Proofs of such things are unfortunately
hard to find in the literature, but there is a hint in the comments at https://math.stackexchange.com/questions/
3353411/associativity-of-smash-product-up-to-homotopy-equivalence).


https://math.stackexchange.com/questions/3353411/associativity-of-smash-product-up-to-homotopy-equivalence)
https://math.stackexchange.com/questions/3353411/associativity-of-smash-product-up-to-homotopy-equivalence)
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Reprove the existence of the natural bijection [X, K (G, n)]o — H&w(X; G) as a corollary
of the bijection in part (b).

Exercise 11.3. Assume n > 1 and G is an abelian group. Show that for any (n — 1)-connected
CW-complex X, the natural map

[X, KV (G,n)]+ — Hom(m,(X),G)

sending a pointed homotopy class [f] to the induced homomorphism fy : m,(X) — 7, (K¥(G,n))
is a bijection.

Hint: Factor it through H&y(X;G) and Hom(HSWY(X;Z), G), using the universal coefficient the-
orem and the Hurewicz theorem.

Exercise 11.4. The following clarifies two details in the prescription for constructing an Q-
spectrum E’ = {FE!} out of an arbitrary spectrum E = {E,}.

(a)

Suppose {X,}aes is a direct system in the category Top, over a directed set (J, <), with
pointed maps @gqo : X, — Xp defined for every a < 5 in J, and let ¢, : Xy — X =
colim{X,} denote the natural maps to the direct limit. The maps Qgq : X, — QXp
then similarly define a direct system {QX,}aecs, while the maps Q. : QX, — QX
make QX a target of this system, so that by the universal property, there is a uniquely-
determined pointed map

colim{QX,} - QX...

Show that u is a weak homotopy equivalence.

Hint: All colimits are coequalizers of coproducts, so X, and colim{Q2X,} are quotients of
wedge sums, and any given map of a sphere (or homotopy of such maps) into such a space
will then touch only finitely-many summands beyond the base point. Use adjunction to
get rid of 2, so that you only need to think about maps of spheres to X, for some « € J.
Show that for every spectrum E = {F,} with structure maps ¢ : ¥E, — E,.1, there
exists a spectrum E’ = {E]} with structure maps e’ : ¥E], — E]_, together with weak
homotopy equivalences ¢, : E!, — E,, such that the diagram

SE, = Y E,

o~k

/ Pn+1
El 2 Ba

commutes up to homotopy and the spaces E! are all pointed CW-complexes. Deduce
that E’ is then an Q-spectrum if the adjoint maps ¢ : E,, —» QF, 1 are weak homotopy
equivalences.

12. WEEK 12

Lecture 20 (1.07.2024): Fiber bundles.
e Definition: A map p: F — B is a fiber bundle (with base B, total space F and fibers

E, := p~1(x)) if every point z € B has a neighborhood & < B on which there is a local
trivialization, meaning a homeomorphism ® : E|y, := p~'(U) — U x F fitting into the
diagram

Bly —2— 5 UxF

p ’
U
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where F' can be any space and pr; denotes the projection map to the first factor. In partic-
ular, the local trivialization ® maps the fiber E, over each point y € I/ homeomorphically
to {y} x F'. The fiber bundle is said to be (globally) trivial if it admits such a trivialization
with U := B; similarly, the projection B x F' — B is often called the trivial bundle with
fiber F.

Remark: In the definition above, F' does not absolutely need to be the same space for all
local trivializations, though if B is at least connected, then it follows from the definition
that all the fibers will at least be homeomorphic. This means that for fiber bundles over
connected bases, there is no loss of generality if we always use a fixed space F as the
so-called standard fiber for all local trivializations; we will typically do this.

Definition: A section of a fiber bundle p : E — Bisamap s : B — FE such that pos = Idp,
i.e. the value of s(z) at each point x € B lives in the fiber E,. We denote the space of
sections by

I'(E) := {sections of p : E — B},

and since E|y -2, U is also naturally a fiber bundle for any subset & — B, we can also
speak of sections of E over U and write I'(E|y) for the set of these. It is sometimes useful
to put a topology on I'(F), and the appropriate choice of topology typically depends on
the context; we will not need this, but we will want to talk about homotopy classes of
sections, which are defined in an obvious way: sg,s1 € I'(E) are homotopic if there is
a homotopy s : B x I — E from sy to s; such that s; : B — FE is a section for every
t € I. We will see in examples below that it is often a nontrivial question whether any
globally-defined section exists, though they always exist locally: on any region U c B for
which there exists a local trivialization El;; = U x F, one can write down a section just by
choosing a map U — F, e.g. a constant map.

Basic questions of obstruction theory for a fiber bundle p : E — B:

(1) Do there exist any (global) sections s € T'(E)?

(2) How can we measure whether two sections sg, s; € I'(F) are homotopic?

Here is a real-world example in which one would want to answer the questions above.
Suppose M is a smooth manifold of even dimension 2n. Its tangent bundle TM =
Ugers ToM — M is then an example of a fiber bundle, whose fibers are the tangent
spaces (real 2n-dimensional vector spaces), and various natural constructions that one can
perform on vector spaces can also be used to create new fiber bundles out of TM. One
such construction is to define

J(TM) = | ) T(T.M),  where J(T,M) := {linear maps T, M 5 T, M ‘ J? = —]1},

zeM

a fiber bundle over M whose fiber J (T, M) at each point « € M is the space of complex
structures on the tangent space T, M, i.e. choosing an element J € J (T, M) is equivalent to
endowing the real 2n-dimensional vector space T, M with a complex n-dimensional vector
space structure in which J defines scalar multiplication by i. The sections of J(T'M) are
then known as almost complex structures on M. An almost complex structure exists
naturally if M is a complex n-dimensional manifold, i.e. if it is covered by local C™-valued
charts whose transition maps are holomorphic: the tangent spaces are then naturally
complex vector spaces, so that multiplication by ¢ defines a section J € T'(J(T'M)). One of
the fundamental questions to ask in complex geometry is which real 2n-dimensional smooth
manifolds admit (not just almost) complex structures, meaning that they can arise as
n-dimensional complex manifolds. It is a famously open question, for instance, whether S6
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admits a complex structure.”® We see that the existence of a section J € I'(J(T'M)) is a
clearly necessary condition for this. It is very far from being a sufficient condition: getting
from an almost complex structure to a complex manifold structure is much harder, and
is a fundamentally differential-geometric rather than topological problem, but the almost
complex question must always be answered first, and it does have a well-understood answer
using methods of algebraic topology. (Spoiler: S® has one, of course.)

One further remark on this: If two almost complex structures Jy,J; € I'(J(TM))
are homotopic, then the homotopy theorem that we will discuss next time implies that the
complex vector bundles (T'M, Jy) and (T'M, J;) are isomorphic, which is a clearly necessary
(but also not sufficient) condition for two complex manifolds (M, Jo) and (M, J;) to be
holomorphically diffeomorphic. The existence of a homotopy of sections from Jy to J; is
also something that can be clarified completely using algebro-topological methods.

e Preamble to a lengthy definition: The fiber bundles in the definition above do not have quite
enough structure to be useful in most applications, but typical examples naturally have
more structure, and the following discussion of G-bundles and structure groups provides
a very general framework for encoding such structure. Several of the definitions could
be simplified considerably if we only wanted to consider effective group actions, but that
would exclude some important and interesting examples.

e Definitions: In the following, assume G is a topological group with identity element denoted
by e € G, and F is a topological space on which G acts continuously from the left. Some
of the terminology used below is not completely standardized, but the definitions would
get longer if I didn’t use it.

(1) A bundle atlas with standard fiber F on the fiber bundle p : E — B is a collection
of local trivializations
P = {Eua Loy g xF}
acJ
such that the sets {U, © B}aes form an open covering of B.
(2) A system of G-valued transition functions on B consists of an open covering
{U, © B},es and a collection of maps
T = {ua AU 25 G}
(a,B)eTxJ
that satisfy the following two conditions:
(i) gaa =€ on U, for each a € J;
(ii) 9ap9sy = Gay 00 Ua NnUg N U, for each o, 3,7 € J.

Both relations together imply that the values of the functions gg, and g,g are inverse

to each other at every point, and the second condition can thus be rewritten as

9aBYIpyGya = € on Uy NnUg N U,.

In this form, it is popularly known as the cocycle condition, for reasons that might
be apparent to you if you've seen Cech or sheaf cohomology before, and probably not
if you haven’t. Suffice it to say that in certain situations (which will not immediately
concern us), this condition can be interpreted as saying that the collection of functions
Jga defines a 1-cocycle in some cochain complex.
If a bundle atlas ® and system of transition functions 7 with the same underlying open
cover {U, C B},ey are given, we will say that 7 defines transition data for ® if for every

58There are papers on the arXiv claiming both positive and negative answers to that question, some of them by
quite famous people; see
https://mathoverflow.net/questions/1973/is-there-a-complex-structure-on-the-6-sphere.


https://mathoverflow.net/questions/1973/is-there-a-complex-structure-on-the-6-sphere
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(o, B) € J x J, the so-called transition map (U, NnUg) x F — (U, nUg) x F defined via
the diagram

Elu, nus
D Pp

~ ~

(Ua nUB) x F (Us nU) x F

takes the form (z,p) — (z, gsa(z)p). Notice that if the action G x F' — F' is effective, then
the local trivializations uniquely determine the functions gg, via this relation; the existence
of such functions gg, then imposes a nontrivial condition on the local trivializations, since
it will typically not be true that every map (U, nUs) x F' — (U nUg) x F' arising from such
a diagram can be expressed in terms of the G-action on F. But if that condition holds and
the uniquely-determined functions gg, exist, then the cocycle condition is automatically
satisfied, and we now have a straightforward way to define what a G-structure on a fiber
bundle p : E — B should be: it is a maximal bundle atlas with the property that the
(uniquely-determined!) transition maps are all expressible as above in terms of the G-action
on F'. This definition does not require any explicit statement of the cocycle condition, and it
makes sense in the effective case because the transition functions are uniquely determined:
in particular, any bundle atlas with G-valued transition data then determines a unique
one that is maximal. In the non-effective case, the transition data is no longer uniquely
determined by the bundle atlas, and we therefore need the more cumbersome definitions
below, whose purpose is mainly to clarify what it means for two bundle atlases together
with choices of G-valued transition data on a fiber bundle to be equivalent. We will
comment at the end of this lecture on what would be lost if we did not explicitly require
the cocycle condition in this situation (cf. Theorem 1).

(3) A morphism 7! — 7?2 between two systems of G-valued transition functions 7°¢ =

{ggo)é SUL x UL — G} ~ for i = 1,2 consists of a collection of functions
(a,8)ETt % J?

{Z/li mug L G}

(a,B)edtx.J2

that satisfy the relations
(iii) haggél,y) = hg on U? nl/lé N U for each o € J* and 8,7 € J';

(iv) gfﬁ)hm = hay on UZ N UG AU for each a, 5 € J* and v e J'.

Interpretation: Suppose G acts effectively on F, and 7' and 72 are the (uniquely-
determined) transition data corresponding to two bundle atlases &' and ®? respec-
tively. The union of ®' and ®? then defines a new bundle atlas which may or may
not admit G-valued transition data; if it does, then the resulting functions hg, deter-
mined by transition maps @3 o (®},)~" for o € J' and € J? automatically satisfy
the two relations above—they are a consequence of the cocycle condition for the en-
larged system of transition functions—thus giving rise to a morphism 7' — 72. In
the non-effective case, the functions hg, in this situation are not uniquely determined
by the two bundle atlases, so it becomes necessary to impose conditions (iii) and (iv)
explicitly.

(4) A G-bundle atlas for the fiber bundle p : E — B consists of the data A = (®, T, p),
where ® is a bundle atlas, 7 is a system of G-valued transition functions with the
same underlying open cover of B, and p is a continuous left action of G on the standard
fiber F' of the bundle atlas, such that 7 and this action define transition data for ®.
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(5) Assume p' : E* — B for i = 1,2 are fiber bundles with the same base B, and they have
G-bundle atlases A’ = (®', T, p) with the same standard fiber F and G-action p. A
G-bundle isomorphism (E!, A') — (E? A?) then consists of a homeomorphism
¥ : E' - E? and a morphism {hg.} : 7' — T2 such that for every o € J' and
B € J?, the map (U, nUZ) x F — (Uy, nU3Z) x F determined by the diagram

v
E1|u}¥mu§ I E2|u;mug

~ ~ 2
{cb}, {@ 5

Uy nUE) x F —— Uy nUE) x F

takes the form (z,p) — hga(2)p.
Exercise: G-bundle isomorphisms deserve to be called “isomorphisms,” i.e. they can
be composed and inverted in a natural way.

(6) A G-bundle (or fiber bundle with structure group G) is a fiber bundlep : £ —» B
equipped with an equivalence class of G-bundle atlases, where two G-bundle atlases
Al A2 are considered equivalent if there exists a G-bundle isomorphism (FE, A') —
(E, A?) whose underlying homeomorphism E — E is the identity map.

Exercise: If the action G x F — F is effective, then a G-bundle with standard fiber F
has a maximal G-bundle atlas that contains all G-bundle atlases in the correct equivalence
class.

¢ Examples: The general principle is that any structures on F' that are preserved by the
G-action get inherited by all the fibers of the bundle.

(1) Let K denote either R or C. Taking standard fiber F' := K" and structure group
G := GL(n,K) with its usual linear action on K" makes all the fibers E, of a G-
bundle p : E — B into n-dimensional vector spaces over K, and p : F — B is in this
case called a (real or complex) vector bundle of rank n. One can specialize this
example further:

(a) Taking G to be one of the subgroups O(n) < GL(n,R) or U(n) < GL(n,C)
means that the fibers E, are equipped with inner products that vary contin-
uously with z. Such a structure on a vector bundle is often called a bundle
metric; in the case where E is the (real) tangent bundle of a smooth mani-
fold M, it is a Riemannian metric on M.

(b) In the case K = R, taking G to be the subgroup GL;(n,R) < GL(n,R) of
matrices with positive determinant means that the fibers E, are oriented real
vector spaces, with orientations that vary continuously with x.

(c) Here is the most popular non-effective example: Recall from Exercise 7.8 that
m1(SO(n)) = Zsy for all n > 3. The universal cover of SO(n) is a group called
Spin(n) that comes with a degree 2 covering map Spin(n) — SO(n).”” If E —» B
is a real vector bundle of rank n with an SO(n)-structure, meaning it carries
both a bundle metric and an orientation, then it may or may not also admit a
spin structure, meaning a system of transition functions valued in Spin(n) that
lift the given SO(n)-valued transition functions while still satisfying the cocycle
condition. Spin structures were originally motivated by quantum mechanics,
but they now play an important role in differential topology due to invariants

59There is also a natural definition of Spin(2) that comes with a degree 2 covering map to SO(2); the difference
is just that it is not the universal cover in that case, and in fact is isomorphic to SO(2) = S'. In spite of this
isomorphism, it is not true that an SO(2)-structure on a bundle can always be lifted to a Spin(2)-structure, because
not all maps to ST can be lifted to its double cover.
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of smooth manifolds that are based on gauge-theoretic PDEs determined by a

spin structure.
Under suitable assumptions on the standard fiber F' (e.g. compact and Hausdorff is
good enough), any fiber bundle p : F — B with fibers homeomorphic to F' can be
regarded as a G-bundle with G := Homeo(F') acting on F' in the obvious way. The
reason this isn’t true for arbitrary spaces F' is that some conditions are required in
order for Homeo(F') with the compact-open topology to be a topological group, and for
its obvious action on F' to be continuous. This is yet another problem that simply goes
away if one decides to work in the compactly-generated category, accepting the subtle
differences in standard definitions that come with that decision. But in practice, most
interesting fiber bundles have strictly more structure than this, e.g. with structure
groups that are finite-dimensional Lie groups, and are thus much nicer to work with
than Homeo(F).
There are interesting examples in which the standard fiber F' can be identified with
the group G, acting on itself by left multiplication. The extra structure this imparts
upon the fibers F, is then a right G-action that is free and transitive; it can be written
in any choice of local trivialization ®,, : E|y, — U, x G as the right action

Uy X G) X G > Uy x G : (z,9)h := (z, gh)

defined on U, x G, and this formula determines a global action £ x G — F that is
independent of choices of local trivializations because the action of G on itself by right
multiplication commutes with its action by left multiplication. This type of G-bundle
is called a principal fiber bundle (often abbreviated PFB).

(a) For any vector bundle E — B of rank n over K, there is an associated principal
GL(n,K)-bundle FE — B called the frame bundle of F, whose fiber F(E,)
over each point x € B is the set of bases of the vector space F, with its obvious
topology. Equivalently, the space F(E,) of frames for E, can be identified
with the space of linear isomorphisms ¢ : K® — F,, which has an obvious right
GL(n, K)-action

¢g:=¢og

defined via composition of linear transformations.

Remark: This example shows clearly that global sections of a fiber bundle do
not always exist. Taking E for instance to be the tangent bundle of 2, a global
section of the associated frame bundle F(T'S?) would mean a pair of vector
fields on S? that form a basis of the tangent space at every point. This would
be a strong contradiction to the theorem that you cannot “comb the hair on a
sphere”.

(b) The Hopf fibrations S?"*! — CP" are all principal S'-bundles, where S! can be
interpreted as a synonym for U(1) with its natural right action on $?"*1 < C**!
by scalar multiplication.

(¢) The fibration SO(n) — S™~! : A+ Ae; in Exercise 7.8 is a principal SO(n—1)-
bundle if we identify SO(n — 1) with the subgroup

()

acting on the total space SO(n) by right multiplication.
Remark: For many fibrations that are useful in computations, the easiest way to
prove that they are fibrations is by proving that they are principal fiber bundles.

A eSO(n — 1)} c SO(n),
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We’ll discuss in the next lecture why that implies the homotopy lifting property. The
proposition below reveals that proving something is a principal bundle is typically
easier than writing down local trivializations: if one already sees a fiber-preserving
right G-action that is free and transitive on every fiber, then one only still needs to
check that local sections exist, which is often obvious.

(4) For any spaces B and F, one can define a trivial G-bundle F := B x F 2, B by
writing down the obvious bundle atlas with only one local (but actually global) trivi-
alization, together with the obvious system of G-valued transition functions consisting
only of the constant function g, (x) :=e € G for all z € B.

e Proposition: For any principle G-bundle p : E — B and open subset &/ < B, there is a
natural bijection between the set I'(E|y) of sections of E over U and the set of G-bundle
isomorphisms between E[;; and the trivial principal G-bundle U x G — U.

Quick proof: To turn a section s : Y — FE into a trivialization ® : E|y — U x G, one can
exploit the free and transitive right G-action on the fibers and define

o Y(z,9) = s(x)g.

Remark: It follows that a principle bundle is trivial if and only if it admits a global
section, so one should not expect principal bundles to admit global sections in typical
cases. (By contrast, vector bundles always have a distinguished global section, the zero-
section, but this is only because the fibers of a vector bundle are contractible spaces and
thus topologically uninteresting. The existence of a global section tells us nothing about
whether a vector bundle is trivial, and in fact, it is trivial if and only if its associated frame
bundle—a principal bundle with the same structure group—is trivial.)
e Theorem 1: Given a continuous group action G x F' — F and a space B, there is a natural

bijection between the following sets or equivalence classes:

— G-bundles over B with standard fiber F', up to G-bundle isomorphism;

— Systems 7 of G-valued transition functions on B, up to morphism 7' — 7 2.
I sometimes refer to elements in the second set as abstract G-bundles, as they contain
much of the data that defines a fiber bundle, but without any well-defined total space
or fibers. An abstract G-bundle thus encodes many possible fiber bundles that can have
different fibers but the same structure group and transition functions.
Proof of the theorem (sketch): The details are straightforward once one has seen the
recipe for constructing a G-bundle £ — B with standard fiber F' out of a given system
{980 : Ua nUz — G}(a,B)eJxJ of G-valued transition functions. We define

E:=]]W ><F)/~,

aeJ

with the equivalence relation defined by
Uy x F 3 (2,p) ~ (z,g98a(z)p) eUg X F

for all a, 8 € J, x € Uy, nUp and p € F'. The fact that this really is an equivalence relation
is due to the cocycle condition, and this is where we would lose something important if we
had not explicitly assumed the cocycle condition in the setting of non-effective actions.

e Theorem 2: Every G-bundle p : E — B with standard fiber F' can be recovered (up to
G-bundle isomorphism) from a corresponding principal G-bundle P — B via the following
prescription. We define P — B as the principal bundle constructed via Theorem 1 out of
the right-action of G on itself and the same system of G-valued transition functions that
E has. The original bundle E is then isomorphic to the so-called associated bundle
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P xg F — B defined by

PxgF:=(Px F)/G, where 9(o,p) == (pg™ 1, gp),

with the obvious projection P xg F' — B determined by the principal bundle P — B.
Proof sketch: Thanks to Theorem 1, one just needs to check that the associated bundle
P x¢ F can be presented as a G-bundle with standard fiber F' and the same system of
G-valued transition functions as the principal bundle P.

Remark: The message of Theorem 2 is that a large number of the questions one would
like to answer about general fiber bundles can be answered by focusing on the special
case of principal bundles, which contain the fundamental genetic code of all interesting
fiber bundles. Principal bundles give us the option of avoiding most discussions of local
trivializations and transition functions, as these can be recovered fully from the data en-
coded in a free and transitive right G-action. For this reason, one finds many books that
express definitions of fundamental notions such as reduction of the structure group and
spin structures purely in terms of the global properties of principal bundles. For example,
an alternative formulation of the definition I gave above for a G-bundle would first define
a principal G-bundle to be a fiber bundle that is equipped with a fiber-preserving right
G-action which is free and transitive on every fiber, and then say that an arbitrary fiber
bundle p : E — B is a G-bundle if it is equipped with a fiber-preserving homeomorphism
to the associated bundle P xg F' — B for some principal G-bundle P — B and some
left action of G on a space F. I tend to think that definitions in this form look rather
mysterious and unrevealing, but they are also useful in practice.

Lecture 21 (4.07.2024): Obstruction theory. This lecture covers three topics that are some-
what separate, but the first two are prerequisites for the third. Topic 1 concerns pullbacks and the
homotopy theorem for fiber bundles.

o Easy theorem: For any G-bundle p : E — B with transition functions {gg, : Us nUs — G},

the pullback f*FE — B’ viaamap f: B’ — B is also naturally a G-bundle, with transition
functions {gga o f: f1(Ua) n f1(Us) — G}.

Remark: One can also say this about general fiber bundles without mentioning the struc-
ture group, and the proof is easy because there is an obvious way to produce a local
trivialization for f*FE out of any local trivialization of E. We sometimes call f*E — B’
the induced fiber bundle determined by p : E — B and the map f: B’ — B.
Homotopy theorem for fiber bundles: For any G-bundle p : £ — B whose base B is
a paracompact space and any two homotopic maps f,g : B’ — B, there is a G-bundle
isomorphism f*FE ~ g*FE.

Remark: Paracompactness is a technical condition that arises whenever one needs to piece
together local constructions into a global construction using a partition of unity. All
metrizable spaces are paracompact, and I have never yet encountered a good reason to
worry about spaces that aren’t paracompact.

Corollary 1: A fiber bundle over a paracompact base is a fibration.

Proof: The usual homotopy lifting property

X x {0} 2 B

[ 27

XxI—2,p
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has the following interpretation: Every section H, of the pullback bundle H*E — X x [
restricted to X x {0} can be extended as a section to the rest of X x I. This statement
is obvious if H is a trivial homotopy of the form H(z,t) = Hy(z), because the fibers
(H*E) (@) = EH(z4) = Eny(«) then depend on z but not ¢, so one can define H by
H(z,t) := Ho(z). But any map H : X x I — B is homotopic rel X x {0} to such a trivial
homotopy—just retract each of the paths t — H(x,t) back to its starting point—so by the
homotopy theorem, solving the problem in the case of a trivial homotopy also solves it in
general.

Corollary 2: Any G-bundle E — B over a contractible paracompact space B is isomorphic
to a trivial G-bundle B x F — B.

Proof of the homotopy theorem (sketch): I am summarizing an argument that is written up
in full detail in [Cut21, Week 4: Fibrations III], with some additional background material
in [Cut21, Week 4: Partitions of Unity]. It involves some subtleties that I will mostly
suppress, but they are subtleties of point-set topology rather than algebraic topology. We
will ignore the G-bundle structure and speak only of general fiber bundles, but it will be
clear that if a G-bundle structure is present, then the construction respects it.

