ABSTRACT. The goal of these notes is to establish the basic properties of a sufficiently wide
range of function spaces so as to have a wealth of interesting examples on hand for results in
abstract functional analysis. The reader is assumed to be familiar with the essentials of measure
theory (including dominated convergence and Fubini’s theorem, the change of variables formula,
the definition and completeness of the LP-spaces, the Holder and Minkowski inequalities), and
some basic facts about Banach and Hilbert spaces and bounded linear operators (e.g. the fact
that dual spaces of Banach spaces are also Banach spaces, but not any of the deeper results
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such as the Baire category or open mapping theorem).
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0. PRELIMINARIES

0.1. Integrals of vector-valued functions. In most of the following, we choose a field K to
be either R or C and consider functions with values in a fixed finite-dimensional inner product
space (V,{, )) over K, with norm denoted by

|'|:: \/<'7'>'
The discussion of Fourier analysis starting in §7 will require choosing K = C, but in most
other places, the differences between the real and complex cases will be negligible, e.g. we will
sometimes need to use the relation
|2

+w,v+ w) = |v]? + 2Relv, w) + |w|?,

which is true in both cases, the difference being only that in the real case, the symbol “Re”
is redundant. We adopt the convention that a complex inner product is antilinear in its first
argument and linear in its second:

(v, wy = —i{v, w), (v iw)y = i{v, w).

We will sometimes make use of the fact that a complex vector space is also a real vector space
(of twice the dimension).

Convention. By the standard definition, a measure space (X, A, 1) consists of three pieces
of data: a set X, a o-algebra A < 2% and a measure p : A — [0,00]. Since we will almost never
have occasion to talk about the o-algebra itself, we shall typically omit it from the notation
and simply call (X, p) a measure space, referring when necessary to the elements of A as the
measurable (or y-measurable) sets.

Given a measure space (X, u), a function f: X — V is considered measurable if it is Borel
measurable, meaning the preimage of every open subset of V is py-measurable in X. It is easy
to show that if we choose any real basis e1,...,e, of V and write f = Z?=1 fje; for functions
fj + X = R, then f is measurable if and only if all of the f; are measurable. Similarly, if f is
measurable then |f|: X — [0,00) is also measurable, and in this case the component functions
[; are p-integrable if and only if {, | f|du < co. One can then define the vector-valued integral

(0.1 Lfdu=i(jxfjdu) ejeV.

We will sometimes also write §y f(z) du(z) := {y f dp when we want to specify the name of the
variable x € X.

Exercise 0.1. Show that for p-integrable functions f : X — V, the integral SX fdu eV defined
above is independent of the choice of real basis e,...,e, € V.

Sx fdu| < Sy 1f|dp

The simplest example beyond V' = R is V' = C with the standard inner product (v, w) := vw.
Here we can take e; := 1 and e := i as a real basis of C, so f : X — C is measurable/integrable
if and only if its real and imaginary parts are both measurable/integrable, and (0.1I)) becomes

Lfdu = L(Ref) dp +¢L(Imf) dp e C.

Exercise 0.2. Show that for every p-integrable function f: X — V|,

Remark 0.3. The assumption dim V' < o0 is inessential for much of what follows, though ob-
viously the definition of SX fdu € V requires some modification if V' has no finite basis. A
definition (using approximation by step functions) for the case where V' is an arbitrary Banach
space may be found in [Lan93]. Since many details become more complicated in this more gen-
eral setting, we will stick to the case dim V' < oo but give occasional remarks on what needs to
be modified in order to lift this assumption.
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0.2. Differentiation under the integral sign. The following standard consequence of the
dominated convergence theorem will be an essential tool to have at our disposal.

Theorem 0.4. Suppose (Y,v) is a measure space, M is a metric space, and ¢ : M xY — V is
a function with the following properties:

(1) For every x € M, the function p(z,-) : Y — V is measurable and satisfies |p(z,-)| < 1
for some fized v-integrable function ¢ : Y — [0,00] independent of x;
(2) For every y €Y, the function o(-,y) : M — V is continuous.
Then the function F': M — V' given by

Fz) = L o, ) dv

is continuous. If additionally M is an open subset of R™ with coordinates x = (x1,...,%m) and
the partial derivatives 6%% M xY — V exist for every j = 1,...,m and also satisfy the two
conditions above, then F is continuously differentiable and satisfies
0p
0iF(x) =] —(x,")dv
J Y ax]

foreveryxe M and j=1,...,m.

Proof. To prove F' : M — V is continuous at a point x € M, consider a sequence x, € M
with x,, — x. Since ¢(-,y) : M — V is continuous for every y € Y, the sequence of functions
o(zn, ) : Y — R converges pointwise to p(z,-) : Y — R, and by assumption it also satisfies

(p(2n, )| < for all n
for a fixed v-integrable function ¢ : Y — [0,00]. The dominated convergence theorem thus
implies F'(x,) — F(z).
Now suppose additionally that M = U < R™ is open and %(m, y) exists for all (z,y) eU xY

and defines a function that is (for each fixed y € Y) continuous with respect to x € U and
(for each fixed x € U) measurable with respect to y € Y, additionally satisfying the bound

i‘&(m, )‘ < @ for all x € U. Let eyq,...,en, denote the standard basis of R". The partial

6:):j

derivative %(m, y) is then the limit as h — 0 of the difference quotients
J

h L go(:c+hej,y)—g0(x,y)
where for each = € U, the function D;‘go(:c, ) 1Y — V is defined for all h € R\{0} sufficiently

close to 0. For any sequence h,, € R\{0} with h,, — 0, we therefore have
Op

(0.2) D?"go(:c, ) - a—(:ﬂ, ) pointwise on Y.
Zj

ev,

For every y € Y and h € R sufficiently close to 0, the fact that (-, y) is continuously differentiable
with respect to x; allows us to derive a formula for D?go(:v, y) using the fundamental theorem
of calculus: we have

1 1 agp

d
(@ + hej,y) =s0(:v,y)+J —¢($+th€j,y)dt=¢(x’y)+hf o, (" thea )t
o dt 0 0%;

and thus

0
(0.3) D;Lgp(x, y) = L a—;:](:c + thej,y) dt,

1

giving rise to the bound
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Since 1 is integrable, one can again apply the dominated convergence theorem and obtain a
convergence result for the corresponding difference quotients of F': for any sequence h,, € R\{0}
with h, — 0, we have

D" F(x) := F(@ + huey) = F(@) f Dh” Ydv — J
J hy, émj
Since the sequence h,, was arbitrary, this proves
oF o
= lim DI'F )d
636]() 7o (z) = émj(’)y’
and the continuity of g% now follows from the same argument as the continuity of F. O

Remark 0.5. The hypotheses of Theorem [0.4] can be weakened (at the cost of more cumbersome
notation) in various ways that are sometimes useful. Most importantly, since the continuity and
(;?T“‘;(x, )‘ < do
not really need to hold with a single function ¢ for every x € M; it suffices if every zg € M has
a neighborhood & — M and an associated integrable function ¢, : ¥ — [0,00] that bounds
these functions for all x € Y. One can also insert the words “almost everywhere” in various
places among the hypotheses, so that certain steps in the proof make sense only after deleting

sets of measure zero from Y, which is harmless. For more elaborate versions of the statement,
see e.g. [AEOLl Theorems 3.17 and 3.18]) or [Wenl9)].

differentiability of F are purely local conditions, the bounds |¢(z, )| <

0.3. Some standard function spaces. We shall assume basic knowledge of the spaces of LP-
functions on measure spaces and C"-functions on domains in Euclidean space. Let us clarify
the essential definitions.

Assume (X, p) is an arbitrary measure space, and (V,(, )) is again a finite-dimensional inner
product space over K € {R,C} with norm |- | := 4/{-,-). The LP-norm of a measurable function
f: X — V is defined for each p € [1,00) by

1/p
e = 1l = ( [ If(:v)l”du(w)) e [0, 0],

and for the case p = o0,
I £l == | f e x) = esssup,ex |f(2)] :=inf {¢ = 0 | [f| < ¢ almost everywhere} € [0, o0].

We assume the reader is familiar with the standard Minkowski and Holder inequalities, and
the fact that the space LP(X, i) of equivalence classes of measurable functions (defined almost
everywhere) with finite LP-norms is a Banach space. We will typically abbreviate

LP(X) := LP(X, p)

when the measure is clear from context. Here is a precise statement of the completeness theorem:

Theorem 0.6 (see e.g. [Sall6l §4.2]). For 1 < p < oo, every LP-Cauchy sequence f, € LP(X) is
LP-convergent and also has a pointwise almost everywhere convergent subsequence. In the case
p = o0, the original sequence also converges pointwise almost everywhere. O

The usual Hoélder inequality for real-valued functions combines with the Cauchy-Schwarz
inequality on (V,{, ») and Exercise to give the relation

) dpz j|<f o)) du(@) < |f 1o - lglloo

for fe LP(X) andgeLq( ) with 5+5 =1

Exercise 0.7. In case you have only seen LP(X) defined for real-valued functions before, con-
vince yourself that the proof of Theorem [0.0] still goes through when the functions in LP(X) take
values in an arbitrary (real or complex) finite-dimensional vector space.
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Exercise 0.8. Show that for every measurable function f: X — V, | f|r» < liminf, o | f]Le,
and if additionally either u(X) < o or f € L"(X) for some r € [1,00), then |f|r> =
limy oo 1.

Hint: For the case with f € L"(X) for some r < o0, show that |f|rr < Hf”Z/r : ||f\|};;r/p holds
for every p > r. (Note that this is not a version of Hélder’s inequality—it is easier.) Use this to
bound lim sup,, , || f| e

When X is an open subset of Euclidean space
X:=QcR" with u := m (Lebesgue measure),

it is often useful to consider functions that need not be in LP(2) but restrict to LP-functions
on all compact subsets. Since compact subsets of R™ are bounded and therefore have finite
measure, this includes for instance the nontrivial constant functions, which are not in LP(2)
unless m(€2) < oo. We define the vector space

LY () :={f: Q> V| flx € LP(K) for all K < Q compact} / ~,

loc

where as usual the equivalence relation f ~ g means f = ¢ almost everywhere on 2. The
functions in Lfoc(Q) are said to be locally of class LP, and in the case p = 1, a function
f €Ll .(Q) is called locally integrable on €. The space L} () is strictly larger than LP(£2),
and it is not a Banach space since there is no single norm to determine whether or not a given
function is of class L{’OC. It does however have a natural topology as a locally convex space,
defined via the family of seminorms

(0.4) I F ey = 115l o s

where K ranges over the set of all compact subsets K < ). Note that these are seminorms rather
than norms, because a function f € L} () may be nontrivial but satisfy | f|.»(x) = 0 because
it vanishes almost everywhere on K. Convergence of a sequence f; — f in L{’OC(Q) means that
If = filze(xy — O is satisfied for all of these seminorms, which is equivalent to saying that the
restrictions of f; to every compact subset K < 2 are convergent in LP(K) to f|k.

It is possible to derive the topology of L} (€2) from a countable subfamily of the seminorms
in (0.4). Indeed, © can always be covered by a nested sequence

QHccHcQQHcQhc...c UQm:Q

meN

of open subsets Q,, = Q with compact closures K,, := ,,, so that any compact subset K <
is contained in €2, for m € N sufficiently large. For a concrete construction of €2,,, one can
for instance define Q,, := {x €N ‘ |z| < m and dist(z, R™"\Q) > 1/m}, where for two subsets
A, B c R", we denote
dist(A4, B) := inf {|z — y| ‘ zeA, yeB}.

A sequence f; € LT (Q) is then L{, -convergent if and only if it converges in each of the semi-
norms || - | zr(k,,) for m € N, and similarly, every open subset of Lj () is a union of sets of
the form {f e LI (Q) | | f - Jollr (i) < e} for fo € LY, (Q), m € N and € > 0. It follows (see
e.g. [RS80, Theorem V.5]) that Li, () is metrizable, with open subsets defined via the metric
o 1
d(f,9) = ),

m=1

1 = gleran
2 1+ | f = gllr (k)

In fact, L{’OC(Q) is a Fréchet space: completeness follows from the completeness of the Banach
space LP(K,) for every m, as a sequence f; € LV () is Cauchy if and only if f;|x,, is Cauchy
in LP(K,,) for every m.

Continuing under the assumption that {2 € R™ is an open subset, we shall denote

C™(Q) :={f: Q - V m times continuously differentiable}
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for integers m > 0. This is not a Banach space, but it can be made into one by imposing an
extra boundedness condition. To express this properly, recall that a multi-index for functions
on R™ is an n-tuple o = (a7, ..., a,) of nonnegative integers, which can be used to define the
differential operator

0
0% =t .. o, where 0; ::%forjzl,...,n.
J
The order of this operator (also called the order or degree of the multi-index) is |a] := a1 +

...+ a,. We now define the C"-norm by
[flem = flem@ == ), sup|e*f(z),

|a|<m TeN

and let

(@) = {f € C™(@) | [fllem < 0}
Convergence of a sequence f; in the C"-norm means uniform convergence of f; and all its
derivatives up to order m. By standard results of first-year analysis, C}"(€2) with this norm is a
Banach space for every integer m > 0. A useful subspace of C}"(£2) can be defined byﬂ

C™(Q) :={f e Cy*(Q) | *f is uniformly continuous for all multi-indices @ with |a| < m}.
The following exercise explains the motivation for this notation.

Exercise 0.9. Let Q c R™ denote the closure of the open subset Q  R™.

(a) Show that if f : Q@ — R is uniformly continuous, then it admits a (necessarily unique)
continuous extension over 2. (Note that the converse is also true if €2 is bounded, since
continuous functions on compact sets are always uniformly continuous.)

(b) Show that C™(£) is a closed subspace of C}"(€2), hence it is a Banach space with the
C™-norm.

In particular, C™(€2) can be characterized as the space of C™-functions on €2 whose derivatives
up to order m all admit bounded continuous extensions to (2. (The word “bounded” is redundant
here if  itself is bounded, since €2 is then compact.

For smooth (i.e. infinitely differentiable) functions, we define

C*@) =[] C™Q), PO =[] GO,
m=0 m=0
and endow the latter with the locally convex topology defined via the entire sequence of norms
| -llem for m > 0, hence a sequence f; € C;°(£2) is C®-convergent if and only if its derivatives of
all orders are uniformly convergent. One could similarly define C*(Q), but this turns out to be
the same space as Cy°(2) since the boundedness of the derivatives of order m +1 implies uniform
continuity for derivatives of order m. Since the family of C™-norms for m > 0 is countable,
one can define a metric on C;°(2) in the same manner that we did so for L (), and the
completeness of C7*(2) for each m > 0 implies that Cy°(Q) is a Fréchet space.

The C™-topologies also have local variants, which are defined on C"™(2) without requiring any
boundedness condition: we say that a sequence f; € C"™ () is C|".-convergent to f € C"™(12)
if

If = Fillomey = D) max[o®f(x) — 0% fi(x)] — 0
|| <m
for every compact subset K < Q. As with L? (), one can use an exhaustion of 2 by a nested
sequence of open subsets with compact closure to characterize this notion of convergence via

IThere is potential ambiguity in the notation when € = R™ since R” is its own closure, but C™(R") is
nonetheless a smaller space than C™ (R"™).

21t Qis compact and has a sufficiently “nice” boundary, meaning for instance that the boundary is a C"™-smooth
submanifold of R”, then one can show with somewhat more effort that C™ (Q) is the space of C™-functions on
that admit extensions of class C™ over some open neighborhood of Q; for details, see [AF03] §5.19-§5.21].
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a countable family of seminorms, making C™(2) into a Fréchet space with the C}" -topology.
There is similarly a C{% -topology on C*(2), in which sequences converge if and only if their
derivatives of all orders converge on compact subsets, and this endows C'*(Q2) with a natural
Fréchet space structure. Note that for each m € N U {0, 00}, C|"" -convergence is a much weaker
notion than C™-convergence, i.e. many sequences converge in CJ7' but not in C'™, and the
behavior of a C|” -convergent sequence “near infinity” can be arbitrarily wild.

The support supp(f) < Q of a function f : Q — V is the closure of the set {x € Q| f(x) # 0}.
We will denote

CPH () == {f € C™(Q) | supp(Q) < Q is compact} .

This is a subspace of both of the Banach spaces CJ*(Q2) and C™(f2), though not a closed subspace
in either case, as a sequence of functions with growing compact supports can easily be C™-
convergent to one whose support is not compact.
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1. UNIFORM CONVEXITY

1.1. Convexity in Banach spaces. A subset K in a vector space X is called convex if K
contains the line segment joining any two of its points (see Figure [I), i.e.

z,ye K = tr+(1—t)ye K for every t € [0,1].

Similarly, a function f : K — R on a convex set K < X is called convex if for every pair of
points in its domain, the values of f along the line segment between those points are bounded by
the corresponding “convex combinations” of its values at the end points (Figure 2]); concretely,

(1.1) Vz,y e K and t € [0,1], flz+ (1 —=t)y) <tf(z)+ (1 —=1t)f(y).

It is straightforward to show that if f is convex, then f~!((—c0,a)) and f~!((—o0, a]) are convex
subsets for every a € R. We say additionally that f is strictly convex if the inequality in (I.])
is strict for all ¢ € (0,1) whenever x # y.

Example 1.1. By a standard exercise in first-year analysis, if / < R" is an open convex set,
then a C?-function f : U — R is convex (or strictly convex) if and only if its Hessian at every
point is positive semidefinite (or positive definite, respectively).

08P

FiGURE 1. The two sets on the left are convex, while the set on the right is not.
The set in the middle is convex but not strictly convexz, i.e. it contains a segment
connecting boundary points that does not stay in the interior. In particular, if
this set occurs as the closed unit ball in some normed vector space, it implies
that that space is not strictly (and therefore not uniformly) convex.

x te + (1|—t)y y
S

-tf (@) + (1 =) f(y)

FiGURE 2. The function f : R — R on the left is convex, and the function on
the right is not.
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Example 1.2. For any normed vector space (X, |-]) and zg € X, the triangle inequality implies
that the function X — [0,90) : z — |z — x| is convex. As a consequence, (closed or open)
balls about points in a normed vector space are always convex sets. This remains true if the
norm is replaced by a seminorm, and is the reason why a topological vector space with topology
generated by a family of seminorms is called a locally convex space.

Strict and uniform convexity are geometric properties of normed vector spaces that strengthen
the observation in Example about balls B © X being convex—the idea is to require that the
segment joining any two points in the ball stays in the interior of the ball. This is a nontrivial
condition on the “shape” of the unit ball as determined by the norm, and it is not satisfied by
every norm (see Exercise below). In the following, we denote the closed unit ball and unit
sphere in a normed vector space (X, | - |) by

B:={zeX||z| <1}, and 0B:={reX||z|=1}
respectively, and denote the distance between two subsets U,V < X by
dist(U,V) :=inf {||lx —y| | x €U, x € V}.
Definition 1.3. A normed vector space (X, | - |) is called strictly convex if
rye Bwithz #y = tz+(1-t)ye B\0B Vte (0,1).

The middle picture in Figure [[] gives an example of something one might imagine the unit ball
looking like in a normed vector space that is not strictly convex. The next definition amounts
to a quantitative version of strict convexity, in which the distance of the midpoint between x
and y to the boundary cannot become arbitrarily small unless x and y are close.

Definition 1.4. A normed vector space (X, | -|) is called uniformly convex if for every € > 0,
there exists 0 > 0 such that

z,y € B with [z —y| > ¢ = dist <xT+y,6E) > 4.

Observe that every uniformly convex space is clearly also strictly convex.

Remark 1.5. The definition of uniform convexity appears in many references with a weaker
condition on x and y, namely that they lie in B instead of B. The resulting notion is equivalent
to our definition; for a proof of this, see [Tes, Lemma 5.20]. This detail will not concern us since,
for all uniformly convex spaces that we actually encounter, the apparently stronger condition is
not any more difficult to prove than the weaker one. On the other hand, our main application
of uniform convexity, Theorem [[.8 below, only uses the weaker condition.

Exercise 1.6. For vectors = (x1,...,2,) in R™, consider the norms
n 1/17
|z|, = (2 xf) for 1 <p < o, || := max{|x1|,...,|znl}
j=1

(a) Show (by drawing pictures of the unit ball) that (R™,|-|;) and (R™,|-|s) are not strictly
convex.

(b) Show that the spaces of real-valued functions of class L' or L® on any measure space
are not strictly convex. (Note that this implies part (a) if you take the measure space
to be {1,...,n} with the counting measure.)

We will see in §2.3] that all LP-spaces for 1 < p < o0 are uniformly convex; this of course
includes the examples (R”, |- |,) defined in Exercise Notice that uniform convexity is not a
property of the equivalence class of a norm but rather of the norm itself—indeed, all norms on
R™ are equivalent, but some are uniformly convex and some are not.

Proposition 1.7. Every inner product space (X,{-,+)) is uniformly convez.
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FiGURE 3. The geometric setup behind the proof of Theorem [L.8

Proof. Denoting the norm by | - | := 1/{,-), a straightforward computation yields the paral-
lelogram identity,

(1.2) lo+wl® + o —wl* = 2o + 2[w|*  Vv,we X,

which for |v|| <1 and ||w| < 1 implies the relation

2
v+w

2

1
Jlo—wl? <1-

This gives a concrete upper bound on |v—w| in terms of the distance from 5% to the boundary
of the unit ball. O

The following theorem on uniformly convex Banach spaces is a useful source of existence
results, and will play a key role in characterzing the duals of Hilbert spaces and LP-spaces.

Theorem 1.8. Assume (X, ||-|) is a uniformly convex Banach space, K < X is a closed convex
subset and x € X\K. Then the function K — (0,0) : k — |k — x| attains a unique global
mINIMum.

If dim X < oo, then Theorem [L§] follows easily from the fact that since closed and bounded
subsets of X are compact, K — (0,00) : k — |k — z| is a proper function: one only has to take
a sequence k, € K with |k, — z| — inf{|k — z| | k¥ € K} and use compactness to extract a
convergent subsequence, whose limit is the desired minimum. This argument completely falls
apart if dim X = oo, because closed bounded subsets are no longer compact. One must instead
appeal to the completeness of X, using the idea represented in Figure B suppose ky, k,, € K
both have distances to x that are close to the infimum. After rescaling the whole picture, we can
assume without loss of generality that k, —x and k,, — z are both in the unit ball, in which case

so is the midpoint (knfx)j;(kmfx) = k";km — x, where % also lies in K since K is convex.

‘kn+km
2

— 2| cannot be that much smaller than |k, — z| and |kn, — |, since
kntkm
2

By assumption, ‘
both of the latter were already close to the infimum, hence — x cannot be too far away
from the boundary of the unit ball. But in that case, uniform convexity implies that k, — x
and k,, — x must be close, or equivalently, k,, and k,, must be close. We will use a version of
this argument in the following to show that k, is a Cauchy sequence, and thus converges to an
element that attains the minimum.
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Proof of Theorem I8 Let I := inf{|k —z| | k € K}, choose a sequence k, € K with I, :=
|kn, — 2| — I, and let

which defines a sequence in the unit sphere of X. If ¢ > 0 is given, we can choose N € N such

that I, < I+ ¢ for all n = N. For any m,n > N, the fact that K is convex implies % € K,

thus it satisfies

(km — ) + (kp — @)
2

2

km + kn
gt

which implies

€
=1 T
Since the latter can be made arbitrarily close to 1 by choosing € > 0 small, uniform convexity now
implies that ||z, — 2z, || can be assumed arbitrarily small for N large, so z, is a Cauchy sequence
and therefore converges to some z € X. It follows that k, converges to ko := = + Iz4, and
since K is a closed set, ko € K. Clearly ||z — kool = 1.

The uniqueness of the minimum follows almost immediately since, if kg, k1 € K are two
minimums, then the argument above shows that kg, k1, ko, k1, . . . is a Cauchy sequence, implying

ko = k. O

Zm T+ Zn

1 (K — fen — I—1, I—1,
: ( z) + (kn =) N

7 2 of m T Top *n

1.2. Orthogonal complements in Hilbert space. Our first concrete application of uniform
convexity is to prove a fundamental geometric fact about Hilbert spaces. Assume in this section
that (H,(, ») is a Hilbert space over K € {R, C}, and denote its norm by || - | := 4/{:, ).

Given a linear subspace V < H, the orthogonal complement of V is defined as

vi= {reH | (z,v)y=0forallveV}.

Theorem 1.9. If V is a closed linear subspace of the Hilbert space H, then every x € H can be
written as v + w for unique elements v eV and w € V; symbolically, we write

H=VaV,

Theorem [L.9 is a classic example of a result that is very familiar in finite dimensions and
sounds obvious, but is actually quite nontrivial in the general case. In particular, it depends in
essential ways on the completeness of H and the assumption that V' < H is closed. To see the
latter, recall that while many functions f : R® — V of class L? are not continuous, the space of
continuous functions of class L? is dense in the Hilbert space L?(R"); we will review this fact
in §8l One can therefore use the Cauchy-Schwarz inequality to argue that if g is any function
L?-orthogonal to every continuous function in L%(R"), then g is in fact orthogonal to everything
in L?(R"), implying g = 0. In other words, C°(R") n L%(R") is a proper subspace of L?(R")
whose orthogonal complement is the trivial subspace, thus not every L?-function can be written
as the sum of one that is continuous plus one that is orthogonal to the continuous functions.
Viewing C°(R") n L2(R") itself as an inner product space with the L?-inner product, one can
also find closed proper subspaces of C°(R") n L?(R") whose orthogonal complements are trivial,
showing that the completeness of H is also an indispensable assumption.

Proof of Theorem [1.d. The uniqueness of the decomposition z = v+w withv e V and w e V> is
immediate from the nondegeneracy of the inner product: if it were not unique, then two distinct
decompositions z = v+w = v/ +w’ would give rise to a nontrivial vector v—v' = w'—w e VAV,
which is impossible since every nonzero y € V' satisfies (y, y) > 0.

For existence, observe that there is nothing to prove if z € V, so assume x € H\V. Since
‘H is a complete inner product space, Proposition [T implies that it is also a uniformly convex
Banach space; moreover, the subspace V. < H is a convex set that is closed by assumption.
Theorem [L8 thus implies the existence of an element v € V' that is nearest to z, and we claim
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that w := 2 — v then lies in V*. Indeed, for any h € V, the fact that |z —v|? = (x — v,z — v)
minimizes the distance from z to V implies

d d
= —(x — (v+th),z — (v+th)) = —(w — th,w — th)
=0 dt = At t=0

d

— (||w\|2 — 2t Rew, h)y + tthHQ) = —2Re{w, h),

dt =0

where the symbol “Re” is redundant in the case K = R, and the result is then simply (w, h) = 0.
In the complex case, we can plug in ¢h € V instead of h, so that the same computation also gives

0 = —2Re{w,ih) = —2Re (iw, h)) = 2Im{w, h),

and the conclusion is again (w,h) = 0 for all h € V, as claimed. O

d
0= <o —(v+th)

Recall that the dual space H* of H is the space of all bounded linear functionals A : H — K,
endowed with the operator norm
Av
INE
ver\foy IVl
The Cauchy-Schwarz inequality |[(v,w)| < |v| - |w| implies that every v € H gives rise to a

bounded linear functional A, : H — K defined by A,(x) := {(v,z), which satisfies |A,| = |v|
Ay ()

[=] . o o
that are often called the Riesz representation theorem, all of which give concrete characterizations
of the dual spaces of certain classes of Banach spaces. Its content in the present setting is that

all bounded linear functionals on H are of the type described above.

since the maximum of is attained by x := v. The following is one of at least three results

Theorem 1.10 (Riesz representation theorem for Hilbert spaces). The real-lineaBl map H —
H* i v Ay :=v,-) is a bijection.

Proof. The injectivity of the map H — H* : v — A, = (v, ) is clear since A,(v) = |v|? > 0
for all v # 0. The main step is thus to prove surjectivity, i.e. given any A € H*, we need to
find v € H such that (v, ) = A. The idea is to look for v in the orthogonal complement of the
subspace
K :=kerA cH.
The latter is a closed subspace since, by the continuity of A, any convergent sequence z,, — x
in H with A(z,) = 0 for all n implies A(x) = 0. Since the problem is trivial if A = 0, suppose
there exists x € H with A(z) # 0, and after multiplication with a scalar, assume without loss of
generality A(x) = 1. By Theorem [[L9, we can write x = k + w for unique elements k& € K and
w e K+, which satisfy A(w) = A(k) + A(w) = A(k +w) = A(z) = 1. We claim that
w
v W eH

is the element we are looking for. Indeed, (v,k) =0 = A(k) =0 for all k € K, and (v,w) =1 =
A(w), so the result now follows from the purely algebraic observation that K is a subspace of
codimension 1 which does not contain w, implying that every x € H can be written uniquely as
cw + k for some ce K and k € K. O

3Due to the conventions of complex inner product spaces, the map H — H* : v — A, in the case K = C is not
complex linear, but is instead complex antilinear.
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2. DUALITY IN LP-SPACES

2.1. The pairing of LP and L. For this section, assume (X,u) is an arbitrary measure
space, and (V,{, )) is (as in §0]) a finite-dimensional inner product space over K € {R, C} with
norm |- | := 4/(-,-). Our aim is to prove a characterization of the space (LP(X))* of bounded
linear functionals LP(X) — K which, like Theorem [[I0] is also sometimes called the Riesz
representation theorem. To prepare the statement, notice that whenever 1 < p,q < o with
% + % = 1, Holder’s inequality gives rise to a real-linear map

(2.1) LX) = (PX0) 59 = Ay = [ .

satisfying [|Agll(zryx < [g]Le, where | - [(zpyx denotes the operator norm on bounded linear
operators LP(X) — K.

