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http://www.math.hu-berlin.de/~wendl/Heidelberg.pdf

Motivation
J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):

w: (S2%,4) — (M*,J) with [u] - [u] =1
M, w) minimal
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Motivation
J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):

w: (S2%,4) — (M*,J) with [u] - [u] =1
(M,w) minimal

= Theorem : (M,w) = (CP?, cwys).

My(A,J) = {u: (Sg,5) = — (M*",.]) | 9y(u) =0, [u] = A} /reparam.

is a compact smooth manifold of dimension (n — 3)(2 — 2g) + 2¢1(4).
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(De)motivation

M(A,J) = {u: (8¢, 4) = (M*,J) | 05(u) =0, [u] = A} /reparam.

is a compact smooth manifold of dimension (n — 3)(2 — 2g) + 2¢1(4).
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(De)motivation

Mg(A,J) = {u: (8¢, 5) = (M*,J) | 5(u) =0, [u] = A} /reparam.

is a eempact compactifiable smooth manifold of dimension
(n — 3)(2 — 29) + 2¢1(A).

SENTH
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(De)motivation

BERY W ORI [ L SENTH

Mg(A,J) = {u: (8¢, 5) = (M*,J) | 5(u) =0, [u] = A} /reparam.
is a eempact compactifiable smooth manifold of dimension
(n—3)(2—2g9) +2c1(A).

Bad news

@ All J-holomorphic curves have multiple covers. They have
symmetry. .. dy is equivariant.
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Mg(A,J) = {u: (8¢, 5) = (M*,J) | 5(u) =0, [u] = A} /reparam.
is a eempact compactifiable smooth manifeld orbifold of dimension
(n—3)(2—2g9) +2c1(A).
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@ All J-holomorphic curves have multiple covers. They have
symmetry. .. dy is equivariant.
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(De)motivation

AYERY WORD N THAT SEN

Mg(A,J) = {u: (8¢, 5) = (M*,J) | 5(u) =0, [u] = A} /reparam.
is a eompaet compactifiable smooth manifeld orbifold of dimension
(n — 3)(2 — 29) + 261(A) if a] rh 0.

Bad news

@ All J-holomorphic curves have multiple covers. They have
symmetry. .. dy is equivariant.

Chris Wend| (HU Berlin) Equivariant transversality April 10, 2020 2 /26
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Y ERY WORD N THRT SENT!

Mg(A,J) = {u: (8¢, 5) = (M*,J) | 5(u) =0, [u] = A} /reparam.
is a eompaet compactifiable smooth manifeld orbifold of dimension
(n—3)(2—2g) +2¢1(A) if 9, MO,

Bad news
@ All J-holomorphic curves have multiple covers. They have
symmetry. .. 0 is equivariant.
@ Perturbing J generically perturbs 9; equivariantly.
Equivariant transversality is NOT POSSIBLE.
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(De)motivation

EVERYWORD IN THA I SEN .
Mg(A,J) = {u: (8¢, 5) = (M*,J) | 5(u) =0, [u] = A} /reparam.
is a eompaet compactifiable smooth manifeld orbifold of dimension
(n—3)(2—2g) +2¢1(A) if 9, MO,

Bad news
@ All J-holomorphic curves have multiple covers. They have
symmetry. .. 0 is equivariant.
@ Perturbing J generically perturbs 9; equivariantly.
Equivariant transversality is NOT POSSIBLE.

J-holomorphic curves are great terrible!
| hate them. Let's do combinatorics. (Just kidding.)
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Equivariant transversality is not possible. .. unless it is.

My aim in this talk is to address the following general questions:

@ How do we recognize when equivariant transversality is possible?
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Claim: In many settings, if it is possible, then it holds generically.

@ When it is not possible, why not, and what is true instead?
(key words: clean intersections, obstruction bundles)

o If | want to apply these ideas to my favorite nonlinear elliptic PDE
with symmetry, what do | need to prove?
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My aim in this talk is to address the following general questions:

@ How do we recognize when equivariant transversality is possible?

Claim: In many settings, if it is possible, then it holds generically.

@ When it is not possible, why not, and what is true instead?
(key words: clean intersections, obstruction bundles)

o If | want to apply these ideas to my favorite nonlinear elliptic PDE
with symmetry, what do | need to prove?

We will consider three classes of problems as examples:

© The zero-set of a section of a finite-dimensional orbibundle*

(2]

o

*no claim of originality
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Equivariant transversality is not possible. .. unless it is.

My aim in this talk is to address the following general questions:

@ How do we recognize when equivariant transversality is possible?

Claim: In many settings, if it is possible, then it holds generically.

@ When it is not possible, why not, and what is true instead?
(key words: clean intersections, obstruction bundles)

o If | want to apply these ideas to my favorite nonlinear elliptic PDE
with symmetry, what do | need to prove?

We will consider three classes of problems as examples:

© The zero-set of a section of a finite-dimensional orbibundle*
@ The space of closed orbits of an oriented line field*
© The moduli space of J-holomorphic curves

*no claim of originality
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Problem 1: Finite dimensions

M a compact n-dimensional orbifold, £ — M an orbibundle of rank m.
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For generic o € T'(E), is 0= (0) C M a suborbifold of dimension n —m?
Does o 0 hold generically?

Chris Wend| (HU Berlin) Equivariant transversality April 10, 2020 4 /26



Problem 1: Finite dimensions
M a compact n-dimensional orbifold, £ — M an orbibundle of rank m.
Question

For generic o € T'(E), is 0= (0) C M a suborbifold of dimension n —m?
Does o 0 hold generically? Answer: Typically not.

Chris Wend| (HU Berlin) Equivariant transversality April 10, 2020 4 /26



Problem 1: Finite dimensions

M a compact n-dimensional orbifold, £ — M an orbibundle of rank m.

Question

For generic o € T'(E), is 0= (0) C M a suborbifold of dimension n —m?
Does o 0 hold generically? Answer: Typically not.

Local example

Call 0 : R? — R? Zy-equivariant if o(z, —y) = —o(x,y).
Then 0=1(0) is never 0-dimensional, e.g. it contains R x {0}.
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M a compact n-dimensional orbifold, £ — M an orbibundle of rank m.

Question

For generic o € T'(E), is 0= (0) C M a suborbifold of dimension n —m?
Does o M 0 hold generically? Answer: Typically not.

Local example

Call 0 : R? — R? Zy-equivariant if o(z, —y) = —o(x,y).
Then 0=1(0) is never 0-dimensional, e.g. it contains R x {0}.

Next best thing (“Morse-Bott” condition):
Say o € I'(E) intersects zero cleanly if all components M; C o~1(0) are
suborbifolds (of dimensions > n — m) with T, M; = ker Do (x).
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Problem 1: Finite dimensions

M a compact n-dimensional orbifold, £ — M an orbibundle of rank m.

Question

For generic o € T'(E), is 0= (0) C M a suborbifold of dimension n —m?
Does o M 0 hold generically? Answer: Typically not.

Local example

Call 0 : R? — R? Zy-equivariant if o(z, —y) = —o(x,y).
Then 0=1(0) is never 0-dimensional, e.g. it contains R x {0}.