Note first that if p : £ — B is a fiber bundle and H : X x I — B is a homotopy, then
the pullback bundles Hf E and HE are just the restrictions of the bundle H*E — X x I
to the subsets X x {0} and X x {1}, thus it will suffice to prove that two such restrictions
of a bundle over a space of the form X x I are isomorphic. There is a slight subtlety here
involving the hypotheses: the theorem assumes B is paracompact, but the domain X x [
of an arbitrary homotopy X x I — B need not be. One can deal with this using the notion
of numerably trivial maps, which I'd rather not define here, but suffice it to say that every
fiber bundle over a paracompact space is numerably trivial, every pullback of a numerably
trivial fiber bundle is also numerably trivial, and this property will allow us to treat the
pullback as if its base were paracompact. (The details behind this are nicely explained in
[Cut21, Week 4: Fibrations III].) I'm therefore going to pretend in the following that there
is never any need to worry about bases that are not paracompact.

With that understood, the result follows from a more technical statement: Given a fiber
bundle p: E — B x I with B paracompact, there exists an isomorphism of fiber bundles

Ex~¢*E  where BxI-%5BxI:(zt)— (1)

More precisely, this means that there is a map ¥ : £ — F sending each fiber E(,
homeomorphically to (¥*E) .+ = Ey@s) = E(z,1), s0 it fits into the diagram

E—Y L, F

J» J»
BxI Y5 BxI

One sometimes says in this situation that ¥ : £ — FE is a bundle map and that it covers

the map ¢ : B x I — B x I. Restricting the bundle p : E — B x I to B x {0}, one

obtains from ¥ an isomorphism of fiber bundles between the restrictions of F to B x {0}

and B x {1}, exactly what is needed for the homotopy theorem. The proof of the technical

statement can be summarized as follows.

Step 1: Paracompactness implies that one can find a countable open covering {U,, c
B}hen that is also locally finite, meaning that every point x € B has a neighborhood
that intersects at most finitely-many of the sets U,,, and moreover, it is possible to choose
the sets U,, small enough so that F is trivializable over each of the sets U,, x I, giving local
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trivializations
E

woxg = Un xI) x F

for all n € N. That last detail is one of the subtle parts, because E of course admits local
trivializations over all sufficiently small subsets of B x I, but U,, x I cannot be considered
“small” so long as the entire interval [ is involved. What one actually needs to do is choose
neighborhoods of the form U, x (to—¢,to+¢) € B x I on which E can be trivialized, exploit
the compactness of I to establish a lower bound on the sizes € > 0 of subintervals for which
this works, and then piece together finitely many trivializations on such subsets to form
a trivialization on U,, x I. Let’s assume this has been done. The other piece of auxiliary
data that can now be chosen thanks to paracompactness is a collection of functions

{pn : B - [Oa oo)}neN
such that each p,, has its support contained in U, and

max p, > 0.
neN

Note that this maximum is well defined, and is in fact a continuous function on B, because
by local finiteness, every point in B has a neighborhood on which only finitely-many of
the functions p,, are nonzero. The sum », p, is a well-defined continuous function for the
same reason, and if we were doing any of several things in differential geometry for which
this kind of data is useful, we would now rescale the functions to assume ) p, =1 and
call this collection a partition of unity. In the present context, we will do something
slightly different but similar, and rescale them so that
a =1
napon =1,
thus all of the p, are now bounded above by 1, and at any given point, at least one of

them equals 1.
Step 2: For each n € N, define ¢, : B x I — B x I by

Yn(x,t) = (z, max{t, pn(v)}) ,

so 1, is the identity map outside of U, x I. Then use the chosen local trivialization
Ely, x1 = (U, x I) x F to define a bundle map V¥,, : E — E covering 1, like so: we define
it over Uy, x I as ¢, x Id : (U, x I) x F — (U, x I) x F after identifying E on this region
with the trivial bundle (U, x I) x F, and then extend it to the rest of B x I as the identity
map.

Step 3: Thanks to local finiteness, the compositions

Ypotp_10...0Yp1: BxI—>BxI

have a well-defined and continuous limit as n — o0, since every point has a neighborhood
on which at most finitely many of the maps appearing in any of these compositions are
not the identity map. Moreover, since at least one of the functions p, equals 1 at each
point, the limit of these compositions is just ¥ (x,t) = (x,1). We then obtain a bundle
isomorphism ¥ covering @ as a similar limit,

U:= lim (¥,o0V¥,_j0...0W0).
n—x0

Topic 2 concerns a special class of fiber bundles whose fibers are discrete abelian groups; we will
need to use these below as “twisted coefficient groups” for a generalized version of cohomology.
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o Definition: A local system of abelian groups {G,}.cp over a space B is a fiber bundle
p: G — B with fibers p~1(x) = G, such that the standard fiber is a discrete abelian group
on which the structure group of the bundle acts by group isomorphisms. Equivalently,
a local system is a covering map G — B whose fibers G, are equipped with (abelian)
group structures that vary continuously with z. (The precise meaning of the words “vary
continuously with x” is best expressed in terms of local trivializations: every point z € B
in the base of a local system G — B has a neighborhood &/ = B on which G|;; can be
identified with & x G for some fixed abelian group G carrying the discrete topology.)

e Example 1: For any topological n-manifold M, the orientation bundle {H,,(M, M\{z};Z)}zem
is a local system over M whose fibers are the local homology groups, all isomorphic to Z.
This is why we called it a “bundle” in Topology 2 (cf. [Wen23, Lecture 52]).

e Example 2: When we discuss obstruction problems in the final part of this lecture, we need
to consider local systems of the form {7, (F.)}ses whose fibers are homotopy groups of
the fibers of a given fiber bundle p : E — B. This requires an extra condition: we assume
the fibers E, =~ F of the given bundle are simple, meaning that they are path-connected
and have 7 (F) acting trivially on 7, (F) for all n. Recall that the natural action of m (F)
on itself is by conjugation, so simplicity implies among other things that 7 (F') is abelian;
more importantly, it implies that the natural map =, (F) — [S™, F], defined by forgetting
base points is a bijection for all n. We will comment below on why, for most interesting
applications of obstruction theory, it is not too restrictive to require that the fibers are
simple.

e Proposition: Assume p: £ — B is a fiber bundle with fibers E, =~ F' that are simple, and

also that the base B has the usual properties required in covering space theory.’° Then
the union of the groups {7, (E;)}.ep can be given a natural topology that makes it a local
system of abelian groups over B.
Proof: For any point x € B, choose a neighborhood x € Y c B such that there is a unique
homotopy class of paths v in U from x to any other point y € U. Such a path v determines
a homotopy H : S™ x I — B of constant maps H(z,t) := v(t), and feeding this into the
transport functor of p : F — B then gives a bijection

n H mn
Tn(Ey) = [S", Exlo —2 [S™, Eylo = ma(E,),

which depends only on y € U and not the path . (One should check that the resulting
bijection 7, (E,) = m,(E,) respects the group structure; I leave this as an exercise.) The
resulting map
U x 10 (Ex) = | ma(Ey)
yeUu

can be regarded as the inverse of a local trivialization.

¢ Example: A trivial local system over B is simply a product space B x GG, where G is an
abelian group and carries the discrete topology. In this example, the fibers are the subsets
{x} x G, which are all copies of the same group, with the extra parameter z € B tacked on
just for bookkeeping; to put it another way, a trivial local system is essentially the same
thing as a perfectly ordinary abelian group. The next result comes as close as possible
to identifying every local system over a sufficiently reasonable space with a trivial local
system.

60T had to look them up: We want B to be path-connected and locally path-connected, and such that every
point in B has a simply-connected neighborhood. Those are the conditions required in order to construct a universal
cover of B.
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e Proposition: Assume {G.}.ep is a local system of abelian groups over a path-connected
space B with universal cover f : B — B. Then any choice of base points * € B and * € B
making f a pointed map determines an isomorphism of the local system {G,} with

(B x @) [m(B),

where G := G, is the fiber of {G,} over the base point * € B, and m1(B) acts on B
in the usual way by deck transformations and on G by group isomorphisms. We regard
(B x G)/m1(B) as alocal system over B whose fiber at a point z € B is (f ' (z) xG) /71 (B),
a discrete group that is isomorphic to G since 71(B) acts freely and transitively on the
discrete set f~1(x).
Proof: This follows from standard covering space theory arguments. First define a map

BxG-5 |G

zeB

as follows: Given (Z,g) € B x G, choose any path ¥ in B from = to 7, let v :i= fo¥y
denote the projected path in X from = to x := f(), lift the latter to a path in the local
system from g € G = G, to some point ¢’ € G, and set F(Z,g) := ¢’. Under the usual
identification of 71 (B) with f~1(%), evaluating F at f~(*) x G defines an action of 7 (B)
on G by group isomorphisms, such that F' descends to the quotient of Bx@G by m1(B),
and one then checks that the resulting map of the quotient to the given local system is a
homeomorphism.

e Convenient fact: Every path-connected topological group G is simple.

Proof: We choose the base point of G to be the identity element e € G. Given [y] € m1(G)
and [f] € m,(G), we can use the group structure to define a free homotopy from f to itself
along v by H(z,t) := f(x)y(t). If you recall how the action of 71 on 7, is defined in general
via the transport functor, the existence of this free homotopy implies [v] - [f] = [f].

e Remark: I tried very hard to convince you in the previous lecture that many problems
involving fiber bundles can be solved by considering only the special case of principal
bundles. The fiber of a principal bundle is a topological group, and therefore always
simple according to this result. It is not quite true that this is the only type of bundle one
really has to worry about in obstruction-theoretic problems, but Exercise 12.2 below tells
us that for a reasonable class of subgroups H c G, the quotient G/H will also be a simple
space. This really does cover all examples that I can immediately think of good reasons to
care about.

Topic 3: Obstruction theory for sections of fiber bundles.

e The general obstruction problem: Given a pair of spaces (X, A) and a fiber bundle p : E —
X, we consider the lifting/extension problem

A2, F

S /2
\[ /// J’p '

X — X

Interpretation: Given a section sy of F|4, can sy be extended to a global section s
of E? The questions of whether a global section exists and whether two given sections are
homotopic can both be regarded as special cases of this problem.

¢ Standing assumptions: In the following, (X, A) is always a CW-pair, and the fibers £, =~ F
of the bundle p : E — X are assumed to be simple. We can then try to solve the
lifting /extension problem inductively over the skeleta of X, meaning that for each n > 0
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in succession, we assume an extension of s4 to A U X" ! has already been found and try
to extend it further to A U X™:

Auxnt 2L B

Sn //’7
Jts p

Av X" —— X

Notice: Extending a given section of E|4 to A u X0 is trivial, as the values of sy on 0-cells
outside of A can be chosen arbitrarily. In the following we assume n > 1.

Remark: The hypotheses in the setup can be relaxed a bit, e.g. it is possible to attack this
problem when p: E — X is only a fibration and not a fiber bundle, but that would make
some details trickier, and I am not aware of an interesting application that would require
that level of generality.

Idea: For each n-cell " < X\A with characteristic map ®,, : (D", S"~1) — (X, X"7!), the
contractibility of D™ implies via the homotopy theorem that there exists a trivialization

PrIE =D" x F.

The trivialization identifies sections over this region with maps to the fixed space F, so
under that identification, exploiting the assumption that F is simple, we can define

o (en) = [S™! 2o xS Fle [S7Y, Flo = ma_n (F).

We’d like to interpret ™ defined in this way as a cochain in Cfy (X; m,—1(F)). Note that
even in the case n = 2, m1(F) is a valid choice of coefficient group for cohomology, because
simplicity implies that it is abelian.

Problem: The homotopy class of s,_1 0 ®,|gn—1 as a map S" ! — F may depend on the
choice of trivialization.

Solution: The dependence on a choice can be eliminated by working in the universal cover
f: X > X, with its induced cell decomposition, instead of directly in X . Set A= 1A,
choose base points * € X and * € f~(x) € X, let F denote the specific fiber By over the
base point, and denote the pullback of £ to the universal cover by E:= f*E - X. For any
TE€ X we can choose a path 5y : [ — X from # to T, let v := fo7¥ denote the projected path
in X from # to x := f(Z), and trivialize E along 7, meaning we choose a trivialization of
the pullback bundle v*E — I, which is possible since I is contractible. This determines a
homeomorphism F' = E, — E,, and since ¥ is unique up to homotopy, the properties of the
transport functor imply that the homotopy class of the homeomorphism F' — E, depends
only on the point Z € f~!(z), not on any other choices. For every lift €7 c X \A of a given
n-cell el = X\ A, we can now use this procedure to fix a homeomorphlsm of F to the fiber
over the center of €, and then move radially outward to define a trivialization of E over
the rest of €, or more precisely, a trivialization of the pullback bundle q)zE =o*F - D"
induced by its characteristic map. Up to homotopy, the trivializations defined in this way
are independent of choices, except that in general we may have different trivializations
corresponding to different choices of lift to X for the same n-cell el < X\A. We thus have
a well-defined cochain

0" € Ol (X, A;mp_1(F)), 0% :=[sp_1 0 Po|gn—1] € Tn_1(F),

with the understanding that the trivializations described above are used in order to view
Sp_1 0 ®Py|gn-1 as a map S" 1 — F. Note that the same definition of " also makes
sense for n-cells in A, but it vanishes automatically on these cells because an extension of
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Sn—1 over these cells exists. In general, 0™ (e") = 0 if and only if the section s,_; can be
extended over the particular n-cell e.

Lemma: The cochain 0" : CSW(X, A;Z) — m,_1(F) is equivariant with respect to the
natural action of 1 (X) on both sides, where the action on CSW (X, A;Z) is determined
by the action of m(X) on X by deck transformations, and the action on m,_1(F) is
the same one that appears in the isomorphism of local systems {m,_1(Ey)}zex = (X X
anl(F))/ﬂ'l(X).

Definition: Given a CW-pair (X, A) with universal cover f : X — X and A := f~!(A), and
alocal system {G,} = (X x G)/m1(X) of abelian groups over X, the cellular cohomology
Hw (X, A {GL}) of (X, A) with local coefficients in {G;}.ex can be defined as the
homology of the subcomplex

Hom,, (x) (CSV(X, 4;Z), G) « Hom (CSV (X, 4;2), G),

meaning we consider only cochains ¢ : CSW(X, A;Z) — G that are m; (X )-equivariant.
(Exercise: The cellular boundary operator commutes with the 7;(X)-action, thus the
group of equivariant cochains really is a subcomplex.)
Fun fact: Hfy (X, A;{G,}) is naturally isomorphic to a corresponding version of singular
cohomology with local coefficients, which can be defined in multiple equivalent ways. One
version of the definition is phrased in terms of 71 (X )-equivariant singular cochains on the
universal cover, closely analogous to the definition above. In another version, one avoids
using the universal cover but instead generalizes the notion of a singular cochain on X as
follows: instead of taking values in a fixed coefficient group G, an n-cochain ¢ associates
to each singular simplex o : A" — X a lift of o that sends A" to | J,.y G, i-e. a section
of the bundle of coefficient groups along o. There is also an equivalent formulation of
HEw (X, A; {G}) that avoids using the universal cover, but it looks somewhat less elegant:
one has to fix a point z,, in each cell e” and require the value p(e?) of a cochain ¢ to live
in the fiber G,,_,. This makes the coboundary operator rather tricky to write down. In
a very large number of important applications, however, one doesn’t really need to know
all this, because fortunate topological circumstances conspire to make sure that the local
systems we need to worry about are trivial, which makes Hw (X, 4; {G.}) the same thing
as the usual cellular cohomology with coefficients in a fixed abelian group.
Main theorem:
(1) The obstruction cochain 0" € C (X, A; {m,—1(E;)}) defined via the prescription
above is a cocycle, and thus represents a so-called obstruction class

[en] € ng (X’ A; {ﬂ-n—l(Ex)})a

(2) The cocycle 8™ is determined by the homotopy class of the given section s, 1 of
E|sxn-1, which can be extended to A u X™ if and only if 6™ = 0.

(3) There is a natural bijection between the set of all n-cocycles cohomologous to 6" in
the complex Cfy (X, A;{m,—1(F,)}) and the set of all homotopy classes of sections
of E|4,xn-1 that match s,_; on AU X" 2,

In particular, it follows that [6"] = 0 € Hgy (X, 4; {mn—1(E,)}) if and only if s,_1 can

be modified on X"~! (but without changing it on A U X™~2) to produce a section that

extends to A U X™.

e Some brief comments on why the theorem is true:

€s = olds tor every (n + 1)-cell e ue to roughly the same cancellation
1) 6™(def™) = 0 holds fi 1)-cell e d ghly th llati
phenomenon that causes the cellular boundary map to satisfy 02 = 0.
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(2) This is clear from the definition of ™. Let me just emphasize that here we are talking
about the vanishing of the cochain 6™, rather than the cohomology class [#™] that
it represents. The geometric meaning of the condition [6"] = 0 is subtler than the
meaning of " = 0, and is addressed by the third statement in the theorem.

(3) If s/, , is another section on A U X"~! that matches s,, 1 on AU X"~2 we can use it
to define a cochain 1 € Ofy! (X, A; {m,,—1(F)}) whose value on each lifted (n — 1)-cell
E“Ifl cX \E is the homotopy class of a map S" ! — F obtained by gluing together
the disk maps s,,—1 0@, : D""! — F and s/,_; 0o ®, : D"~! — F along their matching
boundaries, as usual with the understanding that a trivialization determined by a
path from the base point to %’;L_l in X is used in order to regard s/, _; and s, 1 in
this region as F-valued maps. (Once again, the definition of ¢ (€2~") also makes sense

for é’,’y"l c ﬁ, but it vanishes automatically because s, and s/,_; are assumed to
match on A.) For each lifted n-cell €7, the difference between the values on € of
the two obstruction cocycles defined via s,_; and s/,_; is then +¢(0e?). Conversely,
given any v € Cpt (X, A; {m—1(F)}), sn—1 can be modified in the interior of each
(n — 1)-cell effl by performing a connected sum of each of the lifts 2! with a
sphere S"~! and extending s, 1 over this sphere as a map S"~! — F representing
Y(er~") e m, 1 (F). Doing this produces a new section s, _; with a new obstruction
cocycle that differs from 6™ by +d.

e Theorem 2: If the fiber F is (n — 2)-connected,’’ then every section ss of E|4 can be
extended to A U X!, and any two such extensions are homotopic rel A on A U X" 2,

e Corollary: In the situation of Theorem 2, the obstruction class [6"] € Hew (X, A; {m—1(Ez)})
in the main theorem can always be defined and is independent of the choice of extension
of s4 to a section s,,_; on A U X! ie. it depends only on the homotopy class of the
original (unextended) section s4 € I'(F|4) and the topology of the bundle F — X.

o Definition: The class [6"] € H&yw (X, A; {m,—1(E,)}) in the setting of Theorem 2 and its
corollary is called the primary obstruction class for the problem of extending a given
section s4 from A to X. The extension to Au X™ is possible if and only if this cohomology
class vanishes.

e Remark: If the primary obstruction class [6"] vanishes, then sections can be extended from
Ato AU X™, but there may be secondary obstructions [0"+1] € HAW (X, A; {7, (E,)}),
[07+2] € HES (X, A; {mn11(E,)}) and so forth to finding further extensions over higher-
dimensional skeleta, and the definitions of the secondary obstruction classes will typically
depend on the choices of extensions to the previous skeleta. The good news is that there are
many interesting applications in which these secondary obstructions vanish automatically,
so that only the primary obstruction really needs to be understood.

Suggested reading. My favorite reference for the general theory of fiber bundles has traditionally
been [Ste51], though looking at it again now, it does have a lot of antiquated notation that makes
it an effort to read, and more seriously, it was evidently written before the importance of spin
bundles was generally recognized, and thus does not adequately handle the case of non-effective
group actions. (The treatment of this theory in [DK01, Chapter 4] acknowledges that non-effective
actions are sometimes important, but still fails to discuss them adequately.) Most of the details
that I had no time for in lecture are included in my lecture notes for Differential Geometry II from
a few years ago; see [Wen21, Lectures 42 and 43].

6111 the case n = 1, we understand this to be a vacuous condition, so the statement is always true.
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The best exposition I have seen for the homotopy theorem on fiber bundles is in [Cut21, Week 4:
Fibrations III], but proving this result with maximal generality requires a lot more effort than the
special cases of it that are typically needed. This is a topic that can seem much easier if you are
happy to work in the smooth category: for smooth fiber bundles, the homotopy theorem is a nearly
obvious consequence of the existence of connections and parallel transport maps!

Davis and Kirk have an entire chapter [DKO01, Chapter 5] on homology and cohomology with
local coefficients, and you might also appreciate the slightly more concise treatment in [Hat02,
§3.H]. In lecture we only scratched the surface of this topic, but fairly little of what needs to be
said about it will seem truly surprising, and in practice, the need to actually compute cohomology
with a nontrivial bundle of coefficient groups seems to arise quite rarely.

For obstruction theory, [DKO01, Chapter 7] is a good read. Most of that chapter concentrates on
less general obstruction problems involving maps and homotopies of maps between two spaces; one
could express it in the language of fiber bundles, but the fiber bundle is assumed to be trivial, in
which case there is no need for local systems of coefficients (at least if the target space is simple).
After exploring the theory of primary and secondary obstruction classes in that less general setting,
§7.10 adapts the discussion for sections of general fiber bundles, which actually requires almost no
modifications to the theory beyond the use of local coefficients for cohomology.

Exercises (for the Ubung on 11.07.2024).

Exercise 12.1. As mentioned in lecture, every fiber bundle with structure group G determines
(up to isomorphism) a unique principal G-bundle that has the same system of G-valued transition
functions. We discussed one concrete example of this correspondence: for a vector bundle £ — B
of rank n over the field K € {R, C}, the corresponding principal GL(n, K)-bundle is its frame bundle
FE — B, whose fibers are sets of bases for the fibers of E. See if you can give similar concrete
descriptions of the principal bundles determined by the following:

(a) A real vector bundle of rank n equipped with a bundle metric, whose structure group is
therefore O(n);

(b) A real vector bundle of rank n with structure group SL(n, R) acting linearly on the standard
fiber.

Remark: Examples like these in which the fiber is a vector space and the group action is linear
and effective can always be understood as geometrically meaningful subsets of the frame bundle
FFE — B. A more abstract perspective is needed only when the action is not effective, e.g. for
vector bundles equipped with a spin structure.

Exercise 12.2. Assume G is a topological group and H c G a subgroup. We consider the set of
left cosets G/H = {gH | g€ G} as a topological space with the quotient topology. Notice that the
right action G x H — G of H on G by multiplication preserves the fibers of the quotient projection
p: G — G/H, and moreover, it acts freely and transitively on each fiber. It would be tempting to
conclude immediately that p : G — G/H is a principal H-bundle, but part (a) below is a warning
against being too hasty.

(a) Suppose G is the abelian Lie group T? := R?/Z?, and H c T? is the image of a homomor-
phism R — T2 of the form ¢ + [(pt, qt)] for some p, ¢ € R. Show that if p/q is irrational,
then the quotient map p : G — G/H is not a fiber bundle.

Hint: Fiber bundles always locally admit sections.

Remark: Here is an example of a topological subgroup that I would be even less enthusias-
tic to deal with in this context: Diff (M) € Homeo(M) for a compact smooth manifold M.
Standard perturbation results imply that this subgroup is dense, which is very useful for
some purposes, but not if you are hoping for a quotient space with nice properties.
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(b) Find an additional assumption about G and H that will allow you to conclude that the

quotient map p : G — G/H is a principal H-bundle.
Remark: This is not exactly the answer I have in mind, but basic results in the theory of
Lie groups imply that the necessary condition will hold whenever G is a Lie group and the
subgroup H c G is a topologically closed subset. The example in part (a) lacks the latter
property.

(¢) Under the assumption that p : G — G/H is a fiber bundle, and the additional assumption
that the inclusion H — G induces a bijective map mo(H) — 7mo(G), show that the space
G/H is simple.

(d) Just for fun, show that every path-connected space that is also a group object in hTop,, is
also simple.

Comment: In fact, one doesn’t need associativity or inverses for this, so it works for
arbitrary H-spaces.

Exercise 12.3. I want to explain why we should care about obstruction problems in fiber bundles
with fiber of the form G/H for a topological group G and subgroup H c G. The following definition
gives a general framework for many situations in which one would like to endow a manifold with
some extra geometric structure, but there might be topological reasons for that structure not to
exist.

Recall that a G-bundle p : E — B comes with an equivalence class of G-bundle atlases A =
(®,T,p), which include a covering ® by local trivializations and a related system 7 of G-valued
transition data. We say that the structure group G of this bundle can be reduced to H if
the equivalence class contains a G-bundle atlas that is also an H-bundle atlas, meaning that its
transition functions all take their values in the subgroup H c G. If this exists, then the resulting
equivalence class of H-bundle atlases makes p : £ — B into an H-bundle, and the equivalence
class is called a reduction of the structure group to H. It is possible for a G-bundle to admit
multiple distinct reductions, since the given equivalence class of G-bundle atlases may contain
multiple H-bundle atlases that are not equivalent as H-bundle atlases, i.e. because the collection
of G-valued functions {hg,} needed for defining a morphism 7° — 7! between two systems of
H-valued transition functions cannot be made to take values in H. In case all this sounds too
abstract, here are some concrete examples:

e Choosing an orientation of a real vector bundle £ — B of rank n reduces its structure
group from GL(n,R) to GLy(n,R). If B is connected and FE is orientable, then there
are exactly two inequivalent choices of such a reduction. Not all real vector bundles are
orientable, so such reductions do not always exist.

e Choosing a bundle metric on a real vector bundle E — B of rank n reduces its structure
group from GL(n,R) to O(n). Adding an orientation then reduces the structure group
further from O(n) to SO(n) = O(n) n GL.(n,R).