Lemma 2.1. Assume 1 < p,q < o0, %+% = 1 and, additionally, either p < o0 or X is J—ﬁm'teE
Then for every f € LP(X),
(g, frdp
up Loy
gera(x)\{oy  ll9lza

and the ratio on the left hand side attains its maximum in the case p < 0.

Proof. Holder’s inequality implies that the ratio in question can never be greater than | f]z».
There is nothing to prove if f = 0, so assume f € LP(X) is nontrivial. If p < o0, we define
g: X — V by g:=|f|P~2f at points where f # 0 and ¢ := 0 otherwise. Then g satisfies |g| = 1
almost everywhere if p = 1, and in the other cases, |g|? = |f|2®=D = |f|P, thus g € LI(X) and

f 9, f)dp = f P dn =18, = (1) 7 11 = (91827 - 1f 1w = lglzs - 1Flee,
X X

so this choice of g € L9(X) maximizes the ratio in question.

In the case p = o0 and ¢ = 1, we argue by contradiction and suppose that |f||z= is strictly
greater than the supremum of |§, (g, f>dp|/||gllz1 over all g € L'(X)\{0}. Then there exists a
constant ¢ strictly greater than this supremum such that the set A’ := {x € X | |f(z)| = ¢} has
positive measure. Assuming X is o-finite, there also exists a subset A ¢ A’ with 0 < p(A) < o,
and the function g defined as f/|f| on A and 0 everywhere else is then in L'(X), with ||g]|;: =
u(A). Since |f| = ¢ > [§ (g, f)du| /gl on A, we now find the contradiction,

[ anad =] 19140z c=tals > |[ @i

0

Corollary 2.2. For every 1 < p,q < o0 with % +% =1, if either p > 1 or X is o-finite, then the
bounded real-linear map 1)) is injective and satisfies |Ag| 1y = ||gllza for all g e LY(X). O

Exercise 2.3. Show that for any f € L®(X) satisfying |f| < |f|lz» almost everywhere, the
inequality |§y<g, f)dp| < |gllzs - | f o= is strict for every g € L*(X)\{0}.

Here is the hard part:
Theorem 2.4 (Riesz representation theorem for LP). The map 2.1)) is bijective for all 1 <
P, q < oo with % —I—% =1, and also for p =1 and q = © if X is o-finite.

4Certain measure-theoretic pathologies can arise in the case p = 00 that are excluded if we assume X is o-finite.
This is not the most general assumption possible, but it suffices for all applications we will want to consider. For
more general versions of the results in this section involving duality between L'(X) and L*(X), see [Sall6] §4.5].



LEBESGUE, FOURIER AND SOBOLEV 15

Remark 2.5. In the case K = C, the map LY(X) — (LP(X))* in (2. is complex antilinear and
thus is not, strictly speaking, an isomorphism of complex Banach spaces. However, one can also
define a space (LP(X))’ consisting of all bounded complex-antilinear functionals A : LP(X) — C
and consider a complex-linear map defined by

(2.2) LY(X) — (LP(X)) : g — A'g = L(<-,g>du.

It is an easy exercise to check that this map is bijective whenever (2.]]) is, so under the same
hypotheses as Theorem [2.4], it is a complex Banach space isomorphism.

The proof of Theorem 2.4] given below follows the same strategy as our proof of the corre-
sponding statement about Hilbert spaces in Theorem [[LT0l The crucial idea in the latter was
that given a nontrivial dual vector A € H* for a Hilbert space H, the right place to search for
elements x with A = (z,-) is in the orthogonal complement of the closed hyperplane ker A ¢ H.
While the notion of orthogonality does not make sense in LP(X) for p # 2, Holder’s inequality
furnishes us with a reasonable substitute in the form of the natural pairing of LP with L9 for

% + % = 1; informally, we can thus regard the orthogonal complement of a subspace in LP(X)

as a subspace of L4(X). With this notion in mind, the main task is then to prove, as we did
for Hilbert spaces in §I.2] that a proper closed subspace K < LP(X) always has a nontrivial
orthogonal complement. Our proof of this in the Hilbert space setting required two fundamental
ingredients:

(1) The uniform convexity of every Hilbert space H;

(2) The differentiability of the function t — ||z + tv[? for any z,v € H.

Both were easy to prove using the characterization of the Hilbert space norm via an inner
product, but since the latter is not available in LP(X) for p # 2, we will have to work a bit
harder.

Recall that every Banach space (F, | - |) has a canonical continuous inclusion into the dual of
its dual space, defined by

¢ FE— E*, ®(v)A := A(v) forve E, A € E*.

The injectivity of this map for general Banach spaces is not so obvious, though for F = LP(X)
with p < oo, it is an easy consequence of the following corollary of Lemma 2l Outside of these
special cases, it follows immediately from the Hahn-Banach theorem (see [RS80, §I11.3]), whose
standard proof uses the axiom of choice.

Lemma 2.6. For every normed vector space (E, |- |) and every x € E, there exists a dual vector
A e E* with |A] =1 and A(x) = |z].

Proof for E = LP(X) with p < 00. Given f e LP(X), choose A := A, € (LP(X))* for g € LI(X)
as in Lemma 2] then normalize g. O

Corollary 2.7. For every Banach space (E, |-|), the canonical map ® : E — E** is an injective
isometry, i.e. it satisfies |®(z)| = |z| for every x € E. O

One calls (E,| - ||) reflexive if the inclusion ® : E < E** is also surjective. For F = LP(X)
with 1 < p < o and % + % = 1, Theorem [2.4] identifies E* with L?(X) and then identifies
E** in turn with LP(X), so that under these identifications, ® : E — E** becomes a map
LP(X) — LP(X) uniquely determined byl

| @.ppau=| rpan oran gerix)
X X

50One needs to be a bit careful with this argumentation in the case K = C, because the bijection E* =~ LI(X) is
then complex antilinear rather than linear, so substituting L(X) for E* identifies E** with the space (L4(X))’
of bounded complex-antilinear maps L4(X) — C instead of the actual dual space of L?(X). As mentioned in
Remark [Z5] however, the Riesz representation identifies the latter complex-linearly with LP(X).
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This implies that §,(®(f) — f,g)du vanishes for all g € L(X), proving that the function
O(f) — f € LP(X) is identified with the trivial element of (L%(X))*, which makes ® : LP(X) —
LP(X) the identity map.

Corollary 2.8. For 1 <p < o, LP(X) is reflexive. O

Remark 2.9. Reflexivity is in fact a general property of uniformly convex Banach spaces, by the
Milman-Pettis theorem; see e.g. [RS80, Problem V.15].

Theorem [2.4] is false for p = o0 and ¢ = 1; the dual of L®(X) is generally a larger space
than can be described via such a pairing. One can see this by comparing Lemma with
Exercise 223} there exist nontrivial functions f € L*(X) for which an element A € (L*(X))*
with |Af ey = 1 satisfying [A(f)| = ||f]r~ must exist, but the strictness of the inequality
in Exercise .3 implies that A cannot be represented by any function in L'(X )Jﬁ For more
counterexamples, see also [Rud87, Chapter 6, Exercise 13] or [Sall6, Example 4.36]. It follows
that L'(X) is not reflexive, and by the next exercise, neither is L®(X).

Exercise 2.10. For a Banach space E, let &g : £ < E** and ®g« : E* — E*** denote the
canonical inclusions, and denote by ®%, : E*** — E* the transpose of ®p.

(a) Show that ®%, o @+ is the identity map on E*.

(b) Show that the image of ®p is always a closed subspace of E**.

(c) Deduce that E* is reflexive if and only if E is reflexive.
Hint: Another easy consequence of the Hahn-Banach theorem is that if A : X —» Y
is a bounded linear operator between Banach spaces such that im A c Y is closed and
A* . Y* — X* is injective, then A is surjective.

2.2. Differentiability of the norm. Let us examine whether the function |f + tg|7, can be
differentiated with respect to t € R for f, g€ LP(X). Assume in the following

1 <p<oo.

For v,w € V and t € R with v + tw # 0, the differentiability of the function z — 22/ for z # 0
implies
d

d
Eh} + tw|? = E@ + tw, v + tw)P/?

(2:3) = %)(v +tw, v+ tw)2 L % (Jo]* + 2t Rev, w) + t*|w]?)

= plv + tw|P~2 (Redv, w) + t|w|2) = plv + tw|P~? - Re{v + tw, w).

Notice that by the Cauchy-Schwarz inequality on (V,{, )), the right hand side of this expression
satisfies

plv + tw|P~2 - Rew + tw,w>‘ < plv + twfP~ - Juwl,

whenever v + tw # 0. Since p > 1, one can therefore sensibly define the right hand side of (2.3))
to be 0 when v + tw = 0, and the relation remains correct since in this case

d
~ lslPup

= |w? lim — = 0.
@ |w lim

|slP _
-0 s B

%h} + twl? = %KU + tw) + swf?

s=0

6Quoting Lemma for L*”(X) means we are relying on the Hahn-Banach theorem, which is
inherently non-constructive, i.e. it guarantees the existence of an element in (L7(X))*\L'(X) as
an artefact of the axioms of set theory, but gives no hint how one could ever write one down.
In fact, all proofs that (L™(X))*\L'(X) # & are non-constructive in this sense.  Readers who
wish to explore this particular set-theoretic rabbit hole may consult [Sch99, Chapter 14]; see also
https://mathoverflow.net/questions/5351/whats-an-example-of-a-space-that-needs-the-hahn-banach-theorem.
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With this understood, for any given f,g € LP(X), differentiation under the integral sign now
suggests the formula

d » d » d »

N +tgle = — | |f(2) +tg(@)Pdu(e) = | —|f(z) +tg(x)] du(z)
(2.4) dt dt Jx x dt
= L plf(x) +tg(x) [P~ - Re(f (2) + tg(x), g(x)) dp(x),

where the same application of the Cauchy-Schwarz inequality interprets the integrand on the
right as 0 whenever f(x) + tg(z) = 0. Let us use Theorem to justify this formula at
t =0. Set (Y,v) := (X,u) and M := (—1,1) ¢ R and define ¢ : (—1,1) x X — V by
o(t,z) := |f(x) + tg(x)|P, so %‘f(t,x) is given by the integrand on the right hand side of (2.4)).
Both ¢ and %f are then continuous functions of t € (—1,1) for every fixed z € X. For every
fixed t € (—1,1), they also satisfy

(2.5) lp(t, 2)| < (If (@)] + |g(2)])?
and
(2.6) g_f(f,x)‘ <p(If @)+ lg@))P~ - g(@).

By Minkowski’s inequality,

L (@) +1g@)D? dula) = [1£1+1gl[7, < (flze + lg]ze)? < oo,

thus the right hand side of (2.5)) defines a p-integrable function on X. It follows in turn that
the function (|f] + [g])?~" is of class LP/(®"=1) on X, and since ijl + % = 1, Holder’s inequality
implies that the right hand side of (2.6 is also u-integrable. The hypotheses of Theorem [0.4]
are thus satisfied, and we conclude:

Lemma 2.11. For any f,g € LP(X) with 1 <p < o0, the function R — [0,00) : t — | f + tg|},
1s differentiable and satisfies

d _
%HertgH’ip =pf |fIP~% - Re(f, gy dpu.
t=0 X

O

2.3. Uniform convexity of LP. In order to prove that LP(X) is uniformly convex for 1 < p <
00, we begin with the observation that the function

VoR:ve |vf

is strictly convex for all p € (1,00). One can show this by computing that its Hessian is positive
definite everywhere outside of the origin; at the origin it may fail to have second derivatives,
but it is then easy enough to check the convexity condition along segments connecting 0 to any
other point. It follows that the function

v+wl?

2

[ol? + [wl?

(2.7) Y:VxVosR:(v,w)— 5

is nonnegative everywhere, and strictly positive whenever v # w. For any constant ¢ > 0, its
restriction to the compact subset

K .= {(U,’U))EVXV | |U—w|p26and |U|p+|w|p<1}
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therefore satisfies 1| > 0 for some constant ¢ > 01 Now if v,w € V are any elements with
v # w, set 7 := (|u|P + |wP)/? > 0, ' := v/7 and W' = w/T, so ||’ + |w'[P = 1, and the
condition [v" — w'|P = e is equivalent to |[v — w[P > erP. Under this condition, (v, w’) > ¢
becomes (v, w) = 6P, which proves:

Lemma 2.12. Given any p € (1,00) and € > 0, there exists § > 0 such that the function ¢ in

27) satisfies

v—wl” Ze(jol’ + wf’) = Y,w) 25 (P +wf)  Vo,weV.

Exercise 2.13. Extract from Lemma 212l a new proof that (V,{, )) is uniformly convex.
The uniform convexity of LP(X) is an easy application of the following estimate.

Theorem 2.14. Given anyp € (1,00) and e > 0, there exists § > 0 such that for all f,g € LP(X),

p

IfZe +lglze | f+9
2 2

Lz S [If =gl — e (I£1Z + lglZs)]-

Proof. Given f,g € LP(X) and € > 0, decompose X into the subsets
A={re X |[f(x) —g@) = e(|f(@)" +|g@)I")},  A°=X\A.

For x € A, we have ¥(f(z),g(z)) = do (|f(x)|P + |g(x)|P) for some constant dy > 0 provided by
Lemma Now using the fact that |f — g|P < e (|f|P + |g|P) on A¢, while ¢(f,g) = 0 and
‘%"’ - ‘f+(2*g) ‘p < o

hold everywhere, we estimate

b 1]

[ wtordn =0 [ P +19) o= o2 [ 15 g
p A A A

9o

- 5or (1 ol = [ 1 -gPan)

WV

”f“pj;p + Hngj;p _ f+yg
2 2

do
> \If =gl —e| (fIP+1g") dp
2p "
> 5o (1F = gl =< (1115, +9lf)
z 51 U =gl = e (If e + lglzs)) -
Set & := §o/2P~ 1. O
Corollary 2.15. For 1 <p < o, LP(X) is uniformly convez. O

Remark 2.16. The notion of uniform convexity and Corollary are originally due to Clarkson
[Cla36], and the literature contains many other proofs based on more powerful inequalities than
in Theorem 214} see for instance [LLO1, §2.5], which uses Hanner’s inequality. Our proof has
been adapted from [Shil§].

"Recall from Remark [033] that we are assuming dim V' < 00, and we are using that assumption here in order to
say that K is compact. However, if V' is an infinite-dimensional Hilbert space, then one can fix an orthonormal
basis, single out two basis vectors e1,e2 € V and then argue as follows: if (v,,wy) € K is a sequence such that
Y (vn,wn) — 0, then by choosing suitable new orthonormal bases for each n, we can transform each (v, wn)
by isometries of (V,{, ») (which leave both K and ¢ invariant) so that without loss of generality, each v, and
wy, lies in the span of e; and ez. It follows now that the sequence (v,,w,) lives in a compact subset of V', so
a subsequence converges to some (v,w) € K with 1 (v, w) = 0, which cannot exist. The estimate |k = § > 0
therefore also holds in this case.
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2.4. Proof of the representation theorem. As in the Hilbert space case, the idea for finding
a function g € LI(X) to represent any given A € (LP(X))* is to look for nontrivial functions
whose pairing with LP(X) annihilates ker A. We do this by finding the closest point in ker A to
some h € LP(X)\ ker A.

Proof of Theorem [27) for 1 < p < co. Assume p, q € (1, 0) with % —I—% = 1. Given A € (LP(X))*,
we need to find g € L9(X) such that § (g, f)du = A(f) for all f e LP(X). Assume A # 0 since
the problem is otherwise trivial, let K := ker A < LP(X) and choose h € LP(X)\K; after
multiplication by a scalar, we may assume A(h) = 1. Then K is a closed convex subset, and
since LP(X) is uniformly convex, Theorem [[.8 provides an element ky € K minimizing the
distance to h. For any k € K, Lemma [2.17] then gives

d
0= = (ko — tH)I%,

= | b= kol ReCh ~ o, Ky
t=0 X

where the integral on the right hand side is well defined due to Hélder’s inequality. The symbol
“Re” in this formula is redundant in the case K = R, while if K = C, replacing k € K with
ik € K in this relation shows that the same thing holds with the imaginary part instead of the
real part, implying that the function § := |h — ko[P~2(h — ko) satisfies

J(g,k}d,u=0 forall ke K.
X

Observe that since h — kg € LP(X) and || < |h—ko|P~1, § € LY(X). Now let g := ¢ € LI(X) for
a constant ¢ > 0 to be determined momentarily. The relation above implies {{g, f)du = A(f)
holds for all f € K, and moreover,

JX<9, h —koydp = CJX \h — ko[P~2(h — ko, h — koydp = c||h — ko[, > 0,

so the latter matches A(h — ko) = A(h) = 1 if we set ¢ := 1/|h — ko|%,. Clearly h — ko ¢ K, so
LP(X) is spanned by K and h — ko, thus we have proved that (g, f)du = A(f) holds for all
fe LP(X). 0

The case p = 1 is easily derived from the case p > 1 if X has finite measure, and we will then
use o-finiteness to extend to the case u(X) = 0o. We will need to know that L!-functions can
be approximated by LP-functions for p > 1.

Lemma 2.17. For every p € (1,0], LP(X) n LY(X) is dense in L'(X).
Proof. Given f € L'(X) and n € N, denote
Ay i={ze X ||f(z)] <n}

and define f,, : X — V as the product of f with the characteristic function of A,. Since
fe LY (X) and |f| > 1 on X\Aj, we have u(X\A4;) < SX\Al |fldp < Sy [fldp < o0, ie. X\A;

has finite measure. Clearly |f,| < n everywhere for each n € N, and since |f|P < |f| on Aj,
allyy = [ 5P dat [ 5P dn <o) + [ 1f]dp < P04 + 121 < o0
X\Al Al Al
so fn € LP(X) for all p. Since the intersection of the sets X\A,, for all n € N is empty, we find

||f—fn||u=f fldu—0 as n— o0,
X\

n

proving f, — f in L'(X). O

Proof of Theorem forp =1 and u(X) < 0. The advantage of having finite measure is that
for every p' > p > 1, L” (X) is contained in LP(X), and the inclusion LP'(X) < LP(X) is a
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continuous linear map. This follows from Hélder’s inequality, which for » > p with 1% +
gives
[ lee < WUz - 1 = O£ -
Now if A € (L'(X))*, then for f e LP(X) with 1 < p < o,
(2.8) IAH < WMoy - [z < pGOYE Ay - [ f 2o,
where ¢ € (1,00) is determined by % + % = 1. This means A also belongs to (LP(X))*, so by the

p > 1 case of Theorem [2.4], there exists a function g, € L9(X) such that A(f) = {{gp, f) du for

all f e LP(X). Notice that if p < p’ < 00, then g, € L7 (X) with I% + % =1, where ¢’ < ¢, thus

LP(X) c LP(X) and LY(X) c LY (X). It follows that g, is also in L9 (X) and satisfies
| @ -ardu=2 -2 =0 foran serrx),

p—9y € L7 (X)) defines the trivial element of (L*' (X))*, implying gp—gy = 0 almost everywhere.
For this reason we will now drop p from the notation and write g, for every p € (1,00) as a single
function g, which belongs to L4(X) for every ¢q € (1,00). By (2.8]) and Corollary 2.2] it satisfies

lgllze = Al zoyx < n(X)V9- A prye  for every g€ (1,00).
We claim that this implies g € L*(X) with |g]lL» < [Afz1y«. Indeed, for each ¢ > 0, let
A, = {x eX ‘ lg(x)| = c}; then fixing p, ¢ € (1, 0) with % + % =1, we have
(AT < Nglza < (XY [ A 1y

Taking the limit ¢ — oo then yields ¢ < [|A[|(z1y« unless y(A.) = 0, thus proving the claim.

We have now found a function g € L*(X) such that A(f) = {,{g, f) dp holds for all f € LP(X)
with 1 < p < 0. For an arbitrary f € L'(X), Lemma 217 then provides a sequence f,, € LP(X)
with f,, — f1 in L', and Holder’s inequality implies

\ [@pa-] fn>du‘ < [ Ko = dldn < gloo 17 = fuli o
X X X
thus
A = Jim A(E) = lim [ o, fydu= | <o pdn
X X
O

Proof of Theorem 2. for p =1 and pu(X) = o00. We assume X is o-finite, so X = (J, .y X for

subsets X,, € X with u(X,) < o, and without loss of generality
X1CX2CX3C....
Any A e (L*(X))* gives rise to functionals A,, € (L'(X,))* for every n € N, defined by

f on Xn7
0 on X\X,,

neN

An(f) == A(f),  where fnzz{

and they satisfy

A g A

X — A 1 .
e Oy Talzr = pestonoy s~ 1"

[Anl iy =

Applying the theorem for the case of finite measure, we obtain functions g, € L*(X,,) such that
A(f) = SXn<gn, f>du for every f € L'(X) that vanishes outside of X,,, with norms satisfying

lgnll < [Afl(g1y« for all n. Notice that for n > m > 1 and a function f € L'(X) that vanishes
outside of X,,, f also vanishes outside of X,, and thus satisfies

Lm@m,f)dﬂ =A(f) = JXn<9n,f> dp = Lm<g"’f>d”’
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implying SXm<gm — gn, [>dp = 0 for all f e L'(X,,). It follows that g,, — gulx,, € L®(Xn)
defines the trivial element of (L'(X,,))* and therefore vanishes almost everywhere. This shows
that each g, can in fact be regarded as the restriction to X,, of a single function g : X — V| and
since |gn L= < |Af(p1y« for every n, the set on which [g| > [Afz1)+ is the union of countably
many sets of measure zero, implying g € L*(X) with ||g|r= < [|Alz1).

We claim finally that A(f) = (g, f) du holds for every f € L'(X). To see this, for each n € N
define h,, € L'(X) as the product of f with the characteristic function of X,,, so ||f — hn|1 =
SX\ X, |fldp — 0 as n — oo. Using the continuity of A and Hoélder’s inequality, we now conclude

A = Jim Ata) = T, [ Gl = | o

n—00 n—0o0
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3. SEPARABILITY OF LP

Recall that a topological space is called separable if it contains a countable dense subset. The
simplest examples that come to mind are finite-dimensional vector spaces, e.g. Q™ is a countable
dense subset of R™. In this section, we would like to prove that LP(X) is also separable when
1 < p < oo. This requires some measure-theoretic assumptions on X, so in order to avoid
overcomplicating the problem, we shall restrict ourselves to the case where X is a subset (2
of R™. (See [Sall6, §4.3] for a treatment of more general situations.)

Theorem 3.1. For any p € [1,0) and any Lebesque-measurable set Q — R™ endowed with the
Lebesgue measure m, the space LP()) is separable.

We shall prove this by constructing an explicit countable set of functions Q(R™) < LP(R™)
that is dense in LP(R™). Given any f € LP(2) for Q c R™, one can then extend f to a function
f € LP(R™) that vanishes outside of €2, find a sequence fk € Q(R™) converging to f in LP, and
observe that the restrictions fj := fk|g therefore converge in L? to f, proving that the countable
set Q(Q) := {fla | feQ( R")} is dense in LP(Q2).

The Set Q(R") c LP(R™) is easy to describe. In the following, we denote the characteristic
function of a subset A < R" by

1 ifzeA
:R" - R, T) = ’
x4 Xa(@) {0 otherwise.
Let us first fix a countable dense subset Vj in the vector space V where our functions take
their values; this is clearly possible since dim V' < co. (If we were allowing V' to be an infinite-
dimensional Banach space, then we would now add the assumption that V' is separable.) We
refer to a set Q < R™ as a dyadic cube if @) is of the form

mp mp+ 1 My My + 1
Q:{Q_N, SN ]X"'X[Q—N’72N ]CR"

for some my,...,my, N € Z with N > 0. Observe that the set of all dyadic cubes is countable,
and so therefore is the set of characteristic functions xg : R" — R of dyadic cubes. It follows
that for every k € N, the set of k-tuples of dyadic cubes is countable, and thus so is the set of
all finite tuples of dyadic cubes. Finally, for each individual tuple (Q1, ..., Q%) of dyadic cubes,
there is a countable set of functions f : R™ — V of the form

f:ZXQJUj’ v1,...,0; € Vp.
j=1
We define Q(R"™) to be the set of all functions of this type, i.e. all finite linear combinations
(with coefficients in the countable set Vj) of characteristic functions of dyadic cubes. All of these
functions are bounded and have compact support, so they belong to LP(R™) for every p € [1, o0].
Our goal is to prove:

Proposition 3.2. For every p € [1,00), the countable set Q(R™) is dense in LP(R™).

We will use the following fundamental fact from the theory of Lebesgue integration. Recall
that a function is called simple (or sometimes a step function) if it takes only finitely many
values. A simple function on a measure space (X, u) is measurable if and only if it is a finite
linear combination of characteristic functions of measurable sets, and it is then integrable if and
only if all of those sets have finite measure, which is equivalent to saying that the function’s
support has finite measure. The integrable simple functions form a linear subspace of LP(X) for
every p € [1,00], and shall denote it by

S(X) c LP(X).

Lemma 3.3. For every measure space (X, p) and 1 < p < o0, S(X) is dense in LP(X).
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Proof. Denote the measure on X by p. Depending on your definition of integration, the p = 1
case may be understood as either a theorem or a tautology; e.g. [Lan93] defines L'(X) to
be a quotient (modulo equality almost everywhere) of the L!-closure of S(X). Let us take
the more common definition as in [Sall6], where {5, fdp € [0,00] for a measurable function
[+ X — [0,00] is the supremum of {3, sdu for all measurable simple functions with 0 < s < f,
and for f: X >R, { fdu:=(y frdu—S, f~dp with f*: X — [0,00) such that f = f*—f~
and |f| = f* + f~. Then given f : X — R of class LP, there exist increasing sequences of
measurable simple functions 0 < ff—r < f;-r < ... < f* such that ff — f* pointwise as n — .
Then since (x + y)P = aP + yP for all z,y >0 and p > 1

[rrpaws [ rpan= [ s | 15 rrans [ ipde<ce

so §y [fiEPdp < §y |f[Pdp < oo. This implies that every |f7[P (and therefore also every f) is
a finite linear combination of characteristic functions of sets with finite measure, so ff € S(X),
and thus f, := f;7 — f7 € S(X). Now |f — fn|? — 0 pointwise, and using the convexity of the
function xz — zP,

|f = FalP =1 = £ = (" = FOP <22 = frP+ 227 = fo P <22 (IfF P+ |f7P),
where the function on the right hand side is integrable, so the dominated convergence theorem

implies § |f — fn|? du — 0. The result for real-valued functions now easily extends to functions
valued in the finite-dimensional vector space V' by choosing a real basis as in §0.11 O

Exercise 3.4. Show that S(X) is dense in L*(X) if and only if u(X) < co.
With Lemma B3 in hand, our goal is now to show that Q(R™) is dense in S(R").

Lemma 3.5. Every open subset A < R™ is a union of a sequence of dyadic cubes Q1,Q2,Qs, ...
whose interiors are all pairwise disjoint.

Proof. Let O denote the set of all dyadic cubes that are contained in A. Since dyadic cubes can
be arbitrarily small, A = UQe(’) @, and the set O is countable since there are only countably
many dyadic cubes in total. Write O = {@1, @2, ...}; this is not the desired sequence since it
contains pairs @j, @k whose interiors intersect, but observe that for any such pair, the part of
@j disjoint from @k can be covered by finitely many smaller dyadic cubes whose interiors are
disjoint from each other and from @k We can therefore construct a new sequence Q1, @2, ... by
setting Q1 := @1 and then replacing each @k for k£ > 2 with a finite collection of dyadic cubes
with interiors that are disjoint from each other and from Ué:ll @j. O

Lemma 3.6. For every open subset A < R™ with m(A) < o and every v € V, € > 0 and
p € [1,0), Q(R™) contains a function f with |xav — f|rr <e.