Next best thing (“Morse-Bott” condition):
Say o € I'(E) intersects zero cleanly if all components M; C o~1(0) are
suborbifolds (of dimensions > n — m) with T, M; = ker Do (x).

We can then compute the Euler number of E via obstruction bundles:

(e(E), [M]) = (e(Ob;), M;),  Ob, := coker Do (x).
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Problem 1: Finite dimensions

Sample theorem 1.A

If dim M = rank E' and isotropy groups satisfy |G| < 3 for all z, then
generic sections of E intersect zero cleanly.
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If dim M = rank E' and isotropy groups satisfy |G| < 3 for all z, then
generic sections of E intersect zero cleanly.

Key observation behind the proof (to be discussed):
Zo and Z3 each have only two real irreducible representations.
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Sample theorem 1.A

If dim M = rank E' and isotropy groups satisfy |G| < 3 for all z, then
generic sections of E intersect zero cleanly.

Key observation behind the proof (to be discussed):
Zo and Z3 each have only two real irreducible representations.

Sample theorem 1.B (cf. Wasserman '69, Hepworth '09) J

Generic smooth functions on an orbifold are Morse.
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Problem 1: Finite dimensions

Sample theorem 1.A

If dim M = rank E' and isotropy groups satisfy |G| < 3 for all z, then
generic sections of E intersect zero cleanly.

Key observation behind the proof (to be discussed):
Zo and Z3 each have only two real irreducible representations.

Generic smooth functions on an orbifold are Morse.

Sample theorem 1.B (cf. Wasserman '69, Hepworth '09) J

Key observation behind the proof (to be discussed):
Self-adjoint Fredholm operators (e.g. Hessians) always have index 0.
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Problem 2: Closed orbits

For an oriented line field ¢ C T'M generated by R € X(M), we consider
the moduli space of closed orbits

M(l) = {y: 5" & M| 5 et} /Diﬁ(sl)

Chris Wend| (HU Berlin) Equivariant transversality April 10, 2020 6 /26



Problem 2: Closed orbits

For an oriented line field ¢ C T'M generated by R € X(M), we consider

the moduli space of closed orbits
M(t) = {75 8" % M| 5 € £} [ Diff(s') = a3 (0) /S,
where
(0,00) x HY(SY, M) Z5 ¢
(1,7) — 4 = TR(7)

is an S'-equivariant smooth section of a Hilbert space bundle
£ — (0,00) x H'(S', M) with fibers &, ) = L*(v*TM).
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£ — (0,00) x H'(S', M) with fibers &, ) = L*(v*TM).

Each d-fold covered orbit v € M(¥) has isotropy group Z,.
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Problem 2: Closed orbits

For an oriented line field ¢ C T'M generated by R € X(M), we consider
the moduli space of closed orbits

M(t) = {75 8" % M| 5 € £} [ Diff(s') = a3 (0) /S,
where
(0,00) x HY(SY, M) Z5 ¢
(1,7) — ¥ — TR(7)

is an S'-equivariant smooth section of a Hilbert space bundle
£ — (0,00) x H'(S', M) with fibers &, ) = L*(v*TM).

Each d-fold covered orbit v € M(¥) has isotropy group Z,.
We call v nondegenerate if o h 0 at 7.

Sample theorem 2.A

For generic line fields ¢, all orbits in M(¢) are nondegenerate, thus M(?)
is a 0-manifold.
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Problem 2: Closed orbits

Question: What can happen to orbits under deformations {£s}c(0,1)7
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Problem 2: Closed orbits

Question: What can happen to orbits under deformations {£s}c(0,1)7
(1) Birth-death bifurcations:

o
M({4s}) == {(s,7) | s €[0,1] and v € M(¢5)}
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(1) Birth-death bifurcations:
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M({Ls}) = {(s,7) [ s €[0,1] and v € M(£4)}
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Question: What can happen to orbits under deformations {£s}c(0,1)7
(1) Birth-death bifurcations:

O

I

M({Ls}) = {(s,7) [ s €[0,1] and v € M(£4)}
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Question: What can happen to orbits under deformations {£s}c(0,1)7
(1) Birth-death bifurcations:

M({Ls}) = {(s,7) [ s €[0,1] and v € M(£4)}
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Problem 2: Closed orbits

Question: What can happen to orbits under deformations {£s}c(0,1)7
(1) Birth-death bifurcations:

M({ls}) == {(s,7) [ s €[0,1] and v € M(¢5)}
(2) Period-doubling bifurcations:

OC o =~
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(1) Birth-death bifurcations:
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(2) Period-doubling bifurcations:
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Question: What can happen to orbits under deformations {£s}c(0,1)7
(1) Birth-death bifurcations:

M({ls}) == {(s,7) [ s €[0,1] and v € M(¢5)}
(2) Period-doubling bifurcations:

OO =~

For generic deformations, birth-death and period-doubling are the only
bifurcations.

Sample theorem 2.B
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Problem 2: Closed orbits

Question: What can happen to orbits under deformations {£s}c(0,1)7
(1) Birth-death bifurcations:

M({ls}) == {(s,7) [ s €[0,1] and v € M(¢5)}
(2) Period-doubling bifurcations:

OO =~

Sample theorem 2.B

For generic deformations, birth-death and period-doubling are the only
bifurcations. (i.e. “walls” of codimension 1 come in two types)
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Problem 2: Closed orbits

Sample theorem 2.B
There is only birth-death and period-doubling for generic {/s}c(o1-

Remark 1: If the ¢ are also geodesible, then components of M ({/s})
are compact up to period-doubling, i.e. no blue sky catastrophes.
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Problem 2: Closed orbits

Sample theorem 2.B
There is only birth-death and period-doubling for generic {/s}c(o1-

Remark 1: If the ¢ are also geodesible, then components of M ({/s})
are compact up to period-doubling, i.e. no blue sky catastrophes.

In the Hamiltonian case (/s = ker ws for ws € Q%(M) of maximal rank),
geodesible < stabilizable.
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Problem 2: Closed orbits

Sample theorem 2.B
There is only birth-death and period-doubling for generic {/s}c(o1-

Remark 1: If the / are also geodesible, then components of M ({/s})
are compact up to period-doubling, i.e. no blue sky catastrophes.

In the Hamiltonian case (/s = ker ws for ws € Q%(M) of maximal rank),
geodesible < stabilizable.

Remark 2: But {{; = kerws} also has higher-degree bifurcations.
(see e.g. Abraham-Marsden, Chapter 8)
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Problem 3: Holomorphic curves

Fix a 2n-dimensional symplectic manifold (M, w) and consider compatible
almost complex structures J.
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Problem 3: Holomorphic curves

Fix a 2n-dimensional symplectic manifold (M, w) and consider compatible
almost complex structures J.

Theorem 3.A (W. '16-'19)

If (M, w) is a symplectic Calabi-Yau 3-fold (dim M = 6, ¢;(M,w) = 0)
and J is generic, then J; intersects the zero-section cleanly, i.e. all simple
curves are super-rigid.
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almost complex structures J.

Theorem 3.A (W. '16-'19)

If (M, w) is a symplectic Calabi-Yau 3-fold (dim M = 6, ¢;(M,w) = 0)
and J is generic, then J; intersects the zero-section cleanly, i.e. all simple
curves are super-rigid.