¢ Using the obvious identification C* = R?*", we can regard GL(n,C) as the subgroup of
GL(2n,R) consisting of real-linear maps that commute with multiplication by i (repre-
sented in this situation by a particular real 2n-by-2n matrix). For a real vector bundle
E — B of rank 2n, reducing its structure group from GL(2n, R) to GL(n,C) means choos-
ing a complex structure, so that E becomes a complex vector bundle of rank n. Note that
complex-linear maps C" — C" always correspond to real-linear maps R?" — R2" that
are orientation-preserving, thus GL(n,C) c GL4(2n,R), and every reduction to GL(n,C)
therefore automatically also defines a reduction to GL; (2n,R). This is just a fancy way
of saying that every complex vector bundle is also a real vector bundle with a canonical
orientation determined by its complex structure.

Assume in the following that G is an arbitrary topological group with subgroup H c G.
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(a) Given a G-bundle p : E — B with standard fiber F' and G-bundle atlas A = (®, T, p), let
ECG/H _ B denote a G-bundle carrying the same G-valued transition data 7 but with the
standard fiber F' and G-action p: G x F' — F replaced by G/H and the obvious G-action
G x G/H — G/H defined by multiplication in G.%> Show that if the structure group of
p: E — B can be reduced to H, then EG/? — B admits a global section.

Hint: There is some freedom in the choice of bundle atlas to use here. For the right choice,
the statement becomes almost obvious.

Remark: Applying this to the tangent bundle TM — M of a smooth 2n-manifold with
structure group G := GL(2n,R) and subgroup H := GL(n,C), one can show that the
associated bundle with fiber GL(2n,R)/GL(n,C) is naturally isomorphic to the bundle
J(T'M) of complex structures mentioned in Lecture 20.

(b) Show that if the conclusion of Exercise 12.2(b) holds for the subgroup H < G, then the
converse of the statement in part (a) also holds: The structure group of p : E — B can be
reduced to H whenever there exists a global section of the associated bundle ES/H — B.
Hint: Locally, sections of EG/H Jook like maps U, — G/H defined on open subsetsU,, € B,
but Exercise 12.2(b) will allow you to represent these as maps s, : U, — G. How are
different representatives s, sg of this form related on U, N Ug?

(c) Prove that if the inclusion H — G is a homotopy equivalence and the conclusion of

Exercise 12.2(b) holds, then every G-bundle over a CW-complex admits a reduction of its
structure group to H.
Example: By polar decomposition, GL(n,R) admits a deformation retraction to O(n), and
similarly, GL(n, C) admits a deformation retraction to U(n). This result thus implies the
fact that every vector bundle over a CW-complex admits a bundle metric. (In differential
geometry, one typically constructs bundle metrics more directly using partitions of unity.)
Another example is important in symplectic geometry: One can show that the linear
symplectic group Sp(2n) also contains U(n) as a homotopy equivalent closed subgroup,
implying that symplectic vector bundles over CW-complexes can always be endowed with
compatible complex structures (cf. Exercise 8.3).

(d) Show that every fiber bundle over a CW-complex with a weakly contractible structure
group is trivial.

Exercise 12.4. Assume p : F — X is a fiber bundle and (X, A) is a pair of spaces. Given two
sections sg, s; € I'(E) and a homotopy {h(:,t) € T'(F|a)}ter of sections over A from sy to s1, the
problem of extending h to a global homotopy {H(:,t) € T'(E)}es of sections from Hy := sg to
H, := s; is summarized by the diagram

XX@IUAXIM;]DY’{E%E

e

Xx[]—o X x] P . x
where pr; : X x I — X denotes the obvious projection, the portion of the diagram on the right is

a pullback square, and the portion on the left is a special case of the general obstruction problem
we discussed in lecture, viewing homotopies of sections of E as sections of the pullback bundle

625uch a bundle can be constructed explicitly using Theorem 1 in Lecture 20. An alternative description of
EG/H would be as the associated bundle P x g (G/H) determined by the action G x G/H — G/H and the (up to
isomorphism) canonical principal G-bundle P — B such that P x¢ F' is isomorphic to E.
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pri B — X xI. If (X, A) is a CW-pair, then we can write the inductive version of this diagram as

X x0Iu (AvX") xI) —"" s pi{E —— F

(12.1) j h J Jp

Xxolu((AuX")yx]) — s X x] —20 4 X

for each n > 0, where by definition X! := (¥, and the problem is easily seen to be solvable for
n = 0 if we assume the fibers E, = F' are path-connected. Under the additional assumption that
F is simple, the theorem from lecture characterizes the solvability of this problem for each n > 1
in terms of a relative cohomology class with local coefficients, but that characterization can be
simplified somewhat in the situation at hand.

(a) Show that for each n > 1, there is a cohomology class
d™(so,s1;h) € How (X, A; {mn(E)})

that vanishes if and only if the problem (12.1) is solvable.

(b) Show that if the fiber F' is (n — 1)-connected, then the obstruction class d™(sg,s1;h) is
determined by the homotopy classes of sy and s; and the given (unextended) homotopy
h over A, and is independent of all other choices. It is in this case called the primary
obstruction to the problem of extending the homotopy between sy and s; from A to X.

(c) Reinterpret the bijections [X, KV (G,n)] = Hiw(X;G) and [X,S"] = H&w(X;Z) (the
latter for n-dimensional CW-complexes X according to Exercise 10.6) in the language
of obstruction theory. What exactly does the cohomology class corresponding to a map
X — K(G,n) or X — S™ obstruct?

13. WEEK 13
Lecture 22 (8.07.2024): The Euler class.

e Definition: Assume H* is an ordinary cohomology theory and G is a topological group. A
characteristic class for G-bundles assigns to every space X a function

{G-bundles over X} / isomorphism —— H*(X)

that satisfies the following naturality property: for any map f : X — Y and G-bundle
E—-Y,

(f*E) = f*e(B) € H*(X).

e Remarks on the definition:

(1) We did not specify in the definition what kinds of fibers the G-bundles can have,
and that is because it doesn’t matter. Theorems 1 and 2 in Lecture 20 imply that
if there is a G-bundle isomorphism E' — E? between two G-bundles with standard
fiber F', then there is also a G-bundle isomorphism between any bundles obtained from
E' and E? by keeping the same systems of G-valued transition data but replacing
F with a different standard fiber F’ that is acted upon by G. For example, if P!
and P? are principal G-bundles (thus with standard fiber G), then a principal G-
bundle isomorphism ¥ : P! — P? is simply a fiber-preserving homeomorphism that
is equivariant with respect to the right G-actions on P! and P2, and for any other
space F' with a left G-action, ¥ determines a G-bundle isomorphism

Pl XgF—> P2 XGF: [¢7p] = [(I)(gi))’p]
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between the corresponding associated G-bundles with standard fiber F'. The standard
characteristic classes (Chern, Stiefel-Whitney, Pontryagin and Euler) are all conven-
tionally regarded as invariants of vector bundles with specific structure groups G, but
it is sometimes more convenient to define them as invariants of principal G-bundles
P — X and then let this determine the corresponding definition on all associated
bundles via the rule ¢(P x¢ F') := ¢(P). So for instance, if G = GL(n,R) and £ —» X
is a real vector bundle, this amounts to defining ¢(F) := ¢(FE) via the frame bundle
FFE — X, which is a principal G-bundle. For the Euler class, we will give a more
direct definition in terms of oriented real vector bundles, but if needed one could turn
this into an equivalent definition of the Euler class for principal bundles with structure
group GL4 (n,R).

(2) We will only attempt to define characteristic classes on bundles over CW-complexes,
and will thus define them directly in cellular cohomology instead of working with
a cohomology theory H* defined on more general spaces. It should be mentioned
that there also exist explicit (and quite elegant) constructions of certain characteristic
classes in Cech cohomology, which make sense for bundles over arbitrary spaces, but
naturality implies via the theorem below that they must match the classes that we
construct in cellular cohomology. There are also characteristic classes that are defined
in de Rham cohomology and thus make sense only in the smooth category—this
subject is known as Chern-Weil theory, and defining characteristic classes in this way
reveals a deep interplay between topology and curvature on smooth bundles with
connections.

Big Theorem: For every topological group G, there exists a CW-complex (the classifying

space of GG) and a principal G-bundle EG — BG (the universal G-bundle) such that

for all CW-complexes X, the map

[X, BG] — {principal G-bundles over X} / isomorphism

sending the homotopy class of a map f : X — BG to the isomorphism class of the pullback
bundle f*EG — X is a bijection.

Remark: Although the Big Theorem is stated specifically for principal bundles, it follows
immediately that all G-bundles with an arbitrary standard fiber F' are pullbacks of the
associated universal bundle EG x F', and the homotopy set [X, BG] thus similarly clas-
sifies all G-bundles with fiber F' over X up to G-bundle isomorphism. We will make use
of this in particular as a way to classify vector bundles.

Remark: The existence of classifying spaces BG for arbitrary topological groups G is a
result due to Milnor [Mil56], and we will not prove it in full generality, but will construct
BG for a wide enough range of groups to understand the standard characteristic classes.
Corollary: For G-bundles over CW-complexes, each characteristic class of G-bundles is
determined by a single cohomology class ¢(EG) € H*(BG).

Remark: With one caveat to be mentioned in the next remark, this is the way to prove
that different versions of the same characteristic class constructed in different cohomology
theories match on CW-complexes, and for this reason, quite a lot of attention in the theory
of characteristic classes gets devoted to computing the cohomologies of the classifying
spaces BG.

Remark (just out of interest): As mentioned above, Chern-Weil theory produces smooth
versions of the Chern, Euler and Pontryagin classes that are defined for smooth bundles
over smooth manifolds and live in de Rham cohomology. One minor headache, however, is
that one cannot directly use the Big Theorem above for proving that these classes match
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their counterparts in cellular cohomology: the trouble is that while smooth manifolds are
always CW-complexes, the relevant classifying spaces BG are never smooth manifolds—
they are infinite-dimensional CW-complexes. In practice, one can get around this issue
by using finite-dimensional approximations to BG, which are smooth manifolds: this is
possible because classifying spaces can typically be described as colimits of sequences of
smooth manifolds with increasingly large dimensions (we will see two examples at the end
of this lecture). These manifolds “approximate” classifying spaces in the same sense that
S™ approximates a K(Z,n) in Exercise 10.6, i.e. they do the same job if one restricts
attention to CW-complexes up to a certain dimension.
Question (motivation for the Euler class): Given a real vector bundle E — X of rank n,
does E admit a section s € I'(E) that is nowhere zero?
Remark: There are many applications in which this is precisely the kind of question one
wants to answer, i.e. whether there exist solutions to some equation of the form s(x) = 0.
There are also nonlinear PDEs of geometric interest (especially in symplectic topology and
gauge theory) that can be phrased as infinite-dimensional versions of this question, and
the answer often depends on the underlying topology of the setting. _
Obstruction theory approach: The problem is to construct a global section s € T'(E) of the
fiber bundle

E:= E\X - X,
where we are identifying the base X with the image of the zero-section X — F, thus the
fibers of F are E, = E,\{0}. This is a fiber bundle with structure group GL(n,R) acting
linearly on the standard fiber R™\{0}, which has the homotopy type of S"~!. Assume X
is a CW-complex, and for simplicity also assume n > 2. The fiber R™\{0} is then (n — 2)-
connected and simple, so by the usual induction over skeleta, E admits a section Sn—1
over X" 1, and all such sections are homotopic over X” 2. By the main theorem in the
previous lecture, the extendability of s,,_1 over the n-skeleton is determined by a primary
obstruction class

[05] € How (X; {mn—1(E2\{0}) }oex)-

A brief review of the definition: Choose a base point = € X L5 X in the universal cover
of X and use a local trivialization to identify the fiber of E over that base point with
R™\{0}. Paths in X from the base point to lifts en X of the n-cells el < X then
determine (up to homotopy) trivializations of E along the corresponding attaching map
®, 1 (D", 8" 1) - (X, X" 1), and we use such trivializations to identify s,, 1 over e? with
a function valued in R™\{0} in order to define the cellular n-cochain 6% : COWV(X;Z) —

71 (R™\{0}) by
OB (L) = [501 0 Balsa] € [ RM(0}] = m, 1 (R™\(0}).

The way that the trivializations have been chosen makes this cochain equivariant with
respect to the action of 71 (X) via deck transformations on X, so that 0% actually belongs
to the subcomplex defining the cohomology of X with coefficients in the local system
{mn—1(E2\{0}) }oex -

New assumption: Suppose the vector bundle £ — X is oriented, i.e. all its fibers are
equipped with orientations, so the structure group has been reduced to GL, (n, R). Choose
the identification of the fiber of E over the base point with R™\{0} to be orientation pre-
serving. This assumption removes local coefficients from the picture, because the action of
m1(X) on 7,—1 (R™\{0}) is now determined by orientation-preserving linear transformations—
these are all homotopic (as linear isomorphisms) to the identity, so the 71 (X)-action on
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Tn—1(R™{0}) is trivial. This makes {m,—1(F,\{0})}zex into a trivial local system, so the
cohomology with coefficients in this local system is actually just cohomology with coeffi-
cients in the group m,_1(R™\{0}) = Z.

e Definition: The Euler class of an oriented vector bundle £ — X of rank n over a CW-
complex is the primary obstruction class

e(E) = [0g] € How (X; mn1(R"\{0})) = Hew (X;Z)

described above.
e Properties of the Euler class:

(1)

(6)

e(F) = 0 if and only if the bundle £ — X admits a section that is nowhere zero on
the n-skeleton X".

e(E) = —e(E), where E denotes the same vector bundle with reversed orientation.
(Naturality) For any oriented vector bundle E — Y and any map f : X — Y between
CW-complexes, e(f*E) = f*e(E).

(Whitney sum formula) For any two oriented vector bundles E', E? — X,

e(E' @ E?) = e(E') U e(E?),

where E'@® E? — X is the vector bundle whose fiber at each point x € X is the direct
sum E! @ E2 with the orientation induced by the orientations of E! and E2.

For X := M a closed oriented smooth manifold of dimension n + k and £ — M a
smooth oriented vector bundle of rank n, the Poincaré dual of e(E) € H"(M;Z) is
the homology class represented by the smooth oriented submanifold s~1(0) < M for
any section s € I'(E) that is transverse to the zero-section:

PD(e(E)) = [s 1(0)] € Hi(M;Z).

(Note that by the implicit function theorem, s € I'(E) being transverse to the zero-
section implies that s1(0) is a submanifold, and it inherits a natural orientation from
the orientations of M and E.) In the case dim M = n = rank(FE), this means

(e(B), [M]) = #s7(0),

where the right hand side counts the isolated zeroes of s € I'(F) with signs according
to whether its linearization at these points preserves or reverses orientation. More
generally, the latter formula holds for any section with isolated zeroes if (in the non-
transverse case) each zero is assigned a suitable integer-valued weight, defined analo-
gously to the local degree for maps between oriented manifolds of the same dimension
(cf. [Wen23, Lecture 35]).

(Poincaré-Hopf theorem) For any closed oriented smooth manifold M,

(e(TM), [M]) = x(M).

e Proofs of the properties:

(1)

Given the way that we defined e(F) as an obstruction class, this is immediate from
the main result of the previous lecture. Note: We are not claiming anything about
the possibility of constructing nowhere-zero sections of £ on X\X™. This is in gen-
eral a nontrivial question, whose answer depends on secondary obstruction classes,
though there are plenty of interesting situations (e.g. when dim X = n) where those
obstructions automatically vanish.

The sign arises from the fact that if we reverse the orientation of E, then we need to
choose a different identification of the fiber of E over the base point with R™\{0}.
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(3) The map f : X — Y can be assumed cellular without loss of generality, and any
section s,_; of E — Y over Y™ ! then determines a section s,_; o f of f¥*E — X
over X" 1. Using these specific sections in the definitions of the cocycles 6% and 9?*13
representing e(E) and e(f*F) respectively then gives the relation

0% pleq) = 05 (fueq)

for all n-cells e} c X.

(4) Left as an exercise.

(5) We discuss the case dim M = n = rank(F) and leave the rest as an exercise. Since
M is a smooth manifold, it admits a triangulation, and given a section s € I'(E) with
isolated zeroes, we can choose that triangulation so that every n-simplex contains
at most one zero of s, and only in its interior. Using the triangulation as a cell
decomposition of M, we then have 6™ (e) = 0 for every n-simplex e < M on which
s has no zero, and for n-simplices with a zero in the interior, 6" (e”) € m,_1(R™\{0})
is represented by the restriction of s to the boundary of the n-simplex, expressed as
a map 0A™ — R™\{0} after choosing an oriented trivialization of E over the simplex.
Under the canonical identification of m,_; (R™\{0}) with Z, that is also precisely how
the contribution of each individual zero to the signed and weighted count of zeroes
#571(0) is defined. The evaluation {e(T'M), [M]) is the sum of all these contributions,
since the fundamental class [M] is represented by a sum of the n-simplices in the
triangulation.

(6) In light of property (5), it suffices to construct a vector field X € I'(T'M) for which
the signed count of zeroes of X is x(M). We claim: For any given triangulation of M,
regarded as a cell decomposition, there exists a vector field X that has exactly one
zero in each k-cell for k = 0,...,n, and the sign it contributes to the signed count of
zeroes is (—1)*; consequently, the signed count of zeroes is x(M). The construction of
this vector field is best described with a picture that I cannot reproduce here: suffice
it to say that it vanishes on every vertex of the triangulation, is tangent to every
simplex, and flows inward toward a unique zero in the interior of each simplex. The
sign (—1)* arises from the observation that at the unique zero in the interior of any
given k-simplex, the linearization of the vector field has k£ negative eigenvalues with
eigenvectors tangent to the k-cell, and n — k positive eigenvalues with eigenvectors
transverse to it; the sign of its determinant is therefore (—1)*.

Further constructions of characteristic classes will be based on knowledge of classifying spaces,
so the rest of this lecture begins this discussion.

e Theorem: Suppose FG — BG is a principal G-bundle whose total space EG is weakly

contractible. Then for every CW-complex X and principal G-bundle P — X, there is a
unique homotopy class of maps f : X — BG such that the principal G-bundles P and
f*EG are isomorphic.
Proof: Since G acts freely and transitively on the fibers of both P and EG, any G-
equivariant map P — FEG sends each fiber P, =~ G of P homeomorphically (and G-
equivariantly) to some fiber (EG)(,) = G of EG, thus defining a map f : X — BG along
with a principal G-bundle isomorphism P — f* EG. The problem is therefore to show that
there is a unique homotopy class of G-equivariant maps P — EG. In fact, G-equivariant
maps ¥ : P — EG are equivalent to global sections of the associated G-bundle

P xg EG := (PxEG)/G—>X,
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where G acts on the product diagonally.* The fiber of P xg EG at a point z € X
is (P, x EG)/G, and we can associate to any equivariant map ¥ : P —» EG a section
s € I'(P x¢ EG) defined at each point x € X by

s(@) = [6,9(@)] € (P, x EG)/G  forany ¢ P,

where the definition is independent of the choice of ¢ € P, since all possible choices are
related by the G-action and ¥ is G-equivariant. Conversely, any section s determines an
equivariant map V¥ in the same manner. Finally, we observe that the fibers of Pxq EG — X
are homeomorphic to EG, whose homotopy groups are all assumed to vanish, so the usual
induction over the skeleta of X proves that this fiber bundle admits a global section, and
moreover, all such sections are homotopic.

e Example 1: Let G := Zy. A principal Zs-bundle is just a covering map of degree 2. The
infinite-dimensional CW-complex S* is contractible (see Lecture 17), and is naturally a
double cover of RP™, so we can set

EZy := 8" — RP* =: BZ,.

e Example 2: Let G := S' = R/Z, or equivalently the unitary group U(1). The Hopf
fibrations p : $2"*! — CP" are all principal S'-bundles, and taking the colimit as n — o
(this was also discussed in Lecture 17) gives a Serre fibration

ES'=EU(1) := §* 2 CP” =: BU(1) = BS?,

which is in fact also a principal S'-bundle. To see this, we note that in light of the obvious
fiber-preserving S'-action that is free and transitive on the fibers, one only has to show that
local sections of p : S* — CP™, as these can be combined with the S'-action to define local
trivializations (see the proposition in Lecture 20). Local sections of p : S* — CP* can
be constructed by taking colimits of local sections of the finite-dimensional Hopf bundles
S§2n+l 5 CP™ as n — .

e Remark: U(1) is the natural structure group for a complex vector bundle of rank 1 (also
known as a complex line bundle) equipped with a Hermitian bundle metric, so BU(1) =
CP* means that Hermitian line bundles over a CW-complex X are classified via the
homotopy classes of maps X — CP”, and every characteristic class for such bundles
is a pullback of some class in H*(CP”). We will see next time that the bundle metric is
superfluous in this discussion, and CP” is also the classifying space of GL(1,C). As you
may recall from Topology 2, the cohomology ring of CP™ with integer coefficients is easy
to compute: it is generated by a single class in degree 2, and that class will give rise to the
most popular characteristic class for complex vector bundles, the first Chern class.

Lecture 23 (10.07.2024): The Chern classes. All bases of bundles in this lecture are CW-
complexes, and there is therefore no need to specify what cohomology theory H* is being used,
beyond its coefficient group.

Topic 1: We complete the construction of some useful classifying spaces that was begun in the
previous lecture.

e Remark: The classifying space of a topological group G is not generally a unique space,
but as long as it is a CW-complex, the theorem from last time about pullbacks of universal
bundles determines its homotopy type (see Exercise 13.1). When we say that a particular

63In our usual construction of associated bundles P xg F = (P x F)/G, G acts on P from the right and on F
from the left, so that the equivalence relation on P x F can be expressed as (¢g,p) ~ (¢, gp) for all (¢,p) € P x F
and g € G. In the present situation, EG comes with a right action instead of a left action, but we can choose to
view it as a left action by defining gp := pg~—! for g € G and p € EG. The resulting equivalence relation on P x EG
is thus (¢g,pg) = (¢,p)-
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space “equals” BG, we simply mean that space is a CW-complex and is the base of a weakly
contractible principal G-bundle, thus it is homotopy equivalent to any other space that we
could conceivably choose to call BG.
More constructions of classifying spaces: For n > k > 0 we define the Grassmann
manifold

Gri(R™) := {k-dimensional subspaces V c R"},

which has a tautological vector bundle
EFmR s Grp(R™), E‘k/’n’]R =V,

more formally, E¥™® := {(V,v) € Gry(R") x R" | v € V}, which makes E*™ a linear
subbundle of the trivial vector bundle Grg(R™) x R™ — Grg(R"™). Its frame bundle is a
principal GL(k,R)-bundle St;(R™) — Gry(R™) called the Stiefel manifold, and can be
described explicitly as

St (R™) := {linearly-independent k-tuples of vectors in R"} — Gri(R") : (vy,...,vx) — Span{vy,. ..

Example: Gri(R"*1) = RP", and St;(R"*1) = R**1\{0}.
Lemma: For any fixed m, &k > 0, 7, (St(R™)) = 0 for all n sufficiently large.
Proof: It is clearly true for k = 1 since St;(R"™) is homotopy equivalent to S"~!. One can
then prove the rest inductively because for each k > 2, there is a fiber bundle

Str(R™) — Stp—1(R™) : (v1,...,05) = (v1,...,05—1)
with fibers homeomorphic to R™\RF~1 = (RF=1)1\{0} = R*=*+1\{0} = Sn—k. When-
ever n — k > m, the long exact sequencé of homotopy groups for this fibration gives an
isomorphism

Tm (St (R™)) == 7 (Ste—1(R™)).