Proof. Pick vy € Vp with |[v — v9| < €/m(A) and let Q1,Q2,Qs,... denote the sequence of
dyadic cubes provided by Lemma to cover A. Since Y, m(Qx) = m(A) < oo, we have

limg_ 00 Z;O:k m(Q;) = 0, so the functions f := (Z?zl XQj) vg satisfy

k 0
Ixav = fillo = X lv—wolPm(@) + D |olPm(Q;)
j=1 Jj=k+1
o0
< v —wol-m(A) + [vP D1 m(Q;) > [v—w| -m(A) as k- o,
j=k+1

thus |xav — fi|rr < € for k sufficiently large. O

8This inequality is an easy algebraic exercise when p € N, but when p is not an integer, one can argue as follows.
Assume y > 0 since otherwise the result is obvious. Dividing by y?, it is then equivalent to prove (1+z)? > 1+zP
for all z = 0 and p > 1. Differentiating with respect to x, it is easy to show that (1 +z)? —1 —z? is an increasing
function on {x > 0} if p > 1, and since it vanishes at = 0, it is therefore nonnegatve.
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We next appeal to the fact that the Lebesgue measure m is outer regular, meaning that for

every Lebesgue-measurable set A ¢ R™,
m(A) = inf {m(A") | Ac A’ < R", A" open}.

It follows that whenever m(A) < oo, there exists a nested sequence of open sets Ay D Ay D
A3 o ... 2 A =y Ak 2 A such that m(A) = m(A’). The set A’ is not generally open, but
it is a Borel set, a so-called Gs. In this situation, |x4 — x4, |P converges almost everywhere to 0,
and since it is clearly also bounded by a fixed integrable function for every n, the dominated
convergence theorem implies x4, — x4 in LP. Since Lemma provides arbitrarily good
approximations f, € Q(R™) for each x4, v € LP(R™), we’ve proved:

Lemma 3.7. Lemmal3.4 remains true with A replaced by an arbitrary Lebesque-measurable set
in R™ with finite measure. O

Proof of Proposition[3.2 (and thus Theorem [31]). By Lemmal3.3] it suffices to prove that Q(R"™)

is dense in S(R"™) in the LP-norm. Elements of S(R") are of the form Z?zl X4,;vj, where each
Aj < R™ is Lebesgue measurable with finite measure and v; € V. By Lemma 3.7 each x4,v;
can be approximated arbitrarily well in the LP-norm by functions in Q(R™), so we are done. [J

It is not hard to see that for almost any interesting measure space (X, pu), L*(X) is not
separable:

Exercise 3.8.

(a) Show that if E is a Banach space containing an uncountable discrete subset, then E' is
not separable.

(b) Suppose (X, 1) is a measure space containing infinitely many disjoint subsets with posi-
tive measure. Show that L*(X) contains an uncountable subset S ¢ L*(X), consisting
of functions that take only the values 0 and 1, such that |f — g|r« = 1 for any two
distinct f,g€e S.

Hint: If you’ve forgotten or never seen the proof via Cantor’s diagonal argument that R
is uncountable, looking it up may help.

Exercise 3.9. Here is another nonseparable Banach space that sometimes arises naturally.
Assume H is an infinite-dimensional separable Hilbert space, and let £ (#H) denote the Banach
space of bounded linear operators H — H. Use an orthonormal basis of H to find a continuous
embedding of L*(X) into .Z(H) for a suitable measure space X, and deduce from this that
Z(H) cannot be separable.
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4. WEAK CONVERGENCE

In finite dimensions, a sequence x € K" converges to o, € K" if and only if the n sequences
formed by the coordinates of these vectors all converge to the corresponding coordinates of .
Writing eq, . .., e, € K" for the standard orthonormal basis, the latter condition can be expressed
equivalently as

klirrc}o<ej,xk> ={ej,xny foral j=1,...,n.

There is an obvious way to generalize this condition for a sequence zy in an infinite-dimensional
Hilbert space H, though the resulting notion of convergence turns out to depend on a choice of
orthonormal basis (see Exercise below). A stronger condition that is clearly independent of
any choice of basis is

klirr;)(v,x@ ={(v,xpny forall wveH.

In light of the Riesz representation theorem, this can be expressed equivalently as:

klim A(zg) = AM(zy) forall AeH*.
—00

In this form, the condition also makes sense in arbitrary normed vector spaces, leading to the
following important definition.

Definition 4.1. A sequence x, in a normed vector space E is said to converge weakly to
r € E, written
Ty — X,

if A(z,) — A(z) for all A € E*.

With this definition in mind, the usual notion of convergence in a normed vector space (written
“r, — x”) is sometimes also called strong convergence. If dim E < oo, then it is easy to check
that there is no difference between weak and strong convergence. In infinite-dimensional spaces,
strong convergence clearly implies weak convergence due to the continuity of the functionals
A € E*, but the following exercise shows that the converse is false.

Exercise 4.2. Suppose H is a Hilbert space containing an infinite orthonormal set {e,, € H}°_;.
Prove:

(a) The sequence e, converges weakly to 0 but has no strongly convergent subsequence.
(b) For any bounded sequence A, € K, the sequence x,, := \,e,, € H converges weakly to 0.
(c) For any unbounded sequence A, € K, z, := \pe,, € H satisfies lim,_,(ej,x,) = 0 for
every j € N, but is nonetheless not weakly convergent.
Hint: Given a subsequence X,,; with |)\nj| > g for j =1,2,3,..., find a convergent series
of the form v := 22021 ajen; € H for suitable scalars aj € K such that (v, ;) + 0 as
j — 0.

Whenever we discuss a notion of convergence, there should be a topology in the background.
Every normed vector space E comes with a natural topology, usually called the norm topology
(sometimes also the strong topology), for which a set is open if and only if it is a union of
open balls. The weak topology on E is generally different: it is the locally convex topology
defined via the uncountably infinite family of seminorms

U-la: B —[0,0)} yeps»  where [z := [A(2)].

Notice that these are not norms since A(x) = 0 does not imply = = 0, but they are seminorms
due to the linearity of A. The weak topology on E is thus the topology generated by all subsets
of the form {z € E | [A(z) — A(zo)| < €} for zg € E, ¢ > 0 and A € E*, and a sequence z, € E
converges to x € F in the weak topology if and only if it converges in all the seminorms, which
means precisely that A(z,) — A(z) for all A € E*, i.e. ,, — x. A subset Y < E that belongs to
the weak topology is sometimes called weakly open. We will see below (see Remark [£.5]) that
all weakly open sets are also open in the usual sense, but the converse is generally false.
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Remark 4.3. On a locally convex space E with topology generated by a family of seminorms
{Il -l : E — [0,0)}qer, it is conventional to require that no nonzero z € E can satisfy ||, =0
for every a € I. This guarantees that a convergent sequence in £ can only have one limit, and
is equivalent to the condition that the topology defined by the seminorms on E is Hausdorff.
The weak topology does satisfy this condition on every normed vector space, but this fact is not
always obvious: it depends on the knowledge that for every nonzero x € E there exists a dual
vector A € E* with A(z) # 0. In all of the explicit examples that we deal with, it will be clear
that this is true, e.g. Lemma 2] guarantees it for the LP-spaces. For arbitrary Banach spaces,
it follows from the Hahn-Banach theorem (see Lemma [2.6]).

Exercise 4.4. This exercise gives an alternative characterization of the weak topology on a
normed vector space E as the smallest topology for which the map F — K defined by every
dual vector A € E* is continuous. In other words, the weak topology contains exactly the sets
that must be considered open in order for these maps to be called continuous, but no more.

(a) Show that for every A € E*, the map A : F — K is continuous in the weak topology.

Continuity of the maps A : E — K means that for every A € E* and every open set U < K, the
set A~1(U4)  E needs to be open. Let T denote the smallest topology on E that contains all
sets of this form, which means that a set is in 7 if and only if it is a union of finite intersections
of sets of the form A~!() for arbitrary dual vectors A € E* and open sets U = K. Part (a)
shows that the weak topology contains 7. We now aim to show that these two topologies are
the same.

(b) Show that for every y € E, the translation map 7, : E — E : x — x + y is continuous
with respect to the topology 7.

(c) Show that for every A € E*, 2g € E and € > 0, the set {x € E | [A(z — z)| <€} isin T,
and conclude that 7 contains the weak topology.

Remark 4.5. Since every bounded linear functional A : £ — K is continuous in the norm topology
on E, it follows from Exercise 4] that the norm topology contains the weak topology, i.e. every
weakly open set is also open with respect to the norm. In general, however, the norm topology
is strictly larger, e.g. if F is an infinite-dimensional Hilbert space, then Exercise exhibits a
sequence x, € E that converges to 0 in the weak topology but not in the norm topology—the
reason being that the norm topology has too many open neighborhoods of 0 for x,, to lie in all
of them for n large. Relatedly, the fact that |z,| = 1 for all n but x,, — 0 in that exercise
demonstrates that the norm |- | : £ — [0, o0) is not a continuous function in the weak topology,
though it is of course continuous in the norm topology.

Exercise 4.6. In the setting of Exercise [4.2] show that every neighborhood of 0 € H in the
weak topology contains infinitely many of the vectors z,, := y/ne, for n € N. In particular, the
closure of the set {e1,v/2e2,4/3e3,...}  H contains 0.

Remark: In a topological space, a set is closed if and only if its complement is open, and the
closure of a set is by definition the intersection of all closed sets containing that set. Exercise[4.2]
shows that the sequence /ne,, has no subsequence weakly convergent to 0, so the present exercise
demonstrates that the notion of the “closure” of a discrete set in the weak topology does not
match your intuition from the theory of metric spaces—this shows in fact that the weak topology
on H is not metrizable.

Combining Definition 1] with the Riesz representation theorem leads naturally to the follow-
ing notion:

Definition 4.7. For a measure space (X,u) and 1 < p < oo such that either X is o-finite or
p > 1, we say that a sequence f, € LP(X) is weakly LP-convergent to a function f € LP(X)

and write f, = fif for every g € LY(X) with % + % =1,

L<g, [y dp — L<g, Fydu.
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For p = o0, the notion of convergence in Definition [£.7] still makes sense but cannot be called
“weak convergence” since the dual space of L®(X) is generally larger than L!(X). But we could
instead view L®(X) as the dual space of L!'(X) and fit this notion into the following context.
For a normed vector space E, there is a natural topology on its dual space E* that is generally
even weaketf] than the weak topology. The weak® topology on E* is, namely, the locally
convex topology defined via the family of seminorms

{I -]z : E* —[0,00)} where  ||A[ == [A(2)].
In light of the natural inclusion E — E**  this family of seminorms is a subset of the family

that defines the weak topology, though the two families are exactly the same whenever F is a
reflexive Banach space, that is:

el

Proposition 4.8. If E is a reflexive Banach space, then the weak and weak® topologies on E*
are identical. O

We observe that since the space LP(X) for 1 < p < oo is reflexive and can be identified with
the dual space of L4(X) for % + % =1, LP(X) has a natural weak™ topology which is the same
as its weak topology. On the other hand, the analogue of Definition [4.7] for p = oo describes
convergence in the weak* topology on L*(X), which is strictly weaker than the weak topology,
due to the fact that the dual of L®(X) is strictly larger than L(X).

In analogy with Exercise 4], one can show that the weak™ topology is the smallest topology
such that for every x € E, the function E* — K : A — A(x) is continuous. A sequence A, € E* is
weak* convergent if and only if for every x € E, A,,(x) — A(x), i.e. the functionals A,, : E - K
converge pointwise to A : E — K. Notice that for every nonzero A € E*, there necessarily exists
a vector z € E for which |Al|; # 0, thus limits of weak™ convergent sequences are unique and the
weak* topology is Hausdorff (cf. Remark [£3]). This provides an easy proof (without requiring
the Hahn-Banach theorem) that the weak topology on E* is also Hausdorff, since every weak*
open subset of E* is also weakly open; or in terms of convergence, every weakly convergent
sequence also converges in the weak® topology.

Remark 4.9. The definitions above do not require £ to be complete, but there is a subtlety
to be aware of when considering normed vector spaces that are not Banach spaces. If F is a
Banach space and F' ¢ F is a proper dense subspace, then F'* = E™* since every bounded linear
functional on F' extends uniquely to one on E. The norms on F'* and E* are also the same, so
as Banach spaces they are identical, but their weak™ topologies may nonetheless be different. In
practice, we will only consider examples in which F is complete, in which case the reader may
feel free to ignore this remark.

The next result demonstrates that the weak™ topology is often, indeed, much weaker than the
norm topology on E*. Having fewer open sets means that sequences can more easily converge,
so they are more likely to have convergent subsequences.

Theorem 4.10 (Banach-Alaoglu theorem, separable case). Assume E is a separable normed
vector space. Then every bounded sequence in E* has a weak® convergent subsequence.

Proof. Fix a sequence A,, € E* satisfying ||A,| < C for some constant C' > 0.

Claim 1: If F c F is a countable subset, then after replacing A,, with a suitable subsequence,
we can assume A, (x) converges for every z € F. We prove this via the Cantor diagonal argument.
Let F = {x1,22,23,...}, and observe that for each k,n € N, |A,(z1)| < C| ||, thus for every

fixed k € N the sequence {A,,(zx)}, is bounded in K. Let AP denote a subsequence of A, such

9When comparing two topologies 71 and 72 on the same set, one says that 77 is weaker than 7z if 71 < Ta.
In this context, “weaker” is a synonym for “smaller,” and the word coarser is also sometimes used with the
same meaning, while in the other direction, one says that Tz is stronger / finer / larger than 71. Weakening
a topology makes it easier for sequences to converge, i.e. every Ta-convergent sequence is also 7Ti-convergent, but
there may also be T1-convergent sequences that are not T2-convergent. Similarly, weakening the topology makes it
easier for maps from other spaces into X to be continuous, but harder for functions defined on X to be continuous.
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(1) (2) (1)

that the sequence Ay, ’(z1) converges in K. Then choose A;,’ to be a subsequence of Ay’ such
(2)

that the sequence Ay’ (x2) also converges in K. Continuing in this way, we obtain a sequence of
sequences such that the diagonal subsequence A,(IL) has the desired property.

Claim 2: If F c F is a dense subset such that A, (x) converges for every x € F, then A, (z)
also converges for every x € E. Indeed, for any given x € E, one can choose z’ € F' arbitrarily

close to x and then estimate
A () = A ()] < [Am(2) = A ()] + A (2") = Ap(2)] + [An(2) = Ap(2)]
< 20|z — 2'|| + |[Am(z) — Ap(2))).

Since A, (z') is a Cauchy sequence in K, this shows that A, (x) is also a Cauchy sequence.
Finally, since E is separable, we are free to assume the two subsets denoted by F' < F in
claims 1 and 2 are the same set, so both claims together allow us to replace A,, with a subsequence
such that A, (x) is convergent for every x € E. Define A : E — K by
A(x) := lim A, (z).

n—0

It is easy to check that A is linear and satisfies |A(x)| < C|z|, thus A € E* and A,, is weak*
convergent to A. O

Since LP() is separable and reflexive for 1 < p < o0 and < R", this implies:

Corollary 4.11. Assume Q c R" is a Lebesque-measurable subset and 1 < p < 00. Then every
LP-bounded sequence fi € LP(Q2) has a weakly LP-convergent subsequence. O

Exercise 4.12. Find a sequence f, € LP(R) for 1 < p < oo that converges weakly to 0 but
satisfies | fy||z» = 1 for all n, and deduce that f, has no LP-convergent subsequence.

Remark 4.13. L®(Q) is also the dual space of a separable Banach space, namely L'(£2), so
Theorem E.I0] implies that L*-bounded sequences have weak™ convergent subsequences. This
case was not included in Corollary .11l since the weak and weak* topologies on L®(2) are not
the same.

Example 4.14. There are two troubles with the case p = 1 in Corollary 1Tl one more serious
than the other. The less serious problem is that L!(Q) is not the dual space of L*(2), though
since it is contained in the dual of L*(), one could still deduce from Theorem [Z10] a result
about weakly L'-convergent subsequences if L®(Q) were separable. The lack of separability is
the more serious problem, and the following example shows that it cannot be overcome. For
n € N, define f,, € L'(R) to be the characteristic function of the interval [n — 1,7n], so clearly
| fullpr = 1 for every n. Consider an arbitrary subsequence f,, for some 1 <n; <mng <nz < ...,
and define a function g € L®(R) such that g = (—1)* on [ny — 1,n4] for each k € N and g = 0
everywhere else. Then the sequence Siooo 9(x) fn, (x)dz = (—1)* does not converge, thus f,,
cannot be weakly convergent. The problem here is in essence that L*(R) is just too large a
space, and as a consequence, weak L!'-convergence is harder to achieve than in the case p > 1.

The Banach-Alaoglu theorem implies that even though the unit sphere in LP(X) for 1 < p <
o0 is not compact, it is weakly compact: arbitrary sequences with unit norm need not have
accumulation points with respect to the LP-norm, but in the weak topology they do. You may
be wondering which points can arise as accumulation points in this scenario, e.g. must they also
lie in the unit sphere? Let us show that they are at least bounded:

Proposition 4.15. In any normed vector space (E, |-||), if z, — x, then |z|| < iminf, e ||2,].

Proof. Using Lemmal[2.6] choose A € E* with |A| = 1 and A(z) = |z|. Then since A(x,) — A(z)
and |A(zn)| < [znl,
x| = A(x) = lim iolng(a:n) < lim icgf 5]
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Recall from §2.3] that LP(X) is uniformly convex for 1 < p < c0. The next result therefore
gives a useful criterion for strong LP-convergence in terms of weak convergence. But in light
of the Banach-Alaoglu theorem, it also says something that your geometric intuition may find
shocking: the unit sphere is not closed in the weak topology. In particular, every sequence in the
unit sphere that fails to have a strongly convergent subsequence has one that converges weakly to
something in the interior of the unit sphere. It is known in fact that for any infinite-dimensional
normed vector space E, the weak™ closure of the unit sphere in E* is the entire closed unit ball
(cf. [BS18, Corollary 3.28]).

Theorem 4.16. If (E,| -|) is a uniformly convex Banach space and z,, € E is a sequence with
Ty — x and ||z, || — ||z||, then x,, — .

Proof. We can assume x # 0 since the statement is otherwise trivial. Since the norms converge,
we can also replace x, and z with z,/|z,| and z/|z| respectively in order to assume |z,| =
|z| = 1 for all n without loss of generality. The weak convergence z,, — x implies z,, + * — 2z,
so combining Proposition .15 with the triangle inequality now gives
2 = |2z| < liminf ||z, + z| < limsup |z, + z| < limsup (|z,|| + |z]) = 2,
n—oo n—o0 n—0o0

and hence |z, + x| — 2, or equivalently, |22t | — 1. The conclusion |z, — x| — 0 then follows
from uniform convexity. O

Just out of interest, let us state the more general version of the Banach-Alaoglu theorem,
which does not require E to be separable. Its meaning is a bit harder to interpret, since
the weak™ topology is not generally first countable, so compactness need not imply sequential
compactness1 We will neither prove nor make use of this version of the theorem, but proofs
may be found e.g. in [RS80L §IV.5] or [BS18, §3.2]; it is a consequence of Tychonoff’s theorem
on the compactness of arbitrary products of compact topological spaces, which is equivalent to
the axiom of choice (see [Wenl8| §6]).

Theorem 4.17 (Banach-Alaoglu theorem, general case). For any normed vector space E, the
closed unit ball in E* is compact in the weak™ topology. O

105 topological space X is called first countable if for every x € X, there is a countable sequence U,, = X of
neighborhoods of x such that every neighborhood of = contains U, for some n € N. First countability is a sufficient
condition for the compactness of a subset to imply that all of its sequences have convergent subsequences (see
e.g. [Wenl8| §5]). It is easy to show that all metrizable topologies have this property, but scenarios like that of
Exercise reveal that the weak and weak™ topologies generally do not.



30 CHRIS WENDL

5. MOLLIFICATION

For this section, we consider functions defined on Lebesgue-measurable sets 2 < R™ and
define all integrals with respect to the Lebesgue measure m. For a Lebesgue-integrable function
f:9Q — V., we write the integral as

ffdm ff :=:J flar, ... zp)der ... do,.

We saw in §3] that the space Q(R™) of functions that take constant values on finitely many
dyadic cubes is dense in LP(R™) for every p € [1,00). It is not hard to convince oneself that
every function in Q(R") can in turn be approximated arbitrarily well in the LP-norm (again for
p < ) by a compactly supported continuous function, thus proving that the space of continuous
functions with compact support is dense in LP({2 . We would now like to prove something more
ambitious, and far more useful in applications.

Theorem 5.1. For every p € [1,00), C®(R™) n LP(R™) is a dense subspace of LP(R™).

Two important generalizations of Theorem [B.1] follow almost immediately. First: one can
replace R™ by an arbitrary open subset Q@ — R™ and show that C®(Q2) n LP(Q) is dense in

LP(Q)). For the proof, one extends any given function f € LP(2) to ferr (R™) via

]?’— f  on Q,
" 10 onRM\Q,

and then approximates f with f|q for smooth functions f. € C*(R™)n LP(R™) that approximate
f in LP(R™). Further: C®(2) n LP(Q) in this statement can be replaced with

CP(Q) == {feC®() | f has compact support in Q}.

To see this, one first chooses for any given f € LP(Q) and € > 0 an approximation f. € C*(Q2) n
LP(Q) with ||f — fe|z» < §, and then replaces f. with 3f. for a smooth compactly supported
function 8 : Q — [0,1] that satisfies S|y = 1 for a sufficiently large open subset U < ). Taking
a sequence of such cutoff functions Sy and subsets Uy such that |y Un = €2, one can arrange
that

€
[ fe — BN fellzr < 3 und therefore || f — By fellzr <€

for N » 0 sufficiently large. For more details on this generalization, see e.g. [LLO1, §2.19]; we
summarize the result as follows:

Corollary 5.2. For every p € [1,00) and every open subset Q < R™, C°(Q2) is dense in LP(2).
O

Exercise 5.3. Show that the space of bounded continuous functions is not dense in L*(R).

We prove Theorem [5.1] in the next several subsections using the convolution, a construction
that is worth getting to know well, as it has a multitude of applications beyond this one theorem.

5.1. Continuity under translation. For v € R" and a function f : R™” — V, the translation
operator 7, produces a new function 7, f : R® — V defined by

(o f)(2) := flz +v).
Clearly 7, defines a bounded and norm-preserving linear map LP(R") — LP(R™). Continuity of
f is equivalent to the condition that for every convergent sequence vy — v, in R™, the functions
Ty, f converge pointwise to 7, f. This is not true in general for functions f € LP(R") since they
are not generally continuous, but it will be useful to know that it becomes true if pointwise
convergence is replaced by LP-convergence:

HFor a discussion of the density of C'(X) in L”(X) on more general measure spaces X, see [Sall6} §4.3].
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Theorem 5.4. If 1 < p < w and f € LP(R™), then the map R™ — LP(R™) : v — 7,f is
continuous.

Proof. Since every 7, defines a bounded linear operator LP(R") — LP(R") with |7, ¢ sy = 1,
we have |Tyiof — Twflre = |Tw(Tof — e < |7of — fllre. It will thus suffice to prove that
|mof = fllr — 0 as v — 0 for all f belonging to some dense subset of LP(R™). Let @(R") denote
the space of all finite linear combinations > i XQ; fi :R" -V, where f; € V and each Q;  R"
is a cube, i.e. any set of the form [a1,a1 +d] X ... x [ay, a, +d] for (ai,...,a,) € R™ and d > 0.
Then @(R") contains the set Q(R™) spanned by characteristic functions of dyadic cubes, and
having proved in Proposition B2 that the latter is dense in LP(R™), it follows that Q(R") is also
dense. For an individual cube Q = [a; + d, ..., a, + d], we have

I7oxe — Xl = JR [oxq = xel” dm =m((v + Q\Q) +m(Q\(v+Q)) >0 as v —0,
thus for any f = > i XQ;fi € @(R"), Minkowski’s inequality gives

HT'Uf_f”LPgZHTUXQj_XQjHLP'|fj|_)O as v —0.

J
g

5.2. Convolution and regularity. The convolution of two scalar-valued functions f,g :
R™ — K is a scalar-valued function f x g defined by

(5.) (@)= [ fe=owdy

More generally, one can also allow one of f or g to take values in the vector space V', so that
f = g also takes values in V; we will generally assume this in the following without further
commentary. The domain of f * g is the set of all points x € R™ for which the integrand on the
right hand side of (5.)) is a Lebesgue-integrable function of y. It may happen that (f = g)(x)
is defined for some but not all z € R™. In practice, we will only consider situations in which
(f = g)(x) is defined for almost every x; the function f * g is then defined almost everywhere
on R™. Since f # g is defined via an integral, it does not change if either f or g is changed on a
set of measure zero; it can therefore make sense to speak of the convolution f g of two elements
f e LP(R™) and g € LY(R™), and in such discussions we will typically not distinguish between
actual functions and equivalence classes of functions defined almost everywhere.

Remark 5.5. In many situations, it can also make sense to define f * g on a suitable subset of R™
for two functions f and g that are not defined everywhere on R™. One case that often arises is
when f is defined on some open subset 2 € R” and g is defined on R™ but has compact support
in the r-ball B, ¢ R™ about the origin for some small » > 0. If x belongs to the set

Q, = {m €N ‘ dist(z, R™\Q) > 7“},

then either x —y € Q or g(y) = 0 holds for every y € R™, thus one can make sense of the right
hand side of (5.1]) by interpreting the integrand to be 0 whenever ¢g(y) = 0. The convolution f g
is thus defined on all points of €2, for which this integrand (suitably interpreted) is integrable.

Exercise 5.6. Use a change of variables to prove f g =g = f.

An important property of the convolution is that f * ¢ is an general at least as “nice” as the
nicest function among f and g In particular, if either f or g is of class C', then Exercise [0l
allows us to relabel the functions so that f is in C'! without loss of generality, and we can then
try to prove the formula

0

Or(f *g)(z) = Frl flx—y)gly)dy = o O f(x —y)g(y)dy = (Orf * 9)(x).

12The technical term for this notion of “niceness” is reqularity, e.g. proving regularity of a function typically
means proving that it is differentiable or smooth etc.
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This will be valid whenever f and g satisfy suitable conditions to apply Theorem [(I.4] and justify
differentiating under the integral sign—in practice it is often easy to verify these conditions, and
importantly, they do not require g to be differentiable, nor even continuous. For example:

Theorem 5.7. For any f € C(R™) and g € Li. (R™), the function f =g is smooth on R", and
for every multi-indez a,

0%(f *g) = (0°f) * g.

Proof. By assumption f is smooth and vanishes outside of a compact subset K < R"™, which
implies that f is bounded. For every x € R", the integrand y — f(z — y)g(y) can then only
be nontrivial on the compact subset K, := {x —k € R" | k € K}, and g is integrable on this
domain, implying that the whole integrand is integrable on R™ and (f = g)(x) is therefore defined
for every z € R™.

The function = +— (f * g)(z) is now defined as a parameter-dependent integral, where in the
integrand only f(x —y) depends on the parameter x. The result thus follows from Theorem [0.4]
since:

e The integrand is Lebesgue integrable for every x € R";

e The integrability is also “locally uniform” in the sense that to every zy € R™, one can
associate a neighborhood &/ — R™ of zy and an integrable function that bounds the
integrand from above for every x € U.

e The function x — f(z — y)g(y) is smooth for every y € R™ and has partial derivative
with respect to x; given by « +— 0;f(x — y)g(y), which is again a continuous function
of z.

Theorem now implies 0;(f * g) = (9;f) * g, and the generalization to arbitrary multi-indices
follows by induction. O

5.3. Young’s inequality. The following result is an elegant application of Fubini’s theorem
and Holder’s inequality

Theorem 5.8. For arbitrary functions f € L'(R") und g € LP(R") with 1 < p < o0, f % g is
defined almost everywhere on R™, belongs to LP(R™) and satisfies

I gllze < 1fpr - lglze-

Proof. The case p = o0 is an easy exercise, so consider the case 1 < p < 0. Let ¢ € [1,00] with

1,1_ 1.
> Ty 1; then

(@ = y)9W)| = @ = )["Plg)] - |f (@ —y)[,

and Holder’s inequality implies for every x € R",

o) = [ 176 =) dy

s (Jn [f (@ =y)]- |9(?/)|pdy>1/p. (Jn |f($_y)|dy>1/q

Now apply Fubini’s theorem for nonnegative measurable functions to

R" x R" — [0,00] : (z,y) — |f(z —y)| - |g(w)]";

I3For various more general forms of Young’s inequality, see [Sall6, Theorem 7.33] or [LLOT, 4.2].
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it follows that ¢P is a measurable function and

ot = [ Tl o= [ 11 ([ 17 -0
IS U@ =)l law)P dedy

R™ xR™

|g(y) P dy) dx

(5.2)
— | £ f l9(y) P ( j f(z— )] dm) dy = | fIP - gl
Rn Rn

= [£171 - lgl7r < o0
The function P must therefore satisfy ¢P < oo almost everywhere, implying that ¢ < oo also
holds almost everywhere, from which it follows that the convoluation f # g is defined almost
everywhere.