Corollary: Gromov-Witten invariants of (M,w) are finite sums of Euler
numbers of well-defined obstruction bundles. O
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Problem 3: Holomorphic curves

Fix a 2n-dimensional symplectic manifold (M, w) and consider compatible
almost complex structures J.

Theorem 3.A (W. '16-'19)

If (M, w) is a symplectic Calabi-Yau 3-fold (dim M = 6, ¢;(M,w) = 0)
and J is generic, then J; intersects the zero-section cleanly, i.e. all simple
curves are super-rigid.

Corollary: Gromov-Witten invariants of (M,w) are finite sums of Euler
numbers of well-defined obstruction bundles. O

Theorem 3.B (W. '16-'19)

If dim M > 4 and J is generic, all unbranched covers of simple
J-holomorphic curves are cut out transversely.
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Problem 3: Holomorphic curves

Fix a 2n-dimensional symplectic manifold (M, w) and consider compatible
almost complex structures J.
Theorem 3.A (W. '16-'19)

If (M, w) is a symplectic Calabi-Yau 3-fold (dim M = 6, ¢;(M,w) = 0)
and J is generic, then J; intersects the zero-section cleanly, i.e. all simple
curves are super-rigid.

Corollary: Gromov-Witten invariants of (M,w) are finite sums of Euler
numbers of well-defined obstruction bundles. O

Theorem 3.B (W. '16-'19)

If dim M > 4 and J is generic, all unbranched covers of simple
J-holomorphic curves are cut out transversely.

Precedent (Taubes '96):
Doubly covered tori in the definition of the Gromov invariant.
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Paradigm

Each of our problems involves a moduli space M (o) defined via
geometric data o, such that to every x € M (o) corresponds:
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Paradigm

Each of our problems involves a moduli space M (o) defined via
geometric data o, such that to every x € M (o) corresponds:
o A finite symmetry group G, which is trivial on a subset
M*(o) C M(o) for which transversality holds generically.
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Paradigm

Each of our problems involves a moduli space M (o) defined via
geometric data o, such that to every x € M (o) corresponds:
o A finite symmetry group G, which is trivial on a subset
M*(o) C M(o) for which transversality holds generically.
@ A Fredholm operator D,, which is surjective if and only if
transversality holds at z.
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Paradigm

Each of our problems involves a moduli space M (o) defined via
geometric data o, such that to every x € M (o) corresponds:
o A finite symmetry group G, which is trivial on a subset
M*(o) C M(o) for which transversality holds generically.

@ A Fredholm operator D,, which is surjective if and only if
transversality holds at z.

Here is the general strategy

O lIsosymmetric strata (easy):

Decompose M(o) into subsets M% (o) € M(c) on which G, is
constant. For generic o, these are submanifolds.
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Paradigm

Each of our problems involves a moduli space M (o) defined via
geometric data o, such that to every x € M (o) corresponds:
o A finite symmetry group G, which is trivial on a subset
M*(o) C M(o) for which transversality holds generically.
@ A Fredholm operator D,, which is surjective if and only if
transversality holds at z.

Here is the general strategy

O lIsosymmetric strata (easy):
Decompose M(o) into subsets M% (o) € M(c) on which G, is
constant. For generic o, these are submanifolds.

@ Walls (the technical part):

Stratify each M%(c) further into submanifolds on which ker D, and

coker D, vary smoothly (i.e. constant dimensions).
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Paradigm

Each of our problems involves a moduli space M (o) defined via
geometric data o, such that to every x € M (o) corresponds:
o A finite symmetry group G, which is trivial on a subset
M*(o) C M(o) for which transversality holds generically.
@ A Fredholm operator D,, which is surjective if and only if
transversality holds at z.

Here is the general strategy

O lIsosymmetric strata (easy):
Decompose M(o) into subsets M% (o) € M(c) on which G, is
constant. For generic o, these are submanifolds.

@ Walls (the technical part):

Stratify each M%(c) further into submanifolds on which ker D, and

coker D, vary smoothly (i.e. constant dimensions).

© Splitting (mainly representation theory):
D, =, Dg for the real irreducible representations 8 of G,.
Compute indices. . . the rest is dimension counting!
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Problem 1 (finite dimensions): Isosymmetric strata

Given o € T'(E), write M(c) := o~ 1(0) C M.
For each finite group G, define

MY :={zeM|G, =G},
and

MC (o) := M(o) N M.
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Problem 1 (finite dimensions): Isosymmetric strata

Given o € T'(E), write M(c) := o~ 1(0) C M.
For each finite group G, define

MY :={zeM|G, =G},
and
MY (o) == M(o) N MY,
Key observations:

@ MC C M is a smooth submanifold.

Chris Wend| (HU Berlin) Equivariant transversality April 10, 2020

11/ 26



Problem 1 (finite dimensions): Isosymmetric strata

Given o € T'(E), write M(c) := o~ 1(0) C M.
For each finite group G, define

MY :={zeM|G, =G},
and
MY (o) == M(o) N MY,
Key observations:
@ MC c M is a smooth submanifold.

@ 0% =0y : M® — E takes values in a distinguished subbundle

EG::{veEx‘xEMGandg-v:vforallgeGI}.
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Problem 1 (finite dimensions): Isosymmetric strata

Given o € T'(E), write M(c) := o~ 1(0) C M.
For each finite group G, define

MY :={zeM|G, =G},
and
MY (o) == M(o) N MY,
Key observations:

@ MC C M is a smooth submanifold.

@ 0% =0y : M® — E takes values in a distinguished subbundle

EG::{veEx‘xEMGandg-v:vforallgeGI}.

Exercise (via the Sard-Smale theorem)

For every G and generic o € T'(E), 0@ is transverse to the zero-section

of EC. In particular, M%(0) is a smooth manifold.

Ol
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Problem 1 (finite dimensions): Walls

At each = € MY(0), there is a linearization

D, := Do(z) € Homg(T, M, E;).
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Problem 1 (finite dimensions): Walls

At each = € MY(0), there is a linearization
D, := Do(z) € Homg(T, M, E;).
For integers k,c > 0, define
MC (o k,c) = {z e M (o) | dimker D, =k and dimcoker D, =c} .
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Problem 1 (finite dimensions): Walls

At each = € MY(0), there is a linearization
D, := Do(z) € Homg(T, M, E;).
For integers k,c > 0, define
MY o k,c) = {z e MY (o) | dimker D, =k and dimcoker D, =c} .

Key observations:

© Every Fredholm operator Ty : X — Y admits a neighborhood
O C Z(X,Y) and smooth map ® : O — Hom(ker Ty, coker Tp) s.t.
®(T) =0 < dimker T = dimker Ty, dim coker T = dim coker T\.

2]
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Problem 1 (finite dimensions): Walls

At each = € MY(0), there is a linearization
D, := Do(z) € Homg(T, M, E;).
For integers k,c > 0, define
MY o k,c) = {z e MY (o) | dimker D, =k and dimcoker D, =c} .

Key observations:

© Every Fredholm operator Ty : X — Y admits a neighborhood
O C Z(X,Y) and smooth map ® : O — Hom(ker Ty, coker Tp) s.t.
®(T) =0 < dimker T = dimker Ty, dim coker T = dim coker T\.