Example 3 (continuing the list of classifying spaces from last time): Taking the colimit of
the bundles St;(R™) — Grg(R™) as n — o0 gives a universal principal GL(k, R)-bundle

EGL(k,R) := St (R*) — Gri(R*) =: BGL(k,R).
The associated bundle with fiber R¥ is then called the universal k-plane bundle

EMPE — Gry(R”),

and has the property that every real k-plane bundle (i.e. vector bundle of rank k) over a
CW-complex X is isomorphic to f* E**R for a unique homotopy class of maps f : X —

Gri(R*).
Example: Taking k = 1, we have

BGL(1,R) = RP”,
which matches BZs, as we observed last time. This is not a coincidence (see Exer-
cise 13.1(c)).
Example 4: The discussion above also works if R is everywhere replaced by C, thus giving
a universal principal GL(k, C)-bundle

EGL(k,C) := St (C*) — Grp(C*) =: BGL(k,C)
and a universal complex k-plane bundle
ER7E — Gry(C7),

of which all complex vector bundles of rank k£ over CW-complexes are pullbacks. Since
Gri(C"*1) = CP", taking k = 1 gives

BGL(1,C) = BS' = CP™.
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e Example 5: Gry(R") has a double cover Gr}} (R"™) whose elements are oriented k-dimensional
subspaces, and since linearly-independent ordered k-tuples determine orientations, we have
principal GL (k, R)-bundles Stx(R™) — Gr; (R"), which in the colimit as n — oo give

EGL, (k,R) := St;(R*”) - Gri (R*) =: BGL, (k,R).

e Example 6 (omitted from the actual lecture, but I'll add it here): Restricting to orthog-
onal k-tuples defines submanifolds of St;(R™) and Sti(C™) that are naturally principal
bundles over Gry(R™) or Gry(C™) with structure group O(k) or U(k) respectively, and the
orthogonal version of Stx(R™) is also a principal SO(k)-bundle over Grj (R"). The same
arguments as above show that these Stiefel manifolds become weakly contractible in the
colimit as n — oo, thus

BO(k) = BGL(k,R) = Grg(R*),  BSO(k) = BGL, (k;R) = Gr} (R”),  BU(k) = BGL(k,C) = Gry(C”).

For a general explanation of why certain classifying spaces of different but related groups
turn out to be the same, see Exercise 13.1(c).

Topic 2: The first Chern class of a complex line bundle.

¢ Definition: On complex vector bundles of rank 1 (also known as complex line bundles)
over CW-complexes X, the first Chern class

{complex line bundles over X} /isomorphism L H*(X;7)

is the unique characteristic class whose value ¢, (E%»**) € H?(CP™;Z) =~ 7Z on the univer-
sal complex line bundle EV*C — CP* satisfies

{er (B9, [CP']) = 1,

where [CP'] € Hy(CP*;Z) = Z denotes the generator represented by the unique 2-cell in
the usual cell decomposition of CP” =e® ue? Uet u....
Remark: The first property below gives some justification for the slightly counterintuitive
appearance of a minus sign in this definition.

e Properties of ¢; on line bundles:

(1) c1(L) = e(L), where the right hand side interprets the complex line bundle L as a real
2-plane bundle with the natural orientation determined by the complex structure.

(2) c1(L®L') = c1(L) + c1(L') for any two line bundles L, L' ¢ X, where LQ L’ — X is
the line bundle whose fiber at each point x € X is the tensor product L, ® L.
Cautionary remark: This formula for ¢; (L®L') is easy to remember, but it is only valid
when both bundles have rank 1. When we define ¢; for complex bundles of arbitrary
rank, there will be a more complicated formula for ¢; (F ® F); see Exercise 13.5.

Proofs:

(1) Since all complex line bundles are pullbacks of EV*C — CP”, it suffices to prove
that e(EV"C) e H*(CP”*;Z) is also the generator that evaluates to —1 on [CP']. In
fact, the cohomology of CP” in degree 2 is simply that of its 2-skeleton CP* ¢ CP”,
thus it actually suffices to prove the same statement about the tautological line bundle
E12C _ CP!. This follows from the properties of the Euler class on smooth manifolds
proved in the previous lecture, because F2C — CP' admits a section for which the
signed count of zeroes is —1; see Exercise 13.7.

(2) Thanks to the first property, it suffices to prove e(L ® L) = e(L) + e(L’), where it
should be stressed that the tensor product is complex, but the bundles on both sides
are then interpreted as oriented real bundles of rank 2. Using our definition of the
Euler class as a primary obstruction, we first choose nowhere-zero sections s, s’ of L
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and L’ respectively over the 1-skeleton of X, and observe that the tensor product then
inherits a nowhere-zero section

c:=s®s el ((LRL)|x1).

Along the boundary of any given 2-cell 2 — X, any trivializations of L and L’
determine a trivialization of L& L/, so that s, s’, o all become identified with complex-
valued functions having nonzero values related by o = ss’. Plugging this information
into the definition of the obstruction cochains for all three bundles, the relation

OleL (o) = 0i(ea) + 07 (cz) € m(C\{0}) = Z

follows because C* := C\{0} is a topological group, and the definition of multipli-
cation in its fundamental group m (C*) can therefore be expressed in terms of the
multiplication in C* itself, namely as [y][y'] := [yY'] for two loops v,7' : ST — C*,
i.e. instead of concatenating them, we are multiplying their values pointwise.

e Theorem: Two complex line bundles L, L’ over the same CW-complex X are isomorphic
if and only if ¢ (L) = ¢1(L').

We give two proofs of this theorem: the second using a combination of big classification
results we have in our toolbox, the first perhaps a bit more down-to-earth.

e Proof 1: A complex vector bundle isomorphism ® : L — L’ between line bundles is the
same thing as a nowhere-zero section of the complex line bundle Hom(L, L) whose fiber
at each point x € X is the vector space of complex-linear maps L, — L). Since ¢; of
this bundle matches its Euler class, such a section will exist over the 2-skeleton of X if
and only if ¢; (Hom(L, L)) = 0, but if it does, then it can also be extended inductively
to a nowhere-zero section on all higher-dimensional skeleta as well, because the standard
fiber of the bundle obtained by removing the zero section is C\{0}, and m,,(C\{0}) = 0 for
all n > 2. To compute ¢;(Hom(L, L)), we observe that there is a natural vector bundle
isomorphism Hom(L, L") =~ L* ® L, where L* denotes the dual bundle of L, whose fiber
at each point x € X is the space of complex-linear maps L, — C. Moreover, there is an
obvious bundle isomorphism of L* ® L to the trivial complex line bundle, defined on each
fiber as the map L*® L, — C: A® v — A(v). The trivial bundle admits a nowhere-zero
section and therefore has vanishing Euler class, hence also vanishing first Chern class, so
we obtain the relation ¢;(L*) + ¢;(L) = 0, and then conclude

c1(Hom(L, L") = ci(L* @ L") = c1 (L*) + &1 (L") = —cy (L) + en (L),

which vanishes if and only if ¢; (L) = ¢1(L/).

e Proof 2: Since BGL(1,C) = CP”, the two line bundles L,L’ — X are both pullbacks
of the tautological line bundle E»*¢ — CP* via maps f,g : X — CP”, and they are
isomorphic if and only if f ~ 9 As it happens, CP” is also a K(Z,2), so we have a

bijection [X,CP”"] =~ H?(X;Z), which can be written explicitly as the map
[X,CP"] — H*(X;Z) : [h] = h*wy

for a distinguished class 1o € H?(CP”;Z) that corresponds to the homotopy class of
the identity map CP* — CP”. All other classes in H?(CP”™;Z) =~ 7Z are necessarily
pullbacks of 15 via maps CP” — CP”, and it must therefore be a generator, implying
Ly = +ci (EY™C), thus

[r9 = all)=[*a(B"%) = £ = 9% = g*a(B"F) = a (L),

Topic 3: The Chern classes of complex vector bundles of arbitrary rank.
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e Theorem/Definition: For all & € N, there exist unique characteristic classes c;(E) €
H?*(X;7) for complex vector bundles E — X of arbitrary rank over CW-complexes,
such that the following conditions hold:

(1) ¢1(F) matches the previous definition in the case rank(E) = 1;
(2) cx(E) = 0 whenever k > rank(F);
(3) The total Chern class

¢(E):=1+c1(E)+c(E)+...€e H(X;Z)
satisfies the Whitney sum formula
(E@F) =c(E)uc(F)

for every pair of complex vector bundles E, F' over the same base.
(Note: The second condition makes the sum in the definition of ¢(FE) finite.)
e Corollary of the Whitney sum formula: The first Chern class is additive with respect to
direct sums of vector bundles,

A(E®F)=ci(E)+c(F).

e Proof sketch, part 1: The uniqueness of the Chern classes would be clear by an inductive
argument if every vector bundle F of rank n > 2 contained a linear subbundle F' c E of
strictly lower rank; one could then form a quotient vector bundle E/F with fibers E, /F,
and choose a bundle metric (which can always be done according to Exercise 12.3) in order
to identify F/F with the orthogonal complement of F in E, giving rise to a splitting

E=F@®(E/F).

Unfortunately, not every vector bundle £ — X can be split in this way, but the following
shows that it always has useful pullbacks that can. We consider the projectivization
of E, a fiber bundle
P(E) 5 X

whose fiber at each point € X is the space P(E,) =~ CP" ! of complex 1-dimensional
subspaces of E,. For each z € X and ¢ € P(E,,), the pullback vector bundle 7*E — P(F)
has fiber (7*E), = E, containing ¢ c E, as a distinguished 1-dimensional subspace, thus
defining a complex line bundle L — P(E) that is also a linear subbundle of 7* F and thus
gives rise to a splitting

m*E >~ L@ (x*E/L).
Inductively, if the Chern classes have already been defined on bundles up to rank n—1, then
this splitting determines ¢(7* E) uniquely, and we claim that in fact ¢(E) is also uniquely
determined by this. This requires a digression on the cohomology of fiber bundles.

e Digression (the Leray-Hirsch theorem): Suppose 7 : E — X is a fiber bundle over a CW-
complex X, with a standard fiber F that is a compact CW-complex. Such bundles are
assembled out of local pieces that look like product bundles D™ x F 2L Dn for n > 0, so
assume to start with that £ = D" x F; X = D" and 7 = pr;. The cross product gives a
homomorphism of Z-graded abelian groups

H*(X;Z)® H*(F;7Z) = H*(X x F;7),
which can also be expressed in terms of the cup product as
(13.1) PRY > o x1h=1"puprsy.

Under some extra conditions, the Kiinneth formula will tells us that this is an isomorphism;
the Kiinneth formula is usually stated for homology rather than cohomology because the
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chain complexes need to be free, and singular cochain groups are not free due to the fact
that duals of direct sums are generally direct products instead of direct sums. However,
if we use cellular cohomology and assume both complexes are finitely generated, then the
cochain groups are all finitely-generated free abelian groups, and the cellular cross product
of cochains

Clw(X;Z) ® Clw (F3 Z) = Céw (X x Fi L)

becomes (obviously) an isomorphism. If we add the extra assumption that the cohomology
H*(F;Z) is free, then the Tor terms vanish in the algebraic Kiinneth formula, implying
that (13.1) is an isomorphism. The Leray-Hirsch theorem extends this conclusion to more
general fiber bundles 7 : E— X, but one needs a different way of writing (13.1) since there
is generally no second projection map pry : £ — F. Observe however that in the setting
of the product bundle, assuming X is path-connected, the image of pri : H*(F;Z) —
H*(E;Z) is a subgroup of H*(FE;Z) that pulls back isomorphically to H*(E,;Z) under
the inclusion E, — FE of each fiber. The right approach for the general case is to add the
hypothesis that such a subgroup is given, and one obtains:

Leray-Hirsch theorem: Assume 7 : F — X is a fiber bundle over a CW-complex X, and
V c H*(FE;Z) is a finitely-generated free subgroup such that for every x € X, the map

V > H*(E.;Z)
induced by the inclusion FE, — FE of the fiber is an isomorphism. Then the map
H*(X;Z2)®V — H*(E;Z) : o @4 = m*p Uy

is also an isomorphism. In other words, any finite set of classes in H*(E;Z) that pull
back to a basis of every fiber H*(FE,;Z) also form a basis of H*(E;Z) as a module over
H*(X;Z).

Remark: The cohomological version of the Kiinneth formula described above is true (but
harder to prove) under somewhat weaker assumptions that do not require F' to be a
compact cell complex, and for that reason, I stated the Leray-Hirsch theorem here without
such an assumption, though that assumption would hold in any case for the application
we need. Since singular cohomology is an invariant of weak homotopy type, one can also
use CW-approximation to remove the assumption that X is a CW-complex. At this point
in the course, some proofs of important theorems must be omitted due to lack of time, and
this is one of them, but here is a very quick summary: the proof is by induction over the
skeleta of X, using a relative version of the cohomological Kiinneth formula to extend the
validity of the result from the (n — 1)-skeleton to each n-cell.

Proof sketch, part 2: We have a fiber bundle 7 : P(E) — X whose fibers P(E,) = CP"~" are
compact cell complexes, and a complex line bundle L — P(E) whose restriction to P(E,)
for each € X is the tautological line bundle over CP"'. Writing i, : P(E,) — P(E)
for the inclusion, the definition and naturality of the first Chern class on line bundles now
implies that i*cy (L) generates H?(P(E,);Z) = Z, and moreover, the classes

1,ci(L),ei(L)?,...,c1 (L))"t e H*(P(E); Z)

defined via the cup product pull back to each fiber P(E,) = CP" ! as a basis for the free
abelian group H*(P(E,);Z). The Leray-Hirsch theorem thus implies that

(. v

n—1
H*(X;Z)®...@ H*(X;Z) — H*(P(E);Z) : (90, pn1) = Y, o U e (L)
k=0

~-
n
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is an isomorphism of Z-graded abelian groups. In particular, it follows that 7* : H*(X;Z) —
H*(P(E);Z) is injective, so ¢(E) is determined by n*¢(E) = ¢(n* E), which completes the
proof of uniqueness for the Chern classes.

To show that classes ¢ (F) with the required properties actually exist independently of
choices, one can apply the Leray-Hirsch theorem to the specific class ¢1(L)" € H**(P(E); Z):
the theorem makes this class uniquely representable as a sum for £k = 0,...,n — 1 of
cup products of the classes c¢1(L)* € H?*(P(E);Z) with pullbacks of specific classes in
H?*"=k)(X;Z). It turns out that we get the right result by defining ¢, x(E) to be (up to
a sign) the coefficients in that expression, i.e. we write co(FE) := 1 € H°(X;Z) and define
cx(E) € H?**(X;Z) for k = 1,...,n as the unique classes for which the relation

D=1t e i (B) v er(L)F =0
k=0
holds. The rest of the proof is to verify that the formula ¢(E @ F') = ¢(E) v ¢(F) now
holds in general.
e Remark: If T had to name one specific reason why the theorem above is true, it would be
the computation of H*(CP" ';Z): the Chern classes have the structure that they have
mainly because that one particular cohomology ring has the structure that it has.

Suggested reading. For the Euler class, [DKO01, §7.11] defines it in essentially the way that I
did, as a primary obstruction class, though with fewer details. There are other ways to do it, the
standard approach being to pull back the Thom class via the inclusion of the zero-section of £ — X
into its total space; this requires knowing more about the Thom class and the Thom isomorphism
theorem, but the idea is summarized nicely in [Fre12, Lecture 8.

My presentation of classifying spaces was inspired in large part by [Frel2, Lecture 6], though
Freed’s treatment is a bit idiosyncratic, as he puts a lot of effort into constructing classifying spaces
that are actually smooth (infinite-dimensional) manifolds instead of CW-complexes, e.g. instead
of CP”, Freed’s version of BS' is the projectivization of a complex infinite-dimensional separable
Hilbert space—which is of course homotopy equivalent to CP”. It’s an interesting read if you're
curious about different ways of doing things, but in the end, most of the differences are essentially
cosmetic. In [Ste51, Chapter 19], one also finds a relatively down-to-earth construction of classifying
spaces for arbitrary compact Lie groups, and special cases of it are what we did in lecture.

My presentation of the Chern classes was also based largely on Freed’s notes [Frel2, Lecture 7],
which are apparently heavily influenced by [BT82], but I haven’t read that portion of Bott and Tu.
For a different approach that relies more heavily on computations of the cohomology of Grassmann
manifolds, there is also [Hat, Chapter 3]. Complete proofs of the Leray-Hirsch theorem can be
found in [Hat02, §4.D] or [tDO08, §17.8].

Exercises (for the Ubung on 18.07.2024).

Exercise 13.1. Let’s talk about the functoriality of classifying spaces.

(a) Show that any two classifying spaces for the same topological group are canonically homo-
topy equivalent.
Hint: The universal bundle over one must be a pullback of the universal bundle over the
other.

(b) Suppose ® : H — G is a homomorphism of topological groups which have universal
bundles FH — BH and EG — BG. Using ® to define a left H-action on G, one obtains
an associated H-bundle

EH xg G —- BH
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with standard fiber G. Show that this fiber bundle also naturally has the structure of a
principal G-bundle, and use this to define a canonical homotopy class of continuous maps
B® : BH — BG fitting into a diagram of the form

FH —— EG

L]

BH 2%, BG

in which the top horizontal map is H-equivariant.
Assume the homomorphism ® : H — G in part (b) is the inclusion of a subgroup H c G
such that the quotient projection G — G/H is a fiber bundle (cf. Exercise 12.2), and also
that it is a homotopy equivalence. We saw in Exercise 12.3 that in this situation, every
G-bundle admits a reduction of its structure group to H. Show that every principal G-
bundle P¢ — B must then contain an H-invariant P? < P¢ that is a principal H-bundle
over B, and that the inclusion

PH —, p¢
is a weak homotopy equivalence. Deduce from this that any classifying space BG for G is
also a classifying space for H.
Hint: The bundles can be trivialized along any map (D", S"~ ') — (PY, PH),

Exercise 13.2. We have not yet gotten around to giving formal definitions of the direct sum and
tensor product operations on vector bundles, so let’s do that, and then prove the Whitney sum
formula for the Euler class.

(a)

Given vector bundles E — X and F — Y with structure groups G and H respectively,
construct a vector bundle EEHF — X x Y whose fiber at each point (z,y) € X x Y is the
direct sum of vector spaces £, @ Fy, and whose structure group is G x H.

Remark: EHF is sometimes called the external direct sum (or external Whitney sum)
of the bundles E and F. The ordinary Whitney sum of two bundles E, FF — B over the
same base can be obtained from the external sum as a pullback:

E®F = A*(E@F), where B2 BxB:xw— (z,2),

thus its fibers are (E® F), = E, ® F,,, and E ® F also inherits structure group G x H if
FE and F have structure groups G and H respectively.

Given two vector bundles E, F' — B over the same field K € {R,C}, construct a vector
bundle E® F — B whose fiber at each point x € B is the tensor product of vector spaces
E,. ® F,. In the case where E and F both have rank 1, write down a formula for local
transition functions of F ® F' determined by transition functions of F and F. (Such a
formula was used implicitly in our proof in lecture that ¢;(L ® L') = ¢1(L) + ¢1(L') for
complex line bundles.)

The following is a preparatory lemma toward proving the Whitney sum formula: Suppose
f: (D™, 8" — (D™, 8™ 1) and g : (D", S"~1) — (D", S*~1) are maps of pairs (m,n >
1) whose restrictions to the boundary are maps of spheres with degrees k, ¢ € Z respectively.
Regarding o(D™ x D™) as a sphere of dimension m + n — 1, show that the product map

(D™ x D™, (D™ x D)) 2% (D™ x D", d(D™ x D))
restricts to the boundary as a map of degree k/.

Hint: I can think of a few possible approaches to this, but the simplest is perhaps to
compute the degree of the induced map

ST & (D™ x D) /A(D™ x D) —> (D™ x D) /A(D™ x D) &= S
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as a sum of local degrees.
(d) For two oriented real vector bundles E — X and F' — Y of ranks m,n > 2 respectively
over CW-complexes, prove the formula

e(EMF) =¢(E) xe(F)e H"™(X x Y;Z),
and deduce from this the Whitney sum formula
e(E®F) =e(E)ue(F)

for two oriented bundles over the same base.

Hint: Our definition of the Euler class requires you to start by choosing nowhere-zero
sections s € ['(E|xm-1) and t € I'(F|y»-1). They can both be extended over the rest
of X and Y respectively—you cannot assume that the extensions are nowhere zero, but
you do obtain from this a nowhere-zero section F(x,y) := (s(x),t(y)) of EE F over the
(m + n — 1)-skeleton of X x Y. Use the (easy) definition of the cross product on cellular
cochains.

(e) In lecture, we did not give any definition for e(E) € H*(X;Z) when E — X has rank 1,
but this omission is forgivable: the structure group of an oriented real line bundle is the
contractible group GL, (1,R) = (0,0), so by Exercise 12.3(d), such bundles are always
trivial, and thus admit global sections. The only sensible definition of the Euler class in
this case is therefore e(E) := 0. What content do the two formulas in part (d) now have if
E or F is allowed to have rank 1?7 Are they still true?

Exercise 13.3. For an integer k > 0, let €¥ denote the (real or complex) trivial vector bundle of
rank k over any given base. A vector bundle E — X is said to be stably trivial if £ @ e* =~ ¢
for some k,n > 0, and two vector bundles E, F' — X (not necessarily of the same rank) are called
stably isomorphic if E@ ¥ ~ F @ €’ for some k,¢ > 0. You will easily convince yourself that
this defines an equivalence relation.

(a) Show that the Chern classes ci(E) € H?*(X;Z) depend only on the stable isomorphism
class of E, and they vanish whenever F is stably trivial.

(b) Find some examples of real vector bundles (e.g. tangent bundles of familiar manifolds) that
are nontrivial but stably trivial.

(¢) Show that every (real or complex) vector bundle E over a compact CW-complex X has a
stable inverse, meaning a vector bundle E~! with the property that E @® E~! is stably
trivial, and moreover, E~! is unique up to stable isomorphism.

Hint: Since X is compact, a map from X to any classifying space BG takes values in a
finite-dimensional subcomplex. Can you solve the problem for the universal vector bundle
over that subcomplex?

(d) How are the Chern classes of a complex vector bundle E — X and its stable inverse £~}
related? Compute them for the stable inverse of the tautological line bundle E"*+1.C
cP".

Exercise 13.4. You should probably not stress too much over the details of this, but I want to
sketch one way of proving the formula

PD(e(E)) = [s1(0)] € H,, 1(M;7Z)

for a smooth oriented vector bundle E — M of rank k over a smooth closed and oriented n-manifold,
where s € T'(E) is assumed to be any smooth section that is transverse to the zero-section. One
thing you might vaguely recall in the historical background of Poincaré duality is the notion of a dual
cell decomposition: any oriented triangulation of M determines a dual cell decomposition, which is
not typically a triangulation, but has k-cells in bijective correspondence with the (n — k)-simplices
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of the triangulation. More specifically, a k-cell in the dual decomposition can only intersect an
m-simplex of the original triangulation if k£ + m > n, and it intersects a unique (n — k)-simplex
of the triangulation at a single point lying in the interior of both (see e.g. [Wen23, Lecture 54|,
especially the picture on page 429). This correspondence between (n — k)-simplices and k-cells
gives rise to an explicit isomorphism of chain complexes

(13.2) Céw(M;Z) = Cp_ (M;Z),

in which the original triangulation is used on the right hand side and the dual cell decomposition
on the left, and this isomorphism descends to cohomology /homology as the Poincaré duality map
Hew(M;Z) — Hy—y (M; Z).

In the situation at hand, transversality and the implicit function theorem make the zero-set

571(0) € M a closed oriented submanifold of dimension n — k, and we can choose an oriented
triangulation of M that contains in its (n — k)-skeleton an oriented triangulation of the subman-
ifold s71(0). Every point in s~!(0) thus belongs to a p-simplex of the triangulation for some
p < n — k, and therefore also lies in a g¢-cell of the dual decomposition for some ¢ > n —p > k,
implying that s is nowhere zero on the (k — 1)-skeleton of the dual decomposition. Moreover, the
homology class [s~1(0)] € H,_,(M;Z) is represented in the oriented simplicial homology of the
triangulation by a sum of the (n — k)-simplices that triangulate s~1(0), which corresponds under
(13.2) to a sum of all the dual k-cells that intersect s~*(0). Think about this picture long enough to
feel intuitively convinced that the preimage under (13.2) of this particular simplicial (n — k)-cycle
is a cellular k-cocycle representing e(E).
Remark: More modern (and less handwavy) proofs of the formula PD(e(E)) = [s~1(0)] typically
express e(E) in terms of the Thom class 7 € H¥(E, E\M;Z), which gives an equivalent way of
defining it—the Thom class also plays a key role in the intersection-theoretic interpretation of
Poincaré duality:.

Exercise 13.5. A useful computational tool for Chern classes is known as the splitting principle,
which says that a vector bundle £ — X of arbitrary rank n > 1 can always be pulled back via
some map f:Y — X so that its pullback splits into a direct sum of line bundles

fFFE2L®...0L,

and the induced map f* : H*(X;Z) — H*(Y;Z) is injective. In the setting of a complex vector
bundle, this has the consequence that the classes ¢ (L1), ..., c1(Ly,) € H?(Y;Z) uniquely determine
the total Chern class of E. We saw for instance in lecture that if one constructs the projectivization
m:P(E) > X of F, then the Leray-Hirsch theorem makes the map 7* : H*(X;Z) — H*(P(EF); Z)
injective, and the pullback bundle 7* E — P(FE) then has a splitting into the direct sum of a line
bundle with another bundle of lower rank. Applying the same trick again n — 2 more times gives a
pullback that splits completely into line bundles. In practice, the splitting principle can be applied
without knowing where such splittings actually come from—one only needs to know that they
exist. The idea is to prove first that the desired statement holds for all bundles that can be split
into line bundles, and then use the injectivity of f* to deduce from this the general case.