As a further application of Fubini’s theorem, one can show that f = g is also a measurable
function; in fact, the convolution of two Lebesgue-measurable functions is always Borel measur-
able. We'll skip the proof of this, though see [Sall6, Theorem 7.32(iii)]. Since |f * g| < ¢, the
estimate ||f = g|r» < |f]z1 - |g]z» now follows. O

Exercise 5.9. Prove as a corollary of Theorem [G.8] that the convolution defines a continuous
bilinear operator
L'(R") x LP(R") — LP(R") : (f,9) = f * g.

5.4. Approximate identities. We can now prove Theorem 5], and in the process explain a
useful general trick called mollification, by which non-smooth functions can be approximated
by smooth ones. One of the motivating ideas in the background is that of the “Dirac §-function,”,
a fictional function § : R” — R that one imagines being defined by d(x) = 0 for x # 0 and
5(0) = oo so that

f o (2)5(x) dz = (0)
Rn

for all ¢ in some reasonable class of functions on R™. While § cannot be defined as an ac-
tual function, it can easily be approrimated by smooth functions—such an approximation is
sometimes called a mollifier.

Definition 5.10. An approximate identity on R" is a sequence of smooth functions p; :
R™ — [0,00) such that for every smooth compactly supported function ¢ on R",

| e@i@rde > p@) as oo
R?’L

The functions p; in Definition 510 are not required to have compact support, and it will
be important when we prove the Fourier inversion formula in §8.5] to be able to choose specific
examples that are not compactly supported but have other nice properties. For applications
involving the convolution, however, it is useful to impose the following stricter condition.

Definition 5.11. A sequence of functions p; on R"™ will be said to have shrinking support if
for every e > 0, there exists IV € N such that the support of p; is contained in the e-ball about
0 € R"™ for every j = N.

Lemma 5.12. A sequence of smooth functions p; : R™ — [0,00) with shrinking support is an
approrimate identity if and only if SRn pjdm — 1 as j — o0, and in this case, the condition in
Definition [510 is also satisfied for all (not necessarily smooth or compactly supported) measur-
able functions ¢ on R™ that are continuous at the origin.

Proof. Assume supp(p;) is contained in the ball B,, < R" of radius 7; > 0 for some sequence
rj — 0. If p; is an approximate identity, then we can choose N € N and a smooth compactly
supported function ¢ : R — [0,1] that equals 1 on B, for all j > N, and write

Jpjdmzj pjdmzf cppjdmzf ppjdm — ¢(0) =1 as j— .
Rn B, B, Rn
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Conversely, if SR,L pj dm — 1, then for any function ¢ on R" that is continuous at 0,

o0 - [ o] = oo (1= [ pram) + [ o0 - el ployas

<O 1= [ pyam|+ sup 1o(0) = o) [ psdm 0.

z€B T

Example 5.13. Choose a smooth function p : R™ — [0,00) with compact support in the
unit ball By such that {5, pdm = 1. For j € N, the functions p; : R" — [0,00) defined by
pj(x) := j"p(jx) then satisfy (g, pjdm = 1 and have compact support in By; for all j, so this
sequence forms an approximate identity with shrinking support.

Theorem 5.14. Fiz an approximate identity p; with shrinking support, and given f € LP(R™)
with 1 < p <o, let fj:=pj* f = f=p; for jeN, that is,

(5.3) fi(z) = o (@ —y)pi(y) dy.

Then:

(1) f; is a smooth function on R™ for every j € N.

(2) 1fjler < C|fllre for every j € N and a constant C' > 0, which may be assumed arbitrarily
close to 1 for sufficiently large j.

(3) f;j converges in LP(R™) to f as j — co.

Remark 5.15. The formula (5.3]) can be interpreted as defining f;(x) to be a weighted average of
the values of f in a neighborhood of x, where the size of the neighborhood becomes arbitrarily
small as j becomes large. The latter follows from the assumption that p; has shrinking support.

Remark 5.16. The motivation for the term “approximate identity” is that if the J-function
existed as an actual function, it would satisfy § = f = f « § = f for all reasonable functions f,
making it an identity element in the algebra defined via the convolution product. We will see in
§10 that this notion can be made rigorous by interpreting ¢ as a so-called generalized function,
or distribution.

Proof of Theorem[5.14 The first two statements in the theorem follow from Theorems [5.7]
and B.8 since, by Lemma 512, |p;j] 1 = §z. pjdm — 1. Let us write

f pjdm—1‘<6j

for a pair of sequences r;,€; > 0 that converge to zero. For the third statement in the theorem,
we first give a proof under the additional assumption that f is almost everywhere bounded and
has compact support, i.e. assume there exists a constant R > 0 such that

(54) ”fHLv <R and f|R”\BR =0.

Since |p;[ 1 is bounded, Young’s inequality (Theorem[(.8)) now implies that f; satisfies a uniform
L*-bound for all j, and since supp(p;) = By, with r; — 0, we can also assume for large j that
f; has compact support in Bry1. It follows that f and f; are in L'(R"™), and we claim: f; — f
in L'(R™). To prove this, we use (5.3) and estimate

@) = 1) = |[ 1=~ sl i+ 1) ([ pyim=1)]
< [ 1#@=0 — 1@ @ dy + el

supp(p;) < By, and

(5.5)
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so by Fubini’s theorem,

Uy =l < [ ([ 156~ = 1@ psay) do s 171

N
= [ o ([ 10— s ) dy+ o151

= f piWT—yf = fllordy + € fl < sup Iy f = flor-lpiler + €1 f e
v YEBy;
This goes to 0 as j — o since €j,7; — 0 and (by Theorem [54]), y — 7, f is a continuous map
R™ — LY(R™).
Having established f; — f in L', we also know that fj has a subsequence for which |f; — f|?
converges pointwise almost everywhere to 0, and | f; — f|? is also uniformly bounded by a constant
multiple of the characteristic function of Bgr1, which is integrable. The dominated convergence

theorem then implies

Ui = 115 = [ A= sPam— [ 0dm o

]Rn
This conclusion applies at first to a subsequence, but if f; were not convergent to f in LP(R"),
then we could now find a subsequence that stays a positive distance away from f in the LP-norm,
and the L'-convergence would then give a contradiction via the argument above, thus we have

actually proved the convergence f; = f.

Without the additional conditions (5.4]), one can instead argue as follows: for a given function
f € LP(R™) and a constant R > 0, define

JR() = {f(x) if 2 € By and |f(2)| < R,

0 otherwise.

It is not hard to show that || f— f#|L» can be made arbitrarily small by choosing R > 0 sufficiently
large. Then f% satisfies the conditions (5.4]) and can therefore be approximated arbitrarily well
in the LP-norm by fJR = pj* fE. By Young’s inequality,

15 = £ e = log + (F = fO) e < lpjllee - 1 = FF ]z

can then also be made arbitrarily small, thus | f— f;| r» becomes arbitrarily small for j sufficiently
large. g

While we are on this subject, we can prove a similar result on approximation of C"-functions
that will be useful when we talk about distributions in §I0] The statement requires a slight
expansion of the notion of CJ)'.-convergence defined in §0.31 Observe that if

NMchhcc...c UQ]‘=QCRn
jeN
is a nested sequence of open subsets in R", then every compact set K < () belongs to 2; for
J € N sufficiently large. A sequence of C™-functions f; : ; — V is said to be convergent
in CI".(Q) to a function f : Q — V if for every compact subset K < © and N € N such that
K < Qp, the sequence of functions fn, fn+1, fN+2,... restricted to K is C™-convergent to f|x.
The ony difference between this and the definition in §0.3]is that the limit function f may be
defined on a strictly larger domain than any function in the sequence.

Theorem 5.17. Suppose Q@ < R™ is an open subset, f € C™(Q) for some integer m > 0, and
pj i R™ —[0,00) for j € N is an approximate identity with shrinking support. Then there exists
a nested sequence of open subsets 1 < Qo € ... C UjeN 1; = § such that for each j € N,
fj = pj = [ is defined (in the sense of Remark [2.0) and smooth on €, and the sequence f;

converges to f in CJI\.(Q).
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Proof. Assume supp(p;j) © B, with r; — 0, and define
Qj:={ze Q| dist(z,R"\Q) > 2r;}.

Then fj(x) = §zn pj(x —y)f(y)dy can be defined for all z € Q; since y € Q whenever z — y €
supp(p;j). Smoothness follows by differentiating under the integral sign as in Theorem (.7 to
prove 0% fj(x) = (0%p; * f)(x) for all multi-indices o and x € €;; here Theorem [.4] is applicable
because p; is bounded and f is integrable on the region B, (x) where p;(z — -) can be nonzero.
To prove f; — f in C}", suppose K < (2 is compact, and pick NV € N large enough so that

K < Qpn and the slightly larger compact set
K':={zeR" | dist(z,K) <r;}
is also contained in . Then for x € K and j7 > N, (5.5]) gives

|[fi(z) = f2)] < sup [f (@ —y) = F@)- lpjllr + €l F o
ye 7‘]'

Since z and = — ¥ in this expression both belong to K’ and f is uniformly continuous on K, this

implies uniform convergence f; — f on K. To prove the same for derivatives up to order m, we

observe that for any multi-index o with |o| < m, x € K" and j sufficiently large,
ot j @ = 9)0) dy—f 0 f(x = Yoy () dy = (°F * p) (@),

where Theorem [(.4] Justlﬁes differentiation under the integral sign since 0“ f is well defined and
bounded on B;, (x) while p; is integrable. The same argument that was used for f; then implies
uniform convergence 0% f; — 0“f on K. O
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6. ABSOLUTE CONTINUITY
6.1. The fundamental theorem of calculus. Let us consider the following question.

Question 6.1. What is the largest class of functions f on a compact interval [a,b] € R such
that the formula f(z) = f(a) + § f'(t) dt holds?

Here we regard SZ f(t) dt as alternative notation for the Lebesgue integral S[a’b] fdmifa <0,
or — S[b@] fdmif b < a. The formula is easy to prove under the assumption that f is continuously
differentiable, but we already know it is valid somewhat more generally than this, e.g. it clearly
also holds if f is continuous and only piecewise C, and it is not hard to think up examples in
which f is non-differentiable on a countably infinite subset but the formula still holds. In order
for the right hand side to make sense at all, f only needs to be differentiable almost everywhere
on [a,b], and its (almost everywhere well-defined) derivative needs to be in L!([a,b]). Is that
enough? No:

Example 6.2. The Cantor function is a continuous, surjective and monotone increasing
function f : [0,1] — [0,1] whose derivative is well defined and vanishes on a subset of full
measure, namely the complement of the Cantor ternary set C' = [0,1]. In particular, f is
defined to be constant on each of the intervals that are removed in order to define C:

1
flayzzs) = 3
1 3
Flayozse) = T Flezs0.8/9) 1= vk
1 3 )

(el aN|

flayerzper == 3’ flerjargjony = 3’ flaojer202m) = 3’ fli2s /27,2627y =

and so forth (see Figure[)). The easiest way to define f at all other points is as the uniform limit
of a sequence of piecewise affine, continuous, increasing and surjective functions f, : [0,1] —
[0,1]. Such a sequence is uniquely determined by the following conditions (Figure B):
o fo(z) :=
e For each n € N, f, takes the same constant values as f on each of the intervals of
length 1/3™ that are removed in the definition of C', and has constant slope on all other
subintervals of [0, 1].
It is easy to check from this definition that |f, — f,—1] < ¢/2" for some constant ¢ > 0 and
all n € N, thus the sequence f, is uniformly Cauchy and therefore converges to a continuous
function f, which is automatically monotone and surjective

2n—1

Since the Cantor function has values on the entire interval [0,1] in spite of its derivative
vanishing almost everywhere, it clearly lacks whatever property is needed for the fundamental
theorem of calculus to hold. Let us reformulate the question slightly: suppose f € L'([a,b]),
and consider the function F' defined on [a, b] by

F(x) := fxf(t) dt.

One of the main results of this section (Corollary below) will show that F' must be differen-
tiable almost everywhere and its derivative is f. The Cantor function also has the first property,
but since it is evidently not the integral of its derivative, we deduce that the Cantor function
cannot be written as an integral of any Lebesgue-integrable function on [0,1]. So, how do we
tell the difference, i.e. what properties does the function F' have that the Cantor function does
not? Both are continuous, but it turns out that F' satisfies a stronger condition than continuity.

A more precise formula for f can be deduced from the fact that it is continuous and constant on a sequence
of intervals whose union is dense. It is easiest to express in terms of base-3 and base-2 expansions: since all points

x € C have unique base-3 expansions 0.a1az2a3 . .. with a, € {0,2} for alln = 1,2,3,..., one can write f(z) € [0, 1]
so that its base-2 expansion is 0.b1b2bs3 ... with b, := an/2 for all n. In other words, f (ZZ=1 23“,?) = ZZ=1 =,

assuming a, € {0,1} for all n € N.
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FIGURE 4. An imperfect picture of the Cantor function. Despite the appearance
of jump discontinuities in the approximate graph drawn here, it is continuous.
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FIGURE 5. A sequence of piecewise affine functions converging uniformly to the

Cantor function.

Lemma 6.3. For any measure space (X, 1) and any f € L'(X), given € > 0, there exists § > 0

such that for all measurable subsets A c X,

WA <5 = L|f|du<e.

Proof. If the result is not true, then there exists a number € > 0 and a sequence of measurable

sets A,, © X such that

1
WA) < & but f Fldp > e.
AL A,

Define By, := | J;_,, Ak, so we have

Bi>By>B3>...B:= () By,

neN

and p(By) < Y, mw(Ax) < D02 2% = a7, thus u(B) = limy_e p(B,) = 0. This implies
limy, o0 §5 | fldp = {5 1f|dp =0, which is a contradiction since B, > A, for every n and thus

§p. 1fldn=S, |fldu=e>0.

0
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Returning to the function F'(x S f(t)dt with f € L'([a,b]), consider the consequences

of Lemma [6.3] for subsets A c [a, b] defined as finite unions of intervals A = U;V 1la;, bj] with
a <a <by <... <ay < by <b. The lemma provides for every € > 0 a § > 0 such that
whenever m(A) = Z 1(bj —aj) < 5, it follows that

iway Plapl= 3, ff 1) dt] < Zj

In other words, F' satisfies the followmg condition:

|f|dm=L|f|dm<e.

[a;,b;]

Definition 6.4. A function F' on an interval I < R is called absolutely continuous if for
every € > 0 there exists § > 0 such that for all finite sequences a; < by < ... < ay < by of
points in I,

N
2 (bj —aj) <6 = Z|F — F(aj)] < e.

This definition would be the same as uniform continuity for functions on I < R if one only
allowed N = 1, but the extension to all finite unions of intervals makes it a strictly stronger
condition than uniform continuity. The Cantor function, for example, is uniformly continuous
(as are all continuous functions on compact intervals), but the next exercise shows that it is not
absolutely continuous:

Exercise 6.5. Show that if F : [a,b] — R is absolutely continuous, then it maps every set of
measure zero in [a, b] to a set of measure zero in R.

Exercise 6.6. Show that every Lipschitz continuous function on a compact interval [a, b] is also
absolutely continuous.

Here is the answer to Question

Theorem 6.7 (Fundamental theorem of calculus for the Lebesgue integral). For a nontrivial
compact interval [a,b] € R and functions f on [a,b], the following conditions are equivalent:

(1) f is absolutely continuous;
(2) fis dz’ﬁerentz’able almost everywhere, its derivative f' is in L'([a,b]), and f(x) = f(a)+
o f'(t)dt for all x € [a,b].

We have already proved the easy direction of this theorem, as a consequence of Lemma
We will show in Corollary 612 that for any g € L'([a,b]), the absolutely continuous function
given by F(x) = ¢+ { g(t)dt for a constant ¢ = F(a) is almost everywhere differentiable and
its derivative is g. This statement is a consequence of the Lebesgue differentiation theorem,
introduced in the next subsection. What then remains to be proved is that every absolutely
continuous function f on [a,b] can be written in the form f(z) = f(a) + § g(t)dt for some
g € L'([a,b]). We will prove this in §6.5] as a consequence of a simple version of the Radon-
Nikodym theorem, proved in §6.41

Combining Exercise with Theorem produces a slightly surprising consequence:

Corollary 6.8. Fvery Lipschitz continuous function on a compact interval [a,b] € R with b > a
1s differentiable almost everywhere. O

Corollary also holds for functions on open domains in R™, and is known in that level of
generality as Rademacher’s theorem. For a concise proof built on top of the one-dimensional
case, see [Hei05].

6.2. The Lebesgue differentiation theorem. Here is another natural question, which we
will need to answer before we learn how to differentiate integrals of L'-functions.

Question 6.9. For locally integrable functions f on R™, what relation is there between f(x) and
the “average” value of f on arbitrarily small balls about x ¢
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Let us denote by
B,(x) c R"
the open ball of radius » > 0 about a point = € R".

Definition 6.10. For a function f € L (R"), z € R" is called a Lebesgue point of f if the
average value of |f — f(x)| on B,(z) converges to zero as r — 0, i.e.
1

T s jBr(m) F(y) = £(x)] dy = 0.

Whenever z is a Lebesgue point of f, one has

. 1
o i ) ) 0= 1
L 1
‘waf =) ‘mf T dm‘

1
S (B, @) JBT@) If = f(e)] dm.

Clearly z is a Lebesgue point whenever f is continuous at x, but Legesgue-integrable functions
can easily be discontinuous everywhere. Moreover, changing f on a set of measure zero changes
the right hand side of (6.I)) at some points but not the left hand side, so the most one could
hope for in general is for (6.I)) to be true for almost every x. That turns out to be true, and
thus gives the best possible answer to Question

Theorem 6.11 (Lebesgue differentiation theorem). For any f € Ll _(R™), almost every point
of R™ is a Lebesgue point of f.

To see why this is called a differentiation theorem, consider the case n = 1. If f € L'([a,b]),
extend f to a function in L!(R) that vanishes outside [a,b], and consider the function F(z) :=
S f(t)dt. If z € (a,b) is a Lebesgue point of f, then for all A > 0 sufficiently small, we have

Fle+h) - Fla) ‘ ‘ Jf bdi— f j|f o)) dt

h
e L_h 1) = F(@)] d,

and the latter becomes arbitrarily small when A > 0 is small. A similar statement is proved in
the same manner for A < 0 and shows that at every Lebesgue point z, F'(z) = f(x).

Corollary 6.12. For every f € L'([a,b]), the function F(z) := S f(t)dt is differentiable almost
everywhere on (a,b) and satisfies F' = f. O

<2

The proof of Theorem requires a result called the Hardy-Littlewood maximal inequality,
which we will discuss in the next subsection. In order to see what is needed, let us set up the
general framework of the proof first.

We begin with two easy observations:

(1) If f is a continuous function on R™, then every point in R™ is a Lebesgue point.
(2) If almost every point is a Lebesgue point for all f € L'(R"), then the same holds for all
feLl (R").

The second statement follows from the purely local nature of the Lebesgue point condition,
i.e. it depends on f only in arbitrarily small neighborhoods of . Then if we cut off the values
of f € LL (R™) outside the ball Bx(0) = R™ to produce a function in L'(R™) whose set of non-
Lebesgue points in B (0) we can prove has measure zero, it follows that the set of non-Lebesgue
points of f will be the union of these sets for all £ € N, and thus also has measure zero.

loc
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With this understood, let us associate to any f € L'(R™) and 7 > 0 the functions f" : R" —
[0, 00] defined by

RO —

o (BA)) - f(z)|dm forr O(x) := limsup f"(z).
m(Br(x)) JBT(x)|f f( )| >0’ f ( ) pf ( )

r—0
The goal is to prove that f° = 0 almost everywhere. For each N € N, let

Ay :={zeR" | f2z) > 1/N}.
We will deduce the desired result from:

Lemma 6.13. For every N € N, Ay is contained in a Lebesgue-measurable set of measure less
than .
N

Indeed, if this lemma holds, then since A1 ¢ As < A3z c ..., it follows that every Ay is a set
of measure zero. Their union therefore also has measure zero, and that is precisely the set on
which f9 > 0.

In order to estimate the measure of Ay, we appeal to the density of continuous functions
in L'(R") and choose a sequence fi, fa, f3, ... of continuous functions on R” such that f;, — f
in L'. We can then pick k large and use f, to estimate f"(x) for 7 > 0 small:

1
@) = s 17 = S dm
m (B (7)) JB, ()
1
6.2 <o | U= Rl = @)+ 1) = S dm
(62) (B, (@) Jo, )

1 T
—mwmemﬁ"ﬁWm#M@+W@>f@“

We cannot assume fr — f uniformly, so in this last expression, the third term might not become
arbitrarily small for all x as k — 0, but it is easy to show that it does so outside of a set of small
measure. Indeed, we can associate to any given measurable function g on a measure space (X, )
the sets A; := {z € X | [g(z)| >t} for t > 0, and then estimate |g|: > §a, 19l dp = p(Ap)t. The
result is known as Chebyshev’s inequality:

(6.3) p({ze X |lgx)>t}) < @

Applying this to f — fi € L'(R"), we can arrange by choosing k sufficiently large to make
|fx(x) — f(x)| arbitrarily small for all x outside of a set that has arbitrarily small measure.
Having chosen k in this way, the second term in the last line of (6.2]) also becomes arbitrarily
small as r — 0. However, estimating the first term requires some non-obvious input: we would
like to claim that since |f — fi| has a small L'-norm, its average value over B,(x) also satisfies
some small bound as r — 0. If we were first fixing r > 0 and then letting k& — oo, it would be
obvious that this term vanishes in the limit, but unfortunately the order of quantifiers is the
other way around: we have already fixed k and need to estimate the average for all small r > 0
in terms of | f — fx|z1. This is what the Hardy-Littlewood maximal inequality is for.

6.3. Maximal functions and weak L'. We now introduce a missing ingredient in the proof
of Lemma [6.13]

Definition 6.14. For f € L{ (R"), the maximal function M f : R" — [0, 0] is defined by

1
Mf(z):= supm JBT@) |f| dm.

r>0 M

Lemma 6.15. For every f € Li _(R"), the mazimal function Mf : R® — [0,00] is Borel
measurable.
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Proof. Tt suffices to show that (M f)~1((t,0)) is a Borel set for every ¢ € R; we will show in fact
that it is open, i.e. M f is lower semicontinuous. The condition M f(z) > t implies that for some
r >0, m SBT(x) |f|dm > t. This remains true after replacing m(B,(x)) with m(B,/(z)) for
some slightly larger ' > r, and since B,(x) c B,/(z') for all 2’ € R™ sufficiently close to x, we

then have 1

— 41 !/
t < (B () JT(@ |f| dm < (B (@) JBT,(m) |f]dm < M f(z').
]

It is clearly not possible to achieve a general pointwise bound on M f for f € L'(R"), e.g. if f
is defined as 1/4/|z| on [—1,1] and 0 on the rest of R, then f € L!(R) but its average values on
[—r, 7] diverge to o0 as r — oo, giving M f(0) = oo0. A realistic hope, however, would be to bound
the measure of sets on which M f exceeds any given value. If M f € L'(R"), then such a bound
follows from the Chebyshev inequality ([€.3]). In general, it would be too much to hope for M f
to be globally integrable, but there also exist functions that are not in L!(R™) and nonetheless
satisfy a bound of the form (6.3)), with the L!'-norm replaced by some other constant. A simple
example is f(z) := 1/z, which is not in L'(R) but satisfies m({z € X | |f(z)| > t}) = 2/t, thus
it belongs to the following class of functions.

Definition 6.16. A measurable function f on (X, i) is called weakly integrable if there exists
a constant C' > 0 such that

,u({:ceXHf |>t})

We will denote the space of such functions by L

g forall ¢>0.

t
(X).

weak

One can define a “norm” on Ll _ (X) by
1F1s,,, = suptu({z e X | [f(2)] > t}).

Just one caveat: || - ”Liveak satisfies HcfHLiveak =|c|- ”fHLiveak for ¢ € K and Hf”Liveak = 0 if and

only if f vanishes almost everywhere, but it does not satisfy the triangle inequality. Instead it
satisfies (see [Sall6, Lemma 6.2])

£ 1L lglL:
If+gle < iweak I Lwe)\a‘k for 0< A<,

I+l < Mo, + ol

As a consequence, LWeak (X) is not a normed vector space, but one can regard it as a topological

vector space with respect to the metric dist(f,g) := /|f — g2 - The inequality (6.3) can
(X).

and

now be interpreted as saying that there is a natural continuous inclusion L'(X) < Liveak

Theorem 6.17 (Hardy-Littlewood). There exists a constant C > 0 depending only on the
dimension n such that the estimate |M f| 1 LS C|fllzr holds for all f € L*(R™).

The proof requires a simple version of a result known as the Vitali covering lemma.

Lemma 6.18 (Vitali). For every finite collection of open balls By, (x1),...,Bry(zn) < R”,
there erists a subset I < {1,...,N} such that By, (v;) N By (v;) = & for every i,j € I with
1#J, and

N

n 1’2 UB3T’J xj
i=1 jel

B, (xz)> < 3" 2 m(Brj ()

Jel

—

In particular, m (

=1
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Proof. Abbreviate B; := By, (x;), and reorder the balls so that, without loss of generality, 1 >
...=2rn. Define I = {iy,...,i} < {1,..., N} such that 4; := 1 and, for each j > 1, ;41 is the
smallest number greater than i; such that B;, , is disjoint from B;; u ... u B;;. This process
terminates after finitely many steps, and if k ¢ I, it means that By intersects B; for some i €
with ¢ < k. Since 71, < 1y, it follows that By < Bs,, (x;). O

Proof of Theorem [6.17. We shall prove that the stated inequality holds with C' = 3™: in other
words, for every f € L'(R") and ¢ > 0,

3" .
(6.4) m(Ar) < #, where Ay :={zeR" | Mf(z) > t}.

By the inner regularity of the Lebesgue measure (see [Sall6, Theorem 2.13]), it will suffice to

prove that every compact set K < R™ with M f|x > t satisfies m(K) < % For each
x € K, the condition M f(x) > t means there exists a ball B(x)  R™ about x such that

1
(6.5) 71 |f| dm > t.
m(B(z)) Jp()
Using the compactness of K, choose a finite subcollection Bjy,..., By of such balls so that

K c Uj\[:l Bj. After reordering the balls, we can then apply Lemma [6.I8 to assume that
By, ..., By (for some ¢ < N) are all disjoint and, using (6.5]),

N l l
1 3"
m(K) <m (U Bj> <3 ) m(B)) <3" )] ;f [Fldm < =1 f] .
j=1 j=1 j=1" YBj
O
We now have enough tools to complete the proof of the Lebesgue differentiation theorem.
Proof of Lemma 613 (and thus Theorem [6.11]). The estimate (6.2]) implies
(6.6) fr(@) < M(f = fi) (@) + fi(x) + [fu(z) = f(2)].
Given N € N, choose k large enough so that
1
If = felzr < 30 ANZ
Then Chebyshev’s inequality (6.3]) implies
1
m ({z € R" | |fx(x) — f(2)| > 1/2N}) <2N||f = fil 1 < 39N " aN’
and by Theorem (in particular (6.4])),
1
m ({z e R™ | M(f — fi)(x) > 1/2N}) <2N -3"|f — filr < N
thus for all z € R™ outside a set of measure at most 1/N, (6.6) becomes
1 1
fr(@) < on T+ Ji(@) + oN Ji(@) + N
Letting 7 go to 0, we conclude f0(z) < + since f2(z) = 0 by the continuity of f. O

6.4. The Radon-Nikodym theorem. Recall that if (X, ) is a measure space and f : X —
[0, 0] a measurable function, then one can define another measure A on the same o-algebra by

(6.7) ANA) = L‘fd,u.

In order to show that absolutely continuous functions can always be written as integrals, we will
first answer the following question, which turns out to be easier:

Question 6.19. Given two measures p and \ defined on the same measurable space X, does
there exist a measurable function f: X — [0,00] such that (61) holds for all measurable sets A?
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The function f : X — [0,00] in this relation, if it exists, is sometimes called the Radon-
Nikodym derivative of A\ with respect to u, and written as

dA
d_ = f
m
It is not hard to think up necessary conditions for the existence of such a function. For example,
there clearly is no such function if y is the counting measure on R and A is the Lebesgue measure,
as §, fdp =2 ,c4 f(z) then can only be finite when A R is a countable set, whose Lebesgue
measure is therefore zero. It is also impossible if one takes the Lebesgue measure on R™ as p
and the Dirac measure
1 if0e A,
i(A) = {

0 otherwise

as A; this is just the statement that the “Dirac d-function” so popular among physicists does
not actually exist. One thing both of these counterexamples have in common is that one can
find measurable sets A ¢ X for which u(A) = 0 but A(A) # 0. This possibility clearly needs to
be excluded since §, f du = 0 for every function when p(A) = 0.