@ In the present setting, all operators are G-equivariant.
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Problem 1 (finite dimensions): Walls

At each = € MY(0), there is a linearization
D, := Do(z) € Homg(T, M, E;).
For integers k,c > 0, define
MY o k,c) = {z e MY (o) | dimker D, =k and dimcoker D, =c} .

Key observations:

© Every Fredholm operator Ty : X — Y admits a neighborhood
O C Z(X,Y) and smooth map ® : O — Hom(ker Ty, coker Tp) s.t.
®(T) = 0 < dimker T = dimker Ty, dim coker T' = dim coker T.
@ In the present setting, all operators are G-equivariant.

Stratification theorem (via IFT and Sard-Smale)

For all G, k, c and generic o € T\(E), M%(o; k,c) C M%(0) is a smooth
submanifold whose codimension near z € M%(o; k, c) is
dim Homg (ker D, coker D). O
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Problem 1 (finite dimensions): Splitting

Let {0; : G — Autg(W;)}Y, denote the real irreducible
representations of (G, with @ as the trivial representation.

Since D, : T, M — E, is G,-equivariant, Schur's lemma implies that it
splits with respect to the isotypic decompositions T, M = @f\;l T, M
and £, = EBZ]L E!, giving

D,=D!o...oDY, where D. :T,M' — E..
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Let {0; : G — Autg(W;)}Y, denote the real irreducible
representations of (G, with @ as the trivial representation.

Since D, : T, M — E, is G,-equivariant, Schur's lemma implies that it
splits with respect to the isotypic decompositions T, M = @f\;l T, M
and £, = EBZ]L E!, giving

D,=D!o...oDY, where D. :T,M' — E..

Key observations:
@ D! = Do%(2), so it is surjective and ker DL = T, M%(0).

Chris Wend| (HU Berlin) Equivariant transversality April 10, 2020 13 /26



Problem 1 (finite dimensions): Splitting

Let {0; : G — Autg(W;)}Y, denote the real irreducible
representations of (G, with @ as the trivial representation.

Since D, : T, M — E, is G,-equivariant, Schur's lemma implies that it
splits with respect to the isotypic decompositions T, M = @f\;l T, M?
and £, = EBZ]L E!, giving
D,=D!o...oDY, where D. :T,M' — E..
Key observations:
@ D! = Do%(2), so it is surjective and ker DL = T, M%(0).
@ o M0 at » & DI surjective for all i = 1,..., N.

Chris Wend| (HU Berlin) Equivariant transversality April 10, 2020 13 /26



Problem 1 (finite dimensions): Splitting

Let {0; : G — Autg(W;)}Y, denote the real irreducible
representations of (G, with @ as the trivial representation.

Since D, : T, M — E, is G,-equivariant, Schur's lemma implies that it
splits with respect to the isotypic decompositions T, M = @f\;l T, M
and £, = EBZ]L E!, giving

D,=D!o...oDY, where D. :T,M' — E..

Key observations:
@ D! = Do%(2), so it is surjective and ker DL = T, M%(0).
@ o M0 at » & DI surjective for all i = 1,..., N.
Impossible unless ind D2, > 0 Vi; could fail even if ind D, > 0.
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Problem 1 (finite dimensions): Splitting

Let {0; : G — Autg(W;)}Y, denote the real irreducible
representations of (G, with @ as the trivial representation.

Since D, : T, M — E, is G,-equivariant, Schur's lemma implies that it
splits with respect to the isotypic decompositions T, M = @f\;l T, M
and £, = EBZ]L E!, giving

D,=D!o...oDY, where D. :T,M' — E..

Key observations:
@ D! = Do%(2), so it is surjective and ker DL = T, M%(0).
@ o M0 at » & DI surjective for all i = 1,..., N.
Impossible unless ind D2, > 0 Vi; could fail even if ind D, > 0.

© If DI injective for all i > 2, then o intersects 0 cleanly at .
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Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic o, if M; C M%(c) is a component whose points = € M;
satisfy ind D2 > 0 for all i, then o M 0 on an open dense subset of M;.
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Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic o, if M; C M%(c) is a component whose points = € M;
satisfy ind D2 > 0 for all i, then o M 0 on an open dense subset of M;.
Similarly for clean intersections if ind D* < 0 for ¢ > 2. []
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Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic o, if M; C M%(c) is a component whose points = € M;
satisfy ind D2 > 0 for all i, then o M 0 on an open dense subset of M;.
Similarly for clean intersections if ind D* < 0 for 7 > 2. O

Proof of Theorem 1.B (Morse functions):
We consider E := T*M and df € I'(E) and need to show df h 0 for
generic f: M — R.
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Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic o, if M; C M%(c) is a component whose points = € M;
satisfy ind D2 > 0 for all i, then o M 0 on an open dense subset of M;.
Similarly for clean intersections if ind D* < 0 for 7 > 2. ]

Proof of Theorem 1.B (Morse functions):
We consider E := T*M and df € I'(E) and need to show df h 0 for
generic f: M — R. Two new feaures:
@ For z € df~1(0), D, := D(df)(z) is always symmetric, so the
previous codimension formula changes to

codim M (df; k, ¢) = dim Endy™ (ker D)
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Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic o, if M; C M%(c) is a component whose points = € M;
satisfy ind D2 > 0 for all i, then o M 0 on an open dense subset of M.
Similarly for clean intersections if ind D? <0 fori > 2. ]

Proof of Theorem 1.B (Morse functions):
We consider E := T*M and df € I'(E) and need to show df h 0 for
generic f: M — R. Two new feaures:
@ For z € df~1(0), D, := D(df)(z) is always symmetric, so the
previous codimension formula changes to

codim M (df; k, ¢) = dim Endy™ (ker D)

which is generally smaller, but still positive.
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Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic o, if M; C M%(c) is a component whose points = € M;
satisfy ind D2 > 0 for all i, then o M 0 on an open dense subset of M.
Similarly for clean intersections if ind D? <0 fori > 2. ]

Proof of Theorem 1.B (Morse functions):
We consider E := T*M and df € I'(E) and need to show df h 0 for
generic f: M — R. Two new feaures:
@ For z € df~1(0), D, := D(df)(z) is always symmetric, so the
previous codimension formula changes to
codim M (df; k, ¢) = dim Endy™ (ker D)

which is generally smaller, but still positive.
@ Every D is self-adjoint, thus ind D, = 0.
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Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic o, if M; C M%(c) is a component whose points = € M;
satisfy ind D2 > 0 for all i, then o M 0 on an open dense subset of M.
Similarly for clean intersections if ind D? <0 fori > 2. ]

Proof of Theorem 1.B (Morse functions):
We consider E := T*M and df € I'(E) and need to show df h 0 for
generic f: M — R. Two new feaures:
@ For z € df~1(0), D, := D(df)(z) is always symmetric, so the
previous codimension formula changes to

codim M (df; k, ¢) = dim Endy™ (ker D)

which is generally smaller, but still positive.
@ Every D is self-adjoint, thus ind D, = 0.
Then all strata M (df) are O-dimensional.
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Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic o, if M; C M%(c) is a component whose points = € M;
satisfy ind D2 > 0 for all i, then o M 0 on an open dense subset of M.
Similarly for clean intersections if ind D? <0 fori > 2. ]