(a) Show that the formula ¢;(L®L’) = ¢1(L) + c1(L') for two complex line bundles L, L’ — X
generalizes to bundles E, F' — X of arbitrary ranks as

c1(E®F) =rank(F) ¢ (E) + rank(E) ¢1 (F).
(b) Show that for the dual E* of any complex vector bundle £ — X and each k € N,

w(E*) = (=1)key(B).
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(c) Show that for a complex n-plane bundle E,
¢a(E) = e(B) € H*"(X; ),
where on the right hand side, F is regarded as an oriented real 2n-plane bundle.

The following definition is needed for the rest of the exercise. The determinant line bundle
det(E) — X of a complex vector bundle E — X of any rank n can be defined by taking any
atlas of local trivializations with GL(n,C)-valued transition data for F, and keeping the same
transition data but replacing the fiber C* by C, with GL(n, C) acting linearly on C via the group
homomorphism
det : GL(n,C) - C* := GL(1,C).

Here are two other equivalent definitions of det(E) — X that are more obviously independent
of choices: for the first, use the frame bundle FE — X to identify E isomorphically with the
associated bundle F'E x gr,(n,c) C", then set det(E) = F'E xgp,n,c) C using the GL(n, C)-action on
C mentioned above. One gets an even more intrinsic definition by describing the fibers det(E,) =~ C
of det(FE) — X as the top exterior powers A™(E,) of the fibers of E. You can prove to yourself as
a preliminary exercise that these three descriptions all define the same thing.

(d) Show that for any two complex vector bundles E, F' — X, det(E@® F) = det(E) ®@ det(F').
(e) Use the splitting principle to show that every complex vector bundle has the same first
Chern class as its determinant line bundle.

Exercise 13.6. For two complex vector bundles F, F' — X of the same rank n > 1 over a CW-
complex, prove that the restrictions of £ and F' to the 2-skeleton are isomorphic if and only if
a(E) =c(F).

Remark: Recall that a compact connected surface ¥ with 0¥ # & always admits a deformation
retraction to its 1-skeleton, so it follows that all complex vector bundles over X are trivial, and so
are complex vector bundles over S'. We also conclude that for ¥ a closed, connected and orientable
surface, the isomorphism classes of complex vector bundles E — ¥ are in bijective correspondence
with the integers via c¢i(E) € H*(%;Z) = Z.

Hint: Bundle isomorphisms E — F are the same thing as sections of a certain fiber bundle
© — X whose fiber at each point x € X is the space of invertible linear maps E, — F,, thus its
standard fiber can be taken to be GL(n,C), which admits a deformation retraction to U(n) by polar
decomposition. You learned some things about w1 (U(n)) in Exercise 7.8 that will be useful here.
Another useful observation is that a section of Hom(FE, F') induces a section of Hom(det(E), det(F"))
which is nonzero at precisely the points where the given linear map E, — F) is invertible. Use this
to show that bundle isomorphisms E — F always exist over the 1-skeleton, and then to determine
when such isomorphisms can be extended over 2-cells.

Exercise 13.7. Let L := E2C — CP! denote the tautological line bundle, which is naturally
a subbundle of the trivial bundle CP' x C2 — C2 since elements of CP! are subspaces of C2;
explicitly,
L={(v)eCP' xC?|vel}.

As a complex I-manifold, CP' can be covered by coordinate charts that are related holomorphically:
the standard construction denotes elements of CP' by [z : 21] (the equivalence class of (zg,z21) €
C?\{0} in its quotient by the action of C* = C\{0}), and covers CP' with two open subsets

Z/IO = {[20 : Zl] € CPI | 20 # 0}, Z/{l = {[ZO . Zl] € (C]P)l | 21 # 0}
on which the maps

uOﬂ)CI[Zoizl]P—)Zl/Zo, M1£>C2[20221]H20/21,
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are homeomorhisms. On the same two open subsets, define local trivializations Ly, — Uy x C and
L|y, — Uy xC that are related by a holomorphic transition function gio : Uonly — GL(1,C) = C*.
(This shows that L — CP' is not only a complez but also a holomorphic vector bundle, a notion
that only makes sense when the base is a complex manifold.) Then write down an explicit section
s € T'(L) that equals zero at exactly one point, and show that this point contributes —1 to the signed
count of zeroes that computes (e(L), [CP']). The sign should be consistent with the convention
that for complex-valued functions f : C — C, regarded as sections of a trivial line bundle over C,
the zero at 0 of the section f(z) = 2" for each k € N contributes k, while f(z) = 2* contributes —k.
(In general, the recipe is to examine the map S* — S! obtained by normalizing the function along
a small circle surrounding the isolated zero—one then measures which multiple of the canonical
generator of 71(S1) this map represents. For sections of an oriented real vector bundle over an
oriented manifold, the contribution of each isolated zero is independent of choices of local chart
and trivialization, so long as both respect the fixed orientations.)

Exercise 13.8. The Stiefel-Whitney classes wy(F) € H*(X;Zy) of a real vector bundle £ — X
over a CW-complex are defined analogously to the Chern classes, but with the universal complex
line bundle E*C — CP* replaced by its real counterpart E*® — RP*, which makes it natural
to use Zy coefficients since the cohomology ring H*(RP™;Zs) has properties closely analogous to
those of H*(CP™;Z). In particular, the first Stiefel-Whitney class w;(L) € H'(X;Zs) on real
line bundles L — X is uniquely determined by naturality and the condition that w;(E“*R) #
0 € HY(RP";Zy) = Zy. Tts definition on higher-rank real bundles, as well as the rest of the
classes wy(F), can then be deduced via naturality from the Whitney sum formula

wE®F) =w(E) v w(F)

using the splitting principle (cf. Exercise 13.5), where we denote the total Stiefel-Whitney class
w(E) :=1+wi(F) +wa(E)+...€ H*(X;Z). As with the Chern classes, one requires wy(E) =0
for k > rank(E), so the sum in the total Stiefel-Whitney class is always finite.

(a) Show that two real line bundles L, L’ — X over a CW-complex are isomorphic if and only
if wy(L) = wy(L'). In particular, L is trivial if and only if w;(L) = 0.
Hint: We sketched two proofs of the complex analogue of this statement in lecture, and
both approaches are also options here. The easier approach is probably to make use of
the double role that RP* plays as BGL(1,R) and K(Z3,1). But it is also possible to give
a more direct definition of wq(L) as an obstruction to finding nowhere-zero sections of L
over X'
(b) Show that for a real vector bundle E — X of arbitrary rank over a CW-complex, wq(E) = 0
if and only if F is orientable.
Hint: There is also a real analogue of the determinant line bundle det(E) — X introduced
in Exercise 13.5.
(¢) Show that two real vector bundles E, F' — X of the same rank are isomorphic over the
1-skeleton if and only if wy (F) = w1 (F).
I mentioned that there are also constructions of certain characteristic classes in specific cohomology
theories that do not require any cell decomposition. Here is a way to construct w; in Cech
cohomology. For simplicity, assume the base X of our bundle £ — X admits a so-called good open
covering {U, © X},es, meaning that any nonempty finite intersection of sets in this covering is
contractible.®* For a given abelian group G, the Cech n-cochain group Cv'"(X ; G) with coeflicients

64The existence of a good covering is a nontrivial condition, and it is also not strictly necessary, but it simplifies
matters by avoiding the need for direct limits in our discussion of Cech cohomology. One can use convexity to show,
for instance, that smooth manifolds always admit good coverings.
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in G determined by this open covering consists of G-valued functions ¢ € C™(X; G) defined on the
set of (n+1)-tuples in J for which the corresponding sets in the open covering intersect nontrivially,
that is,

o(ag,...,an) €G is defined whenever Uy oo Uy, # D
A coboundary operator 9 : Cv'”(X; G) — Cv’”H(X; @) on this complex is defined by

n+1

5p(, . omy1) = (=)™ YT (=DFp(ag, ..., 8k, ..., o),
k=0

where the hat on a; means that that particular term is omitted. Algebraically, C* (X; @) is the
(ordered) simplicial cochain complex of the so-called nerve (see [Wen23, Lecture 46]) of the open
covering {U, }aes, and under some conditions that we will not get into here, one can show that the
resulting cohomology H *(X; @) is independent of the choice of open covering.

Now for a real n-plane bundle E — X, suppose that our good covering {Uy}aes comes with
local trivializations ®,, : E|y, — U, x R™ and a corresponding system of transition functions
9pa : Uy 0 Us — GL(n,R). We define from this data a Cech 1-cocycle pp € CY(X;Zs) by

0 if det gop > 0,
1 ifdetgnp <O,

@E(aaﬂ) = {

with the understanding that the signs of these determinants are constant on each U, Nz since using
a good covering guarantees that this intersection is connected. The cocycle condition gnggsygya = €
now lives up to its name: together with g,, = e, it implies the relations

@E(aaﬂ)—i_(pE(ﬁaa):Ov and thus 590E(a3637):wE(ﬂvv)_@E(aav)+@E(aa5):0

(d) Show that changing the local trivializations ®, : E|y, — U, x R™ and consequently the
transition functions {gg,} alters the definition of the cocycle pr € C'(X;Z>) by something
that is a coboundary in the Cech cochain complex. It follows that its cohomology class

wi (E) = [pp] € H'(X;Zs)

is independent of choices, and we take this to be the definition of the first Stiefel-Whitney
class in Cech cohomology.

(e) Show that the structure group of the bundle E — X can be reduced to GL4(n,R) if and
only if the cocycle ¢g is a coboundary. This is the Cech version of the proof that w1 (E)
vanishes if and only if F is orientable.

(f) Show that under the natural isomorphism H*(X; Zs) =~ H{y (X Zy) for any CW-complex X,
the two definitions we have for wq (E) match.

Hint: You really just need to know three things, namely (1) naturality, (2) how to compute
wy on a direct sum of line bundles, and (3) that the definitions match on the universal line
bundle over RP*.

Remark: There is also a construction of ws in Cech cohomology, which gives a rather transparent
proof that an oriented vector bundle E can be endowed with a spin structure if and only if
w2 (E) = 0.

Exercise 13.9. The Leray-Hirsch theorem gives an isomorphism of Z-graded abelian groups
H*(E;Z) =~ H*(B;Z) ® H*(F;Z) for fiber bundles £ — B with standard fiber F' under certain
conditions: in particular, the theorem requires the existence of a finitely-generated free subgroup
of H*(E;Z) that pulls back isomorphically to every fiber. Find an example of a fiber bundle in
which the latter condition does not hold, and H*(E;Z) is not isomorphic to H*(B;Z)@ H*(F';Z).
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14. WEEK 14

Lecture 24 (15.07.2024): Bordism groups.

e Definition: The nth unoriented bordism group Q9 (X) of a space X € Top for n > 0
consists of equivalence classes [(M, f)] of singular n-manifolds (), f) in X, meaning
continuous maps f : M — X defined on arbitrary closed smooth n-manifolds M. The
equivalence relation (M, f) ~ (N, g) is called the bordism relation:%® we say that (M, f)
and (N, g) are bordant if there exists a continuous map F' : W — X defined on a compact
(n + 1)-manifold W, along with a diffeomorphism M 11 N = dW that identifies F|sp with
flg.

e Group structure of Q9 (X): It’s important to be aware that in the definition of a singular
n-manifold (M, f), we do not require M to be either connected or nonempty, and the empty
set ¢ can be regarded as a smooth n-manifold for any n € Z. (Look at the definition of
an n-manifold; you will see that this is true.’®) We can thus make Q9 (X) into an abelian
group by defining

[(M, )] +[(N,g)] :=[(MuN, fug)],  0:=[(J,")],

where - denotes the unique map ¢ — X. Using & as an identity element means that a
singular n-manifold (M, f) represents the trivial bordism class if and only if M is diffeo-
morphic to the boundary of some compact (n + 1)-manifold W such that f extends to a
map W — X. The next proposition shows that inverses always exist, thus Q9 (X) really
is a group.

e Proposition: Every nontrivial element [(M, f)] € Q9(X) has order 2, i.e. it is its own

inverse.
Proof: This is one of two conclusions that we can draw from the existence of the trivial
homotopy F : M x I — X : (x,t) — f(x), since (M x I) is the disjoint union of M 11 M
with . (The slightly more obvious conclusion comes from writing (M x I) = M 1M
without mentioning the empty set: this is the reason why (M, f) ~ (M, f), i.e. the bordism
relation is reflexive.)

e Remark: I am leaving it as an exercise to verify that the bordism relation is also symmetric
and transitive. The latter is the more interesting detail, as it requires gluing two bordisms
together along diffeomorphic boundary components, which can always be done with the
aid of smooth collar neighborhoods of the boundary.

e Remark: It is a legitimate question why we are requiring the domain of a singular n-
manifold to be a smooth manifold, rather than just a topological manifold, since nothing
in the discussion so far seems to depend at all on its smooth structure. The best answer
I can give is that smooth manifolds have tangent bundles, which brings the theory of
characteristic classes of vector bundles into the picture as a useful tool for computations.
It is easy to define bordism groups with topological manifolds as domains, but harder to
compute them, and understanding the smooth case is an essential prerequisite before the
continuous case can be approached.”

510 the older literature, it was more often (and sometimes still is) called the cobordism relation. At some point
people seem to have decided that since bordism defines a homology theory and not a cohomology theory, it doesn’t
deserve a “co” after all.

661y fact, J is even an n-manifold for n < 0, and there are many results I care deeply about whose proofs depend
on the fact that it is the only one.

67For more on this, see http://www.map.mpim-bonn.mpg.de/B-Bordism#Piecewise_linear_and_topological_
bordism, but I provide this link with the caveat that I personally understand a relatively small proportion of what
it says.


http://www.map.mpim-bonn.mpg.de/B-Bordism#Piecewise_linear_and_topological_bordism
http://www.map.mpim-bonn.mpg.de/B-Bordism#Piecewise_linear_and_topological_bordism
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Definition: For (X, A) € Top*™®, the relative bordism group Q0 (X, A) modifies the definition
of Q9(X) so that representatives (M, f) of elements of Q9(X, A) are maps of pairs f :
(M,0M) — (X, A) defined on compact n-manifolds M that are allowed to have nonempty
boundary. The bordism relation (M, f) ~ (N, g) then becomes the existence of a map of
pairs F : (W,00W) — (X, A), whose domain is a smooth compact (n + 1)-manifold W
with boundary
oW =0, W u oW vo_W

such that there is a diffeomorphism MTIN = ¢, W11d_W identifying the restriction of F to
this portion of 6W with fi1g. Here, the subsets 0, W, 0_W, 0gW < 0W are assumed to be
compact domains that intersect each other only along smooth closed (n — 1)-dimensional
submanifolds Ny := 9(0+W),5"

0+W n oW = Ny, thus 0(0oW)=NUN_ and 0.Wno_W=.
There is an obvious way to define a boundary operator
QD (X, A) =5 Q0 (A) : [(M, )] = [(0M, flear)],
and a similarly obvious way to associate to any map of pairs ¢ : (X, 4) — (Y,B) an
induced homomorphism ¢, : Q9(X, 4) - QO(Y, B), making Q° : Top™ — Ab into a
functor and 0, into a natural transformation.

Easy theorem: The functors QO : Toprel — Ab and boundary operators 0, define a (gen-
eralized) homology theory, and there is also a natural transformation

QQ(X, A) — Ho(X, A;Zo) : [(M, f)] = fo[M],

where [M] € H,(M,0M;Zsy) on the right hand side is the relative fundamental class of M.
Remark: When I say “easy,” I mean that it is substantially easier to prove that Q9 satisfies
the Eilenberg-Steenrod axioms (except for the dimension axiom) than to prove this about
singular homology H,, as most of the axioms are already almost obvious, and there is no
need to bother with subdivision. Similarly, a fundamental class of a closed n-manifold M
in the bordism group Q9 (M) can be defined with no effort at all: it is imply the bordism
class of the identity map M — M. Bordism theory only starts to become difficult when
you want to compute it.

Definition: The nth oriented bordism group 3°(X) is defined via the following mod-
ifications to the definition of Q9 (X). The manifolds M, N, W are all equipped with orien-
tations, W is equipped with the induced boundary orientation, and the diffeomorphism
MU N = 0W required for the bordism relation reverses the orientation of either M or N,
e.g. we could write

M1 (=N) = oW

to indicate that the boundary orientation of W matches the orientation of M but is
opposite to the orientation of N. The group structure is defined in the same way as before,

68There is an equivalent formulation of this definition that I find more natural, but it takes a bit more effort to

state because one must first define the notion of a smooth manifold with boundary and corners. Leaving that detail
to your imagination, I would then describe W in the relative bordism relation as a manifold with boundary and
corners whose boundary 0W is the union of three “smooth faces” that intersect along two corners Ny = 04 W ndoW
and N_ = 0_W n doW. This is in fact the picture you end up with if you try to imagine the relation between two
homologous relative cycles in singular homology in terms of triangulated manifolds—corners arise quite naturally
in that context, because the standard n-simplex has corners for any n > 2. A smooth manifold with boundary
and corners is topologically still a manifold with boundary, though its smooth structure does detect the distinction
between having corners or not. On the other hand, one can always “smooth the corners” to produce a smooth
manifold with boundary (and no corners) that is canonical up to diffeomorphism, and this is why one obtains the
same relative bordism relation regardless of whether the definition mentions corners or not.
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but elements no longer necessarily have order 2; instead, inverses are obtained by reversing
orientations,
—[(M, f)] = [(=M, f)],

which works because the boundary orientation of 0(M x I') reverses the orientation of one of
its components. The oriented bordism relation is then symmetric because the orientation
of W can always be reversed, which reverses the orientation of its boundary. I leave it as
an exercise to write down the definition of Q8° (X, A) for a pair (X, A) € Top™'. The result
is another generalized homology theory, with natural transformations

ORO(X, A) — Ho(X, A Z) = (M, f)] = fo[M]

defined via the integral fundamental class [M] e H, (M, 0M;Z).
e In keeping with the principle that a homology theory is essentially computable if and only
if its coefficient groups are, we will focus mainly on the groups

00:=00(x),  and 0= 0%

Elements [M] of these groups are represented by smooth closed n-manifolds M, with

[M] = [N] if and only if the disjoint union of M and N is diffeomorphic to the boundary

of a compact (n + 1)-manifold W; in the case of Q39 M, N, W are all required to be
oriented and M 11 (—N) =~ oW.
e Two easy observations:

(1) If desired, it is possible to describe elements of Q9 or Q5° using only manifolds that
are connected and nonempty. This is because S™ = dD"*!, thus [S"] = 0 in both QY
and Q59 and moreover, the disjoint union M1IN of two closed n-manifolds is bordant
to the connected sum M#N. The compact (n + 1)-manifold W needed for this can
be constructed by attaching an (n + 1)-dimensional 1-handle D! x D" =~ [ x D" to a
pair of disjoint n-disks in (M I N) x {1} c ¢ (M U N) x I).

(2) Q0 =@, Q9 and Q5 := @;_, Q5© each have natural ring structures defined by

[M] x [N] := [M x NJ.

The product is graded commutative since, for oriented manifolds, N x M carries the
opposite orientation of M x N whenever both are odd-dimensional. In the unoriented
theory this makes no difference, and “graded commutative” means the same thing as
commutative since all nontrivial elements have order 2.

e Some low-hanging fruit:

(0) QF = Zy and Q5° = Z, with a canonical generator furnished in both cases by a
one point space. Compact oriented 0-manifolds are finite discrete sets with a sign
+1 attached to each point; an explicit isomorphism Q5© — Z is then obtained via a
signed count of the points in such a set, which is well defined because the oriented
boundary of I consiss of one positive point and one negative point.

(1) QF = OF° = 0 because all closed 1-manifolds are finite disjoint unions of copies of S,
and St = oD2.

(2) Q59 = 0 due to the classification of surfaces: 3, is the boundary of a compact region
in R3 for each ¢ > 0. In the unoriented case, we can immediately say that the
Klein bottle K2 =~ RP?*#RP? is nullbordant since every element in QF is 2-torsion,
hence [K?] = [RP?] + [RP?] = 0, with an explicit filling W of K? =~ 0W obtained
e.g. by attching a 1-handle D! x D? to one side of (RP? 1 RP?) x I and attaching
RP? x I to the other side. Appealing again to the classification of surfaces, this
implies that 2§ cannot be larger than Z,. On the other hand, Theorem 1 below says
that [RP?] # 0 € QF, hence Q9 = Z,.
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(3) The following result is substantially deeper than the others above: Q5° = 0 due to
a theorem of Rokhlin showing that every oriented closed 3-manifold is the boundary
of a compact oriented 4-manifold. The same is also true without orientations, thus
Q9 =o.

e Theorem 1: RP? is not the boundary of any compact 3-manifold.

Remarks: This implies the computation QS =~ Z, mentioned above. A proof using char-
acteristic classes will be given below, but here is a quick sketch of a different proof: if
W is a compact 3-manifold with 0T = RP?, then gluing two copies of W together along
their boundary produces a closed 3-manifold Y, whose Euler characteristic must be 0
as a consequence of Poincaré duality (with Zy coefficients). But one can also compute
x(Y) = 2x(W) — x(RP?) = 2x(W) — 1, thus x(Y) cannot be even. (The same argument
also works for CP?.)

Theorem /Definition: There exists a unique sequence of characteristic classes

wy(E) € H¥(X;Zy),  keN,

called the Stiefel-Whitney classes of real vector bundles £ — X over CW-complexes,

which have the following properties:

(1) For real line bundles L — X, wy(L) is determined by naturality and the condition
that wy is nonzero on the universal line bundle,

wy (EYR) # 0 e HYRP™; Zy) = Zy;

(2) wi(E) =0 whenever k > rankg(E);
(3) The total Stiefel-Whitney class w(E) := 1+ w1 (E) + wo(E) + ... € H*(X;Zy)
satisfies the Whitney sum formula

wEDF) =w(E) vw(F)

The proof of the existence and uniqueness of wi(E) for rank(E) = n > 1 is closely analo-
gous to the corresponding theorem about Chern classes: one can define a real version of the
projectivized bundle 7 : P(E) — X, with fibers P(E,) = RP" !, so that 7* E — P(E) con-
tains a tautological rank 1 subbundle L ¢ 7#*F, and the powers of its first Stiefel-Whitney
class wy(L)* € H¥(P(E);Z,) then determine the classes wy(E) € H*(X;Z;). Here one
needs a version of the Leray-Hirsch theorem with Zs coefficients, which works because the
classes wy (L)* form a finite basis for a free Zy-submodule of H*(P(FE);Zs) that pulls back
isomorphically to the fibers P(E,) = RP"™'. The crucial detail is that H*(RP"™';Z,) has
nearly the same ring structure as H*(CP"™';Z), only with Z replaced by Z.

e Some useful properties of w; for real vector bundles over CW-complexes (see Exercise 13.8):

(1) Two line bundles L, L' — X are isomorphic if and only if wy (L) = wy(L).
Proof: BGL(1,R) = BZy = RP” = K(Zs,1), so we can write L and L’ as pullbacks of
the universal line bundle via maps f, g : X — RP”, and they are isomorphic if and only
if these maps are homotopic, which is true if and only if f*1; = g*1; € H'(X;Zy) for
the distinguished cohomology class t; € H'(RP”;Zy) =~ [RP”, RP™] corresponding to
the identity map RP* — RP”. This class must be nontrivial in H!(RP”;Zy) = Z,
and thus matches the first Chern class of the universal line bundle, so the condition
is equivalent to ¢1(L) = ¢1(L').

(2) For two line bundles L, L — X, wi(L® L) = wy(L) + wy (L').
(Take this on faith for the moment; a proof will appear below, though I neglected to
mention it in the lecture itself.)

(3) A vector bundle E of arbitrary rank is orientable if and only if w;(E) = 0.
Proof sketch: Define the determinant line bundle det(E) — X of a real vector bundle
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E — X analogously to the complex case (Exercise 13.5). One then has natural
isomorphisms det(E@® F') = det(E) ®det(F'), and in light of the formula wi (L L") =
w1 (L) +wq (L"), the real analogue of the splitting principle using cohomology with Zo
coefficients can be used to prove just as in the complex case that

w1 (E) = W1 (det(E))

The bundle E is orientable if and only if det(F) is trivial, and since the latter is a line
bundle, it is trivial if and only if w;(det(E)) = 0.