Definition 6.20. Given a measure space (X, 1), a measure \ defined on the same c-algebra is
called absolutely continuous with respect to p (written “A < ) if the implication

w(A)y=0 = XA4)=0
holds for all measurable sets A < X.
The following exercise is not logically necessary for our exposition, but it demonstrates that

there are nontrivial connections between Definition [6.20] and the notion of absolutely continuous
functions.

Exercise 6.21 (cf. Lemma[6.3]). Show that if A € p and A\(X) < oo, then for every ¢ > 0 there
exists a 0 > 0 such that for measurable sets A c X,

wlA)y <d = MNA) <e

Theorem 6.22 (Radon-Nikodym). If u and X are two o-finite measures on the same measurable
space X, then the following conditions are equivalent:

(1) X < p;
(2) There exists a measurable function f : X — [0,00] satisfying A(A) = §, fdu for all
measurable sets A c X.

The implication (2) = (1) is immediate. We will prove (1) = (2) using the natural isomor-
phism between L® and the dual space of L'. To see how this arises, note that if ) is given by
(6.7), then for every real-valued A-integrable function g € L'(X, \),

(6.8) L gdx = L of du.

The non-obvious trick is to view A(g) := SX gdX € R as defining a bounded linear functional
A LY(X, X + pu) — R, which makes sense since (A + u)(A4) := M(A) + u(A) defines yet another
measure on the same o-algebra as A and p, and we have

(6.9) |A<g>|=\ | gdx\s [ tgtax< [ tola+ ) = tlsrnin
X X X

Since A + p is o-finite, it follows then from the Riesz representation theorem that there exists a
real-valued function h € L*(X, A + p1) with |[h] (x5, < 1 such that

(6.10) Jgd)\zf hgd(A +p) forall ge LY(X, A+ p).
X X
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This is enough information to derive a formula for f in terms of h: indeed, combining (6.8]) and

@I0) gives
.&gﬂm=J;de+u%i&MMA+Lﬁmw=ﬁgwf+@ﬁw=J;MU+JMM

for all g€ L'(X, A + ) = L'(X,\). This suggests the relation f = h(f + 1), or equivalently

h
f=
1—-nh
There are a few subtle issues to check before we can call this a proof—you may notice for instance
that we have not yet used the condition A <€ p.

Proof of Theorem [6.22. Following the trick described above, we note that since A and p are both
o-finite, A\ + p is also a o-finite measure, so that the Riesz representation theorem (Theorem [2.4])
gives a natural isomorphism between L®(X,\ + u) and the dual space of L'(X, A + u). The
bounded linear functional A : L'(X,X 4+ p) — R defined by A(g) := §, fd\ therefore gives
rise to a unique (up to equality almost everywhere) real-valued function h € L*®(X, A + p)
satisfying (6.10]).

We claim that h satisfies 0 < h < 1 almost everywhere with respect to the measure p. Indeed,
for n € N, let A, := {zr € X | h < —1/n}, and suppose A, c A, is any subset for which
AMAL) + p(Al,) < o0. The function g := x4 is then in L'(X, A + p), so plugging it into (GI0)
gives

0<MA) = [ gdn= | hgdontw = [ hdO+ ) <~ A + (4] <0
X X Al

implying p(A!) = M(A!,) = 0. Since X and p are both o-finite, A, is a union of countably many
subsets on which A and p are both finite, so having shown that p and A vanish on all of these
subsets, it follows that u(A,) = A(A4,) = 0. The set on which h < 0 is now the countable union
of the sets A,, for n € N, and therefore also has measure zero with respect to both y and A. The
other bound follows similarly by setting A := {z € X | h(xz) = 1}: for any subset A’ ¢ A with
A(A’) and p(A’) both finite, we can plug g := x4 into (6.I0) and find

ANA') = JX gdx = L hgd(\ + 1) — L/ hdx + L/ hdp > A + (A,

implying p(A’) = 0. (Notice that this time, we do not immediately also obtain A\(A") = 0; the
latter follows since A < p, but it need not be true without the absolute continuity assumption.)
Appealing once more to the o-finiteness of A and p, this implies u(A) = 0.

The function f := % therefore satisfies 0 < f < o0 almost everywhere with respect to p, so
we can define a measure py by

Mf(A)iz.[ fdp.

X

We claim gy = A. To see this, let us rewrite the relation (G.I0) in the form
f(l—thA:Jﬁhg@L forall ge L' (X, A+ p).
b's b's

Now if A ¢ X is any measurable subset for which the function ¢ := ﬁ XA is in LY (X, X + p),
we obtain

A(4) = L vadh = L(l —h)gdh = L hgdp = L o adn = Lfdu = s(A),

To extend this to an arbitrary measurable subset A — X, we can again appeal to o-finiteness

and write
x=Jx.=Jv

neN neN
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for two sequences of subsets X1 ¢ Xy c...c X and Y; ¢ Y5 ¢ ... X with u(X,) < oo and
A(Y,) < 0. For n e N, let

Ap={zeA|l-h(z)>1/n}nX,nY, cX.

Then A, has finite (¢ + A)-measure and ﬁ < n on A4,, thus ﬁXAn € LY(X,\ + p), so the
calculation above proves A(A,) = us(A;). To finish, observe that since h < 1 almost everywhere
with respect to u, absolute continuity A < p implies that this is also true with respect to A\, and

thus
)\(A\ U An) = 1y (A\ U An) ~ 0.
neN neN
This justifies the following limit computation:
AA) = hnoloA(An) = liH(?)lo pp(An) = pp(A).
O

Remark 6.23. Without the condition A\ < pu, the function h constructed in the proof above may
satisfy h = 1 on a set with positive A-measure, in which case lim,_, A(A,) < A(A4) in the last
step, producing an inequality

ffwst
A

which may in general be strict. The argument still proves that equality holds for every measur-
able set A ¢ X such that the function ﬁx(A) € L'(X, )\ + p), but in pathological examples,
there may be no interesting sets with this property.

Exercise 6.24. Find the function f : R" — [0, 00] that is constructed in the proof of Theo-
rem [6.22] for the case where p := m is the Lebesgue measure and A := § the Dirac measure. On
which sets A c R" is equality achieved in §, f dm < 6(A)?

Remark 6.25. There are more general versions of the Radon-Nikdym theorem for so-called signed
measures and complex measures, in which f in the formula A\(A) = SA fdp may be a real or
complex-valued p-integrable function. See for example [Rud87, Chapter 6] or [Sall6l §5.4].

6.5. Absolutely continuous functions are integrals. In light of Corollary 612 the hard
direction of the fundamental theorem of calculus for the Lebesgue integral now follows from:

Lemma 6.26. Fvery absolutely continuous function F on [a,b] € R is given by
X

(6.11) F(x) = F(a) +J ft)dt
a

for some f € L'([a,b]).

The lemma is valid for functions F': [a,b] — V with values in an arbitrary finite-dimensional
vector space, but we will focus on the case V = R, which immediately implies the general case
after choosing a real basis of V. For real-valued functions, we will deduce it from the Radon-
Nikodym theorem. Some alternative approaches and interesting related facts are outlined in

§6.5.31

6.5.1. The case of strictly increasing functions. Let us assume F : [a,b] — R is absolutely
continuous and strictly increasing, i.e. it satisfies

F(y) > F(x) whenever y > x.

The following lemma produces another connection between the notions of absolute continuity
for functions and measures.

Lemma 6.27. F' maps every set of measure zero in [a,b] to a set of measure zero in R.
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Proof. If A c [a,b] has measure zero, then for any given § > 0, A is contained in the union of a
sequence of disjoint intervals (a;, b;) such that o | (b; —a;) < d. Absolute continuity guarantees
that if € > 0 is given, § > 0 in the previous sentence can be chosen so that for every k£ € N,
Z§:1 |f(b;) — f(a;)| < €, and consequently,

DUIF(b:) = flai)| < e.
=1

The image F(A) is therefore contained in a countable union of open intervals (F'(a;), F'(b;))
whose total measure is at most e. O

Exercise 6.28. Find a set of measure zero whose image under the Cantor function of Exam-
ple has positive measure. (Note that in Lemma [6.27] we did not actually need to assume
that F'is strictly increasing.)

Proof of Lemma for F strictly increasing. We claim that the formula
A(A) := m(F(4))

defines a measure on [a,b] with A < m.

We need to check first that the image under F' of every Lebesgue measurable set A < [a, b]
is Lebesgue measurable. By the inner regularity of the Lebesgue measure (see [Sall6, Theo-
rem 2.13]), we can choose a sequence of compact subsets K1 ¢ Ky < K3 c ... ¢ A such
that A is the disjoint union of a set Ay of measure zero with Ky := |J,,ony Kn- Since F is
continuous, F'(K,) < R is also compact for each n, which makes F(Ky) a countable union of
compact sets and thus a Borel set. By Lemma [6.27], F'(Ap) is another set of measure zero, thus
F(A) = F(Ay) v F(Ky) is Lebesgue measurable.

Since F' : [a,b] — R is strictly increasing, it is also injective, so disjoint measurable subsets
Ay, Ag, As, ... C [a,b] have disjoint images, and it follows that A as defined above is o-additive.
It is clearly also finite since F' has bounded image, so this proves that A is a measure, and
Lemma [6.27] implies that it is absolutely continuous with respect to the Lebesgue measure.

The Radon-Nikodym theorem now provides a measurable function f : [a,b] — [0, 00] such
that for all measurable subsets A c [a, b],

m(F(A)) = L‘fdm.

In particular for A := [a, 2], this gives F(z) — F(a) = § f(t)dt, and the global integrability of
f follows from this by setting x = b. O

6.5.2. The general case. If F' : [a,b] — R is increasing but not strictly, then there is a cheap
trick to reduce Lemma [6.26] to the strictly increasing case: we consider the function

G(z) =z + F(x),

which s strictly increasing (and also absolutely continuous), even if F' is constant on some
subinterval. The strictly increasing case therefore provides a function g € L'([a,b]) such that

G(z) = G(a) 4§ g(t) dt, and it follows that

F(z) = F(a) —I—J [g(t) — 1] dt.

a
The proof for increasing functions is thus complete.
The conclusion of the proof now follows from an important general observation about all
functions of bounded variation, which includes the absolutely continuous functions. Given any
function f on [a,b], we define the total variation of f by

N
TV (f) :=sup{2|f(:ci)—f(xi1)| ‘ N>2landa=xy<x; <...<2pN =b} € [0, 0],
i=1
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and say that f is of bounded variation if TV (f) < . Notice that if f is of bounded variation,
then its restriction to every compact subinterval of [a, b] is also of bounded variation.

Lemma 6.29. If f is absolutely continuous on [a,b], then it is of bounded variation, and the
function V f : [a,b] — [0,00) defined by V f(x) := TV (f|[44]) is also absolutely continuous.

Proof. We note first that if a < o < ¢ <y < b, then |f(y) — f(z)| < |f(y) — f(c)| +|f(c) — f(x)],
thus if @ < zg < 21 < ... < zy = b is any partition of the interval [a,b] that does not include
€ (a,b), adding ¢ to the partition can only increase the value of the sum in the definition
of TV (f). It follows that we lose no generality if we modify the definition of TV (f) so that the
supremum ranges only over partitions that include ¢, which gives rise to the relation

TV(f) =TV (fliae) + TV (flien)-
In particular, this implies
(6.12) V) =Vf(x)+TV(flpy) foreveryy>xin[a,b],

so the function V' f : [a,b] — [0,00] is increasing. Now choose ¢ > 0 and § > 0 as in the
definition of absolute continuity, and choose a partition a =ty < t1 < ... < ty = b such that
ti—t;—1 < ¢ for every i. Any partition of [t;_1, ;] is then a finite collection of closures of disjoint
open intervals with total length less than ¢, implying TV (f|,_, +,]) < € and thus

f|tlly <N€<w

||M2

Keeping the same € and 9§, if a < a; < b; < ... < a, < b, < bsatisfy >, (b —a;) < 0, then

(612) implies
MIAVEb:) = V@) = D> TV(ffase))-
=1

i=1
The latter is the supremum of sums » ; [ f(¢;)— f(t;—1)| over finite collections of intervals [t;_1,;]
with disjoint interiors whose lengths add up to >, (bi—a;) < 0, hence the sum is less thane. O

Lemma 6.30. For any function f : [a,b] > R of bounded variation, the functions V.f, Vf + f
and Vf — f on [a,b] are increasing.

Proof. That V f is increasing follows already from (6.12)), and in fact for y > =z,
Vi) = V@) =TV (fly) = ) — f(2)

since x < y is a particular example of a partition of [z,y]. It follows that Vf(y) — V f(z) =
fy) — f(z) and Vf(y) =V f(x) = f(x) — f(y), thus

Vi) = fly) =2 Vi) —fz) and Vi) +[fly) = V) + )
O

Conclusion of the proof of LemmalG.26l. An arbitrary absolutely continuous function F' : [a, b] —
R can be decomposed as

1 1
=3 (VE+F) =< (VF = F),

where by Lemmas and [630, VF + F and VF — F are each absolutely continuous and
increasing. We have already proved therefore that both can be represented as integrals of L!-
functions on [a, b], and the same thus follows for F'. O
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6.5.3. Alternative approaches. There are other ways of proving Lemma without using the
Radon-Nikodym theorem. Since we expect an absolutely continuous function F' to be the integral
of its derivative, one method for finding the function f in (6.IT]) is to prove directly that F' is
differentiable almost everywhere. This can be deduced from the following somewhat surprising
classical result of Lebesgue:

Theorem 6.31 (Lebesgue). Every monotone function f : [a,b] — R is differentiable almost
everywhere.

A proof of this theorem using a more elaborate version of the Vitali covering lemma (cf.
Lemma [6.I8]) may be found in [Roy88| Chapter 5]; see also [RSN90] for a slightly different
exposition. It takes only slightly more effort to see that for a monotone function f : [a,b] — R,
f" belongs to L'([a,b]). The argument goes as follows: consider the case where f : [a,b] — R
is increasing, and for convenience, extend f over R with constant values f(z) = f(a) for z < a
and f(x) = f(b) for z = b. The difference quotients

Dafe) o= L1 1)
are then well-defined functions Dy f : [a,b] — R for every h € R\{0}, and they are clearly
measurable functions since f is measurable. By Theorem (.31} there exists a function f’ :
[a,b] > R which can be defined as f'(x) = limy_,o Dy, f(z) wherever this limit exists and zero
everywhere else; this means Dy, f — f’ almost everywhere as h — 0, thus f’ is measurable. The
difference quotients are easily seen to satisfy a “discrete” variant of the fundamental theorem of
calculus: instead of SZ (@) dt = f(b) — f(b), one has
b 1 b+h

b
Dufdm =1 [ e +m = f@lde =3 [ f@yde =7 [ f@)da

a a+h

[a,b]
6.13
(6.13) |

1
== fdm— — f fdm.
h f[b,b+h] h Jla,arn]

Taking h > 0, in the situation at hand we have defined f to be constant on [b,b + h], and —f
is bounded above by —f(a) on [a,a + h], so this computation implies

Dypfdm < f(b) — f(a) for h > 0.
[a,0]
Now if we consider the sequence of functions Dy, f for n € N, they have nonnegative values
since f is increasing, and they converge almost everywhere to f’, thus Fatou’s lemma (see
[Sall6, Theorem 1.41]) gives

J fldm = J liminf Dy, hdm < hmmff Dy jphdm < f(b) — f(a).
a,b] [a,b]

n—0o0 n—00

Corollary 6.32. For every monotone function f : [a,b] > R, f' is measurable and satisfies

1 e < 1£(0) = f(a)l.
O

Remark 6.33. Corollary is analogous to the inequality in Remark for a measure A on
[a,b] that need not satisfy A < m. It comes with the caveat that without an assumption of
absolute continuity, the inequality may fail to carry any interesting information, e.g. the Cantor
function (Example[6.2]) shows that the left hand side can simply vanish, even when the function
f is far from being constant.

Theorem and Corollary have an immediate consequence for the class of functions
f i [a,b] = R that can be written as the difference f; — f_ between two increasing functions
f+ : [a,b] = R. This is precisely the class of functions with bounded variation that we saw in
§6.5.2, which includes all absolutely continuous functions, thus:
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Corollary 6.34. Every absolutely continuous function f : [a,b] — R is differentiable almost
everywhere and its derivative belongs to L'([a,b]). O

With this result in place, we can compare any given absolutely continuous function F' on [a, b]
with the function Fy(x) := § F'(t) dt. The latter is also absolutely continuous and differentiable
almost everywhere, with F] = F’ by Corollary [6.12] so looking at F' — F} reduces the problem
to proving:

Lemma 6.35. Every absolutely continuous function on [a,b] whose derivative vanishes almost
everywhere is constant.

For a fairly short proof of this, based again on the Vitali covering lemma, see [Roy88| §5.4,
Lemma 13].

From a functional-analytic perspective, there is a more interesting alternative argument to
be found in the most recent edition [RF10] of Royden’s classic textbook, based originally on
the article [FH15]. It makes use of the following notion, which should seem natural in light of
Lemma [6.3t

Definition 6.36. A collection F of integrable functions on a measure space (X, u) is called
uniformly integrable (or equi-intebrable) if for every € > 0, there exists § > 0 such that for
all f € F and measurable subsets A ¢ X,

wlAd)y < = JA|f|d,u<e.

You should think of this definition as a close analogue of equicontinuity: the point is that the
correspondence between € and 9§ is not allowed to depend on the choice of the function f € F.

Example 6.37. If F is any collection of measurable functions f satisfying |f| < g for some
fixed g € L'(X), then Lemma implies that F is uniformly integrable.

The relevance of uniform integrability to this discussion arises from the following observation:

Lemma 6.38 ([FHI15] or [RE10, §6.4]). A continuous function f on [a,b] is absolutely continu-
ous if and only if its family of difference quotients {Dp, f}o<n<1 s uniformly integrable on [a,b].

With this understood, one can now appeal to a useful generalization of the dominated con-
vergence theorem:

Theorem 6.39 (Vitali’s convergence theorem; see [REF10), §4.6]). For a Lebesgue-measurable
subset X < R with finite measure, if {fn}nen is a uniformly integrable collection of functions on
X such that f, — f pointwise almost everywhere, then f € L'(X) and S fndm — § fdm.

Remark 6.40. The convergence theorem is also true on general finite measure spaces if one adds
the condition f € L'(X) to the hypotheses; in our situation, that version would also suffice in
light of Corollary [6.34l There is also a version for spaces with infinite measure; see [RF10, §18.3].

Knowing that an absolutely continuous function f is differentiable almost everywhere, one
can now deduce S[a ] f1dt = f(b) — f(a) as follows: setting h = 1/n in (6I3]) gives a sequence of
relations whose left hand sides converge as n — o to S[a 0] f'dt due to Lemma [6.38 and Vitali’s

convergence theorem. At the same time, the right hand sides converge to f(b) — f(a) since f is
continuous, so we are done.



LEBESGUE, FOURIER AND SOBOLEV 51

7. FOURIER SERIES

7.1. Fully periodic functions. In this section we consider functions f on R™ that are 1-
periodic in every variable, meaning that the relation

f(xl,...,mj+1,ag +—1,xj+1,...,xn) = f(xl,...,xn)

holds for every j = 1,...,n. We shall refer to functions with this property as fully periodic
functions. Some obvious examples include the trigonometric functions

sin(2rkz;), for k=1,23,... andj=1,...,n,

1
(7.1) cos(2mkxj), for k=0,1,2,... and j=1,...,n,

plus all products and linear combinations of these functions. The idea of a Fourier series is to
express arbitrary fully periodic functions as (possibly infinite) sums of products of precisely these
functions. Algebraically, it is much easier to work with complex exponentials than trigonometric
functions, thus we shall allow all our fully periodic functions to take values in a complex vector
space and, instead of writing them in terms of the functions in (I]), try to express them as
linear combinations of products of the functions

(7.2) ¥k for keZand j=1,...,n.
Notice that an arbitrary finite product of such functions takes the form
(7.3) op(x) := 2R for ke Zm,

where k - x denotes the standard Euclidean inner product of two vectors k,z € R™. We use
this notation to distinguish the inner product on R™ from the complez inner product { , ) on
the finite-dimensional vector space V in which our functions will take their values. For this
discussion, we explicitly set

K:=C,

and since it will often be relevant, we remind the reader that the standing convention for the
complex inner product on V is

(v, wy = —idv, w), (v iw)y = i{v,w).

The main theorem on Fourier series states that every function in a sufficiently reasonable class
of fully periodic functions f : R” — V can be expressed as a convergent sum of the form

(7.4) fla)y= > ke,

keZ™

for a unique set of coefficients fk e V, called the Fourier coefficients of f. The right hand side
of ((C4) is called the Fourier series of f. Since complex exponentials are linear combinations
of trigonometric functions, it is always possible (though often tiresome) to rewrite a Fourier
series as a sum of products of the trigonometric functions appearing in (Z1J); in particular, the
Fourier series of a real-valued fully periodic function f : R”™ — R can always be re-expressed
as a real-linear combination of products of real-valued trigonometric functions, so that complex
numbers need not be mentioned. In applications, the complex numbers typically have no intrinsic
meaning but make calculations much easier.

7.2. Function spaces on the torus and the lattice. A fully periodic function on R" can
equivalently be regarded as a funtion on an n-dimensional torus T”, which is by definition an
n-fold Cartesian product of circles. The most convenient definition of T™ for our purposes is
as follows. The lattice Z" c R" is a subgroup of R™ with respect to the operation of vector
addition, and since R" is an abelian group, the subgroup is normal. We define T” to be the
quotient group

T :=R"/Z",
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so in other words, elements of T™ are equivalence classes of vectors in R"™, such that two vectors
x,y € R™ are in the same equivalence class if and only if x —y € Z". In the case n = 1, the map

R/Z 3 [t] — (cos(2xt),sin(27t)) € R?

gives a natural bijection between T! and the unit circle in R?, which is also often denoted by
S1 < R? since it is a “1-dimensional sphere”. Through this bijection, one can identify T™ with
the n-fold product of copies of S*.

We can make T" into a metric space by defining

d(|z], = inf rz—y,
e S k|
where | - | denotes the standard Euclidean norm on R™. You should take a moment to convince

yourself that this expression really defines a metric on T™. Moreover, the natural projection
map

m:R" > T": 2 — [z]
is continuous with respect to this metric, and since T” is the image under 7 of the compact
subset [0,1]" < R™, it follows that T" is compact.

The Lebesgue measure m on R™ also determines a natural measure on T". Let £(R™) denote
the o-algebra of Lebesgue-measurable subsets of R, and define £(T™) < 2" to consist of all sets
A < T" with the property that 7 1(A) € L(R™). In other words, £(T") is the largest o-algebra
on T™ for which the projection map 7 : R™ — T™ is measurable. For A € L(T"), we then define

m(A) := m(x"1(A) n [0,1)") = 0.

It is straightforward to check that (T",L(T™),m) by this definition is a measure space, and
moreover, since [0,1)" < R™ has finite Lebesgue measure, m(T™) is finite; indeed, m(T") = 1.

Exercise 7.1. Show that every fully periodic function f : R™ — V corresponds to a unique
function F': T™ — V such that

f(z)=F([z]) forall zeR",

and conversely, every function F' : T — V determines a fully periodic function f : R" —» V
via this same relation. Show moreover that f is continuous/measurable if and only if F is
continuous/measurable, respectively, and for an integrable function F : T — V|

F(x)dxzzf dezf F omdm.
Tn n [071)n

Since T™ is now both a compact metric space and a finite measure space, Exercise [[.1] has the
following useful consequences. First, every continuous fully periodic function is equivalent to a
continuous function on a compact metric space, and is therefore bounded. Second, a function
f :T" — V can be integrable even if foxm : R" — V is not, as it is only the integral of
|f o x| over the cube [0,1)" that needs to be finite. In fact, periodicity guarantees that fully
periodic functions f : R™ — V can never be Lebesgue integrable on R™ unless they vanish
almost everywhere, but this only happens because the function f : R™ — V contains too much
redundant information. Integrating f instead over the finite measure space T™ circumvents this
problem.

In the following, we will keep Exercise [[.1]in mind and typically blur the distinction between
arbitrary functions T™ — V and fully periodic functions R* — V. We will also drop the
equivalence classes from the notation and denote elements of T™ simply as vectors x € R”™ when
there is no ambiguity; when this notational shortcut is used, it means that any representative
x € R™ of the given element in T™ may be chosen, and no important results will depend on this
choice.

Notice that if a fully periodic function is differentiable, then its partial derivatives are also
periodic functions, thus we can sensibly speak of differentiable functions on T™ and define the
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hierarchy of function spaces
co(T™) > CHT™) o C*(T") > ... > C®(T"),

where for each & = 0,1,2,...,00 we define C*(T") to be the vector space of fully periodic
functions R™ — V that are k-times continuously differentiable. For k& < oo, these spaces all
admit natural Banach space structures, of which only the case k& = 0 will be especially important
for our purposes: the norm on C°(T") is defined by

)

[fllgo == max|f(x)

where the existence of the maximum is guaranteed by the fact that T is compact. Similarly, for
each p € [1,00] the measure on T"™ gives rise to a Banach space of V-valued functions (defined
almost everywhere),

P 1/p
LP(T") := LP(T", m), I fllze = (§pn [£1P dm) for p < 0,
esssup | f| for p = 0.

Note that since T" is the image of the compact and finite-measure subset [0,1)" under the
projection 7 : R™ — T" a function f : T" — V will belong to LP(T") if and only if for : R" —» V
is locally of class LP on R™, i.e. its restriction to every compact subset must be of class L?, but
f o itself will not usually belong to LP(R"). The space L?(T") has a natural complex inner
product defined by

S = | G@).g@)ds

which makes L?(T™) into a Hilbert space.
Since the continuous functions on T" are bounded and T" has finite measure, C°(T") is a
subspace of LP(T") for every p € [1,©]; so, therefore, is C*(T™). In fact:

Proposition 7.2. For every p € [1,00), C®(T") is a dense linear subspace of LP(T™).

Proof. We shall deduce this from the result in §5l that C*(R"™) is dense in LP(R™). Given
f € LP(T"), define F: R" - V by

F=formon[0,1)", F = 0 elsewhere,

where 7 : R” — T" is the quotient projection. Then F' € LP(R"™), so for every € > 0, there exists
a smooth function F, € C*(R") with

”F —Fe”Lp < €.

Given any 0 > 0, we can also choose a smooth function G5 : R™ — [0,1] that has compact
support in (0,1)" and satisfies
Bs=1 on [§1—0]".
The function SsF, : R™ — V is then smooth and has compact support in (0,1)", so it gives rise
to a uniquely determined fully periodic smooth function G¢ : R® — V such that G = SsF. on
[0,1)". Let g° : T* — V denote the corresponding function on the n-torus such that G° = g’ o.
We claim that ||f — ¢°||z» can be made arbitrarily small if e and ¢ are each chosen sufficiently

small. Indeed, abbreviate @ := [0,1)" and Q; := [d,1 — 0]". Then
I =l = | 1f —aim = | 1P —Gipam

=f |F—Gf|pdm+f |F — Go|P dm.
Qs Q\Qs
Since G‘g = Bs5F, = F, on (Qg, the first term in the second line is

f |F—Gf|pdm=f |F—F€|pdm<f |F' — Fe|Pdm = ||F—F€Hz£p < €P,
Qs Qs R™
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which is made arbitrarily small by choosing ¢ > 0 small. To estimate the other term in the
second line, we can use the fact that S5 takes values in [0, 1] and write

|F — GO = |F — BsF.| = |F — F. + F.(1 = §35)| < |F — F.| + |F],

hence by Minkowski’s inequality,

1/p 1/p
(f |F_G§|pdm> < (f (I1F = F| +|E])P dm)
QA\Qs Q\Qs
1/p 1/p
< (J |F—F€|pdm> + (J |F5|pdm> .
Q\Qs Q\Qs

Here, the first term in the second line is bounded above by |F — F¢|1» < €, while if € > 0 is
fixed, the second term can be made arbitrarily small for sufficiently small § > 0 since |F¢|P is
Lebesgue integrable and (). ((Q\Qs) is a set of measure zero, so that lims_,o SQ\% |Fe|Pdm = 0.
This proves the claim. O

Since the Fourier coefficients of a function f : T™ — V are meant to be a collection of vectors

fr associated to elements k € Z", it will be useful to regard the collection of all these coefficients
as a function

f:Z"—>V.