Proof of Theorem 1.B (Morse functions):
We consider E := T*M and df € I'(E) and need to show df h 0 for
generic f: M — R. Two new feaures:
@ For z € df~1(0), D, := D(df)(z) is always symmetric, so the
previous codimension formula changes to

codim M (df; k, ¢) = dim Endy™ (ker D)

which is generally smaller, but still positive.
@ Every D is self-adjoint, thus ind D, = 0.
Then all strata M (df) are O-dimensional. Non-Morse critical points live
in walls M (df ; k,c), which have negative dimension = empty. O
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Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls

MG (o k,c) € ME(0).
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Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls
MEC (o k,¢) € M%(0). These come via Schur’s lemma:
N
dim Homg (ker D, coker D) = Z(dimR K;) - ki,
i=1
where K; := Endg(W;) € {R,C,H} has dimension € {1,2,4},
k; := dimg, ker D% and ¢; := dimg, coker DE.
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Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls
MEC (o k,¢) € M%(0). These come via Schur’s lemma:

N
dim Homg (ker D, coker D) = Z(dimR K;) - ki,
i=1
where K; := Endg(W;) € {R, C,H} has dimension € {1,2,4},
k; := dimg, ker D% and ¢; := dimg, coker DE.

Proof of Theorem 1.A (clean intersections), case |G| < 2:

For x € M?2(o), there are two irreps 6 : Zs — GL(1,R), both with
Endz, (R) = R.
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Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls
MEC (o k,¢) € M%(0). These come via Schur’s lemma:
N
dim Homg (ker D, coker D) = Z(dimR K;) - ki,
i=1
where K; := Endg(W;) € {R, C,H} has dimension € {1,2,4},
k; := dimg, ker D% and ¢; := dimg, coker DE.

Proof of Theorem 1.A (clean intersections), case |G| < 2:

For x € M?2(o), there are two irreps 6 : Zs — GL(1,R), both with
Endz,(R) = R. Write D, = D} @ D, , where D} is surjective and
ker D} = T, M%*2(q).
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Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls
MEC (o k,¢) € M%(0). These come via Schur’s lemma:
N
dim Homg (ker D, coker D) = Z(dimR K;) - ki,
i=1
where K; := Endg(W;) € {R, C,H} has dimension € {1,2,4},
k; := dimg, ker D% and ¢; := dimg, coker DE.
Proof of Theorem 1.A (clean intersections), case |G| < 2:
For x € M?2(o), there are two irreps 6 : Zs — GL(1,R), both with
Endz, (R) = R. Write D, = D} & D_, where D is surjective and

x

ker DF = T, M%2(5). We have ind D, = dim M — rank E = 0, thus
ind D, = —indD; <0,

and need to show that D, is injective.
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Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls
MEC (o k,¢) € M%(0). These come via Schur’s lemma:
N
dim Homg (ker D, coker D) = Z(dimR K;) - ki,
i=1
where K; := Endg(W;) € {R, C,H} has dimension € {1,2,4},
k; := dimg, ker D% and ¢; := dimg, coker DE.

Proof of Theorem 1.A (clean intersections), case |G| < 2:
For x € M?2(o), there are two irreps 6 : Zs — GL(1,R), both with
Endz,(R) = R. Write D, = D} @ D, , where D} is surjective and

ker DF = T, M%2(5). We have ind D, = dim M — rank E = 0, thus
ind D, = —indD; <0,

and need to show that D is injective. If not, then x € M?%2(c; k, c) for

k:=dimkerD, >0 and ¢c:=k —indD, =k +ind D} .
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Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls
MEC (o k,¢) € M%(0). These come via Schur’s lemma:

N

dim Homg (ker D, coker D) = Z(dimR K;) - ki,
i=1

where K; := Endg(W;) € {R, C,H} has dimension € {1,2,4},
k; := dimg, ker D% and ¢; := dimg, coker DE.

Proof of Theorem 1.A (clean intersections), case |G| < 2:
For x € M?2(o), there are two irreps 6 : Zs — GL(1,R), both with
Endz,(R) = R. Write D, = D} @ D, , where D} is surjective and

ker DF = T, M%2(5). We have ind D, = dim M — rank E = 0, thus
ind D, = —indD; <0,
and need to show that D is injective. If not, then x € M?%2(c; k, c) for
k:=dimkerD; >0 and c:=k —indD, =k +ind D}. Then
dim M?%2(o ; k,¢) = dim M?2(0) —kc = ind D} —k(k+ind D) < 0. [J
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Problem 3 (holomorphic curves): Preparation

Linearizations
Each u : (¥,7) — (M, J) has a linearized Cauchy-Riemann operator

D, := D0y(u) : T(w*TM) — QY (S, u*T M)
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Problem 3 (holomorphic curves): Preparation

Linearizations

Each u : (¥,7) — (M, J) has a linearized Cauchy-Riemann operator
D, := D3;(u) : T(u*TM) — Q"1(Z, uw*TM)
and a normal Cauchy-Riemann operator

DQJY =TN ODu‘Nu : F(Nu) — QOJ(EaNu)a

for the projection w*T'M =T, & N, TN, N, along the subbundle
T, C w*TM with (Ty,), = imdu(z) at all noncritical points z.
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Each u : (¥,7) — (M, J) has a linearized Cauchy-Riemann operator
D, := D3;(u) : T(u*TM) — Q"1(Z, uw*TM)
and a normal Cauchy-Riemann operator

DQJY =TN ODu‘Nu : F(Nu) — QOJ(EaNu)a

for the projection w*T'M =T, & N, TN, N, along the subbundle
T, C w*TM with (Ty,), = imdu(z) at all noncritical points z.

Lemma: (i) u is cut out transversely iff DY is surjective.
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Problem 3 (holomorphic curves): Preparation

Linearizations
Each u : (¥,7) — (M, J) has a linearized Cauchy-Riemann operator

D, := D3;(u) : T(u*TM) — Q"1(Z, uw*TM)
and a normal Cauchy-Riemann operator

DQJY =TN ODu‘Nu : F(Nu) — QOJ(EaNu)a

for the projection w*T'M =T, & N, TN, N, along the subbundle
T, C w*TM with (Ty,), = imdu(z) at all noncritical points z.

Lemma: (i) u is cut out transversely iff DY is surjective.
(ii) For an immersed simple curve with index 0, u is super-rigid iff Dju\;p

is injective for all branched covers ¢ : (X/,5) — (2, 7). O
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Problem 3 (holomorphic curves): Preparation

Linearizations
Each uw: (X,5) — (M, J) has a linearized Cauchy-Riemann operator

D, := D3;(u) : T(u*TM) — Q"1(Z, uw*TM)
and a normal Cauchy-Riemann operator

Dijy =TN ODu’Nu : F(Nu) — 9071(23Nu)a

for the projection w*T'M =T, & N, TN, N, along the subbundle
T, C w*TM with (Ty,), = imdu(z) at all noncritical points z.

Lemma: (i) u is cut out transversely iff DY is surjective.

(ii) For an immersed simple curve with index 0, u is super-rigid iff Dju\;p
is injective for all branched covers ¢ : (X/,5) — (2, 7).