I will interrupt the lecture summary here to add some more details about the first Stiefel-
Whitney class, as I realized while writing this up that one or two of its important properties do
not follow so easily from what I said about it in lecture. In particular, the formula

wi(L®L') =wi(L) +wi(L)

seems obvious to me for various reasons, but I do not see an easy way to deduce it merely from
naturality and the fact that w;(EY*®) # 0. We proved the complex analogue of this formula
in Lecture 23, using the identification of ¢; with the Euler class, which we had defined as an
obstruction class. There is an analogous approach that works for the first Stiefel-Whitney class,
based on an alternative definition of wq(L) that makes it the explicit answer to an obstruction-
theoretic question.

The relevant question is: given a real line bundle L — X, does L admit a section that is nowhere
zero on the 1-skeleton of X? As in our definition of the Euler class, one can approach this question
by removing the zero-section from L, thus defining a fiber bundle

L—X

with standard fiber R\{0}, whose sections are precisely the sections of L that never vanish. Notice:
if we can define a section s; € F(L|X1) on the 1-skeleton, then in fact that section is automatically
also extendable to all the higher-dimensional cells, because both path-components of the fiber
R\{0} are contractible, so that maps S" ! — R\{0} can always be extended over D" for n > 2.
Thus the question we are actually asking is whether L admits a global nowhere-zero section, which
on a line bundle is equivalent to asking whether the bundle is trivial. The only reason it might fail
to be trivial is that sections of L defined on X might fail to extend to Xt

One slightly annoying detail: since the fibers R\{0} of L — X are not path-connected, this fiber

bundle does not fit cleanly into the framework we developed for obstruction theory in Lecture 21.
Nevertheless, it is not difficult to write down an obstruction cochain

01 € Cow (X Z2)

that depends on a given section sg € I'(L| xo) and vanishes if and only if so can be extended to X?.
For each 1-cell ¢!, ¢ X with characteristic map ®, : (D!, S%) — (X, X9), the bundle ®*L is
trivializable and thus homeomorphic to D' x (R\{0}), so its total space has two path-components,
and so can be extended over el if and only if its values at the two boundary points D! = S°
lie in the same component of R\{0}. The answer to this question is independent of the choice of
trivialization, so we get a well-defined cochain 0} : CFW(X;Z) — Z by setting
0L (cl) = {O ?f so extends over e},
1 if not.

One easily checks that 9%(66%) for all 2-cells e% c X, thus 0} is a cocycle. It depends on the given
section so over the O-skeleton, but if a different section sj, is given, one can now define a 0-cochain
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W(e0) {O if so and s, map €2 to the same component of the fiber,
e)) =
1 if not.

The difference between our cocycle 6} and the new one defined using s{, instead of s is then +d1,
thus the cohomology class

wi(L) := [01] € H'(X;Zs)
is independent of the choice of section sy on X°. It vanishes if and only if L admits a nowhere-zero
section over the 1-skeleton, which is true if and only if L is a trivial bundle.

As with the Euler class, one can use cellular approximation to prove that w; under this definition
satisfies naturality, so it is a well-defined characteristic class. I will take this opportunity to clarify
a subtle detail that was glossed over in our definition of the Euler class: the obstruction-theoretic
definition of the class [0}] € Hl (X;Zs2) leaves open the possibility that it might depend on the
cell decomposition of X, and not just on the bundle L — X. But naturality implies that it must
indeed be independent: if X’ denotes a second copy of X with a different cell decomposition,
then for any cellular map f : X — X’ homotopic to the identity, we have f*0} = 9}* 1, SO that
f*: HY(X';Zy) - HY(X;Zs) maps w1 (L) to wi(f*L). Since f* = Id and f*L = L, this proves
that the natural isomorphism between two versions of cellular cohomology defined with respect
to two different cell decompositions identifies one version of wi(L) with the other. The same
argument implies that our definition of the Euler class for an oriented vector bundle similarly does
not depend on the cell decomposition.

So, why does our obstruction-theoretic definition of w; (L) match the definition we already had?
By naturality, this must be true if and only if the new definition of w; matches the old one on
the universal line bundle EL*® — RP*. The latter is easy to check, because there are only two
possible values that wi(EV*R) € HY(RP*;Zy) =~ Zy could take, and it will vanish if and only
if wy (L) vanishes for all line bundles, which is clearly not true since there exist real line bundles
that are not trivial. (Exercise: Describe a nontrivial real line bundle over S whose total space is
a Mobius band.)

With the new definition of wy (L) in place, a direct proof of the formula wy (L ® L') = w1 (L) +
wy (L") becomes possible: we use sections s € I'(L) and t € I'(L’) that are nonvanishing on X° to
produce a section s ®t € I'(L ® L') that is likewise nonvanishing on X, and observe that s ®t
extends from X to a given 1-cell e} if and only if both s and ¢ either do or do not extend. This
produces the relation

Bl (eh) = BL(eL) + O} (el < 2,
thus wy (L ® L') = wy (L) + wq(L).

Now that we have the tensor product formula and a direct obstruction-theoretic proof that L
is trivial if and only if wy(L) = 0, here is an easy second proof that two line bundles L, L — X
are isomorphic if and only if wi(L) = w1(L’'). A bundle isomorphism L — L’ is the same thing
as a nowhere-zero section of the bundle Hom(L, L") =~ L* ® L', and since we are talking about
real bundles this time, L* =~ L, with an explicit isomorphism provided by any choice of bundle
metric.%” Since all elements of H'(X;Zs) are 2-torsion, it follows that L and L’ are isomorphic if
and only if 0 = ¢;(Hom(L, L") = ¢1(L) + ¢1 (L") = —c1 (L) + 1 (L).

69Note that one cannot get away with this trick for complex vector bundles, and indeed, a complex vector
bundle E is often not isomorphic to its dual bundle E*, as evidenced by the fact that c¢1(E) is often not equal to
—c1(E). The difference in the complex case is that Hermitian inner products are not complex-bilinear: they are
instead complex-linear in one argument and antilinear in the other, so that the real vector bundle isomorphism
E — E* induced by any choice of complex bundle metric is fiberwise antilinear rather than linear, and is thus not
an isomorphism of complex vector bundles.
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Now back to the lecture summary.

e Definition: Let ¢* denote the trivial (real or complex) k-plane bundle over any given
base. Two vector bundles E, F — X, not necessarily of the same rank, are said to be
stably isomorphic if there is a bundle isomorphism E @ e* =~ F @ €’ for some k, ¢ > 0.
Similarly, E is stably trivial if £ @ €* is a trivial bundle for some k > 0. This definition
makes sense for either real or complex bundles, and one often also considers versions
with additional structure such as orientations, e.g. two oriented real bundles E, F — X
are stably isomorphic (as oriented bundles) if there is an orientation-preserving bundle
isomorphism FDE =~ @F for some k,£>0.7°

e Corollary of the formula w(EF® F) = w(E) uw(F): Stably isomorphic real vector bundles
have matching Stiefel-Whitney classes.

Note: By Exercise 13.3, the same holds for stably isomorphic complex vector bundles and
the Chern classes.

e Exercise: Show that the Euler class is not invariant under stable isomorphism of oriented
vector bundles.

e Definition: The Stiefel-Whitney numbers of a closed smooth n-manifold M are numbers
of the form

{wp, (M) U ... Vwy, (M), [M]) € Zs
for ki,...,k; € N with k1 + ... + k; = n, where [M] € H,(M;Z,) is the unoriented
fundamental class, and we abbreviate

wi (M) = wi(TM).

e Theorem 2: If M is the boundary of a compact (n+1)-manifold W, then all Stiefel-Whitney
numbers of M vanish.
Proof: Choose any vector field on W near M = 0W that points transversely outward at
the boundary. This vector field spans a rank 1 subbundle of TW|;; that is complimentary
to T'M, thus producing a bundle isomorphism

TW|y = @TM,

so that TW |y and T M are stably isomorphic, and therefore have the same Stiefel-Whitney
classes. Writing i : M — W for the inclusion, we now have wy (T M) = i*w;(TW) for each
k € N, and thus

(i, (TM) U ... O wg, (TM), [M]) = G* (wi, (TW) U ... v wg, (TW)), [M])
= (W, (TW) U ... vwy, (TW),is[M]) = 0,
since ix[M] =0€ Hy11(W; Zs).
e Proof of Theorem 1: Since RP? is not orientable, w;(RP?) # 0 € H'(RP?;Zy) = Z,, and
the ring structure of H*(RP?;Zy) then gives us a nonvanishing Stiefel-Whitney number:
(w1 (RP?) U wy (RP?), [RP?]) # 0.

¢ Some harder results about bordism groups:
(4) Q3° = 7, with [CP?] as a generator. It follows in particular that every closed oriented
4-manifold is either the boundary of a compact oriented 5-manifold or becomes such a
boundary after taking its disjoint union (or connected sum) with finitely many copies

. =52 . . .
of either CP? or CP”, the latter being the standard notation for CP? with reversed
orientation.

TONote that in talking about stably isomorphic oriented bundles, we need to be consistent about the order of the
summands when writing €* @ E or E@e€”, since the orientation of the direct sum sometimes depends on this choice.
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(5) Q5© = Zy, with the nontrivial element represented by a particular fiber bundle over
S' with fibers CP?, called the Dold manifold. This is the lowest dimension in which
oriented bordism groups have torsion.

(6) Q3° and Q5O are both trivial, so closed oriented manifolds of dimensions 6 or 7 are
always oriented boundaries. On the other hand, Q§° =~ Z ® Z, with a basis given by
[CP*] and [CP? x CP?].

(7) Thom proved several important results in [Tho54], such as:

(a) The converse of Theorem 2 is also true, and in fact: Two closed manifolds of the
same dimension whose Stiefel-Whitney numbers all match are always bordant.
(b) There is a graded ring isomorphism

O~
Q* = Z2[$27x4,$5,$6, xg, X9, - - ‘]7

where the generators x; have degree k, and there is exactly one such generator
for each k ¢ {2 —1 | m e N}.

(c) The natural transformation Q9 (X, A) — H, (X, A;Zs) is surjective for every
(X,A) e Top™ and n > 0. In other words, all singular homology classes with
Zs coefficients really can be represented via the fundamental classes of compact
manifolds.

(d) The natural transformation Q5°(X, A) — H, (X, A;Z) is not generally surjec-
tive, but its rational version

030(X, ) ®@Q — H,(X, 4;Q)

is. In other words, every singular homology class ¢ € H, (X, A;Z) has a pos-
itive multiple that can be represented by the fundamental class of a compact
manifold.

(e) There exists a graded ring isomorphism

25° ®@ Q — Q[a4, 78, 712, - - ],

where the generators x4, can all be represented by complex projective spaces CP*".
Comment: The next lecture sketches a proof of this isomorphism and some of
its applications.
e Stable classifying maps: Recall BO(n) = BGL(n,R) = Gr,(R*). The sequence of inclu-
sions
0(1) 5> 0(2) 5 0@) = ...,  i(A)= (é 2)
induces (according to Exercise 13.1) a sequence of maps between the corresponding classi-
fying spaces, whose direct limit we will call B O:

BO(1) 25 BO(@2) 25 BO(3) —> ... —> colim, .. BO(n) =: BO.

Remark: We could equally well have started with a similar sequence of inclusions GL(n, R) <
GL(n +1,R) and obtained from it the same colimit of classifying spaces; the only real rea-
son to call it BO instead of B GL(-,R) is convention. On an intuitive level, calling the
classifying spaces B O(n) rather than B GL(n,R) means that the vector bundles we are
classifying carry bundle metrics as extra structure. We will not need to make any such
choice of extra structure, though Exercise 12.3 guarantees that it is always possible to do so,
and for certain purposes it is also convenient—but the fact that B O(n) = B GL(n,R) gives
a huge hint that important topological results that are proved using that extra structure
will typically not depend on it.
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e Exercise (based on Exercise 13.1): The pullback of the universal bundle E"*%*R via the

map Bi : BO(n) —» BO(n + 1) is naturally isomorphic to ! @ E™*E,

Theorem 3: B O is a classifying space for real vector bundles over compact CW-complexes
up to stable isomorphism. More precisely, recall that any real vector bundle £ — X of
rank n over a CW-complex is isomorphic to HEE"’“”R for a unique homotopy class of maps
kg : X — BO(n), called the classifying map of E. Composing this map with the natural
map of B O(n) to the colimit defines the so-called stable classifying map

s
KE

/\

and the statement is that if X is compact, then two real vector bundles F,F — X of
arbitrary ranks are stably isomorphic if and only if their stable classifying maps k%, k% :
X — B O are homotopic.

Proof sketch: The classifying spaces B O(n) and their colimit B O are all CW-complexes,
and the point of assuming X to be compact is that the image of any homotopy of stable
classifying maps X x I — B O is then contained in a finite subcomplex, implying that it
factors through a homotopy of maps X x I — B O(n) for sufficiently large n. With this
understood, the result can be deduced from the previous exercise.

Remark: Direct sums F @ F' define a natural commutative addition operation on the set
[X, B O] of stable isomorphism classes of vector bundles over a compact CW-complex X,
and Exercise 13.3 tells us that this even makes [X, BO] into a group, with the stable
isomorphism class of a trivial bundle (corresponding to a constant classifying map X —
BO) as identity element. One can deduce from this that B O is naturally a group object
in hTop, and the resulting multiplication map BO xBO — BO up to homotopy can
then be combined with the homological cross product Hy (B 0;%Z2) ® Hy(B O;Zy) —
H,(BO xBO0;Zs) to make H, (B O;Zs) into a ring.

Yet another theorem due to Thom [Tho54]: There is a well-defined and injective graded
ring homomorphism

Q0 % Ho(BO;Zo) : [M] > (k) [M].

Comment /apology: The symbol [M] means two quite different things on the left and right
sides of (14.1). On the left side, it is the unoriented bordism class [M] € QO represented
by a closed smooth n-manifold M, while on the right, it is the fundamental class [M] €
H,(M;Zs) of M in singular homology.

Comments on the theorem: The deep part of the statement is that the homomorphism &
is injective, but it is relatively easy to explain why the map is well defined and respects the
ring structures. The latter is almost immediately clear, because the fundamental class of a
disjoint union M 1IN can be understood as a sum of fundamental classes of its components,
and the stable classifying map of T(M 11 N) is similarly a disjoint union of the stable
classifying maps of TM and TN. The ring structure is also preserved, mainly because
T(M x N) is naturally the direct sum of two subbundles TM and TN pulled back along
the projections of M x N to M and N, so that the stable classifying maps are then related
in a way that corresponds to the definition of the ring structure on H,(B O;Zy). One
then only has to show that (k%.,,)«[M] = 0 € H,(BO;Z3) whenever M is diffeomorphic
to the boundary of a compact (n + 1)-manifold W. This is true for roughly the same
reasons that the Stiefel-Whitney numbers of M vanish: the bundles TM and TW |y are
stably isomorphic, and the relevant consequence of this in the present context is that the
stable classifying maps x%.,, and &%y, |a are homotopic. Without loss of generality, we
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can then assume these two maps are equal, so that x%y, : W — BO is an extension
of k¥, : M — BO to W. This implies that [(M, k%,,)] is the trivial bordism class in
Q9(BO), and since (k5.,,)«[M] is the image of this class under the natural transformation
Q9(BO) — H,(BO;Zy), it follows that (k%,,)«[M] = 0.
The proof that ® is also injective requires knowing more about the actual computation
of Q9, and we’ll discuss some aspects of the oriented analogue of this in the next lecture.
e Remark: We now have the following explanation for the converse of Theorem 2. One
can use cell decompositions to compute H* (B O(n);Z2) explicitly, and the result is quite
simple: it is the polynomial ring Zs[w;, ..., w,] generated by the Stiefel-Whitney classes
wy(E™*®) € H*(B O(n); Z2) of the universal n-plane bundle (see e.g. [Hat, Theorem 3.9]).
This implies, on the one hand, that all possible characteristic classes of real vector bundles
living in cohomology with Zs coefficients are expressible in terms of the Stiefel-Whitney
classes. It also gives us a criterion to judge when the homology class (k%,,)«[M] €
H,.(BO;Zs) is trivial, namely by evaluating products of Stiefel-Whitney classes of uni-
versal bundles on it, which is equivalent to evaluating products of Stiefel-Whitney classes
of TM on [M]. Since ® : Q9 — H,(B O;Zy) is injective, it follows that any closed manifold
whose Stiefel-Whitney numbers all vanish must represent the trivial element of Q.

Lecture 25 (18.07.2024): Oriented bordism and signature. As sometimes happens with
interesting topics at the end of the semester, what I managed to cover in this lecture was maybe
about half of what I really wanted to. I've decided to handle the writeup like so: the lecture
summary below is in the usual format, as a concise’! summary of what was actually covered in the
lecture. After the lecture summary, there will be a “computational appendix” to fill in some of the
details that were skipped in the lecture.

Topic 1: The signature as a bordism invariant.

o Definition: The signature o(M) € Z of a closed oriented manifold M of dimension 4n is
defined to be the signature of its intersection form

Qur - H*(M;R) x H*™(M;R) - R, Qur(a, B) :={au B, [M]).

Recall that for a quadratic form ) on a real vector space V, the signature of @ is
my — m_ € Z, where my are the dimensions of maximal subspaces of V on which @
is positive/negative-definite respectively. Equivalently, if one chooses an inner product on
V in order to express @ as the symmetric bilinear map Q(v,w) = (v, Aw) defined via a
symmetric linear transformation A : V' — V| then the signature is the number of positive
eigenvalues of A minus the number of negative eigenvalues (each counted with multiplicity).
In the examples below, we describe quadratic forms as symmetric matrices with respect to
a choice of basis.

¢ Convention: For closed oriented manifolds M with dimension not divisible by 4, we define
o(M) := 0. This convention will be justified by the theorem below. Note that when
dim M = 2k for k odd, the bilinear form Qs on H*(M;R) can be defined as above, but it
is antisymmetric rather than symmetric, making it a different kind of object algebraically.

e Example 1: Ho(S? x S?) has two generators, represented by submanifolds S? x {const}
and {const} x S?, which have a single positive transverse intersection with each other, but
also have self-intersection 0 since e.g. there are two submanifolds of the form S? x {const}
that do not intersect each other. Identifying the intersection form via Poincaré duality
with the homological intersection product (see e.g. [Wen23, Lecture 55]), Qg2xg2 is thus

71My use of the word “concise” is consciously ironic. 1 am aware that my lecture summaries haven’t actually
been concise in quite some time.
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. 1 . . .
represented by the matrix ((1) O)’ which has one positive and one negative eigenvalue, so

(5% x $?) = 0.

Example 2: For each n > 1, H?>"(CP*";R) is 1-dimensional with a positive-definite inter-
section form, so o(CP?") = 1.

Example 3: Reversing the orientation of CP?" does not change its cohomology ring but
does change its fundamental class by a sign, thus a(@%) = —1.

Theorem: The signature defines a ring homomorphism

Q50 - Z: [M] = o(M).
Proof:

— It respects the abelian group structure because the intersection form of a disjoint union
M 1 N is the direct sum of the intersection forms of M and N, thus ¢(M I N) =
o(M) + o(N).

— It respects the multiplicative structure mainly because of the Kiinneth formula, which
tells us that for a closed oriented 4m-manifold M and 4n-manifold N, the map
@ HYMR)@H(N;R) —» HX™™(M x N;R): a® B — o v rhf

k+£=2(m+n)
is an isomorphism; here 7);, 7y are the obvious projections of M x N to M and N.
Note that since M and N are both compact cell complexes and we are using field
coefficients, this is one of the situations in which the Kiinneth formula works just
as well for cohomology as homology. The consequence of this isomorphism for the
intersection form is a direct sum decomposition

Quxy = (Qu®QN)®Q,
in which (Qu ® Q) is the quadratic form on H?>™(M;R) ® H?"(N;R) defined by

Qv ®QnN)(anm ®an, Bu ® Bn) = Qurlanr, Ba)Qn (o, Bn),

and Q' is the restriction of Qurxn to the subspace made up of tensor products of
cohomologies of degrees other than 2m on M and 2n on N. One can check that Q’
is always representable as a block matrix with blocks of zeroes along the diagonal,
and deduce from this that its signature is 0, while the signature of Q) ® Qn is the
product of the signatures of Qs and Qu, hence o(M x N) = o(M)o(N).

— Addendum on the multiplicative structure: If the dimension of M x N is divisible by 4
but the dimensions of M and N are not, then the summand @’ in the decomposition
sketched above becomes the entirety of Qarxn, thus proving that o(M x N) = 0.
This is why we can get away with the convention of defining o(M) = 0 whenever
dim M ¢ 47Z.

— To show that the map is well defined on bordism classes, it now suffices to show that
a(0W) = 0 for any compact oriented (4n + 1)-manifold . The key observation here
is that the inclusion i : W < W determines distinguished subspaces of H?"(0W;R)
and Hop, (0W;R) by

V = ker (Han(OWiR) %> Hyo(WiR)) © Han(OW3R),
%k
Vvii=im (HQ"(W;R) - HQ”((?W;R)) c H?™(0W;R),

where the notation for V' is motivated by its obvious identification with the annihila-
tor of V under the natural isomorphism H?"(0W;R) =~ Homg(Ha,(6W;R),R). The
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fact that [0W] is in the kernel of iy : Hyn(0W;R) — Hy,(W;R) then implies that
Qow v+ = 0, and for similar reasons, the homological intersection product of W van-
ishes on V. One can deduce the latter either from formal considerations involving the
way that Poincaré duality relates the long exact sequences in homology and cohomol-
ogy of the pair (W, W), or alternatively, from the following more geometric argument.
There is an intersection product that pairs relative classes A € Ha, 1 (W, 0W;R) and
absolute classes B € Hs,(W;R), which corresponds under Poincaré duality to the
relative cup product H?"(W;R) ® H*" Y (W,0W;R) — HA (W, 0W;R). If B lies
in the image of the map i, : Ha, (0W;R) — Hs,(W;R), then representing it with a
closed 2n-dimensional submanifold lying in W reveals that the intersection product
A o B matches the intersection product in 0W of d,A € H,(0W;R) and the class
that B represents in Hs, (0W;R). By the long exact sequence in homology, d, A can
be any class in the kernel of the map iy : Ha, (0W;R) — Hs, (W;R), and if B is also
assumed to lie in that kernel, then A ¢ B obviously vanishes. One can deduce from
all this that V is precisely the image of V- under the Poincaré duality isomorphism
H?"(0W;R) — Ho,(6W;R), thus the dimensions of V and V* are both identical and
complementary, implying dim V+ = %dim H?"(0W;R). Since the intersection form
Qaw is nonsingular, this is in fact the largest possible dimension that a subspace on
which Qsw vanishes could have. It implies that sy can be written in block matrix

form as , and one can show by induction on the dimension of H*"(0W;R)

0 A
AT 0
that quadratic forms admitting such a representation always have signature 0.

e Corollary: All finite products of even-dimensional complex projective spaces represent

primitive elements in Q$°.

Topic 2: The Pontryagin classes.

¢ Definition: The complexification of a real n-dimensional vector space V' is the complex

n-dimensional vector space VC defined as the real 2n-dimensional vector space VC := V@V
endowed with the unique complex structure such that scalar multiplication by 4 satisfies

i(v,0) := (0,v), i(0,v):=(—v,0) for all veV.

Equivalently, one can define VC as the real tensor product V ® C (regarding C as a real
2-dimensional vector space), and define its complex structure by i(v ® 2) = v ® (iz).
Complexification defines a covariant functor from R-Vect to C-Vect, and therefore also
determines an operation turning any real vector bundle £ — B of rank n into a complex
vector bundle EC — B of rank n, whose fibers EC are the complexifications of the fibers
FE, for z € B.

Definition: For a real vector bundle & — X over a CW-complex and k € N, the kth
Pontryagin class of F is

pie(E) := (=1)*eor(EC) € H*(X; Z2).

Putting all Pontryagin classes together in a series produces the total Pontryagin class
p(E) :=1+4p1(E)+p2(E)+...€ H*(X;Z), which is always a finite sum since only finitely
many of the Chern classes can be nonzero.

Remark: When we defined Chern and Stiefel-Whitney classes, the procedure in both cases
was to give a direct definition of the first class on line bundles, and then impose the Whitney
sum formula as an axiom that determines the rest. Our definition of the Pontryagin classes
does not follow this scheme, so one should not assume that they have completely analogous
properties: we see below for instance that the Pontryagin classes of a line bundle are always
trivial, and the Whitney sum formula is only conditionally satisfied. The main properties
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of Pontryagin classes are deduced directly from the properties we have already established
for the Chern classes, and this is also the way that many computations of py(FE) are carried

out.

e Properties of Pontryagin classes:

(0)

The classes cor11(EC) € H*(X;Z) are 2-torsion for all real vector bundles E.
Remark: This is not a property of Pontryagin classes so much as a justification of the
choice not to include odd Chern classes in their definition, i.e. as 2-torsion elements,
the odd Chern classes of a complexified bundle EC carry less useful information about
E than the even Chern classes. In particular, they disappear completely if one works
in H*(X;Q) instead of H*(X;Z). (We will not need to use this, but it is possible in
fact to express cop+1(EC) in terms of Stiefel-Whitney classes of F, thus these classes
give nothing new—see e.g. [Hat, §3.2].)