There is no meaningful notion of continuity or differentiability for such functions, but we can
speak of LP-spaces on Z" with respect to the counting measure, i.e. let v : 22" — [0, 00] denote
the measure such that v(A) for each A c Z" is the number of elements in A. The LP-spaces
with respect to this measure are conventionally denoted by

*(Z") .= LP(Z",v), 1<p<oo,

and since nonempty subsets in Z" always have positive measure, the elements in these spaces
are actual functions, not just equivalence classes of functions. The counting measure identifies
integrals with infinite series and integrability with absolute summability, so for each p € [1, o0),
the fP-norm of a function f : Z" — V is

1/p
1 fller == (2 If(k)|p> ;

kezZ™
while

| flle= := sup |f(k)].
keZm

There is one more space of functions f : Z"™ — V that we will need to consider, called the
space of rapidly decreasing coefficients and denoted by . (Z™). A function f : Z™ — V is
defined to be in & (Z") if and only if for every n-variable polynomial function P : R" — R, the
function

Z" >V :kw P(k)f(k)
is bounded. Equivalently, this means that for every m € N, the function k — |k|™ f(k) is bounded

on Z™. Since m in this expression can be chosen arbitrarily large, it is clear that functions f(k)
in #(Z") always decay to 0 as |k| — c0. In fact:

Exercise 7.3. Show that .7 (Z") is a dense linear subspace of ¢P(Z") for every p € [1,0).
Hint: All functions Z"™ — V' with bounded support are in . (Z").
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7.3. The transformations .# and .#*. Suppose for the moment that (V,{, )) is C with its
standard Hermitian inner product. The functions ¢ (z) := €™ defined in (Z3) for k € Z"
can then be regarded as elements of C°(T") since they are fully periodic and smooth. Since
they are bounded and T” has finite measure, they can also be regarded as elements of L%(T"),
and as it turns out, they form an orthonormal set:

Exercise 7.4. Show that ||ok|z2 = 1 for every k € Z™ and (g, o/ yr2 = 0 for every k # k' € 7.

If we now assume ﬁc € C are coefficients such that the sum 3 ;n fkgpk converges in the
L?-norm to f € L?(T"), then Exercise [.4 makes it easy to compute the Fourier coefficients in
terms of f: we have

Je =", Lo Fospprre = ons oz = J e () da.
PEZL™ T

This computation generalizes in a straightforward way to functions valued in a general finite-

dimensional complex inner product space (V,{ , )) if we engage in a slight abuse of notation:

let us define

<()O7 T/JU>L2 = <S07 ¢>LQU ev for 2 w (T — C7
which by linearity gives rise to a natural pairing {p, f)> € V for any pair of L?-functions ¢ :
T" —- C and f: T" — V. The computation of f; above then becomes valid for vector-valued

functions. We shall take this formula as a definition of a transformation .%, which sends functions
f:T" -V to functions

Ffi=F:Z" >V ik fj
whenever the integral on the right hand side of the following expression is well defined for all k:

(7.5) (F i = fo = J e TR £ (1) du.

Tn

It is clear, for instance, that if f € L'(T™), then all of the coefficients fk are well defined and
they satisfy a uniform bound

[ fel < 1Flees
hence .% defines a bounded linear operator
(7.6) F : LNT") — £°(Z™).

There is a similar transformation .#* that associates to a function g : Z" - V : k — gi a
function
Frg=3:T" >V
defined by
(7.7) (F*g)(x) = §(z) := 2 egmk.xgk_
keZm

As with the definition of .% in (.5)), this definition comes with the caveat that at first glance,
it only makes sense if the sum converges for every x. So for instance, it makes sense whenever
g € (1(Z"), as the sum then converges absolutely and uniformly; since the partial sums are all
finite sums of continuous functions, it follows in this case that g : T" — V is a continuous

function and satisfies |g(z)| < Yliezn |9k] = gl for all z € T", thus .#* defines a bounded
linear operator
(7.8) F* N2 - CO(T).

We have already seen that under certain circumstances, the operators .% and .#™* are inverse
to each other, e.g. the computation following Exercise [7.4] above shows that if g : Z™ — C is
a function such that F*g € L?(T") and the series in the definition of F*g converges in the
L?-norm, then FF*g = g. The next two theorems are the main results we need to prove about
Fourier series.
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Theorem 7.5. The transformations % and #* defined in ((H) and (1) respectively have the
following properties:
(1) F maps C*(T™) bijectively onto .7 (Z").
(2) F* maps L (Z"™) bijectively onto C*(T™).
(3) The bijections F : C*(T") —» S(Z") and F* : S (L") — C®(T™) are inverse to each
other.
(4) For every f € C®(T"), the series Y eyn ekawﬁg converges absolutely and uniformly
with all derivatives to f.

Theorem 7.6 (Parseval’s identity). For every f,g € C*(T"),
<f’./g\>f2 = <f, g>L2'

Since C®(T") is dense in L?(T"), Parseval’s identity gives rise to a unique bounded linear
extension of the operator . : C*(T") — . (Z"™) to an operator

(7.9) F : L2(T™) — (2(Z"™).
In other words, for each f € L*(T"), we can choose an approximating sequence f; € C®(T")
2 ~

with f; 5 f as j — oo, and define f = .Z f € £?(Z") as the ¢2-limit of the £?-Cauchy sequence
f; € (Z"). This description makes .% : L*(T™) — ¢?(Z") sound more abstract than it really is:
in fact, since T" has finite measure, L?(T") is a subspace of L!(T"), so the operator in (Z9) is
just the restriction of . : L!(T") — £®(Z") to this subspace. In the other direction, the density
of Z(Z") in (*(Z") implies that .F* : .Z(Z") — C*(T") extends uniquely to an operator

F* (L) — LA(T™),
defined similarly by choosing for any g € ¢2(Z") an approximating sequence g; € .%(Z") with
gj g g and writing #*g = g € L?(T") for the L-limit of the L?-Cauchy sequence g; € C°(T").
Here there is an obvious choice of approximating sequence g; available, namely

0i(k) o= {g(ks) if [k < J.

0 otherwise.

This makes §; € C°(T™) a sequence of partial sums for the Fourier series >, ;. €™ g(k), so
the conclusion is that this series converges to § in the L?-norm. It clearly cannot be expected to
converge uniformly since § € L2(T") is not generally continuous, and there is also no guarantee
of pointwise convergence, not even almost everywhere. The compositions .#*.% : C®(T") —
C®(T") and #.F* : S (Z") — & (Z"), of course, each extend to L?(T") — L%(T") and ¢2(Z") —
(?(Z") respectively as the identity map. We summarize this discussion as follows.

Corollary 7.7. The transformations % and F* defined in ([L3) and (LX) give well-defined
unitary mapd8 L2(T™) — ¢2(Z") and (*(Z") — L2(T") respectively, where in the latter case, the
series should be interpreted as an L?-convergent (but not necessarily pointwise convergent) series
of functions in L?(T™). Moreover, these two transformations are inverse to each other. O

In light of Exercise [[.4], another way to say this is as follows:

Corollary 7.8. For any orthonormal basis vi,...,vm of (V,(, )), the functions
{627rik~azvj
form an orthonormal basis of the Hilbert space L?(T™). O

The remainder of §7] is concerned with the proofs of Theorems and [C6, and along the
way, we will prove some relations between the Fourier operations and differentiation which are
frequently useful in applications.

}kEZ", j=1,...m

15 linear map T : H — H' between two Hilbert spaces is called unitary if it is an isometry, i.e. (Tx, Ty) =
{z,y) for all z,y € H. Such maps also satisfy |Tz| = |z| for all z € H, hence they are continuous.
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7.4. Fourier series and derivatives. If one ignores the words “bijectively” and “onto,” then
the first statement in Theorem becomes an easy consequence of the following exercise.

Exercise 7.9. Use integration by parts to show that for every f € C1(T"), k = (ki,...,k,) € Z"
and j =1,...,n,

0;f,, = 2mik; fi.

Recall from §0.3] that a multi-index in n variables is an n-tuple a = (a1, . .., a;) of nonneg-
ative integers, and we denote its order by |a| := a1 +. ..+ ay,. This gives rise to the differential
operator

0% 1= O ... o

of order |a| for functions on R", as well as a complex-valued polynomial function of z =
(21,...,2n) € C™ defined by

«

2% =27t 2o

n

For f e C®(T™), repeating the formula in Exercise finitely many times now yields
(7.10) 0 F, = (2mik) fi
for any multi-index a.

Proof of Theorem 7.3, part 1. Assume f € C*®(T"), and choose any multi-index «. Since 0 f is
bounded and T" has finite measure, 0% f also belongs to L!(T"), implying in light of (7.6 that

0of € ¢®(Z™). The relation (ZI0) then implies that

(e

K, — ot — o f

(2mi)le
is bounded independently of k € Z". Since this is true for every multi-index «, it follows that
k+— P(k)fx is a bounded function Z™ — V for every polynomial P, hence f € .7 (Z").
We’ve proved:
F(C®(T™) ¢ L(ZM).
O

The next exercise is an easy application of the standard theorem on term-by-term differen-
tiation of infinite series—the point is that whenever g € £}(Z"), the partial sums of the series
> ezn €% 2g(k) converge uniformly with respect to z € T™.

Exercise 7.10. Given a function g : Z" — V and j € {1,...,n}, let g; : Z" — V denote the
function defined by g;(k) := k;g(k) for k = (k1,...,k,) € Z". Show that if g and g; both belong
to ¢X(Z™), then §: T® — V is continuous and has a continuous partial derivative 9;5 : T — V/
given by

0;9(x) = 2mig;(z).
Proof of Theorem 7.3, part 2. We consider the second statement in the theorem: suppose g €
S (Z™). Then the function k — k%g(k) also belongs to .#(Z") for every multi-index «, and is

therefore in ¢1(Z"). Iterating the result of Exercise [[I0 finitely many times then proves that
for every multi-index «, 0%g exists and is continuous and is given by

(7.11) g = (2mi) gz,

where g, : Z" — V is given by g, (k) := k%g(k). In particular, g : T" — V is smooth.
We’ve proved:
FHSL(Z)) = C°(T™).
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The main remaining step in the proof of Theorem is to show that
yyﬂy(zn) = Idy(zn) and y*y|c’f(’ﬂ‘n) = Idc’f‘(’ﬂ‘n) .

We have already proved the first relation, as a consequence of the L?-orthonormality of the

functions . We shall prove in §7.0 that the relation .#*f = f holds for f € C®(T™"). As

preparation for the latter, we first need a quick digression on the topic of approximate identities.

7.5. Approximate identities. In §5.4] we considered sequences of smooth functions p; : R" —
[0,0) that approximate the so-called “Dirac §-function”. In the context of fully periodic func-
tions, the analogous object to d : R™ — [0,00) would be a nonnegative function 6 on T"™ that
satisfies

Jn o(x)d(z)dx = ¢(0) for all e CP(T").

If such a function existed, it would need to be identically zero on T™\{0} and have an infinite
value at 0, so § cannot be understood as a function in the classical sense, though one can make
sense of it as either a measure or a distribution (i.e. a “generalized function”, see §I0). What is
perhaps more important in many applications is that one can approzimate it with actual smooth
functions.

Definition 7.11. An approximate identity on T" is a sequence p; : T" — [0, 0) of nonneg-
ative smooth functions such that for every ¢ € C*(T"),

lim | pj(x)p(x)dz = ¢(0).
J—© JTn
Remark 7.12. The convolution of two functions on T" is defined analogously to functions on R,
by
(f »g)(x) := i fz—y)gly) dy,

where x —y € T™ = R"/Z™ makes sense for x,y € T™ since the lattice Z" is a subgroup of R"”
with respect to vector addition. One can again use a change of variables to show f#xg =g« f
(cf. Exercise [0.6]). The defining property of an approximate identity thus implies that for any

fFeC®(M), (pj = [)(x) = (f # pj)(@) = §pu f(@ —y)p;(y) dy — f(), so
(7.12) pj * f — [ pointwise for f e C*(T").
The term “approximate identity” refers to the ring structure on L'(T") defined via the convo-

lution operator. If a d-function “6 := lim;_,« p;” existed, then it would satisfy 6+ f = f+d = f
for every smooth function f, thus it would define an identity element in the convolution ring.

The next result describes one of several simple tricks for finding examples of approximate
identities.

Proposition 7.13. Suppose p : T" — [0,00) is a smooth function satisfying p(0) = 1 and
p(x) <1 for all x # 0 € T", and for each j € N, let ¢j := {1.[p(x)) dz > 0. Then the sequence
p;j : T" — [0,00) defined by

m@wzémmw

1 an approximate identity.

Proof. Let Bs(0) ¢ T™ denote the open ball of radius 6 > 0 about 0 € T". We claim that for

every ¢ > 0,
[ s
T™\Bs(0)
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as j — . Indeed, p < 1 on the compact set T™\B;(0), thus p < b on this set for some constant
be (0,1). Choose a € (b,1): then since p(0) = 1, there also exists a ¢’ € (0,0) such that p > a
on By (0). This implies

¢ = | o) do> j [p(@)} dz > a/m(Bs (0)),
" Bsi(0)

thus
1 : Ym(T™"\B
[ piwrar= (o)} do < ZTABs(0)
Tr\ B; (0) ¢j Jrm\ By (0) a’m(By (0))

_ (DY m(T"\Bs(0)

- \a/ m(By(0)
Now given f € C®(T"™) and any € > 0, choose 6 > 0 such that |f(z) — f(0)| < e for all z € B;(0).
Since §r, pj(z)dx =1 for all j by construction, we then have

fw pj(x)f(x)dr — f(O)‘ = Uw p;i (@) [f(x) — £(0)] dz| < fw pi(x) | f(z) — £(0)] dz

—J pj(x) If(w)—f(O)Iderf pi (@) |f(z) = f(O)] da
Bs(0) T™\B;(0)

< €+ 2max | f(z)] pj(z)dr — € asj— oo.
zeT™ T"\Bj;(0)

Since € > 0 can be chosen arbitrarily small, this proves {1, p;(z)f(z) dz — f(0). O

If the §-function existed, its Fourier coefficients would have to be 65, = §r., e~ 2mk s (1) de =1
for all k € Z™, giving rise to the formal expression

(7.13) §(z) = )] ek,

kezn
Both sides of this formula are nonsense mathematically, but it is worth remembering anyway, as
it encapsulates two rigorously provable statements about Fourier series of approximate identities:

Lemma 7.14. For any approximate identity p; : T™ — [0, 00), the Fourier coefficients (p;), € C
satisfy a uniform bound |(p;)x| < C for some constant C' > 0 independent of j € N and k € Z",
and lim;_, o (p;)r = 1 for all k.

Proof. The convergence (pj); — 1 as j — o follows immediately from the formula (p;); =
STn e2mik-a pj(z) dz and the defining property of an approximate identity. In particular for k =
0 € Z", we have lim;j_,(pj)o = 1, so there exists a bound (p;)o = §r. pj(¢) dz < C independent
of j. Then
(Pj)k| < f ‘emk'xpj(x)‘ dz < f pj(x)de < C
']T?’L

n

holds for every j € N and k € Z". O

Lemma 7.15. There exists an approzimate identity p; : T" — [0,00) that is equal to its own
Fourier series for every j, i.e. it satisfies F*.Fp; = p;j.

Proof. Define 3: T! — [0,0) by B(t) := w and p: T" — [0,00) by

p(x1, ... zpn) = B(x1) ... B(xy),
and let p; denote the approximate identity described by Proposition [Z.13]in terms of this par-

ticular choice of p. Since 3 is a complex linear combination of e?™ and e~2™ p is a finite
linear combination of functions from the orthonormal set {¢k}rezn, and the same is therefore
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true of all its powers [p(z)]? for j € N. This proves that p; is equal to a finite Fourier series for
every j. ]

7.6. Completeness. We are now ready to prove that 3'7*]? = f for every f e C®(T"). Let us
first describe an informal “physicist’s version” of the proof, in which we refuse to worry about
annoying analytical issues like integrability, convergence, and whether the d-function actually
exists. The main tool needed for this is Fubini’s theorem, which we apply for functions on
T™ x Z™ with the product of our Lebesgue-type measure m on T™ with the counting measure v
on Z". For f e C®(T™), we compute:

F D@ = e fude = [ e ([ emagay) an

kezm

= 627rik'(5’3* ) m v — e27rik-(mf )
[ emesmamm e = [ (kZZ yf(y)) iy

=f (Z 62“*'<””y>> Fy)dy = f Sz —y)fWdy=| flz—y)dy)dy
" \kezr i ™
= f(z).

Several steps in this derivation are formal manipulations that cannot be taken literally. The
interchange of the integral and the summation is meant to be a result of applying Fubini’s
theorem to the function (y, k) — €27 (@) f(y) on T" x Z", though unfortunately, the latter is
not (m ® v)-integrable. The J-function then appears due to (L.I3]), and from there we apply a
straightforward change of variables followed by the defining property of the J-function.

The way to make all this mathematically precise is by introducing the Fourier coefficients of
an approximate identity p; in the second line. This will make the function on T™ x Z" integrable
and thus produce a mathematically correct formula, which converges to the desired formula as
J — o0.

Proof of Theorem 7.3, part 3. Assume f € C®(T") is given. By Lemma [Z.I5] we can choose
an approximate identity p; : T" — [0,00) that equals its own Fourier series for every j, and
by Lemma [[.14] its Fourier coefficients are uniformly bounded and converge to 1. Since p;

is smooth, the function k — (p;)r on Z" belongs to .%(Z") < ¢}(Z"), so that the function
F.:T" xZ" - V given by

F(y,k) = ™ 7e TR (5, (y)
satisfies

[E'(ys )| < (i)l - [F ()],

and is therefore (m ® v)-integrable as a consequence of Fubini’s theorem for nonnegative mea-
surable functions. We can then apply Fubini’s theorem for integrable functions, giving

2 2T (5 (J e 2mRY £ () dy) :f (2 eQFik'($_y)(ﬁj)k> fly)dy.
kezm™ " T kezmn

The left hand side of this expression is Y, 7. €27*%(5;)k 4, and since f € .7 (Z™) < 1z,
Lemma [(.14] implies via the dominated convergence theorem (applied on Z" with the counting

measure) that this converges to (#* f)(x) as j — o0. Since each p; is equal to its Fourier series,
the right hand side is

| e = sedy = (o + i),

which converges in turn to f(z) by (ZI2]).
We’ve proved:
Fr*Ff=f foral [feC®(T").
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Proof of Theorem [T, conclusion. The first three statements in the theorem have already been
established, so it only remains to verify that for g € .#(Z"), the Fourier series > ;. €2"*%g(k)
converges uniformly and so do its derivatives of all orders. The uniform convergence is clear
since . (Z") = £*(Z™). Applying an arbitrary differential operator 0* to the terms of the series
changes the coefficients to (—2mik)®*g(k), and this function of k is still in .%/(Z"™), so the resulting
series also converges uniformly. O

7 7. Parseval’s identity. The proof of Theorem is based mainly on the observation that
Z and F* are adjoint operations.

Lemma 7.16. For every f € C®(T") and g € S (Z"),
9, F e ={F g, [rz.

Proof. We again use Fubini’s theorem for a function on T" x Z™ with the product measure m®u:

(g, F e = < e dw> ( <g(k),e‘2””“'””f(x)>dw>
kezn kezZn T

f e 2R (g (k). £ () d(m(z) @ v(k))
Tn xz7Zn

f ( 2, el )dm -] < ) ez”i’“'xg(k>,f(x)>dx

kezmn kezn
f (@), [(@)yde = (F*g, 1z

Here the use of Fubini’s theorem is justified since f is smooth and g is rapidly decreasing, so
(z,k) = le”2"*2g(k), f(2))| < |g(k)| - | f(z)| defines an integrable function on T™ x Z™. O

Proof of Theorem 7.6 For f,g € C*(T"), we have f,fj € S (Z"), so Lemma and the fact

that .# and .#™* are inverses gives

9o = (T}, F*p = f, FF*q12 = {f, g)r2-
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8. THE FOURIER TRANSFORM

8.1. The Fourier transform on the Schwartz space. In this section we again assume
(V,{, )) is a finite-dimensional complex inner product space, but we now consider functions
f : R"™ — V that are not periodic. One cannot expect these to be expressible in terms of
the fully periodic functions oy (z) := €™ for k € Z™. On the other hand, if the periodicity
condition is dropped, then the oscillatory function ¢y is well defined on R™ for every k € R™,
and it is natural to wonder whether arbitrary functions on R™ can be regarded in some sense as
linear combinations of oscillatory functions of this type. Since k can now take uncountable many
distinct values, our notion of a “linear combination” needs to be expanded for this discussion:
instead of trying to write f(x) as a series, we would now like to write it as an integral

(8.1 f@) = [ i) dp

for some function ]? : R?” — V, called the Fourier transform of f. Our discussion of the
Fourier transform in this section will closely parallel that of the Fourier series, but it is in some
respects more elegant, as the theory of the Fourier transform exhibits a certain symmetry that is
lacking in the periodic case. This is evident when one sees the formulas for the transformations
Z and Z*, each of which converts a function R"” — V into another function R® — V: for
any class of functions f,g : R™ — V such that the following integrals converge, we define the
Fourier transform of f and Fourier inverse transform of g respectively by@

~

(52 (FH0) = Fw) = | e fa)da,
and

(53 (F*9)a@) = 5(o) = | g(p) dp.

Both are clearly well defined if f,g € L*(R"), in which case f and § are both bounded functions;
in fact, one can easily show via Theorem [[.4] that in this case they are continuous, so that .%#
and #* each define bounded linear operators

Z,F* . [MR") - CO(RM).

Recall from §0.3] that CP(R") is the Banach space of bounded continuous functions on R", with
the usual sup—nor

| fllco == sup |f(2)].
zeR”

Before we can discuss in what sense these two operators are inverse to each other, we must
introduce suitable function spaces on which they will both be bijective. In the setting of Fourier
series, this role was played by the spaces C®(T") and .#(Z"). In the present setting, we need
a single space of functions on R"™ that combines features of both of these.

Definition 8.1. The Schwartz space . (R"), also known as the space of smooth and rapidly
decreasing functions, consists of all smooth functions f : R” — V with the property that for
every pair of multi-indices o and 3, the function R® — V given by 2%0° f(z) is bounded.

16The literature contains several differing opinions on where the factor of 27 should appear in B2) and B3).
Our convention is the same as in [LLOTIDMT2], but many books omit it from the exponent, at the cost of having
to insert some power 1/2m (depending on the dimension) in front of one or both integrals. A professor of mine
once told of a lecture on Fourier analysis in which the speaker had solved this problem right at the beginning by
saying, “Let 2mr = 1.7

17Unlike the norm for continuous functions on the compact space T", the supremum in the definition of Ifllco
need not be achieved for continuous functions on R”, and CP(R™) does not contain all continuous functions on R™,
since not all of them are bounded.
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Exercise 8.2. Show that a smooth function f on R™ belongs to .(R™) if and only if for every
multi-index o and every k € N, there exists a constant C' > 0 dependent on a and k such that

|0%f(z)] < Tﬁxvﬂ for all xeR™
Exercise 8.3. Show that .(R") c LP(R") for every p € [1,0], and for every f € . (R") and
every multi-index «, the functions 0“f and z +— z®f(x) also belong to . (R").

The next two theorems are the main results we aim to prove in this section about the Fourier
transform.

Theorem 8.4. The transformations % and F* each map % (R™) bijectively to itself, and they
are inverse to each other.

Theorem 8.5 (Plancherel’s theorem). For every f,g € Z(R"™), {f,¢)r2 = <]?, Lz

In particular, the linear operators .7, #* : /(R") — ./ (R") are isometries (and are therefore
continuous) with respect to the L2-norm. The Schwartz space contains the space of smooth
compactly supported functions, which is dense in L?(R™), thus .#(R") is also dense in L?(R"),
so this result implies:

Corollary 8.6. The operators 7, F7* : /(R") — Z(R™) admit unique extensions to unitary
isomorphisms L?(R") — L?(R") such that F* = .% 1. O

Proposition 8.7. For f € L'(R") n L?(R"), the definitions of Zf and F*f in [B2) and
B3)) respectively agree (up to equality almost everywhere) with their definitions as described in
Corollary via Plancherel’s theorem and the density of .#(R") < L*(R").

Proof. To avoid confusion, let us denote by le and J?L2 the two possible definitions of f as
defined via (82) or via the density of .7(R") < L?(R"). We claim first that there exists a
sequence of smooth compactly supported functions f; € C°(R™) that converge to f in both the
L'- and L?-norms. Indeed, choosing an approximate identity p; : R® — [0,00) with shrinking
support as in §5, the smooth functions p; * f converge to f in both L' and L? according to
Theorem [5.14] and one can then define f; by multiplying these by suitable compactly supported
cutoff functions as in the discussion preceding Corollary With this sequence chosen, the
functions f; € CP(R") also belong to .#(R™), so the L%-convergence f; — f implies that f;
converges in L? to ]?Lz and it follows that ]/C; also has a subsequence converging pointwise almost
everywhere to fr2. But since .7 : LYR™) — CY(R™) as defined by (8.2) is a bounded linear map,
the L'- convergence f; — f implies addltlonally that f] converges uniformly to the continuous

function fL1 This can only be true if le = sz almost everywhere. A completely analogous
argument, works for .7 *. O

For a function f € L2(R™) that is not in L'(R"), the formula for fin (IEI) does not strictly
make sense, because the integral does not converge, but the continuity of Z : L*(R") — L*(R")
means that one can define f as the L2-limit of the L?-Cauchy sequence f] e CP(R") for any
sequence f; € L'(R™) n L*(R™) converging in L? to f. Exercise B9 below describes a reasonable
trick for carrying this out in practice.

Remark 8.8. If f € L?(R™) but f ¢ L'(R"), then f and f are not functions, strictly speaking,
but rather equivalence classes of functions up to equality almost everywhere so their values f ( )

and f ( ) at individual points p € R™ are not well defined. In contrast, f ( ) and f ( ) are well
defined for every p € R” via the integrals (82) or (83) if f € L'(R"™).

Exercise 8.9. Show that for f,g e L?(R"), the following conditions are equivalent:
(1) f = ¢ almost everywhere;
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(2) There exists a sequence R; — 0o such that lim;_, SBR. e~?PE f(x) dw = g(p) for almost
J

every p € R". (Here Br < R™ denotes the ball of radius R about the origin.)
Hint: Multiply f by characteristic functions to define L?-close approximations that are also
in LY(R™).

8.2. Fourier transforms and derivatives. For f € L!(R"), the function e=2™ f(z) is con-
tinuous with respect to p and also, as a function of x, bounded for every p € R™ by the fixed
Lebesgue-integrable function |f| : R™ — [0,00). Viewing f (p) as a parameter-dependent integral
and applying Theorem [0.4] (and similarly for i (x)) thus proves:

Proposition 8.10. If f € LY(R"™), then Z f and .F* f belong to CY(R™), and the resulting maps
F,F* : LYR") - C)(R") are bounded linear operators. O

Exercise 8.11. Use integration by parts and/or Theorem [0.4] to establish the following ana-
logues of Exercises [.9] and [Z. 10

(1) Suppose f € LY(R™), f has a continuous partial derivative 0;f : R® — V that also
belongs to L'(R") for some j = 1,...,n, and f “decays at infinity” in the sense that

imp—o0 SUPLerm\ B, [/ (2)| = 0, where Bg = R" denotes the ball of radius R about
0 € R™. Then

0;f(p) = 2mip; f(p) and 9] () = ~2mi; f(2)
for each p = (p1,...,pn) € R" and x = (21,...,2,) € R™
(2) Given f : R = V and j € {1,...,n}, let f; : R" — V denote the function fj(x) :=
zjf(x) for v = (x1,...,2,) € R". Iff and f; both belong to Ll(]R") then f f R" >V
are continuous and have continuous partial derivatives 0; f 0j f R™ — V given by
0;f(@) = 2mif;(x) and  0;f(p) = —2mif;(p).

If f € (R™), then the conditions in both parts of Exercise 811 are satisfied and the formulas
may be iterated arbitrarily many times, proving that for every multi-index c,

OJ(p) = @mip)*f(p),  Of(x) = (~2miz)* f(x),
*f(2) = el fa@), 0" F(p) = (=2m)* Fulp),
where f,(z) := x\‘i‘ f (x).AImplicit in the last two formulas is that 8O‘f and 80‘]? exist for every «,

(8.4)

i.e. in this case, f and f are also smooth.

Proof of Theorem[8.4), part 1. For f € #(R"™), we have already shown above that fis smooth,
and for each pair of multi-indices o, 5 0% f satisfies

(—2mi)le] (— 2m)|°‘|/\
W(Qmp)ﬁfa( p) = “@ri)AT 08 fo(p).