This makes DY the more convenient operator to work with. But we need
it to vary continuously on isosymmetric strata. ..
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Problem 3 (holomorphic curves): Isosymmetric strata

Define strata of the form
M) = fu=vop} € My(A,J)

such that:

@ v varies among simple curves v : (X, j) — (M, J) with a prescribed
number of critical points, each of prescribed order;
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Problem 3 (holomorphic curves): Isosymmetric strata

Define strata of the form
M) = fu=vop} € My(A,J)

such that:
@ v varies among simple curves v : (X, j) — (M, J) with a prescribed
number of critical points, each of prescribed order;

@ ¢ varies among d-fold branched covers ¢ : (¥/,5) — (X, 7) with a
prescribed number of critical values, each with a prescribed number
of preimages that each has prescribed branching order.
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Problem 3 (holomorphic curves): Isosymmetric strata

Define strata of the form
M) = fu=vop} € My(A,J)

such that:
@ v varies among simple curves v : (X, j) — (M, J) with a prescribed
number of critical points, each of prescribed order;

@ ¢ varies among d-fold branched covers ¢ : (¥/,5) — (X, 7) with a
prescribed number of critical values, each with a prescribed number
of preimages that each has prescribed branching order.

Lemma (via standard transversality for simple curves):
For generic .J, MY(.J) is a smooth manifold, and the operators DY vary
smoothly as u varies in M?(.J). O
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Problem 3 (holomorphic curves): Splitting

Consider D := DY : T'(E) — Q%!(Z,E) on E := N,, and
©*D =DV T (¢*E) — Q¥ o*E)

for a d-fold branched cover ¢ : (¥/,5") — (3, 7).
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Problem 3 (holomorphic curves): Splitting

Consider D := DY : T'(E) — Q%!(Z,E) on E := N,, and
©*D =DV T (¢*E) — Q¥ o*E)
for a d-fold branched cover ¢ : (¥/,5") — (3, 7).

Simplest interesting case: Assume d = 2.
Then G := Aut(p) = Zy and there is a unique nontrivial deck
transformation v : ¥/ — X/, We define

Ii(p*E) = {neT(¢"E) | noy = £n},

and Q21 (X, ©*E) similarly, so o*D = D @ D~ for operators
D* : T (¢*E) — Q%' (X, ¢*E).
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Problem 3 (holomorphic curves): Splitting

Consider D := DY : T'(E) — Q%!(Z,E) on E := N,, and
©*D =DV T (¢*E) — Q¥ o*E)
for a d-fold branched cover ¢ : (¥/,5") — (3, 7).

Simplest interesting case: Assume d = 2.
Then G := Aut(p) = Zy and there is a unique nontrivial deck
transformation v : ¥/ — X/, We define

Ii(p*E) = {neT(¢"E) | noy = £n},

and Q21 (X, ©*E) similarly, so o*D = D @ D~ for operators
D* : T (¢*E) — Q%' (X, ¢*E).

Difficult to generalize. .. for d > 2, Aut(p) may be empty!
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Problem 3 (holomorphic curves): Splitting

Idea
Replace I'(¢*E) with I'(E @g W) for some flat bundle . J
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Problem 3 (holomorphic curves): Splitting

Idea
Replace I'(p* E) with T'(E @r W) for some flat bundle 1. J

Lemma (via asymptotic regularity):

For a finite set © C %, restricting D to the punctured domain ¥ := % \ O
produces an operator on weighted Sobolev spaces (with small exponential
growth at punctures) that has the same index and kernel as D. O
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Problem 3 (holomorphic curves): Splitting

Idea
Replace I'(p* E) with T'(E @r W) for some flat bundle 1. J

Lemma (via asymptotic regularity):

For a finite set © C %, restricting D to the punctured domain ¥ := % \ O
produces an operator on weighted Sobolev spaces (with small exponential
growth at punctures) that has the same index and kernel as D. O

Now remove branch points and consider ¢ : ¥/ — Y as a covering map
of punctured Riemann surfaces.
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Problem 3 (holomorphic curves): Splitting

Idea
Replace I'(p* E) with T'(E @r W) for some flat bundle 1. J

Lemma (via asymptotic regularity):

For a finite set © C %, restricting D to the punctured domain ¥ := % \ O
produces an operator on weighted Sobolev spaces (with small exponential
growth at punctures) that has the same index and kernel as D. O

Now remove branch points and consider ¢ : ¥/ — Y as a covering map
of punctured Riemann surfaces.

Lemma (covering space theory):

There exists a regular cover 7 : " — 3 with finite automorphism
group G and an injective homomorphism p : G — S; to the symmetric
group such that ¢ is equivalent to the cover

(2 x{1,... ,d}) /G 28 o([(2,4)]) = 7(2).
L]
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Problem 3 (holomorphic curves): Splitting

Given a representation 0 : G — Autg(WW), define the flat vector bundle

Wo .= (2" xW)/G — 3.
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Problem 3 (holomorphic curves): Splitting

Given a representation 0 : G — Autg(WW), define the flat vector bundle
Wo .= (2" xW)/G — 3.

This gives a twisted bundle E¢ := E @g W — ¥ with Cauchy-Riemann
operator D? defined by D9 (n ® v) := (D7) ® v for flat sections v.
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Problem 3 (holomorphic curves): Splitting

Given a representation 0 : G — Autg(WW), define the flat vector bundle
Wo .= (2" xW)/G — 3.

This gives a twisted bundle E¢ := E @g W — ¥ with Cauchy-Riemann
operator D? defined by D9 (n ® v) := (D7) ® v for flat sections v.

Lemma: For the permutation representation p : G — GL(d,R) arising
from p: G — Sy, there is a natural isomorphism I'(¢p*F) = I'( EP) such
that the operator ¢*D is identified with D”. O
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Problem 3 (holomorphic curves): Splitting

Given a representation 0 : G — Autg(WW), define the flat vector bundle
Wo .= (2" xW)/G — 3.

This gives a twisted bundle E¢ := E @g W — ¥ with Cauchy-Riemann
operator D? defined by D9 (n ® v) := (D7) ® v for flat sections v.

Lemma: For the permutation representation p : G — GL(d,R) arising
from p: G — Sy, there is a natural isomorphism I'(¢p*F) = I'( EP) such

that the operator ¢*D is identified with D”. O
Corollary (the general splitting of D)
If p= @Y, 05, then ¢*D = DP = @Y | (D%)&m:, DJ
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Problem 3 (holomorphic curves): Splitting

Given a representation 0 : G — Autg(WW), define the flat vector bundle
Wo .= (2" xW)/G — 3.

This gives a twisted bundle E¢ := E @g W — ¥ with Cauchy-Riemann
operator D? defined by D9 (n ® v) := (D7) ® v for flat sections v.