Proof: All real vector bundles E are isomorphic to their dual bundles E*, because
any choice of bundle metric gives rise to an explicit isomorphism E — E* : v — (v, ).
Complex vector bundles do not typically have this property, but since complexifica-
tion is functorial, it follows that all complexifications of real vector bundles do, and
Exercise 13.5(b) thus implies cog41(EC) = —capy1(EC).

(1) px(E) = 0 whenever 2k > rank(FE).

Proof: This follows immediately from the analogous property of Chern classes.
(Remark: It follows that all Pontryagin classes of a real line bundle are trivial. This
is sensible, since we already know that real line bundles are completely classified by
the first Stiefel-Whitney class.)

The Whitney sum formula holds modulo 2-torsion elements:

p(E®F)=p(E)up(F) mod 2-torsion in H*(-;Z),

meaning more precisely that the formula 2p(E @ F) = 2p(FE) u p(F) is always true.
For the images of the Pontryagin classes under the natural transformation H*(-;Z) —
H*(-;Q) induced by the inclusion Z — Q, it follows that the usual version of the
formula also holds,

p(E@F) =p(E)up(F)in H*(-;Q),

and for this reason, many of the important applications of Pontryagin classes work
with rational instead of integer coefficients, though we will also see cases in which the
sum formula holds over Z for other reasons.

Proof: The formula follows from ¢(E® @ FC) = ¢(E®) u ¢(F®) if one pays careful
attention to the signs and uses the fact that all terms containing odd Chern classes
are 2-torsion.

The Pontryagin classes pi(E) depend only on the stable isomorphism class of the
bundle E.

Proof: This follows from the corresponding property of Chern classes since stably
isomorphic real bundles have stably isomorphic complexifications. (Note that one
cannot, deduce it immediately from the Whitney sum formula for Pontryagin classes,
since the formula does not hold unconditionally.)

e Remark: The sign in the definition py(E) = (—1)¥cox(E®) is a prevalent convention but
not quite universal, e.g. the classic book [MS74] uses it, but [BT82] does not, though Bott
and Tu are very good about including remarks to point out what differs as a result of not
including the sign. Its main benefit is that it prevents some other annoying signs from
appearing in certain computations mentioned below.
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e Computing p(E) for a complex vector bundle E:

A complex bundle £ — X of rank n can be regarded as a real bundle of rank 2n by
forgetting its complex structure, and this real bundle also has a complexification EC,
which is a complex bundle of rank 2n. It cannot be isomorphic to E since it has twice the
rank, and it must also be isomorphic to its own dual, which need not be true for E, but
the obvious guess is then that there should be a complex bundle isomorphism

EC~ FE@®E*.

Exercise: This is true for any complex vector bundle E, and one can use a choice of
Hermitian bundle metric to write down an explicit isomorphism. (For more on this, see
the computational appendix.)

Sample computation of Chern classes: Suppose E — X is a complex vector bundle of rank
n that admits a splitting £ =~ {1 ®...@¢, into a direct sum of line bundles, and abbreviate
their first Chern classes by

z;€ cl(ﬁj) € H2(X,Z)

The total Chern class of ¢; is then 1+ z; € H*(X;Z), and the Whitney sum formula thus
allows us to write the total Chern class of E as

c(E)=c(ly)u...ucll,) = H(l + ;) e H*(X;Z).

Expanding this polynomial function of z1, ..., z, gives formulas for each of the individual
Chern classes of E: explicitly, cx(F) can then be written as the kth elementary symmetric
polynomial in the variables z1,...,z,, e.g.

E) =Y mzj = Y a1(li) v er(ty) € H(X;Z).
1<<j i<<j

Note that some of the terms one obtains when expanding the polynomial may turn out to
be trivial when viewed as elements of H*(X;Z), e.g. the term z; ...x, € H?"(X;Z) will
actually be 0 if H?"(X;Z) = 0.

Sample computation of Pontryagin classes: For the same complex vector bundle FE as in
the previous sample computation, the isomorphism EC =~ E @ E* gives us a splitting
of the complexification into a direct sum of 2n line bundles that come in pairs: EC =~
(LlT)®. . .@(L,@L)). Writing z; = ¢1(;) as before, Exercise 13.5(b) gives c1(£]) = —z;,
so the Whitney sum formula for Chern classes gives

n n
¢(E®) :1‘[ Ltaz)(1—a;) = [ [(1 —23) e H*(X;2).
j=1 j=1

Notice that this polynomial has no terms of odd degree, so in this situation, the odd Chern
classes of EC are not just 2-torsion but actually vanish—this is a consequence of the fact
that E was not just a real vector bundle to start with, but a complex one. We can also
now see the motivation for the sign (—1)* in our definition of pj(E): changing —x3 to 3
in the polynomial will change the sign of its terms of degree 2(2k + 1) for all k£ while leaving
terms of degree 4k unchanged, which is exactly what needs to happen in order to change
¢(E®) into p(E), and we therefore have

n

p(E) =[] +23) e H*(X;2).
j=1
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The class pi(E) can therefore be written as the kth elementary symmetric polynomial in
the variables 22, ..., 2.

e Chern classes of T(CP"): Let 2 € H?>(CP™;Z) denote the generator with (z, [CP']) = 1,
so that the tautological line bundle ¢ — CP" has ¢;(¢) = —z. One can combine the first
sample computation above with a well-chosen stable isomorphism of T'(CP") to a sum of

line bundles (¢*)®+1) " and since ¢;(£*) = —c;(¢) = z, this produces the explicit formula

c(TCP") = (1 4 2)"*!

1 1
=1l+(n+1zx+ <n-2|— )x2+...+ <n-2|- )x”l +(n+1)z" € H*(CP*; Z)

for the total Chern class of TCP" — CP". It implies for instance that the first Chern
class is characterized by {c;(CP™),[CP']) = n + 1, and if n > 2, the second Chern class
is characterized by (co(CP"),[CP?]) = ("}') = In(n +1). The highest order term z"*!
in the expansion can be omitted because it lives in H?""2(CP";Z), which is trivial. See
the computational appendix for further details on the stable isomorphism of T'(CP") with
(6*)(—9(n+1)_

¢ Pontryagin classes of T(CP"): Treating T'(CP") as a real vector bundle but making use
of its complex structure as in the second sample computation above, the aforementioned
stable isomorphism gives the formula

p(TCP™) = (14 22)"* = 1+ (n + 1)22 + (" ;r 1):54 +.
thus characterizing p, (CP™) € H*(CP";Z) by {p;(CP"),[CP?*]) = n + 1 if n > 2, and so
forth. The main thing I want to point out about this formula for now is that all Pontryagin
classes of TCP" that could possibly be nontrivial (in light of its rank) actually are. Exactly
which term in the expansion is the last to be written depends on whether n is even or odd,
e.g. for the even-dimensional complex projective spaces, the nonvanishing term of highest
degree is
pu(CP?) = (2n +1
n
e Stable classifying maps for oriented vector bundles: Analogously to the unoriented case
discussed at the end of the previous lecture, we have B SO(n) = B GL, (n,R) = Gr,} (R™),
and every oriented n-plane bundle £ — X over a CW-complex is isomorphic to the pullback
via a classifying map kg : X — BSO(n) of the universal oriented n-plane bundle

E™* > BSO(n).

The inclusions SO(n) < SO(n + 1) induce maps B SO(n) — BSO(n + 1), and the stable
classifying map &% of the oriented bundle £ — X is then the composition of its classifying
map kg with the natural map of B SO(n) to the colimit as n — oo:

)xQ” e H™"(CP*; 7).

s
KE

X =~ BSO(n) —— BSO := colim, ,» BSO(n).

For X compact, we obtain a bijection between [X, B SO] and the set of stable isomorphism
classes of oriented vector bundles over X. To clarify: two oriented bundles E, FF — X
are stably isomorphic (as oriented bundles) if for some k,¢ > 0, there is an orientation-
preserving bundle isomorphism e* @ F =~ ¢/ @ F, where trivial bundles €* are endowed with
the canonical orientation determined by the standard Euclidean basis on each fiber. Here
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we need to be consistent about the order of the summands in expressions such as ¥ @ E,
since the induced orientation of the direct sum may depend on it.

Proposition: Stable isomorphism classes of oriented tangent bundles determine a well-
defined ring homomorphism

050 % H (BSO;Z) : [M] = (5)«[M],

where once again the symbol [M] means a bordism class on the left hand side and a
fundamental class on the right hand side.

Comments on the proof: The definition of the natural ring structure on H.(B SO;Z)
and the proof of the proposition both follow by essentially the same reasoning as in the
unoriented case, discussed at the end of the previous lecture. Other than the fact that we
now have a fundamental class with Z coefficients since M is oriented, the only truly new
feature is that when M = oW for a compact oriented (n + 1)-manifold and M carries the
boundary orientation, the stable isomorphism TW |y = €' @ T'M therefore also respects
orientations, which is why we can consider classifying maps valued in B SO instead of
just BO.

Fact (see e.g. [Hat, Theorem 3.16(b)]): The ring H*(BSO;Q) is naturally isomorphic
to the polynomial ring Q[p1,pa,ps, .. .| generated by the rational Pontryagin classes of
universal oriented bundles of sufficiently large rank: py := pp(E™") € H*(BSO(n); Q) =
H* (B S0; Q) for sufficiently large n. (This can be proved using explicit cell decompositions
of Grassmann manifolds.)

Remark: One can deduce from homotopy exact sequences of fiber bundles that for any
fixed k, the map BSO(n) — BSO(n + 1) is k-connected for all n sufficiently large, and
the Hurewicz theorem then gives isomorphisms Hy (B SO(n); Q) = Hx(BSO(n +1);Q) =
... = Hi(BSO;Q), which dualize to isomorphisms on cohomology. All cohomology classes
of BSO can therefore be described as cohomology class of B SO(n) for n large.

Corollary (by pulling back universal bundles and evaluating cohomology on homology):
For a closed oriented n-manifold M, the image of ®([M]) € H,(BSO;Z) in H,(BSO;Q)
vanishes if and only if all the Pontryagin numbers

Pr, (M) u...up, (M), [M]) e Z, k1 +...+kj)=n

of M vanish.

Dual fact: H,(BSO;Q) has a basis consisting of all classes of the form ®([M]) (or rather
their images in rational homology) for M ranging over the set of all finite products of
even-dimensional complex projective spaces.

Comments on the proof: It should be clear that this set of homology classes has a natural
bijective correspondence with the cohomology basis formed by all finite products of Pon-
tryagin classes of oriented universal bundles. That it forms a basis of H, (B SO;Q) can
thus be deduced from computations of Pontryagin classes of products of projective spaces.

Topic 3: The Pontryagin-Thom construction and computation of QEO ® Q.

e Fact (from differential topology): Given a smooth closed n-manifold M, for any k& > 0

sufficiently large, there exists a unique smooth isotopy class of embeddings M — R™*F,

Remark: This is sometimes called Whitney’s embedding theorem, though it is the easier
of two theorems that go by that name (the other one gives precise information about the
possible value of k£, which we do not need). The idea is simply that if one has enough dimen-
sions to move around in, then by clever applications of Sard’s theorem, any smooth map
M — R™* admits a small perturbation that is both injective and has injective derivatives
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at all points (meaning it is also an immersion). Applying this to an arbitrary homotopy
between two embeddings similarly turns the homotopy into a family of embeddings.
Consequence: The normal bundle of M < R**" is defined to be the quotient vector
bundle

VRM = TR"+’f|M/TM = "R ITM s M.

Isotopies of embeddings give rise to isomorphic normal bundles, thus the so-called stable
normal bundle of M, meaning the stable isomorphism class of v*M, depends only on
the manifold M and not on its embedding into R"**, nor even on the number k. If M
is oriented, then v*M inherits an orientation, and the stable normal bundle is a stable
isomorphism class of oriented vector bundles.

Pontryagin-Thom construction: According to the tubular neighborhood theorem, a neigh-
borhood of M in R"** can be identified diffeomorphically with the total space of the
normal bundle v¥M. Let S"** := R"** { {00} denote the one-point compactification
of R"** and define the Thom space of the universal oriented k-plane bundle likewise as
its one-point compactification

M SO(k) := E** U {oo}.
As an oriented vector bundle, v*M has a classifying map #,«,; : M — BSO(k), and the
isomorphism v*M =~ KX M,E’“”r thus gives rise to a pullback square
vEM ——— Bkt

| |

M 2 BSO(k)
Identifying v* M with a neighborhood of M in S™**, let

k
sk L3 a1 S0(k)

denote the continuous extension of the map v*M — E* in the pullback square that sends
all of S"**\v¥ M to the point at infinity in the Thom space.
Observe: The total space of the stabilized universal bundle ' @ E** is topologically
R x E¥* | and adding a point at infinity to it is equivalent to taking the reduced suspension
of M SO(k). The top horizontal map in the pullback square

@ Ekt FEk+1L+

| |

BSO(k) —— BSO(k+1)
thus extends to a natural map
3 (M SO(k)) %5 M SO(k + 1),

and the relation between the maps f¥, : S"** — M SO(k) for different values of k is then
~FL = e o X f¥,. The collection of spaces M SO := {M SO(k)}x=0 together with the maps

e described above is called a Thom spectrum (cf. Lecture 19).

Pontryagin-Thom theorem: There is a natural isomorphism

Q50 = 7, (M SO) := colimy_,., T4 1 (M SO(K))

sending each bordism class [M] € Q3° of closed oriented n-manifolds M to the stable
homotopy class of the map f¥, : S"** — M SO(k) described above.
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e Remark: A similar theorem applies to the unoriented bordism groups, with the oriented

Thom spectrum M SO replaced by a similar construction formed out of Thom spaces of
unoriented universal bundles. One can also define other bordism theories in which the
smooth manifold M is endowed with different kinds of “stable tangential structure,” of
which orientations are the simplest example. For all such theories, there is a version of the
Pontryagin-Thom theorem identifying it with the generalized homology theory of a Thom
spectrum corresponding to the appropriate sequence of classifying spaces.

About the proof of Pontryagin-Thom: Here I shall repeat the advice I often give, that
you should spend your weekend reading [Mil97], which gives a beautiful explanation of one
of the simpler variants of the Pontryagin-Thom construction, computing homotopy sets
[Sntk SF] in terms of framed cobordism classes of smooth n-dimensional submanifolds
M < S™**. Once you’ve understood that special case, it is not hard to guess how the
more general construction works. The inverse of the map [M] — [fX,] can be described as
follows: Given amap f : S"** — M SO(k) for large k, one can assume after a homotopy of
f that it satisfies a transversality condition making the preimage f~!(B SO(k)) of the zero-
section BSO(k) ¢ E¥* < M SO(k) into a smooth oriented closed submanifold M < S"**
of codimension k. Moreover, for a generic homotopy H : S"** x I — M SO(k) between
two such maps, H!(BSO(k)) then gives an oriented bordism between the corresponding
closed submanifolds.

Application: Taking the tensor product with @Q in order to kill torsion, one obtains a chain
of isomorphisms

PORQ = 1, 1k (MSO()®Q  (for k » 0)
= Hnyx(M SO(k); Q) = H,(BSO(k); Q) = H,(BSO;Q),

which (up to minor details such as replacing TM with v*M) turns out to be the same
thing as the rational version of the map Q5 — H,,(BSO;Z) : [M] + (k%) «[M]. Here
are some very brief explanations for the isomorphisms:

- PO0RQ = 1, 1(MSO(k)) ® Q follows from the Pontryagin-Thom theorem, after
showing that 7, (M SO(k)) for k » 0 is isomorphic to the colimit as k — co.

— The passage from m,.; to H,.+r comes from a rational version of the Hurewicz
theorem, which holds for a certain range of dimensions due to computations show-
ing that homotopy groups of spheres in certain dimensions are always finite (see
e.g. [tD08, §20.8]).

— H, k(M SO(k); Q) =~ H,(BSO(k); Q) is a version of the Thom isomorphism theorem,
which follows relatively easily from a cell decomposition of M SO(k) in which every
n-cell of BSO(k) must be multiplied by a k-cell (due to the fibers of the k-plane
bundle E** — BSO(k)) to produce an (n + k)-cell of M SO(k).

e Corollaries:

(1) A closed oriented manifold M satisfies k[M] = 0 € Q5© for some k # 0 € Z if and
only if all of its Pontryagin numbers vanish.

(2) 23°®Q is the polynomial ring generated by the oriented bordism classes of all even-
dimensional complex projective spaces.

e Another corollary: If ¥ : Q5° — Q is a ring homomorphism satisfying ¥([CP?"]) = 1

for every n € N, then it also satisfies W([M]) = o(M) for every closed oriented smooth
manifold M.

Topic 4: The Hirzebruch signature formula. (Just a very rough sketch—see the computational

appendix for more details.)



TOPICS IN TOPOLOGY (“TOPOLOGIE IIT'), SOMMERSEMESTER 2024, HU BERLIN 187

e Idea of genera: There is an algebraic recipe to produce from any formal power series of the
form f(z) = 1+ a1z + az2® + ... with rational coefficients a; € Q a ring homomorphism
Q5 — Q that takes the form

[M] = (Fn(p1(M), ..., pn(M)), [M])

for manifolds M of dimension 4n, where F), is a polynomial in n variables with rational
coefficients.

e The L-genus: Hirzebruch found a specific power series f(z) := tar:hﬁ\/g =1+iz— 422+ .

for which the value taken by the resulting ring homomorphism Q5° — Q on every even-
dimensional complex projective space is 1. The result is a sequence of polynomials L,, €
Q[p1,- - ., pn] such that the formula

(Ln(pr(M), ..., pn(M)),[M]) = o(M)
holds for all closed oriented 4n-manifolds M, where the left hand side is an invariant known
as the L-genus of M. This is the Hirzebruch signature theorem. The polynomial L,, can
be computed from the power series; explicit formulas in the cases n = 1,2 are

1 1
Li(p1) = 5p1, Lo(p1,p2) = =

3

¢ Remark: One powerful aspect of the signature theorem is that the definition of the L-genus
provides no hint that its values should be integers, but they must be, since the signature
is. In Lecture 1, we sketched an argument that uses this fact to prove that certain smooth
manifolds homeomorphic to S” cannot also be diffeomorphic to S7, because if they were,
then there would exist a closed smooth 8manifold M with o(M) = 8 and p1(M) = 0,

implying

(Tpz — p?).

(La(pr(M), p2(M)), [MD) = oM, M =8,

which is numerically impossible.

Epilogue to the lecture summary: I was asked in the first lecture whether there is any intuitive
way to understand why the fact that 458 isn’t divisible by 7 should be relevant to the existence of
exotic spheres. I would say that the particular numbers arising here are happy accidents, but one
can point to a couple of big ideas that make it seem nearly inevitable for such an argument to work.
The first is the Pontryagin-Thom construction, which identifies the seemingly exotic bordism ring
059 ® Q with something much more familiar, the cohomology of a single CW-complex B SO, thus
providing a manageable list of generators for Q5° ® Q that are spaces we understand very well.
The second big idea is the algebraic recipe for producing ring homomorphisms Q5° — Q out of
polynomial funtions of characteristic classes; this was only vaguely mentioned in the lecture, but
we’ll say more about it in the computational appendix below. Once the generators of Q,Sko ®Q are
understood, it is not difficult to show that there is a unique power series f € Q[[z]] generating a
sequence of polynomials that produce exactly the result one wants, namely a ring homomorphism
Q5° — Q that equals 1 on [CP?"] for every n, and therefore must equal the signature in general.
In theory, it could have turned out that these polynomials all have integer coefficients, which
would have been very unlucky—the signature formula would then still have nontrivial content,
but it would not provide such an obvious criterion to rule out certain combinations of classes in
H*(M;7Z) arising as the Pontryagin classes of a smooth manifold M. On the other hand, the
algebraic construction naturally gives rational coefficients for the polynomials—there is no evident
reason why they should turn out to be integers, and in the absence of such a reason, it seems nearly
impossible for the signature formula not to give us something nontrivial and useful, independently
of the precise numbers that turn out to deliver the final step in the proof.
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Computational appendix. I want to go into some more detail now on a few things that had to
be glossed over in the final lecture, though some of them were discussed a bit in the final Ubung.
It probably would have required at least one extra lecture to do all of this properly.

A caveat about the splitting principle. Let me first point out a mental trap that is a bit too easy
for beginners learning about characteristic classes to fall into.

We discussed the splitting principle for Chern classes in Exercise 13.5, and as was also mentioned
in Exercise 13.8, it works equally well for Stiefel-Whitney classes. What about Pontryagin?

There do exist versions of the splitting principle for Pontryagin classes, e.g. [LM89, Proposi-
tion 11.2] states a result that applies specifically to oriented vector bundles of even rank. Such
results are typically more complicated and less obviously useful than the naive statement one might
expect, namely that everything important about Pontryagin classes can be deduced from bundles
that split into direct sums of real line bundles. The latter is simply not true: you should imme-
diately feel suspicious when you notice that for any real vector bundle £ — X that splits into
line bundles ¢1 @ ... ® ¢, the Pontryagin classes of the line bundles are all trivial, so applying the
Whitney sum formula with rational coefficients, one deduces that the Pontryagin classes of F in
H*(X;Q) must also all vanish. They do not have to vanish in H*(X;Z), because the Whitney
sum formula does not hold for Pontryagin classes with integer coefficients, but it still holds up
to 2-torsion, leading to the conclusion that py(E) € H*(X;Z) is 2-torsion for all k. This is not
implausible—and in fact it is true—because split bundles £ = /1 @ ... ® ¥, are somewhat special.
But after Exercise 13.5, you may have developed the intuition that whatever holds for split bundles
holds for all of them, due to the splitting principle; in the world of Chern classes, this is largely
true, and very useful. If it were true for Pontryagin classes, then we would have just proved that
they are always 2-torsion and always vanish over rational coefficients, which would be completely
absurd—among other things, the Hirzebruch signature formula then could not be true unless every
closed oriented manifold had signature 0.

So, why doesn’t the naive version of the splitting principle work for Pontryagin classes? Given
a vector bundle £ — X, the splitting principle provides a map f : ¥ — X with two essential
properties: first, that the pullback f*E splits into a sum of line bundles, and second, that f* :
H*(X) — H*(Y) is injective on cohomology with the appropriate choice of coefficients. I mention
the coefficients because that is the detail that makes this fail for the Pontryagin classes. To see why,
let’s clarify why it does not fail for Stiefel-Whitney classes: arguing as in the complex case, one can
produce from any real vector bundle F — X of rank n a real projectivization 7 : P(F) — X, which
is a fiber bundle with fibers RP" !, Pulling back E along 7 produces a bundle with a distinguished
rank 1 subbundle ¢/ c 7#*E, so that 7*F is the direct sum of ¢ with another subbundle of strictly
smaller rank, and repeating the same trick then produces further pullbacks that split into more
summands, until eventually all the summands are line bundles. This procedure thus gives what we
need if and only if the map 7* on cohomology is injective, and for the purposes of Stiefel-Whitney
classes, that specifically means

H*(X;Z2) = H*(P(E); Zo)

is injective. This is true due to the Leray-Hirsch theorem, which is applicable because H* (R]P’"_l; Zs)
has the same simple polynomial ring structure as H*(CP"™';Z), with powers of Stiefel-Whitney
classes of the tautological line bundle serving as a preferred basis: as a consequence, the classes
w1 (0)* € H*(P(E);Zy) for k = 0,...,n—1 span a finitely-generated free Zy-submodule of H*(P(E); Z5)
that pulls back isomorphically to the cohomology of every fiber.
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In order for the same trick to produce a splitting principle for Pontryagin classes, we would need

the map
H*(X;Z) = H*(P(E); Z)

to be injective, or at the very least, we would need the same map on cohomology with rational
coefficients to be injective, in which case the splitting principle would still tells us something about
pe(E) € H**(X;Q). But neither is injective in general: in the first place, there is no hope of
applying the Leray-Hirsch theorem with Z coefficients when n > 3, because H*(RP" ':Z) then
has torsion in degree 2 and is thus not a free Z-module. Even if we work with Q coefficients, we
would also need to find a subspace of H*(P(E); Q) that pulls back isomorphically to H*(RP"™*; Q),
and there is no obvious reason for such a subspace to exist. It does exist for trivial reasons when n
is 0odd, because RP" ™! is then non-orientable and H* (RP"™*; Q) is thus nontrivial only in degree 0.
This implies a very limited version of the splitting principle: for any real vector bundle £ — X of
odd rank n, there exists a map f:Y — X such that f*: H*(X;Q) - H*(Y;Q) is injective and
f*E splits into the sum of a line bundle with another bundle of even rank n— 1. This splitting does
not tell much about the Pontryagin classes that we didn’t already know: it tells us that pi(F) =0
for 2k > n—1, but since n is odd, that condition also means 2k > n, so we already knew pp(F) =0
before the splitting. To get a full splitting into line bundles, one would need the projectivization
trick to work also when n is even, but H*(RP™ ';Q) is then nontrivial in degree n — 1, so this
requires finding a class in H" 1 (P(F); Q) that evaluates nontrivially on the fibers.