By the definition of the Schwartz space, f, and 0°f, also belong to .(R™), so in particular,
the latter is in L'(R") and its Fourier transform is therefore bounded. This proves f € .7 (R").
One shows in the same manner that f € . (R"), so we have proved:

FZ(SRM)) c S(RY) and F*(SRY) < S (R").

PP f(p) = pP(—2mi)l fa(p) =

O

8.3. The Gaussian. One class of functions in ./(R") whose Fourier transforms can be com-
puted explicitly are the Gaussians, i.e. functions of the form Ae=<l"l” for constants A,c > 0.
The computation carried out in this subsection is more than just an amusing exercise: the proof
of the inversion formula in §8.35] will require an approximate identity with particular properties,
and Gaussians furnish the most convenient construction of such an object.
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_a2lz)2 .
alz* on R™ satisfies

Proposition 8.12. For any constant a > 0, the function f(z):=e
- 7.‘.11/2

fla) = flz) =

o~ (m/a)2al?

an

Proof. By Fubini’s theorem,

~ 202 2\ o _ 2.2 2.2 5 - o
f(p) _ f e~ ($1+...+$n)e 2mi(p1zi+...4+pnTn) dr = f eaTY  pmatTn 2mip1T1 . 2TipnTn dr
n

n

Q0 00
2.2 o 2.2 o
<J e~ T 2P dm1> (f e~ Tn o 2mIPnTn d:cn) ,
—00 —00

~

thus it will suffice to prove that the stated formula for f is correct in the case n = 1. Consider
:= ¢~ %*** on R. Instead of computing the integra
x asr R. Instead of ting the integral

0
for = | et

—00

explicitly for every p € R, we shall identify the function f as the unique solution to a certain
initial value problem. For p = 0, we have

~ o0} 1 o0}
f(0) = f e " dy = —f e du = ﬁ,
w0 aJ_ o a

which follows via the substitution v = ax and the well-known formula Siooo e du = AT
Applying ([84]) and then integrating by parts, we also have

i T e —a?z?  —2mipx ir (© d —a?z? —2mipx
f'(p) = —2mixf(p) = —2mi xe e P dy = — — (e ) ce STy
S a® J_o dx
it [ 22d o 1T . 0 Ca22? _omi o2 o~
== _Ooe a’x o (e Zp:’:) dx = = 'QWZpJ_OOG GETEMPE (yp = —?pf(P)a
in other words, ]?: R — C satisfies the initial value problem
df .
2~ amfayf,
p
f(0) =+/x/a.
The unique solution to this problem is ]?(p) = 46_(”/ a)’p?, ~ ~
Since f is a real-valued function, f is the complex conjugate of f, which is f itself. O

Corollary 8.13. The Gaussian f(z) = e~ 71 with a > 0 satisfies F*Ff=FF*f=f. O

8.4. Approximate identities revisited. If the Dirac J-function 6 : R" — [0,0] were an
actual function in .(R"), its Fourier transform would be

g(p) = f e72TPTS (1) da = 1,

leading to the slightly nonsensical formula

(8.5) i(z) = J i XTI (g,

As with most things involving the J-function, one can make mathematical sense of this formula
in terms of approximate identities, and the proof of the Fourier inversion formula in the next
subsection will require the existence of an approximate identity for which the inversion formula
is known to hold. For our purposes in this context, “approximate identity” means the following:
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Definition 8.14. A tempered approximate identity on R" is a sequence p; : R" — [0,0)
of nonnegative functions in .#(R") such that for every ¢ € .Z(R"),

(8.6) lim | pj(z)p(z)de = ¢(0).
J—0 Rn

Note that the assumption p; € #(R") implies that the convolution p; * f is a well-defined
function R" — V for every f € #(R"), and ([86) then implies (p; * f)(x) = (f * pj)(x) =
$gn f(x —y)p;(y) dy — f(z), hence
(8.7) p; * f — f pointwise for f e .7 (R").
Lemma 8.15. Suppose p : R" — [0,00) is a smooth function satisfying (g, p(x)dx = 1. Then
the sequence p; : R™ — [0, 00) defined by

pj(x) == j"p(jz)

satisfies (8.0) for every bounded continuous function ¢ : R™ — V.

Proof. We use the change of variables y := jx to write

| p@s@ds = | pwetu/idy

Since ¢ is bounded and continuous, the integrands on the right converge pointwise as j — o
to p(0)p and are uniformly bounded by a constant multiple of the integrable function p. The
dominated convergence theorem thus implies that the integrals converge to SRn e(0)pdm =

©(0). O
Lemma 8.16. There exists a tempered approximate identity p; € .7 (R™) with the following
properties:

(1) F*p; = p; for every j;

(2) The functions p; satisfy a uniform bound |p;| < C for all j and converge pointwise to 1.
Proof. Set p(z) := %e*‘mp and use this to define p; as in Lemma B.I5l Then p; is a Gaussian
for every j, so both p; and p; are in .(R"™), and Corollary BI3| implies .#*p; = p;. Applying
Lemma B.I5 with the bounded continuous function f(x) = e 2™ for each p € R", we also have

lim p;(p) = lim e Py (x)de =1
j—00 Jj—0 Jpn
and
1050 < llpjllr = lloler =1,
where a quick computation via change of variables gives SRn pjdm = SRn pdm. Alternatively,
these last two statements also follow from the explicit computation of p; in Proposition O

8.5. The Fourier inversion formula. We can now prove that the operators .# and .#* on
Z(R™) are inverse to each other.

The “physicist’s proof” that .%#*
Fubini’s theorem:

f=
(P = [ i) f ( | 2“’p'yf<y>dy) dp
)

- fn (J ) (2 () dp) fly)dy = o Sz —y)f(y)dy = = f(z —y)d(y) dy
= [f(x).

Here the o-function appears due to the formal relation (8], and something clearly must be
modified to justify the use of Fubini’s theorem since (y, p) — €27 (*=%) f(y) is not an integrable

f works via the following adventurous application of
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function on R™ x R™ for any x € R™. In analogy with §7.6, the remedy is to multiply this function
by the Fourier transform of a tempered approximate identity p; € .(R"), and then take the
limit of the resulting relation as j — oo.

Proof of Theorem [8F), conclusion. Given f € .#(R™), we need to show ﬁ*f = f. Choose a
tempered approximate identity p; with the properties listed in Lemma B.I6l We then have
pj € LY(R™), and for every z € R", the function F : R™ x R" — C given by

Fy,p) = X% 20V (p) f (y)

is therefore integrable. Applying Fubini’s theorem to the integral of F' over R x R" now gives

fn XL (p )Unemp'yf(y)dy) dp=fn (Jn 2By (p )dp) f(y)dy.

The left hand side is g, > ps(p) f (p) dp, which converges via the dominated convergence
theorem as j — o to (g, 627”’"1]?(]9) dp since f € S (R") < L'(R™) while (by Lemma B8] p;
is uniformly bounded and converges pointwise to 1. The right hand side is likewise {3, p;(z —
y)f(y)dy = (p; * f)(z), which converges to f(x) by [87). We've proved:

FrFf=f foral fe S (R").
An almost identical argument proves #.Z* f = f for all f € Z(R"). O

8.6. Plancherel’s theorem. With the Fourier inversion formula in hand, Plancherel’s theorem
will follow easily from the observation that % and .#* are adjoints:

Lemma 8.17. For every f,g € (R"),

<g7‘g\f>L2 = <9*gaf>L2'

Proof. Since f and g are both in . (R") = L}(R"), the function (z, p) = e 2™P%(g(p), f(x))| <
lg(p)| - | f(x)]| is integrable on R™ x R™, so Fubini’s theorem gives

@700 = [ (o ([ e r@a) yar= [ ([ e i) ap

- JR g ), S(@) dlm(z) @ m(p)) = jRn ([L o). s@pap) i

<J 27rsz dp, >d.%' = J <g >d1’ = <9*g f>L2
R™ n
]

Proof of Theorem[84. For f,g € #(R™), the Fourier transforms 7.4 are also in . (R™), so
Lemma 817 together with the relation .%.%* = Id gives

i ={F* [, T e = f, FT*gop2 = {f, P12
]

8.7. Convolutions. If f and g are functions of class L' and L? respectively on R" and at
least one of them is assumed to be scalar valued (so that pointwise products f(x)g(z) are
well defined), then Young’s inequality (Theorem [.8) implies that the convolution f * g is a
well-defined function in L?(R"). Since f.fe CY(R™) and g, € L*(R") in this situation, the
pointwise products f:j and ji(j are also well-defined functions in L?(R"), and the formulas in the
following result therefore make sense:

Theorem 8.18. If f € L'(R") and g € L?(R"), then Z(f * g) = ffj and F*(f=g) = jYﬁ almost

everywhere.
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Proof. We focus on the formula for .Z(f = g), as the same argument works for #*(f = g). If
f,g € L'(R™), then the formula is a straightforward application of Fubini’s theorem, which we
leave as a (highly recommended!) exercise. To extend this result to general g € L?(R™), one can
choose a sequence g € .7 (R") with g — g in L?: then m = {41 since S (R") < L'(R™),
and Young s inequality implies f * g, — f # g in L?, hence by Plancherel’s theorem, fﬁk =

f =g L f *g At the same time, f € CO(]R") and Plancherel’s theorem also implies g, — ¢
in L?, thus f G5 also converges in L? to fg O

There are two analogues of Theorem [BI8 for fully periodic functions and Fourier series. We
defined in Remark [.12] the convolution of two periodic functions f and g as an integral over the
torus T". There is a similar definition for functions on Z", with Lebesgue integration replaced
by summation (i.e. integration with respect to the counting measure): for two functions f, g on
Z'™ such that at least one is scalar valued, we write

(f+g)(k) ==Y f(k—5)g(4)
JEZ™
This is considered well-defined for a given k € Z™ if and only if the sum on the right hand side
converges absolutely.

Exercise 8.19. Adapt the proof of Theorem 5.8 to show that Young’s inequality also holds for
functions on T™ and Z", that is:
(a) For any f € L'(T") and g € LP(T") with 1 < p < 00, (f #g)(z) is defined for almost every
x € T" and determines a function f = g € LP(T™) such that || f = g|e < |flp1 - |gllze-
(b) For any f € ¢}(Z") and g € (P(Z") with 1 < p < o, (f * g)(k) is defined for all k € Z"
and satisfies | f + gl < [ fller - lgler-

Exercise 8.20. Prove the following analogues of Theorem R.I8] for Fourier series:
(a) For any f,g € LY(T"), the Fourier coefficients of f * g € L'(T") are given by f/*\gk =
8 ~
(b) If f € C°(T") and g € L*(T") have Fourier coefficients [ € ¢H(Z™) and g € (*(Z"), then
the Fourier coefficients of fg are given by fg, = (f * 9)k-

The following amusing variation on Theorem [R.I8 will be useful in our discussion of nowhere
differentiable functions in the next subsection. Suppose f is a fully periodic function on R",
expressed as a Fourier series f(z) = 3 7. €2™*2 fi.. This function does not belong to LP(R™)
for any p < oo unless it is zero almost everywhere, thus we cannot define a Fourier transform
for f in the usual sense[ld In the following paragraph, we shall ignore this difficulty as we did in
the initial “physicist’s proofs” of Theorems and B4, thus the reader is asked to temporarily
suspend all skepticism about issues like convergence, interchange of summation and integration,
and the existence of the Dirac d-function. The logical gaps will be filled in subsequently.

With this understood, let us pretend that f is a well-defined function on R™ given by the usual
formula f(p) = §z. e ™" f(2) dz. To write it down more precisely, observe that the inverse
Fourier transform of the (fictional) Dirac d-function is given by g(x) = {gn €™P%5(p) dp = 1,

so applying the Fourier inversion formula gives the formal relation 1= §, or in verbose form

(cf. @),

(8.8) i(p) = J i e 2T g,

18We are not mentioning the case g € L?(T™) here because it is redundant: since T? has finite measure,
L*(T™) ¢ L*(T™).

19A function f ¢ L*(R™) may nonetheless have a well-defined Fourier transform that is not a function but a
tempered distribution; see JI0.61 This notion can be used to give rigorous meaning to formulas like 1=94 , though
it is not required for the present discussion.
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This suggests the formula

(8.9) A(p) _ J o 2mipT Z e2m'lc-:z:f’-;g do = 2 (J *27”(17 k)-x dw) 2 5 p /{?
" keZn kezn \JR? keZn

The support of this “function” is Z™ since §(p) = 0 for all p # 0. Now for a given k € Z", choose
a smooth compactly supported function {Z)\ : R™ — [0, 1] that satisfies 12(]{:) = 1 and has no other
points of Z™ in its support. We have labeled it 1Z because, as an element of . (R"), 12 is the
Fourier transform of another function ¢ € .¥(R™). The product of 12 with the right hand side of
Q) is 6(p — kz)ﬁg, which is formally the Fourier transform of 62“]“'”]/‘2, i.e. a single term in the
Fourier series for f. Since products of Fourier transforms are Fourier transforms of convolutions
according to Theorem B.I8] we can take this formal discussion as motivation for the formula

(8.10) (¥« f)(x) = 2k f.

In contrast with several other questionable things that have been said in this paragraph, (8.10)
does not look at all implausible, e.g. both sides are smooth bounded functions on R™ (for the
left hand side this follows from Theorem 5.7 and Young’s inequality since 1 € . (R") < L'(R")
and f € L®(R"™)). Let us now give a rigorous proof.

Lemma 8.21. Suppose [ is a continuous fully periodic function on R™ with absolutely summable
Fourier coefficients f € {*(Z"), and ¢ : R™ — C is the inverse Fourier transform of a function
e L (R™) with (k) =1 for some k € Z™ and (k') = 0 for all k' € Z™"\{k}. Then (8IQ) holds.

Proof. The reversal of summation and integration in the following computation is justified by
the dominated convergence theorem since ‘¢(y) Zjezn 627rij.(x—y)j‘;.‘ < |v(y)l - HJ?Hﬁl and ¢ €
S (R") < LY(R"):

W @) = (=)@ = [ fa=) dy—j sw)( 3 e dy
JEL™
_ Z 627rij~m( w(y) —27rz]ydy) 2 eQmj xw eZWik.a:ﬁ.
jezn R™ jezn

0

8.8. Nowhere differentiable functions. Fix constants a,b > 1 and consider the function
f R — C defined by

21 k
(8.11) Z—k 2mibe

Since ZZ,O:O aik < o0, the partial sums of this series converge uniformly to a continuous function.
If b € N, then f is periodic, and (RII) is an expression of its Fourier series. Differentiating it
term by term gives

2 bE
(8.12) fl@) =2mi )] ge%’b T

k=0
a formula that should be taken with a grain of salt until we have investigated whether the right
hand side converges. In fact, the series converges absolutely and uniformly if b < a, and it
follows in this case that f is indeed continuously differentiable. The interesting question is what
happens when b > a.

Theorem 8.22. Ifb > a > 1, then the function f in (8I1) is not differentiable at any point.
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Up to unimportant details such as the factor of 27 in the exponent, the real part of f is
the function that was introduced by Weierstrass in 1872 as the first published example of a
continuous but nowhere differentiable function. It was later [Ban31,Maz31] shown that, while
such functions are typically not so easy to write down, they are not at all unusual, e.g. the
subset of C°([0,1]) consisting of nowhere differentiable functlons is dense, and even better, it is
comeager, meaning it is a countable intersection of open and dense subsets. In other words,

“almost all” continuous functions are nowhere differentiable in some quantifiable sense.

The version of Theorem proved by Weierstrass included the extra conditions that b is an
odd integer and b/a > 1 + %7‘1’, which are not necessary. In the form stated here, Theorem
is due to Hardy [Har16], and our proof below is adapted from [Joh10)].

Some initial intuition for Theorem comes from (8I2), as we have already learned to
expect some correspondence between the differentiability of a function and the rate at which its
Fourier coefficients decay. This Correspondence typically goes in only one direction, e.g. absolute
summability of the series >, fk or Y. |kl fk implies continuity of f or f’ respectively, but not
every continuous function has summable Fourier coefficients. The challenge in Theorem [8
is similar, as we need to show that if f is differentiable at some point, then the coefﬁcients on
the right hand side of (8I2]) must indeed be absolutely summable. The Weierstrass function
has a special property that makes proving results like this more feasible: its Fourier series is
lacunary, meaning that most of its Fourier coefficients are zero, and the gaps between its
nonzero terms become wider (at an exponential rate) as the series continues. We will not give
a more precise definition of this property here, nor mention it explicitly in the proof below, but
you may recognize where it is used implicitly if you pay careful attention. A similar result worth
mentioning is that for any function g on S' := T! with a lacunary Fourier series, g is bounded
if and only if its Fourier coefficients are absolutely summable; see [Kat04] §V.1.4].

Proof of Theorem[8.22. As already mentioned, the absolute summability of Y}, aik fora > 1
implies that f is continuous and bounded. Let us assume that for some zg € R, the difference

quotients
B) —
F(R) = Dyf(ao) = L0+ ]?L f@) e per\o)

have a well-defined limit f(z¢) = limj_,0 F'(h). Since f is bounded, it follows that F' extends to a
bounded continuous function on R. We will show that this assumption implies limy,_,. (b/a)* = 0,
and thus b < a.

In order to estimate (b/a)¥ for large k € N, we will use the convolution formula (8I0). Choose
a smooth function ¢ : R — [0,1] with ¢ (1) = 1 and compact support in the interval (1/b,b),
and for each k € Z, let

Vi) =V (p/b"),
which satisfies
~ ~ 1 ifn=k
c (bF1 R, thus b = ’
supp(¥x) < ( ) u we®") =90 e Z\(k}.
Since 1y, € CP(R) c L(R), these functions are Fourier transforms of Schwartz-class functions
U € L (R), and an easy change of variables in the Fourier inversion formula gives

wla) = [ R ap =8 [ ) dp = (),

Notice also that since 0 € R lies outside the support of {Z)\k for each k € Z, we have

(8.13) 0 = 3k (0 f V(@) da

2()Corneager sets are the complements of meager sets, which are countable unions of nowhere dense sets. Since
there is no meaningful notion of “Lebesgue measure” on an infinite-dimensional vector space, meager sets often
play the role of “sets of measure zero” in the infinite-dimensional context.
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and

(8.14) 0 = 9,(0) = —2mi foo aiy () da.

The first of these two relations implies Siooo f(zo)Yr(x)dr = 0, so we now plug in (8I0) and

compute:
L~ (i) = [ a0 e = [ (10— ) = ) inte) o

0 Q0

_ foo S (=) (x) do = —bkf e F(—2) (b ) dy = —f L P /b)) da,

—0 —00 —0 bk

implying

(9)k e2mibimo _ _ ﬁo F(—a/b")ay(z) da.

a
Since ¢ € . (R) and F is bounded, the integrand on the right hand side is bounded for every
k = 0 by a constant times |z|i) € L}(R), and it converges pointwise as k — oo to F(0)z(x) =
f'(xo)xp(x). Applying the dominated convergence theorem and the & = 0 case of (814, we
conclude
b\* orivk ©
lim (—) e2mib o — —f'(xo)f xp(z)dx =0,
k—oo \ a —o0

thus b < a. O

Exercise 8.23. Show that the Weierstrass function (8I1]) with arbitrary constants a,b > 1 is
of class C" but has no derivative of order m + 1 at any point, where m > 0 is the unique integer
such that m < logya < m + 1.
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9. SOBOLEV SPACES VIA FOURIER ANALYSIS

9.1. The general idea of Sobolev spaces. In order to study PDEs via functional-analytic
methods, one needs function spaces on which derivatives can be defined as bounded linear
operators. For instance, the spaces C™(R"™) and C™(T") of bounded functions on R™ (or in the
latter case fully periodic functions on R™) that have bounded partial derivatives up to order m
is a Banach space with respect to the norm

(9.1) [flem = >, sup|*f(2)],

0<|al<m *

where the sum ranges over all multi-indices of order at most m. For each j = 1,...,n, the
operation of taking the partial derivative with respect to coordinate z; then defines a bounded
linear operator
0j CHR") - C°(R") or 0j CHT™) — CO(T™),

and similarly, any multi-index « of order |a| = m defines 0% : C™(R") — C°(R™) or 0 :
C™(T") — C°(T™). That is all fine, but unfortunately the Banach spaces C™(R"™) and C™(T")
do not have enough nice properties to be very useful in technical arguments. They are, for
example, not reflexive, and their dual spaces are not easy to describe, e.g. by the Riesz-Markov
theorem (see [Sall6l §3.3]), the dual of the space of continuous functions on a compact domain
can be identified with a space of measures, which is inconveniently much larger than a space of
functions. In this sense, the LP-spaces are much nicer, but they have the obvious drawback that
functions of class LP are typically not even continuous, much less differentiable, so operators like
0; cannot be defined on LP(R™) or LP(T").

The theory of Sobolev spaces, which is indispensable for the modern theory of PDEs, provides
a means of keeping the good properties of the LP-spaces while also permitting differentiation to
be a bounded linear operator. Let us suppose first that we want to be able to handle first-order
differential operators for functions on an open domain 2 € R™. There are a few ways that one
can imagine defining a suitable generalization of LP(2) for this purpose:

Idea 1. Define X1(2) to be the space of functions f € LP(Q2) that are differentiable almost

everywhere and satisfy 0;f € LP(Q2) for every j = 1,...,n. A natural choice of norm on this
space is

n
(9.2) 1 £ 50 == 1F o + D) 105 f o

j=1

Unfortunately, it will turn out that this space is not complete, i.e. it is a reasonable normed
vector space, but not a Banach space.

Idea 2. Since X;(2) as defined above is not complete, one could define X2(£2) to be the closure of
X1(Q) c LP(Q) with respect to the Xj-norm. This is a reasonable definition, but not convenient
to work with—we would prefer to be able to say precisely what the elements of X2({2) are, rather
than just calling it the closure of a dense subspace whose elements we can explicitly describe.

Idea 3. In the case n = 1 with Q = (a,b) c R, one can consider the space X3(2) of functions
that have absolutely continuous extensions to [a, b] such that their (almost everywhere defined)
derivatives are of class LP on (a,b). This is also a reasonable definition, but it only makes sense
for functions of one real variable—on domains in R", the notion of absolute continuity can be
defined for measures, but not functions. It also doesn’t give much of a hint how we should
handle higher-order derivatives.

The general solution to these problems will be to generalize the notion of the derivative and
thus talk about “weakly differentiable” functions; we will do this in §I0 by introducing the
theory of distributions. But before that, we observe that in the setting of 2 = R™ with p =2, a
simpler solution is available using the properties of the Fourier transform.
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9.2. The spaces H™(R") and H™(T"). Let us start by writing down a norm that measures
derivatives up to order m > 0 by integrating them instead of taking suprema (as the C™-norm
does). The case m = 1 appeared already in (0.2), and it generalizes naturally to

(9.3) Iflwme == 10 f]L»,

la|<m

where the summation ranges over all multi-indices « of order at most m; note that this includes
the trivial multi-index with |a| = 0, so the LP-norm of f is one of the terms in the sum. If p = 2,
we can use Plancherel’s theorem and (84) to rewrite this norm as

3 l@mip)® £l .

la|l<m

Up to equivalence of norms, the factors of 274 in this expression clearly make no difference, and
every monomial of order at most m satisfies |p®| < ¢(1 + |p|?)™? for some constant ¢ > 0, thus
an equivalent norm is given by the simpler expression

(9.4) £l =L+ 1™ 2F) | = ( fRnu * |p|2>M|f(p>|2dp) " el

Notice that this formula does not require f to be differentiable, nor even continuous; it is
defined for all L?-functions on R”, though we have no guarantee in general that it will be finite.
Finiteness of this norm determines a subspace

H™R") := {f € L*(R") | | f]zrn < o0} .

We now observe two interesting things about this definition: first, it does not actually mention
any derivatives of f, so || f| g~ might potentially be finite even if f is not differentiable or contin-
uous. We plan to interpret H™(R™) nonetheless as the space of L?-functions whose derivatives
up to order m are also of class L?, and this interpretation will turn out to be correct as soon
as we enlarge our notion of what the word “derivative” can mean in §I0l Second, the stated
definition of the H™-norm does not actually require m to be a nonnegative integer. It makes
sense in fact for any m € R as long as f belongs to a class of functions whose Fourier transforms
can be defined, e.g. one can even allow m < 0 and drop the condition f € L? by allowing f
to be a so-called tempered distribution (see §10.6]). We will not discuss the case m < 0 here,
but the case of nonnegative real numbers other than integers gives rise to a notion of fractional
differentiability that is sometimes useful in applications.

Theorem 9.1. For every m >0, H™(R"™) is a Hilbert space with respect to the inner product
ey i= | (P, 50 .
]Rn
Proof. The map H™(R") — L2(R") : f > (1+ |ph2)m/2fis a bijective isometry, so completeness
of H™(R™) follows from completeness of L?(R") O

For fully periodic functions, there is a natural analogue of the space H™(R™) whose definition
uses Fourier series instead of the Fourier transform. We define for each f € L?(T") the norm

1/2
o (Z (1+ |k|2>m|fk|2> € [0, 0],

Iz = (L + k)2 ]
kezZn

and set
. 2
H™(T") = {f € L*(T") | | fllum < 0}.
The proof of the next statement is an easy adaptation of Theorem
21 Theorems and are also true and can be proved in the same way for m < 0, but we are not stating

them for that case because our definition of H™ as a subspace of L? is only correct for m > 0. For a more general
discussion, see e.g. [Tay96].
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Theorem 9.2. For every m > 0, H™(T™) is a Hilbert space with respect to the inner product
Grgpum = 3 (U + K2 G-

kezm
]

Exercise 9.3. Show that ./ (R") ¢ H™(R") and C*(T") ¢ H™(T") for every m > 0.

By construction, any L2-function f on R™ or T" that has continuous derivatives up to order
m = 0 which are also of class L? belongs to H*(R") or H*(T") respectively for every s < m. In
particular, every smooth function with compact support is of class H™ for every m. If a is a
multi-index with |a| < m, then for f of class Ci°, (T.10]) and (8.4]) determine formulas for 0% f in
terms of the Fourier series or transform of f. These formulas also make sense if f is not smooth
but is of class H™, and in this way one also obtains a bound on ||0%f||;2 in terms of || fl|gm,
proving:

Proposition 9.4. For any multi-index « of order |a] = m € N, the operator 0% on smooth
functions with compact support has a natural extension to a bounded linear map 0“ : H™(R") —
L*(R™) or 0% : H™(T™) — L?(T"). O

Exercise 9.5. Extend Proposition to define 0* as a bounded linear map H**™(R") —
H*(R™) or H*™(T™) — H*(T™) for every s = 0 whenever |a] =m

Exercise 9.6. Show that for a,b > 1 with b € N, the Weierstrass function f(z) = > ;7 , aikezmbk“”
belongs to H™(S!) := H™(T?) if and only if m < log a.

For the Weierstrass functions, comparing Exercises B.23]and 0.6 reveals a fairly straightforward
correspondence: for each integer m > 0, f € C™(S') := C™(T!) if and only if f € H™(S'),
and C™-functions must also belong to H*(S') for some s € (m,m + 1). In particular, f can
be nowhere differentiable but will still belong to H*(S') for s € (0,1) sufficiently small. But
the simplicity of this correspondence is slightly misleading. Beyond the Weierstrass functions,
it cannot be true in general that every function of class H™ for an integer m > 0 is also of
class C"™; this is clearly false for m = 0, since not all L2-functions are continuous. The following
exercises exhibit some less obvious examples.

Exercise 9.7. Two simple examples of discontinuous real-valued periodic functions on R are
the square and sawtooth waves, defined respectiely as the obvious periodic extensions of

1 if0<a<1/2,
= d =z for0<z < 1.
f(x) {_1 12 <<, an g(z) := x for T

Show that both belong to H™(S*) for all m < 1/2 but not for m > 1/2.

Exercise 9.8. The goal of this exercise is to show that the improper integral

(0.5) fa) =

dp, x € R\{0}

dp:= lim

0 e27m'pm N e27m'pm
9 plnp N—w Jo plnp

defines a discontinuous function in H'/2(R). Note that the integrand 621 "~ is not a Lebesgue-
integrable function of p € R, so the limit is necessary in order to define the integral, and its
convergence is not obvious.

(a) Show that there exists a function g € L?(R) whose Fourier transform is given almost

everywhere by
1 .
gp) = | MP>2
0 if p<2,

and that this function belongs to H™(R) if and only if m < 1/2.
(b) Show that the function g in part (a) is the L2-limit of the functions fx (x
as N — oo.

N 27'rzpz
52 plnp
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(c) Use integration by parts to prove that for every M > 2 and x € R\{0}, the limit
0 eQ‘rr'Lpz 27”;71
SM STp dp = limy_ o SM Sy dp exists, depends continuously on x, and satisfies

0 2mipx 1
dp| < .