Lemma: For the permutation representation p : G — GL(d,R) arising
from p: G — Sy, there is a natural isomorphism I'(¢p*F) = I'( EP) such

that the operator ¢*D is identified with D”. O
Corollary (the general splitting of D)
If p= @Y, 05, then ¢*D = DP = @Y | (D%)&m:, DJ

Remark: If ind D = 0, a computation via the punctured Riemann-Roch
formula shows ind D? < 0 always. This is 45% of the reason why
Theorem 3.A (super-rigidity) is true.
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Problem 3 (holomorphic curves): Walls

Walls in M?(.J) are defined by fixing the dimensions of the kernel and
cokernel of DY and its summands.
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Problem 3 (holomorphic curves): Walls

Walls in M?(.J) are defined by fixing the dimensions of the kernel and
cokernel of D" and its summands. Locally near u, this is the zero-set of

a map to Homg(ker DY, coker DY) whose derivative with respect to a
variation T in DY is

ker DY -5 001(2, N,) 24 coker DYY.
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Walls in M?(.J) are defined by fixing the dimensions of the kernel and
cokernel of D" and its summands. Locally near u, this is the zero-set of

a map to Homg(ker DY, coker DY) whose derivative with respect to a
variation T in DY is

ker DY -5 001(2, N,) 24 coker DYY.
Why is this derivative surjective?

Perturbing .J causes zeroth-order perturbations in DY, so T should be
realized by a bundle map A : N, — A%'T*Y ® N,,.
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Problem 3 (holomorphic curves): Walls

Walls in M?(.J) are defined by fixing the dimensions of the kernel and
cokernel of D" and its summands. Locally near u, this is the zero-set of
a map to Homg(ker DY, coker DY) whose derivative with respect to a
variation T in DY is

ker DY -5 001(2, N,) 24 coker DYY.
Why is this derivative surjective?

Perturbing .J causes zeroth-order perturbations in DY, so T should be
realized by a bundle map A : N, — A%'T*Y ® N,. If not every map
ker DY — coker DY arises this way, then given bases (1;) € ker DY and
(&) € ker(DX)* = coker DY, there exist nontrivial coefficients ¢;; € R
such that for all zeroth-order perturbations A,

> cij{Ani, &) =0

i?j
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Problem 3 (holomorphic curves): Walls

Walls in M?(.J) are defined by fixing the dimensions of the kernel and
cokernel of D" and its summands. Locally near u, this is the zero-set of
a map to Homg(ker DY, coker DY) whose derivative with respect to a
variation T in DY is

ker DY -5 001(2, N,) 24 coker DYY.
Why is this derivative surjective?

Perturbing .J causes zeroth-order perturbations in DY, so T should be
realized by a bundle map A : N, — A%'T*Y ® N,. If not every map
ker DY — coker DY arises this way, then given bases (1;) € ker DY and
(&) € ker(DX)* = coker DY, there exist nontrivial coefficients ¢;; € R
such that for all zeroth-order perturbations A,

%:Cij<A77i7§j>L2 :/E<7 >O(A®]l)(zcij7]i®§j>dV01:O,

i’j
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Problem 3 (holomorphic curves): Walls

Walls in M?(.J) are defined by fixing the dimensions of the kernel and
cokernel of D" and its summands. Locally near u, this is the zero-set of
a map to Homg(ker DY, coker DY) whose derivative with respect to a
variation T in DY is

ker DY -5 001(2, N,) 24 coker DYY.
Why is this derivative surjective?

Perturbing .J causes zeroth-order perturbations in DY, so T should be
realized by a bundle map A : N, — A%'T*Y ® N,. If not every map
ker DY — coker DY arises this way, then given bases (1;) € ker DY and
(&) € ker(DX)* = coker DY, there exist nontrivial coefficients ¢;; € R
such that for all zeroth-order perturbations A,

Zcij<A77ia§j>L2 = /Z< ,)o(A® l)(Zcijm ®§j> dvol = 0.
Y] i,j

In other words, Zi,j ciini @& =0el(N, ® A T*Y @ N,).
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Problem 3 (holomorphic curves): Walls

Definition (a “quadratic unique continuation” property)

A real-linear partial differential operator D : T'(E) — I'(F') on Euclidean
vector bundles E, ' — . satisfies Petri’s condition if the canonical map

kerD @ ker D* -5 T'(E @ Fy)

is injective for every open subset U C 3.
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Problem 3 (holomorphic curves): Walls

Definition (a “quadratic unique continuation” property)

A real-linear partial differential operator D : T'(E) — I'(F') on Euclidean
vector bundles E, ' — . satisfies Petri’s condition if the canonical map

kerD @ ker D* -5 T'(E @ Fy)

is injective for every open subset U C 3.

Meta-theorem (cf. work of A. Doan and T. Walpuski):

Equivariant transversality problems are tractable for a large class of
elliptic operators that satisfy Petri’s condition.
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Problem 3 (holomorphic curves): Walls

Definition (a “quadratic unique continuation” property)

A real-linear partial differential operator D : T'(E) — I'(F') on Euclidean
vector bundles E, ' — . satisfies Petri’s condition if the canonical map

kerD @ ker D* -5 T'(E @ Fy)

is injective for every open subset U C 3.

Meta-theorem (cf. work of A. Doan and T. Walpuski):
Equivariant transversality problems are tractable for a large class of
elliptic operators that satisfy Petri’s condition.

Example 1, via uniqueness for ODEs: Elliptic operators on 1-dimensional
domains.
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Problem 3 (holomorphic curves): Walls

Definition (a “quadratic unique continuation” property)

A real-linear partial differential operator D : T'(E) — I'(F') on Euclidean
vector bundles E, ' — . satisfies Petri’s condition if the canonical map

kerD @ ker D* -5 T'(E @ Fy)

is injective for every open subset U C 3.

Meta-theorem (cf. work of A. Doan and T. Walpuski):
Equivariant transversality problems are tractable for a large class of
elliptic operators that satisfy Petri’s condition.

Example 1, via uniqueness for ODEs: Elliptic operators on 1-dimensional
domains. (This makes Problem 2 tractable.)
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Problem 3 (holomorphic curves): Walls

Definition (a “quadratic unique continuation” property)

A real-linear partial differential operator D : I'(E') — I'(F') on Euclidean
vector bundles E, ' — . satisfies Petri’s condition if the canonical map

kerD @ ker D* -5 T'(E @ Fy)

is injective for every open subset U C 3.

Meta-theorem (cf. work of A. Doan and T. Walpuski):
Equivariant transversality problems are tractable for a large class of
elliptic operators that satisfy Petri’s condition.

Example 1, via uniqueness for ODEs: Elliptic operators on 1-dimensional
domains. (This makes Problem 2 tractable.)

Non-example 2: D = 9 and D* = —9, FAIL:
Ml1eriz—i®rz—2Qri+iz®gr 1) =0.
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Problem 3 (holomorphic curves): Walls

Definition (a “quadratic unique continuation” property)

A real-linear partial differential operator D : I'(E') — I'(F') on Euclidean
vector bundles E, ' — . satisfies Petri’s condition if the canonical map

kerD @ ker D* -5 T'(E @ Fy)

is injective for every open subset U C 3.

Meta-theorem (cf. work of A. Doan and T. Walpuski):
Equivariant transversality problems are tractable for a large class of
elliptic operators that satisfy Petri’s condition.

Example 1, via uniqueness for ODEs: Elliptic operators on 1-dimensional
domains. (This makes Problem 2 tractable.)

Non-example 2: D = 9 and D* = —9, FAIL:
Ml1eriz—i®rz—2Qri+iz®g 1) = 0. (This makes us panic slightly.)
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Problem 3 (holomorphic curves): Walls

Crucial technical lemma

For each / € N, there exists an integer k£ > ¢ and a Baire set of
compatible almost complex structures J such that for every simple curve
u: (3,7) = (M,J) and point z € ¥, if n;,; are local solutions to
DXn; = 0 and (DY)*¢; = 0 near z such that the tensor product

t:= Z CijNi Or &

ihj

vanishes to order /¢ at z, then II(¢) does not vanish to order & at z.