Here is an explicit example with n = 2 in which no such class exists, and the naive splitting
principle clearly fails. Consider the tautological complex line bundle

¢ — CP*, ke N,

which we can also regard as an oriented real 2-plane bundle. Choosing a Hermitian bundle metric,
we can also assume that it comes with a system of U(1)-valued transition functions gg, : Uy NUg —
U(1), or equivalently, SO(2)-valued transition functions, when viewing ¢ as a real bundle. One
obtains the real projectivization P(¢) — CP* by keeping the same SO(2)-valued transition functions
and replacing the standard fiber R? with RP', which SO(2) acts on linearly,

(‘; 2) to : t1] = [ato + bty : cto + dt].

If we identify RP* with S' = U(1) via the homeomorphism
RP! =5 U(1),
[cos(8) : sin(f)] — 2%,
the SO(2)-action on RP' now becomes the action of U(1) = SO(2) on U(1) defined by
el 219 .= (2i(0+a) _ (giay22i0,

so another way to construct P(¢) is therefore as the fiber bundle with U(1)-valued transition
functions g%a :Us N U — U(1) and standard fiber U(1), with the structure group U(1) acting on
the standard fiber by left multiplication. This makes it a principal U(1)-bundle: specifically, it is
the principal U(1)-bundle P — CP* whose associated complex line bundle P xua Cis L®Y, as
the latter has transition functions obtained as the squares of the transition functions of ¢. This
bundle is closely related to the Hopf fibration

82k+1 L) (CIPk7

which can viewed as the unit circle bundle consisting of all unit vectors in fibers of ¢, and is thus
the orthogonal frame bundle of ¢; equivalently, it is the principal U(1)-bundle over CP* whose
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associated complex line bundle is /. One then obtains P from the Hopf fibration as a quotient, in
which all circle fibers are quotiented by the antipodal map: globally, this means quotienting the
total space S?**1 itself by the antipodal map, hence

P(¢) = §?*+1 /7, = RP?FH,

Now the problem is clear: H'(RP?****;Q) = 0 for every k € N, so there is no class in H'(P(¢); Q)
that evaluates nontrivially on the fibers RP' =~ P(¢,) < P(¢), and the Leray-Hirsch theorem
therefore cannot be applied. You can convince yourself via the following exercise that this is not
just a failure of one particular proof:

Exercise. Show that for every k > 2, p;(¢) € H*(CP*;Z) of the tautological complex line bundle
¢ — CP*, viewed as a real 2-plane bundle, is not torsion.

Of course, splitting higher-rank bundles into line bundles is still a useful trick and does frequently
get applied for proving things about Pontryagin classes: one only needs to apply it to the Chern
classes of the complexification.

The complezification of a complexification. In order to understand why EC ~ E @ E* for every
complex vector bundle E, it is useful to define the conjugate E of a complex vector bundle.
Backing up a bit, we can associate to every complex vector space V' another complex vector space
V', which is defined as the same set and the same real vector space, but with an extra sign inserted
in front of the definition of scalar multiplication by 4. It is convenient to use the following notation
for this: we let
VoViveso

denote the identity map, and adopt the convention that an element of V should always be written
as ¥ to distinguish it from the corresponding element v € V. The definition of complex scalar
multiplication on V is then determined by scalar multiplication on V via the formula

M=, MeC,veV,

where for A := a + ib with a,b € R, X := a — ib is the usual notion of complex conjugation. This
notation has the virtue that many of the formulas one writes with it look automatically true,
though one must often keep in mind (as in the above definition) that the bar can have slightly
different literal meanings when placed over two symbols that appear right next to each other.

Any complex vector bundle £ — X now has a conjugate complex vector bundle £ — X whose
fibers E, are the conjugates of the fibers E,. There is an obvious bijection

E—>E:ve—7,

and it is an isomorphism of real vector bundles, but not a complex bundle isomorphism because
it is complex antilinear on each fiber, not complex linear. Any complex vector bundle atlas for
E gives rise to a bundle atlas for £ such that the two systems of transition functions are related
to each other by complex conjugation. It will sometimes happen that E and E are isomorphic as
complex vector bundles, but not via the tautological map v + ©. The real benefit of the conjugate
bundle is that we can now express the natural complex analogue of the statement that any bundle
metric on a real vector bundle determines an isomorphism to its dual bundle:

Proposition 14.1. Any Hermitian bundle metric {, ) on a complex vector bundle E determines
a complex vector bundle isomorphism’>

E’i)E*:T)r—)@,-).

721 am using the convention that Hermitian inner products are complex antilinear in the first argument and
complex linear in the second.
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O

With that understood, the real reason behind the isomorphism E€ ~ E @ E* is that for any
complex vector space V, the formula

VE=VRC-SVAV: 0@z (2v,20)

defines an isomorphism of complex vector spaces, where as usual, we forget the complex structure of
V on the left hand side and regard it as a real vector space in order to define its complexification VC.
Indeed, this map is clearly complex linear, and if we write VC as V@V instead of V ®g C, it takes
the form
VOV sVeV: (v,w)— (v+iw,v —iw),

which is clearly invertible. For any complex vector bundle F, one can use this formula on all fibers
at once to define an explicit complex bundle isomorphism E® =~ E @ E, and choosing a Hermitian
bundle metric then identifies the latter with £ @® E*.

The stable isomorphism class of T(CP™). In the last lecture, we mentioned that there is a stable
isomorphism of complex vector bundles

T(CP")=(*®...@(* (stably),
1
n+

which—in light of the stable isomorphism invariance of the Chern and Pontryagin classes—easily
gives rise to explicit formulas for the total Chern and Pontryagin classes of T'(CP™), namely

C(TC]P)TL) — (1 + x)n+17 p(TC]P)n) — (1 + x2)n+17

with = € H*(CP";Z) as usual denoting the generator with (z,[CP']) = 1. One way to see the
stable isomorphism is as follows.

The manifold CP" is defined as the quotient of the manifold C"*\{0} by the smooth (and free
and proper) action of the Lie group C* = C\{0} by scalar multiplication. In differential geometry,
there is a useful general theorem about quotients of manifolds M by free and proper smooth actions
of a Lie group G: it tells us firstly that at each point x € M, the orbit G - x < M is a smooth
submanifold, and secondly, that the quotient M /G has a natural smooth manifold structure for
which the tangent space T7,(M/G) is naturally isomorphic to the obvious quotient of tangent
spaces

Tiay (M/G) = TxM/Tx(G ).

Applying this to CP", we observe that for any point z € C**!\{0} representing a point [z] € CP",
the tangent space T, (C"*1\{0}) is canonically isomorphic to C**1, while the tangent space at z to
its C*-orbit is precisely the 1-dimensional subspace [z] € CP", which we can equivalently choose
to call the fiber £,; ¢ C"*! at [2] € CP" of the tautological line bundle £ — CP". We therefore
have a natural isomorphism

T, CP" = TZ(C”“\{O})/f[z] =C" /il

in which the right hand side can be identified with the fiber at [z] € CP" of the quotient vector
bundle €"*!/¢. The only catch is that this identification of T1,1CP" with (C”H/Z[Z] depends on the
choice of point z € £,1\{0} representing the equivalence class [z]. Indeed, any other representative
of the same equivalence class can be written as Az € C"*1\{0} for some A € C*, and for any tangent
vector X € T,(C""\{0}) representing an equivalence class [X] € T(C"*"\{0})/¢,) = T},CP",
multiplying X € C™*! by X gives an equivalence class of tangent vectors at Az,

[)\X] € T)\z(Cn+1\{0})/€[2] = T[z](CIP’",
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which necessarily corresponds to the same tangent vector in 77.jCP" as [X]. What this really
means is that there is a natural complex vector bundle isomorphism

Hom(¢, "' /t) = T(CP™),

defined at each point [2] € CP" by associating to each complex-linear map ® : f[,; — crtt /21
the tangent vector in 77,jCP" corresponding to the equivalence class

[2()] € Z.(C™\{0}) /11

for any chosen representative z # 0 € {;) of [z]. The result is independent of the choice of
representative, because all other choices are of the form Az for A € C*, and ® is complex linear.

That was the tricky part: the rest only requires minimal cleverness. We recall that since £ is a line
bundle, its tensor product with its dual £* is trivial, and the direct sum of €"*1/¢ with ¢ is likewise
a trivial bundle €"*!1. Thanks to the isomorphism T(CP") =~ Hom(¢, " ™! /l) =~ ¢* ® ("*1/¢), we
can then write

EDT(CP") = (10 @ ((* @ ("M /0)) = * @ (L@ ("1 /0)) = (* @ T = (¢*)®ntD),
That is the stable isomorphism that was claimed.

Multiplicative sequences and genera. Here are some more details about the “algebraic recipe” that
leads to the L-genus appearing in the Hirzebruch signature formula. The idea in the background
can be expressed in considerably more generality: suppose in particular that we have a sequence
of characteristic classes
qx € H™ (X R), keN
defined for a given class of vector bundles £ — X that is closed under the direct sum operation,
where m > 1 is a fixed integer and R is a commutative ring with unit. We will assume that the
“total g-class”
q(E) =1+ q(E) + 2(E) + g3(E) + . ..
satisfies the Whitney sum formula
W(E®F) =q(E) v q(F)
for all pairs of bundles on which these classes are defined. The Stiefel-Whitney, Chern and Pon-
tryagin classes are all examples of this setup if one chooses the correct class of vector bundles and
the correct coefficients, e.g. the Chern classes require the bundles to be complex, and the Pontrya-
gin classes require coefficients in R := Q if we want the Whitney sum formula to hold without
restriction. We do not need to assume that only finitely-many of the classes qx(F) are nonzero for
any given bundle F, so the total g-class may be a formal series rather than a finite sum, but since
only finitely-many of its terms have degrees satisfying any given upper bound, the Whitney sum
formula still gives well-defined relations between the g-classes of E, F and E @ F, which can be
written in the form
wE®F) = Y q(E) v q(F)
k+l=n
if we allow the summation to range over integers k,¢ > 0 and adopt the convention

q(E):=1¢e H°(X;R) for all £ — X.

The idea now is to produce new characteristic classes as the homogeneous terms in formal sums of
the form

K(E) =1+ Ki(q:(E)) + K2(q1(E), 2(E)) + K3(q1(E), ¢2(E), g3(E)) + . . .,

where for each n € N, K, € R[z1,...,2,] is a polynomial in n variables with coefficients in R, hav-
ing the correct form so that plugging in the cohomology classes ¢1(E), ..., ¢,(F) and interpreting
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products as cup products produces a cohomology class of degree mn, the same degree as ¢, (E).
This is a purely algebraic condition on the polynomials K,,, e.g. it means that K;, K5, K3 must
have the form

Ki(z1) = axq, Ko(x1,29) = bx% + cxo, Ks(x1,29,23) = da:‘i’ + ex120 + fas3

for some coefficients a,b,c,d,e, f € R. Once again, the formal sum K(F) is not required to be
finite, but for each individual n > 1, one obtains in this way a characteristic class K, (F) :=
K, (q1(E),...,q(F)) living in H™"(X; R), defined on the same class of vector bundles £ — X
for which the classes ¢,, are defined. Here is the important part: we would also like to choose the
polynomials K,, such that the formula

(14.2) K(E®F) = K(E) u K(F)

is satisfied for all pairs of bundles E, F' — X on which the ¢-classes are defined. This too can be
interpreted as a purely algebraic condition: given that the total g-class satisfies the Whitney sum
formula, (14.2) will be satisfied whenever the polynomials K,, € R[z1,...,z,] satisfy a particular
sequence of algebraic relations, the first two of which are

Ki(z1 +y1) = Ki(z1) + Ki(y1),
Ky(zy +y1, 2 + 2191 + 12) = Ko(x1,22) + Ki(21) K1 (y1) + Ka(y1, y2),

and for arbitrary n € N, the nth relation in the sequence can be written as

(14.3) K, (%1 +y,..., Z Z‘kyg> = Z Kk(arl, - ,xk)Kg(yl, R ,yg)7

k+4=n k+l=n
where the summations range over integers k, £ > 0 and we write 2o = yo = Ky := 1. Any sequence
of polynomials K,, € R[x1,...,z,] defined for all n € N and satisfying these relations is called a
multiplicative sequence, and it gives rise to a sequence of characteristic classes satisfying (14.2).

We can already see that there exists at least one multiplicative sequence: taking K, (x1,...,x,) =
x,, for each n € N makes K (FE) just another way of writing the total g-class, which satisfies (14.2)
by assumption, and the relations (14.3) are satisfied trivially. We will see below that there are
many more multiplicative sequences beyond this one.

Since K(F) cannot contain any information that isn’t already in the g-classes, one may nat-
urally wonder what is to be gained from rewriting them in this way. The answer is that under
some reasonable assumptions, every multiplicative sequence defines a ring homomorphism on a
corresponding bordism theory.

To see how this works, let’s assume for concreteness that the g-classes are the Pontryagin classes
pr € H*(X; Q) with rational coefficients, so every multiplicative sequence K,, € Q[z1,...,z,] for
n € N then gives rise to a sequence of characteristic classes K, (E) € H**(X;Q) defined for
all real vector bundles F — X over CW-complexes, and expressed as polynomial functions of
the Pontryagin classes of E. Note that unlike the Pontryagin classes themselves, it is possible
(depending on the choice of polynomials) for infinitely-many of the classes K, (E) to be nonzero on
any given bundle, if its base is infinite-dimensional. However, we will specifically consider tangent
bundles of closed oriented manifolds M, because these have fundamental classes [M] e H,(M;Q)
on which K(TM) can be evaluated to produce a numerical invariant, called the K-genus of M:

K(M) = (K(TM),[M]) € Q.
The convention in this definition is that for a formal series = := x¢ + 1 + 3 + . . . of cohomology

classes x), € H*(X), evaluation {z,c) on a homogeneous homology class c € Hy(X) means {zy, c).
Concretely, the K-genus of a manifold M of dimension 4n is thus given by

K(M) = <Kn(p1(M)> cee 7pn(M))’ [M]>7
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and K (M) is defined to vanish whenever dim M ¢ 4Z, since K(T'M) then has no terms of degree
equal to dim M.

Theorem 14.2. For any multiplicative sequence {K,} with rational coefficients, the K-genus
defines a ring homomorphism
05° - Q: [M] — K(M).

Proof. The K-genus for manifolds M of any given dimension is a specific Pontryagin number of M,
and thus vanishes whenever M is the boundary of a compact oriented manifold. The relation
K(MuN) = K(M) + K(N) follows from naturality, since the pullback of T'(M 11 N) via the
inclusion of each of its components is the tangent bundle of that component. From these two facts,
we see that K (M) depends in general only on the bordism class [M] € Q3©, and defines a group
homomorphism. The interesting part is the ring structure: given two closed oriented manifolds
M and N, the fundamental class [M x N] is the homological cross product [M] x [N], while the
tangent bundle T'(M x N) has fibers T, (M x N) =T, M ®T,N and is thus the direct sum

T(M x N) =7y, TM@®rNTN,

with 77, my denoting the projections of M x N to its factors. Using the multiplicative relation
and naturality, we therefore have

K(M x N) = {(K(T(M x N)),[M x N]y = (K(z},TM @ nyTN),[M] x [N])
= (i K(TM) v my K(TN), [M] x [N])
= (K(TM) x K(TN),[M] x [N])
= (K(TM), [M]) - {K(TN),[N]) = K(M)K(N),

where it should be noted that no annoying signs appear in the last step because the K-classes have
nontrivial terms only in even degrees. g

If the goal is to find a ring homomorphism Q5° — Q that matches the signature, then the to-do
list should now be clear: we need to find a multiplicative sequence {K,,} with rational coefficients for
which the K-genus of CP?" is 1 for every n € N. You will notice that the one concrete example of a
multiplicative sequence that we’ve already seen does not do the trick: taking K, (x1,...,2,) = z,
for every n, the K-genus of CP*" becomes its top-dimensional Pontryagin number

(pn(CP?), [CP"]) = (2” ¥ 1),

n

which is interesting and nontrivial, but it is not 1. This motivates the search for other multiplicative
sequences, and the following algebraic result provides them.

Theorem 14.3. For any commautative ring R and any formal power series f € R[[z]] of the form
f(z) =1+ a1z + azz® + ... with coefficients aj € R, there exists a unique multiplicative sequence
{K,€R[z1,...,2,]} such that for each n € N, the coefficient of x7 in K, is a,.

neN

Another useful way to characterize the relationship in Theorem 14.3 between the power series
f(2) = 14+ a1z + az2z®> + ... and the polynomials K,, is as follows: the characteristic classes
K, (p1(E),...,pn(E)) € H*(X;Q) determined by f have the property that for any bundle £ — X
whose rational Pontryagin classes py(F) € H**(X;Q) vanish for all k > 2, K(E) is given by
evaluating the power series on p;(E):

(14.4) K(E) = f(pl(E)) =1+ alpl(E) + a2p1(E)2 + CL3p1(E)3 +...

From this perspective, it should not be surprising that the polynomials K, are all uniquely de-
termined by f, and e.g. whenever E is a complex bundle (regarded as a real bundle for the
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purposes of Pontryagin classes), one can use the splitting principle for complex bundles to derive
from this a more general formula expressing K(FE) purely in terms of f. As should be clear from
the statement, however, Theorem 14.3 is a purely algebraic result that requires no knowledge of
characteristic classes, neither in the statement nor in the proof.

I will say only a few things about the proof: first, if you try deriving formulas for the first few
elements in a multiplicative sequence K, with prescribed initial terms K, (x1,...,2,) = apxl+...,
you will already develop some intuition that the theorem must be true. The full proof is a bit
tedious, but not fundamentally difficult: the main thing it relies on is a standard result about the
elementary symmetric polynomials, namely that every symmetric polynomial in n variables can
be expressed uniquely as a polynomial function of elementary symmetric polynomials. A readable
complete proof may be found in [MS74, Lemma 19.1].

The L-genus. So how does one produce a multiplicative sequence of polynomials L,, € Q[z1, ..., %]
such that feeding them with Pontryagin classes produces a genus L with L(CIP’2") =1 for all n?

According to Theorem 14.3, every multiplicative sequence can be encoded by a power series
f(2) = 1+ a1z + azz® + ..., in this case with rational coefficients since we are working with
Pontryagin classes, so we can try to compute L(CP?") from this power series. In fact, this is not
difficult: since the Pontryagin classes are invariant under stable isomorphism, the same will be
true of the L-classes, and we are therefore free to replace TCP?" with (£*)®2n+1) where £* is the
dual of the tautological complex line bundle £ — CP?". Viewed as a real bundle of rank 2, ¢* has
a complexification isomorphic to £@® £* and thus has total Pontryagin class

p(l*) = 1+2?,

with 2 € H?(CP*";Z) as usual denoting the generator with (z, [CP']) = 1. In particular, p; (£*) =
22 € H*(CP*";Z) and p;(¢*) = 0 for all k > 2, which puts us in the situation of (14.4), and we
can therefore write

L) = f(p1(¢*)) = f(2®) = 1 + a12® + aga* + .. ..
Using the multiplicative property, the result for T(CP*") is
L(T(C]P2n) _ L((é*)@(ZnJrl)) _ [f(x2)]2n+1,

which is another power series in 22 with rational coefficients. Evaluating it on [(C]P’Q"] € H4n((C]P’2"; Q)
picks out the z2™ term in this series, and since (z*", [CP?"]) = 1, the L-genus of CP*" will then
be characterized by

L(CP*") = b,,,
where

[FEOP" M = (1 4+a12? a2 + .07 = 140122+ boz2 + . 40,27 ...

Proposition 14.4. There is a unique power series f € Q[[z]] for which the corresponding genus
L(CP*™) = b,, computed above is 1 for every n € N.

It is not difficult to prove this proposition by an elementary recursive algorithm, and anyone
with enough perserverance (or a computer) can calculate the coefficients in the series as far as their
patience will allow. I personally have just enough patience to tell you that it begins with

1 1
14. =14=2——22+...
(14.5) f(2) tgE ot

which is something that Wikipedia also could have told you. This is already enough information
to compute what is truly important for our purposes: the polynomials L;(z1) and Lo(x1,x2),
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the second of which plays a starring role in the proof that exotic 7-spheres exist. Knowing the
coefficient of the linear term in f, Theorem 14.3 implies that L; can only be

1
Ll(.’L‘l) = g.’L‘l.
The second polynomial must then be of the form Ls(x1,22) = —%x% + bxo for some b € Q, and
one deduces from the n = 2 case of the multiplicative relation (14.3) that b = 4—75, giving

1
LQ((El,LUQ) = E(?(EQ - (E2).
These two polynomials give the formulas we’ve seen for the L-genera of closed oriented manifolds
of dimensions 4 and 8 respectively, namely

LOMY) = (M), M, L(M®) = = CTpa(M) = pa (M), [M]),

The Hirzebruch signature theorem for dimensions 4 and 8 thus tells us that these rational numbers
must always actually be integers, because they are equal to o(M).

I should point out: the L-classes L, (p1(E),...,pn(E)) € H*"(X;Q) are well-defined character-
istic classes for every real vector bundle £ — X over a CW-complex, and they live generally in
H*(X;Q), not in H*(X;Z). It is a special feature of tangent bundles E = T'M of closed oriented
4n-manifolds that the L-class in degree 4n can be lifted to H*"(M;Z), despite having rational
coefficients in its definition.

One last thing: for the topological applications we have discussed, we had no need to worry
about whether the formal power series f(2) = 1+a;2 +a22%+ ... converges, but for the particular
power series giving rise to the L polynomials, it turns out that it does converge on a neighborhood
of 0 € C to a holomorphic function that can be written in closed form, and that function is

_ =
1z) = tanh\/z"

(Yes, that’s a holomorphic function near 0 € C: the presence of two square roots instead of just
one makes it single-valued, and the apparent singularity at the origin is removable. Some routine
computations with familiar power series will convince you that its Taylor series looks like (14.5).)
The standard trick to see that this is the right function is based on Cauchy integration in the
complex plane. Recall that for any meromorphic function on a punctured neighborhood of 0 € C,
the coefficient of 1/z can be extracted via the integral

1 b by — b
— I+ tagtaz a2+ ) dz = by,
21 Zn o Zn z

where the symbol § means integration along a small counterclockwise circle in C surrounding
the origin. This follows from Cauchy’s theorem, because all terms in the series other than b, /z
are derivatives of holomorphic functions on the punctured plane, but the antiderivative of 1/z is

multivalued, producing §dz—z = 2mi. For the holomorphic function f(z) = tarfﬁ and each n € N,

we are looking for the coefficient of 22" in the function

P = ()

tanh z
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or to put it a bit more simply, the coefficient of 2™ in [f(22)]"*! for each n > 2 even. This
coefficient is the integral

v L( 2 )"“dzzi dz =Lff> d
271 J zn+! \tanh z 2mi J (tanhz)n+t 27 J (nHN(1 — ¢?)
% <n1+1(1+C2 L) de

where we’ve used the substitution ¢ := tanh z, which is a diffeomorphism on a neighborhood of
0 € C and thus does not meaningfully change the path of integration. This last integral extracts
the coefficient of % in the meromorphic function Cn%(l +¢2+¢*+...), which is 1 if n is even,
and 0 otherwise.

Suggested reading. The relatively concise treatment of bordism theory in [tD08, Chapter 20] is
good for getting yourself oriented in the subject, though of course, following all the details would
require several results (e.g. the rational Hurewicz theorem and the cohomology of Hopf algebras)
from earlier chapters that you probably haven’t read. Davis and Kirk [DK01, Chapter 8] may be
more helpful for understanding the Pontryagin-Thom construction, and they also talk about more
general “Havors” of bordism theory besides Q9 and Q5©, including manifolds with “stable complex
structures” and such things.

For the basics on Stiefel-Whitney and Pontryagin classes, I will go ahead and recommend the
old standard [MS74], which is now available on the internet in a collaboratively produced fully
typeset TeX version, in case you are allergic to math books written with typewriters. (I have
however noticed one or two typos in the TeX version that do not appear in the original.) T espe-
cially recommend Milnor and Stasheff for their treatment of multiplicative sequences (Chapter 19),
without which I would still be intensely confused about the L-genus. The last few chapters of Bott
and Tu [BT82] are also quite helpful, with the caveat that they use a different sign convention for
Pontryagin classes, and it is not always easy to tell whether the cohomology theory they are using
at any given moment is singular or de Rham.

Exercises. Are you kidding?
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