Corollary (via unique continuation): Generically all DY satisfy Petri.
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Problem 3 (holomorphic curves): Walls

Crucial technical lemma

For each / € N, there exists an integer k£ > ¢ and a Baire set of
compatible almost complex structures J such that for every simple curve
u: (3,7) = (M,J) and point z € ¥, if n;,; are local solutions to
DXn; = 0 and (DY)*¢; = 0 near z such that the tensor product

t:= Z cijn; ®r &

ihj

vanishes to order /¢ at z, then II(¢) does not vanish to order & at z.

Corollary (via unique continuation): Generically all DY satisfy Petri.

“Proof”: Sard-Smale theorem + dimension counting in jet spaces at z. ..
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Problem 3 (holomorphic curves): Walls

Crucial technical lemma

For each / € N, there exists an integer k£ > ¢ and a Baire set of
compatible almost complex structures J such that for every simple curve
u: (3,7) = (M,J) and point z € ¥, if n;,; are local solutions to
DXn; = 0 and (DY)*¢; = 0 near z such that the tensor product

t:= Z cijn; ®r &

ihj

vanishes to order /¢ at z, then II(¢) does not vanish to order & at z.

Corollary (via unique continuation): Generically all DY satisfy Petri.

“Proof”: Sard-Smale theorem + dimension counting in jet spaces at z. ..

Remark: The proof requires u to be simple for the usual (Sard-Smale)
reasons, but the result is local, so it carries over to all multiple covers.
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Back to Problem 2 (closed orbits)

(1) Birth-death:

— O O

M({Ls}) = {(s,7) [ s €[0,1] and v € M(¢5)}
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Back to Problem 2 (closed orbits)

@ N

I =

M({ls}) = {(s,7) [ s €[0,1] and v € M(¢5)}
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Back to Problem 2 (closed orbits)

(1) Birth-death:

N

-

M({ls}) = {(s,7) [ s €[0,1] and v € M(¢5)}
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Back to Problem 2 (closed orbits)

(1) Birth-death:

M({ls}) = {(s,7) [ s €[0,1] and v € M(¢5)}
(2) Period-doubling:

O CO =~
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Back to Problem 2 (closed orbits)
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Back to Problem 2 (closed orbits)

(1) Birth-death:

M({ls}) = {(s,7) [ s €[0,1] and v € M(¢5)}
(2) Period-doubling:

S =
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Back to Problem 2 (closed orbits)
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Back to Problem 2 (closed orbits)

(1) Birth-death:

M{Lls}) ={(s,7) | s €[0,1] and v € M(s)}
(2) Period-doubling:

O -
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Back to Problem 2 (closed orbits)

(1) Birth-death:

M({ls}) = {(s,7) [ s €[0,1] and v € M(¢5)}
(2) Period-doubling:

OO =
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Back to Problem 2 (closed orbits)

(1) Birth-death:

M({ls}) = {(s,7) [ s €[0,1] and v € M(¢5)}

(2) Period-doubling:
Q
OO =N

Sample theorem 2.B

For generic deformations {/s}c[o,1) of an oriented line field, if lengths of
orbits are bounded, nothing else goes wrong.
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Back to Problem 2 (closed orbits)
Why not?

Isosymmetric strata: For d =1,2,3,...,

MU{Ls}) = {(s,7) € M({L:}) | cov(y) = d}

is a smooth 1-manifold for generic {/}.
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Back to Problem 2 (closed orbits)
Why not?
Isosymmetric strata: For d =1,2,3,...,

MU{Ls}) = {(s,7) € M({L:}) | cov(y) = d}

is a smooth 1-manifold for generic {/}.

Splitting: For (s,v) € M({¢,}),

N
D, =(PDY
=1

with 81, ...,0y the irreps of Z,. All summands have index 0.
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with 81, ...,0y the irreps of Z,. All summands have index 0.

Bifurcations = crossing walls of codimension 1:
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Back to Problem 2 (closed orbits)

Why not?
Isosymmetric strata: For d =1,2,3,...,

MI{,}) = {(5,7) € M({,}) | cov(y) = d}
is a smooth 1-manifold for generic {/}.

Splitting: For (s,v) € M({¢,}),

N
0;
D, = @Dv
i=1
with 81, ...,0y the irreps of Z,. All summands have index 0.

Bifurcations = crossing walls of codimension 1:
codim M({£s}; k, ) thk Ci

with ¢; = dimension of the equivariant endomorphlsm algebra of 6;.
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Back to Problem 2 (closed orbits)

Real irreps of Z; come in two types:
@ Real type: 0y : Zy; — Autg(R) with

0.(m)=1, 0_(m) = (—1)™ (if d even).
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Real irreps of Z; come in two types:
@ Real type: 0y : Zy; — Autg(R) with

0.(m)=1, 0_(m) = (—1)™ (if d even).

o Complex type: 0; : Zq — Autr(C) with
0;(m) = (7)™ (for j #m/2),
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0.(m)=1, 0_(m) = (—1)™ (if d even).

o Complex type: 0; : Zq — Autr(C) with
0;(m) = (7)™ (for j #m/2),

dim ker Dg+ = dim coker Dg*‘ =1 = birth-death.
dim ker Dg_ = dim coker Dg_ =1 = period-doubling.
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Back to Problem 2 (closed orbits)

Real irreps of Z; come in two types:
@ Real type: 0y : Zy; — Autg(R) with

0.(m)=1, 0_(m) = (—1)™ (if d even).

o Complex type: 0; : Zq — Autr(C) with
0;(m) = (e2™9/4)™ (for j # m/2).
dim ker Dg+ = dim coker Dg*‘ =1 = birth-death.

dim ker Dg_ = dim coker Dg_ =1 = period-doubling.

All other walls have codimension > 2.
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Back to Problem 2 (closed orbits)
Real irreps of Z; come in two types:
@ Real type: 0y : Zy; — Autg(R) with
0.(m)=1, 0_(m) = (—1)™ (if d even).

o Complex type: 0; : Zq — Autr(C) with
0;(m) = (7)™ (for j #m/2),

dim ker Dg* = dim coker Dg*‘ = = birth-death.
dim ker Dg_ = dim coker Dg_ =1 = period-doubling.
All other walls have codimension > 2. O

Final remark:

In the Hamiltonian case, orbits are critical points of an action functional
= linearizations are self-adjoint.
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Back to Problem 2 (closed orbits)

Real irreps of Z; come in two types:
@ Real type: 0y : Zy; — Autg(R) with

0.(m)=1, 0_(m) = (—1)™ (if d even).

o Complex type: 0; : Zq — Autr(C) with
0;(m) = (7)™ (for j #m/2),

dim ker Dg* = dim coker Dg*‘ = = birth-death.
dim ker Dg_ = dim coker Dg_ =1 = period-doubling.

All other walls have codimension > 2.

Final remark:

O

In the Hamiltonian case, orbits are critical points of an action functional
= linearizations are self-adjoint. This changes codim M?({(,}; k,¢c) so

that complex-type representations also play a role.
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