UM plnp ‘ mlx| - MIn M
Deduce from this that the function ¢ in part (a) matches (almost everywhere) the func-
tion f defined in (9.5]), which is continuous on R\{0}.
Hint: Recall that L?-convergence implies pointwise almost everywhere convergence of a
subsequence.

(d) Prove that lim, o |f(x)| = o

Hint: Break up the integral over the intervals [2,¢/|x|] and [¢/|x|,00) for some small
e > 0 with |z| < ¢/2. The estimate in part (c) will bound it on the second interval, while

on the first, its absolute value should be larger than some positive multiple of Se/m p‘lir’:p
whenever ¢ is sufficiently small. Now let |z| — 0 and use the fact that S;O p‘lifl’p = 0.

Exercise 9.9. Adapt the argument of Exercise 0.8 to show that the L?-convergent Fourier series
f(z) =27, ]:T“Z defines a discontinuous function in H'/2(S') := H/2(T").

Hint: Proving a bound on Zk M ;Tzkg for x # 0 requires an analogue of integration by parts

for summations, which is easy to prove if you regard the “derivative” of a sequence aj, as the
sequence a), := aj4+1 — ag. If you need more inspiration, see [Rud76l pp. 70-71].

9.3. The Sobolev embedding theorem. Exercises [0.7] and demonstrate that func-
tions of class H™ for m < 1/2 on S or R need not be continuous, though it seems that
discontinuous examples for the case m = 1/2 are not so easy to construct. We will now show
that it becomes impossible for m > 1/2, and in fact, such a threshold also exists for functions
on T or R™ and depends on the dimension n. Recall that H™(R") and H™(T") were defined
as subspaces of L?(R") and L?(T") respectively, so their elements are not actually functions,
but rather equivalence classes of functions defined almost everywhere. This is different from
the Banach spaces C™(R"™) and C"™(T"™), whose elements are actual functions. We will say that
there exists a continuous inclusion

H*(R") = C™(R")

whenever the following is true: every f € H*(R") is equal almost everywhere to a unique function
f € C™(R™), and the resulting map H*(R") — C"™(R") : f — f is a bounded linear operator.
The existence of a continuous inclusion thus comes with an estimate of the form

Iflem < e¢|fllgs for some constant ¢ > 0 independent of f,

where we abuse notation by forgetting the distinction between the C™-function f and the
equivalence class in H*(R™) that it represents. There is an obvious similar definition for the
spaces of fully periodic functions H*(T") and C™(T").

Theorem 9.10 (Sobolev embedding theorem, case p = 2). Assume n € N and s > 0 satisfy
2s > n. Then there exist continuous inclusions

for every integer m = 0.

Proof. We first consider functions f € H*(R™) with 2s > n. The main step is to establish a
bound on | f|;1, as f is then equal almost everywhere to .#* f, which is continuous since .Z*
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defines a bounded linear operator L'(R") — C°(R"™). We use the Cauchy-Schwarz inequality:

Pl = [ s [+ b2 ao < o wered

1 1/2
< —d . s
<(Lnu+mm5p) 7l

Using n-dimensional polar coordinates, we see that the integral in the second line converges if and
n—2s—1

1
T+ 1pP)" i

n—

only if Si’o m dr < oo. For large r > 0, the latter integrand behaves like r™ ! /r?s = r
so the integral converges if and only if n — 2s < 0, which is exactly the condition 2s > n. This
proves the continuous inclusion of H*(R") into C°(R™).

If f e H"™(R") with m € N, then the same argument bounds the L!-norm of the function
p po‘f(p) for each multi-index o with |a] < m in terms of ||f|gs+m, so the argument of
Exercise RIT] shows that the partial derivatives 0%f up to order m exist and are continuous.
Moreover, their C%-norms are bounded in terms of the L'-norm of p®f, which gives a bound for
|fllcm in terms of || f|| frs+m.

The result for fully periodic functions follows by essentially the same argument, except that
the version of the Cauchy-Schwarz inequality one needs is | fg[p < || flle2 - |g]e2 for functions
fyg:7Z" — [0,00). The crucial detail is then the convergence of the series

1
2 ———— <o for2s>n
2 )
Z TRy
which can be established by comparing it with the integral SR" m dp. O

Corollary 9.11. Any function belonging to H5(R™) for all s = 0 is (after changing its values
on a set of measure zero) smooth, and its derivatives of all orders are bounded. Similarly,

Naso H*(T") = C(T™). O

Theorem [0.10] leads to the intuition that functions of class H® have “s — 5 continuous deriva-
tives,” where in general the number s — n/2 need not be an integer, but should be assumed
positive in order for the statement to carry any meaning. We will make this more precise for

the case 0 < s —n/2 <1 in §9.61

9.4. Compact inclusions. A much more obvious fact than the Sobolev embedding theorem
is that for every t > s > 0, there are continuous inclusions H*(R") — H*(R") and H!(T") —
H#(T™). If we think of functions of class H® as being (s — n/2)-times differentiable, then these
inclusions are analogous to the obvious continuous inclusions C™ «— C* for m > k. Let us
focus for this subsection on fully periodic functions, which can be regarded as functions on
the compact metric space T". One interesting fact about the inclusion C™(T") < C*(T") for
m > k is that it is a compact operator. A bounded linear operator A : X — Y between Banach
spaces is called a compact operator if it maps every bounded subset of X to a precompact
subset of Y, or equivalently, for every bounded sequence z, € X, the sequence Az, € Y has
a convergent subsequence. Such compactness properties furnish a favorite source of existence
results in applications, e.g. if one can find a sequence of functions that approximate solutions to
a PDE arbitrarily well, then a convergent subsequence can be expected to have a limit that is
an exact solution.

Exercise 9.12. Use the Arzela-Ascoli theorem to show that for any integers m > k > 0, the
inclusion C™(T™) < C*(T™) is a compact operator.
Hint: Compositions of compact operators are also compact, thus it suffices to prove that
Ck+1(T™) < C*(T") is compact for every k > 0. Start with k = 0, and notice that any
C'-bounded sequence in C*(T™) is equicontinuous.

Exercise 9.13. Find a bounded sequence in C'(R™) that converges pointwise to 0 but does not
have any C%-convergent subsequence.
Hint: Translations!
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The analogue of Exercise [0.12] for Sobolev spaces is known as the Rellich-Kondrachov com-
pactness theorem:

Theorem 9.14 (Rellich-Kondrachov for p = 2). For every t > s > 0, the natural inclusion
HY(T™) — H*(T™) is compact.

Exercise 9.15. Adapt Exercise to show that the inclusion H*(R") < L?(R") for s > 0
is not compact; in particular, there exists an H*-bounded sequence that converges pointwise to
0 but stays a fixed positive distance away from 0 in the L?-norm, thus it has no L?-convergent
subsequence.

To prove Theorem [0.14], we will appeal to two very useful general facts about compact oper-
ators. The first concerns bounded linear operators with finite rank:

Proposition 9.16. If X and Y are Banach spaces and A : X —'Y is a bounded linear operator
with finite-dimensional image, then A is compact.

Proof. The image of a bounded sequence z,, € X is a bounded sequence Az, € Y, but by
assumption it also belongs to a finite-dimensional subspace im A < Y. The result thus follows
from the fact that all bounded sequences in finite-dimensional vector spaces have convergent
subsequences. O

Proposition 9.17. If X and Y are Banach spaces and A, : X — Y is a sequence of compact
operators that converge in the operator norm to an operator A : X — Y, then A is also compact.

Proof. Suppose =, € X is a bounded sequence. Since A; : X — Y is compact, x, has a

(1)

subsequence x,(ll) such that Ajz;,’ converges. We can then use the compactness of A to extract

(1) (2) (2)

from x;, ’ a further subsequence x,,’ such that Asxy, ' converges. Continuing in this manner, one

obtains a sequence of subsequences CCSLJ ) such that ijSJ ) converges as n — oo for every j € N.
The diagonal subsequence
2(©) .— ()
n * n

(o0)

then has the property that A;x; ’ converges as n — oo for every j.

We claim now that A:U%OO) also converges, which will imply that A : X — Y is compact. Since
Y is complete, it suffices to show that Aacsloo) is a Cauchy sequence. Given € > 0, choose M € N
such that

€
A= Ayl < Ssup faal,
neN

and then choose N € N such that ||AM1'£LOO) - AMxSZO)H < €/3 for all m,n > N; the latter is
(20)

possible since Aprxy * is a Cauchy sequence. It follows that for all m,n > N,

|42l — ASO| < (A = An)al] + [Apr (@™ = 2§ + (A = AP < 5+ 5 +5 =,
thus proving the claim. O

Corollary 9.18. Any bounded linear operator in the closure (with respect to the operator norm)
of the space of finite-rank operators is compact. O

Remark 9.19. We will not need this at present, but if X is a separable Hilbert space, then the
converse of Corollary @18 is also true for bounded linear operators X — X, i.e. they are compact
if and only if they can be approximated arbitrarily well in the operator norm by operators with
finite rank. The proof is not hard; see [RS80, Theorem VI.13].

Proof of Theorem [9.14] Fix t > s > 0, and consider for each N € N the operator
Ay : HY(T") —» H5(T") : f — 2 eka'xﬁg.
|k|<N

The image of Ay is finite dimensional since there are only finitely many lattice points k € Z™
satisfying |k| < N. The goal is now to show that Ay converges in the operator norm as N — o0
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to the inclusion A : H!(T™) — H?*(T™), hence the latter is a limit of finite-rank operators and is
therefore compact.

To prove |A — An|| — 0, we observe that for each f € H'(T"), the functions (A — Ay)f have
the same Fourier coefficients as f except that every coefficient for k € Z™ with |k| < N is set to
zero, hence

~ 1 ~
ICA = An)F i = 3 W REYIRE = 3 Gy (O WY 1AL
|k|>N |k|>N
1 ~ 1
< FE D P L A . —— (I A
s 50 AR = s 1T
This proves |A — Ay|?> < W, and the latter converges to 0 as N — oo since ¢ > s. O

9.5. Approximation by smooth functions. The following result says that H*(T™) and
H*(R™) could just as well have been defined as the closures of the subspaces C*(T") = L?(T")
and .(R") c L?(R") with respect to the H*-norm. As a first application, it implies that for
each s > 0 and each multi-index « with order |a| = m, the extension of the classical differential
operator 0% to a bounded linear operator H**™(T") — H*(T") or H**™(R"™) — H*(R") is
unique (cf. Proposition and Exercise [0.5)).

Theorem 9.20. The subspaces C*(T") ¢ H*(T™) and ./ (R™) < H*(R™) are dense for every
s = 0.

Proof. We begin with the easiest case: suppose f € H*(T"), and for j € N, let
f](w) = 2 e2m’k-:vfj.
kl<j

Since f is a finite sum of smooth functions, it is smooth, and we have

If = fillde = D5 LRIl >0 s j— oo
k[>j

since Yyezn (1 + K1) fl? = | £ < o0.
For f € H*(R™), we have (1+|p|?)*/2f € L?>(R"), and the density of CZ(R™) in L?(R"™) implies
that there exists a sequence h; € C°(R") with

L2 s ~
hj == (1+ [p]*)"*f.

The functions g;(p) := % are then also in C°(R"), and they satisfy
L2 ~
(9.6) (1 + |pI)*2g; == (1 + [p*)**].
Since CP(R™) < .#(R™), each g; is then the Fourier transform of a unique function f; € .#(R"),
and (6] implies f; — f in H®. O

Remark 9.21. A stronger result is true for functions on R™: the space of smooth compactly
supported functions C§°(R™), which is a subspace of . (R™), is also dense in H*(R"™). For a proof
of this in the more general setting of W™ P-spaces (assuming m € Z), see [AF03, Theorem 3.22].

Recall from §8l that the density of smooth functions in LP is proved by taking convolutions of
f e LP(R™) with an approximate identity p;, a trick often referred to as mollification. For most
purposes, Theorem can also be placed into this context: for instance, the approximating
sequence f; — f € H*(T") in the proof above was constructed by defining its Fourier coefficients

to be fj = xp,f : Z" — V, where xp, : Z" — [0,1] denotes the characteristic function of the
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intersection of Z™ with the closed ball of radius j in R"™. Clearly x B; € L(Z™), so x B; defines
the Fourier coeflicients of a smooth function, namely

pj(x) = Z e27rik-:v.

k| <j
Since this function belongs to L'(T"), Exercise B20 implies

fi=pi*f.

For f € H*(R"), if we wanted to approximate f with smooth functions in H*(R"™) but did
not care whether they are rapidly decreasing, we could use a similar trick:

Exercise 9.22. Suppose p € ./ (R") satisfies {p,, p(x) dz = 1, and define p;(z) := j"p(jz).
(a) Show that for any s > 0 and f € H*(R"), the sequence p; * f € C®(R") satisfies

H® ‘
lpj = flas < [l and pj*f—> fasj— o0

Hint: Compute p; in terms of p, then use change of variables and dominated convergence
to prove || f — p; * f|lgs — 0. .

(b) Show that the same result holds if p; € (R"™) is instead defined as 1); for a sequence of
smooth functions t; : R™ — [0, 1] with compact support in Bj1 and ¢;|p, = 1.

Exercise 9.23. Suppose « is a multi-index of order |a| = m € N.

(a) Use the definition of 0% : H™(R") — L?(R") in Proposition to prove that for every
e LNR™) and f e H™(R™), 8 + f) = o * 0°f € L2(R™).

(b) Use the result of part [(a)| to give an alternative proof that for any f € H™(R") with
m € N and any approximate identity p; as in §5.4} p; * f — f in H™.

9.6. Holder estimates. The compactness of the inclusions H!(T") < H#*(T") has an inter-
esting consequence related to the Sobolev embedding theorem: if 2s > n, then there also exists
some ¢ < s such that 2t > n, and the continuous inclusion H**™(T") — C™(T") thus factors
into a composition of two inclusions,

H5+m(Tn) s Ht+m(Tn) NN Cm(Tn).
The first of these is compact, and therefore so is the composition

Corollary 9.24. For 2s > n, the continuous inclusions HT™(T™) < C™(T™) in Theorem [T 10
are also compact. O

There is a second way to see the compactness of H*""(T™) — C™(T") that provides more
information, while also yielding a practical interpretation of the motto that functions in H*(T™)
are “(s —n/2)-times differentiable”.

Assume € is a measurable subset of either R™ or T", regarded in each case as a metric space
with metric denoted by dist(z,y) = |x —y|. Recall that a function f : Q@ — V is called Lipschitz
continuous if there exists a constant C' > 0 such that

F@) = F@) < Clo—y| forall z,y e Q.

For example, a continuously differentiable function on an open domain 4 = R™ is Lipschitz
continuous on every subset {2 © U on which the partial derivatives are bounded. Classic examples
of non-Lipschitz continuous functions include f(x) := |z|* for 0 < o < 1 on any neighborhood of
0 € R. These instead satisfy the following condition, which is the same as Lipschitz contintuity
for o = 1, but weaker for 0 < a < 1:

221 emma: Any composition of a compact operator with a bounded linear operator is compact. Proof: Easy
exercise.
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Definition 9.25. A function f on {2 ¢ R" is called H6élder continuous if there exists a number
a € (0,1] and a constant C' > 0 such that

[f(@) = f(y)| < Clz —y|*  forall z,y €.
The space of Holder continuous functions on © with fixed Holder exponent « € (0,1] is

denoted by C%*(Q).

Holder continuity can be quantified by the Holder seminorms, defined for each « € (0,1]

by
|/ (z) = f(Y)|
|flcoe := sup “————=—
r#Y€EQ) |$ - y|
thus a continuous function is a-Hélder continuous if and only if | f|zo,.« < 00. This is a seminorm

rather than a norm since it vanishes for constant functions, even if they are nonzero. A norm
on the space C%*(£2) can then be defined by

[flcoe := 1flco + |flcoe.

)

Exercise 9.26. Prove:

(a) |- |co.e is a seminorm.

(b) If f,, € C%*(Q) converges uniformly to f € C°(£2) and satisfies a uniform bound | f,|co.o <
C for all n, then f e C%*(Q).

(¢) The norm || - | o, on C%¥(Q) is complete, i.e. C%*(€2) is a Banach space.
Hint: Show that if f,, is C°-convergent to f and |f, — fm|co.« < € holds for allm,n > N,
then |f — fn|coe < € holds for all n > N. Here is a start:

[(f = fu)(@) = (f = L) W] < [(f = i) (@) + | (fon = Fa) (@) = (fm = ) )] + | (Fn = )W)

Keep in mind that after fixing n > N and x # y, m can be chosen arbitrarily large.

For functions that can be written down in simple formulas, it is typically easy to prove a
C%!-bound by differentiating and bounding the derivative. As the example of the Weierstrass
function in §8.8 shows, this trick cannot be relied upon for functions that arise as uniform limits
of sequences. This is precisely the situation in which one often encounters functions that are
Hoélder but not necessarily Lipschitz continuous, and the following lemma provides a useful tool
to recognize this.

Lemma 9.27. Suppose fi is a sequence of continuous functions on 2 < R™ converging uniformly
to f, and there exist constants a > 1, b>1, C > 0 and 8 € (0,1] such that

C
If = Filloo < — and | frlcos < CBE.

Then f € CY%(Q) for a :=

Exercise 9.28. Fill in the gaps in the following proof of Lemma The estimate |f(z) —
f(y)] < Clx —y|* only needs to be proved for all z,y € Q with 0 < |x —y| < ¢ for some constant
¢ > 0. For any k € N, we have

2C
(@) = Fl < 1f (@) = fe(@)] + [fu(@) = fu@)] + [fely) — F)l < — + Cbtlz —y|?
for all z,y € Q. Assuming 0 < |z — y| < ¢ for some ¢ > 0 sufficiently small, choose k € N such
that W <z —ylf < W. Use this to show |f(z) — f(y)| < 5‘,?—?1, and then use the identity
altlog.b — gp.

Exercise 9.29. The Cantor function f : [0,1] — R from Example satisfies f(1/3") =1/2"
for every n € N. Use this to prove f ¢ C%%([0,1]) for a > logz2. Then show that the C°-
convergent sequence f, in Example satisfies |fn|conr = (3/2)", and use it to prove f €
C%([0,1]) for all a < logg 2.
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Exercise 9.30. For any 0 € (0,1), there is a distinguished set Cy < [0, 1] of full measure such
that €'y /3 is the usual Cantor ternary set: it is constructed by an inductive procedure in which at
step n € N, one removes from the middle of each of 27! intervals of identical lengths [,, an open
interval of length 6l,. Follow this idea to its logical conclusion in order to prove the following
statement: for every ag € (0,1), there exists a surjective increasing function f : [0,1] — [0,1]
such that f € C%%([0,1]) if and only if & < g, and f has vanishing derivative almost everywhere
(and is therefore not absolutely continuous).

Exercise 9.31. Show that for b > a > 1, the Weierstrass function f(z) = Z,Zioaike%ibkx
belongs to C%*(R) for every « € (0,1) with o < logy, a.

Remark: f is nowhere differentiable by Theorem[822, so it cannot be absolutely continuous and
therefore (by Exercise [6.6) cannot be Lipschitz, even if log,a = 1.

Exercise 9.32. Suppose g : [0,00) — R is a strictly increasing smooth function with g*)(0) = 0
for all k > 0, e.g. one can take g(z) = e /2 for z > 0 and g(0) = 0. There is a unique extension
of g to an odd function R — R, which is also strictly increasing and continuous, so it admits a
continuous inverse f := g ! : I — R on a sufficiently small interval I = [—a,a], a > 0. Prove
that f is absolutely continuous on I, but does not belong to C%%(I) for any « € (0,1].

Hint: The vanishing of g**)(0) implies an estimate of the form |z|'/* < ¢;| f(z)| for some constant
¢ > 0. For absolute continuity, prove directly that f satisfies the fundamental theorem of
calculus, starting from the fact that this is clearly true on any interval not containing 0.

If the domain 2 < R"™ is open, then we can also discuss differentiability of functions on 2 and
define for C™-functions the norm

I fleme = flem + ) 18°flco,
|B]|=m

where the sum ranges over all multi-indices 8 of order m. This norm is finite if and only if f
is of class C™ with bounded and a-Hélder continuous partial derivatives up to order m. (Note
that the Holder continuity of derivatives of order less than m follows already from the fact
that derivatives of higher order are bounded, so the norm does not need to include any terms
|0° f|co.o with |B] < m.) The space of functions satisfying this condition is denoted by
™) < C™(Q).
Exercise 9.33. Prove that C" () is a Banach space for every integer m > 0 and « € (0, 1].
Exercise 9.34. Use the Arzela-Ascoli theorem to prove that if {2 is an open subset of R™ or T™
with compact closure, then for every « € (0, 1], the obvious continuous inclusion
C%(Q) = C(Q)

is compact. Then generalize by induction to the statement that for each integer m > 0 and
a € (0,1], the inclusion

C"* () > C™(Q)
is compact.

Exercise 9.35. Extend Exercise [0.34] to show that under the same assumption on €, for every
integer m > 0 and 0 < a < 8 < 1, the obvious inclusion

C™2(Q) = C™(Q)

is compact.

Hint: For m = 0, Exercise guarantees for any C%8-bounded sequence a C°-convergent
subsequence, and Exercise then implies that the limit is also of class C%%, though the
convergence need not be in the C%P-topology. To show that the subsequence is C%®-convergent
for a < 3, the following relation can help:

|f(x) = f)] (If(w) — ()|
|z —yl|* |z —y|?

o

a/p )
) (@) - F@)E
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Exercise [0.34] holds in particular for fully periodic functions on R" since T" is compact. Thus
Corollary [0.24] can now be seen as a consequence of the following enhancement of the Sobolev

embedding theorem (Theorem [O.10):

Theorem 9.36. Assume n € N, s > 0 and o € (0,1) satisfy o < s — 5. Then there exist
continuous inclusions

HT™(R"™) — C™*(R") and H*T™(T") — C™*(T")
for every integer m = 0.

Remark 9.37. Note that Theorem only gives us something new when 0 < s—n/2 < 1, as the
case s —n/2 > 1 is already handled by Theorem (.10, which gives an inclusion H3*™ < C™*!
and therefore also into C™ for every a € (0, 1]. In the case s —n/2 = 1, one should be careful
to note that « is not allowed to equal 1, so we are not claiming anything about an inclusion
Hst™m < ™1 We will point out the specific step in the proof below that would fail if o = 1,
and an actual counterexample to the statement for this case may be found in Example

Proof of Theorem [9.36. We will establish the inclusion H*(R") — C%*(R") for a € (0,1) with
a < s —n/2 and leave the remaining cases as exercises. In light of the inclusions H® — H* for
t > s, we can assume

0<s—nl2=a<1

without loss of generality. Then Theorem already implies that f € H*(R™) is continuous
and satisfies an estimate of the form |f|co < C| f| ms, so our remaining task is to find a similar
bound for its Holder seminorm |f|co... In other words, we need to find a constant C' > 0
independent of f € H*(R™) such that

[f@+y) = f@] < Cflas-[yl*  forall  w,yeR™ with y # 0.

The proof of Theorem [@.10] shows that ]? e L'(R™), thus we can write down the usual integral

formula for f in terms of f and use the assumption | f|zs = [|(1+ |p|?)¥/2f| ;2 < oo to apply the
Cauchy-Schwarz inequality:

(9.7)
f(z+y) — f(z)| =

| e fpyap - |

|2y — 1 9vs/2) 7 |e2mipy 1) 2
= ————— - (L4 |p|*)"*| fldp < fidp |
Jo G -0+ b ST i

Yin- 2 1/2
_ |€ TipYy _ 1| p .
=X . |p|23 P ”fHHS

To estimate the integral in the last line, we first observe that the function R — C: ¢ — e?™ has
globally bounded derivative 2mie?™ and thus satisifes |e2™" — 1| < 2r|t| for all ¢ € R, implying

(9.8) |27 —1| < 27|p - y| < 27Ip| - |yl-
Now partition R™ into the domains

Eo:={peR" | |p| <1/yl} and By :={peR" | |p|>1/lyl},
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and let Vol(S™~1) denote the (n — 1)-dimensional volume of the unit sphere in R™. Integrating
in n-dimensional polar coordinates then gives

f it WA 22 [ i dp = 4x® Vol(S™) - [yf? Qra—
p < 4m|y J — ap = 4m" Vol(5™ 7) - |y f —5 ar
o |p|25 Eo |p|28 2 0 7428 2
1y 472 Vol(S™ 1) 1
_ 2 n—1y | 2 n—2s+1 _ R 2
= 47*Vol(S" %) - |y| fo r dr = 95 12 |yl [y +2

_ 272 Vol(S"fl)
B 1l -«

where the convergence of Sé/‘y‘ r"= 251 dr relies on the assumption n —2s 4+ 2 = 2(1 — ) > 0.

(This step in the proof would fail if we allowed o = 1.) On Eq, the estimate (9.8) is not
useful since |p| may be large, so instead we use the simpler estimate |e*™Y — 1| < 2 arising
from the triangle inequality, and the convergence of the integral will depend on the assumption
n—2s=—2a<0:

ly [,

‘e2m'p-y _ 1‘2 1 " Tn_l .
f T P 4f o = 4V01(S”1)f S dr = 4V01(S”1)J 128 g
» E,

Yyl T° 1/ly|
CAVOI(S™TY) L T 4avol(sth) 1 2V01(S"_1)| 20
= 771 o T:1/|y| - 20 |y|72a - a Yy .

627rip-y71|2

pl**
suitable constant ¢ > 0, so plugging this into (Q.7]) gives the result we were hoping for. O

Putting both pieces of the integral together gives an estimate SRn dp < c|y|?® for a

627rzkac

Example 9.38. Let f(z) := Y02, “o1%- Up to multiplication by a constant, differentiating this
series term by term gives the Fourier series of Exercise @9 so f € H%2(S'), and Theorem
thus implies f € C%*(S!) for every a € (0,1). One can also show as in Exercise that the
differentiated series converges uniformly on compact subsets of {z # 0}, thus f is continuously
differentiable on S'\{0}. But its derivative blows up at = = 0, showing that f ¢ C%1(S1).

Remark 9.39. One should not assume that the constants in Theorem [9.36] are always optimal.
Consider for instance the Weierstrass function f(z) = >/7, 6%,6627”5’16"r for b e N with 1 < /b <

a < b. According to Exercise 18], f € H*(S') if and only if s < log, a. Since a > /b, this range
includes values s > 1/2, so Theorem [@.36] implies f € C%*(S?) for all o < log,a — 3. But in
fact, Exercise shows that f € C%(S?!) for all a < log, a.

9.7. Elliptic regularity. To demonstrate the power of the Fourier transform and Sobolev
spaces, in this section we shall give a brief taste of the theory of elliptic PDEs.

To understand the goal, consider first a second-order ordinary differential equation of the
form

(9.9) B(t) = F(z(t),£(t))

for paths x : (—e,€) —> R™, where F : R™ x R™ — R" is a function of class C™, 1 < m < 0. A
solution to this equation must by definition be twice differentiable at every point, but it is easy
to see that it must in fact be better, i.e. more “regular,” which for this discussion you can take
to be a synonym for “smoother”. Indeed, if & always exists, then = and & are both continuous,
and (@.9)) thus implies that 7 is continuous, hence z is of class C? and 4 is of class C'. Since we
also assumed F € C*, thus implies F o (z,4) € C' and therefore & € C, so x is of class C3. One
can repeat this argument until F' runs out of derivatives. The conclusion is that if the data in
the equation is of class C™, then any solution must be at least two steps more regular, namely
of class C™*2; in particular, if F' is smooth, then so is . This is true even though the equation
itself makes sense for any function x that is everywhere twice differentiable.

The following example shows that partial differential equations, by contrast, do not always
have this “regularizing” property.
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Example 9.40. The simplest version of the wave equation is the second-order PDE
Pu—Pu=0

for a function u : R? — R of two variables (¢, z) € R?. For any C?-function f : R — R, the wave
equation has solutions given by

u(t,z) :== f(t £ x).
Notice that although the wave equation is linear with constant (and thus smooth) coefficients,
its solutions need not be smooth; the function f € C?(R) can be chosen arbitrarily, and the
solution u will then have only as many derivatives as f does.

There is a special class of PDEs, called elliptic, that do exhibit the same regularizing behavior
as ODEs. For this discussion, we shall only consider the simplest and most popular example:
the Poisson equation

n
Af:=>0f=y,
j=1
where g : R” — R is a given function, and the solution is meant to be a function f : R" — R.
The second-order differential operator —A = — > i1 J is called the Laplacian, and arises

often in physics (e.g. in the study of electrostatlc or gravitational potentials), as well as in
differential geometry. We shall consider the Poisson equation on the torus T", that is, we
assume ¢ : R™ — R is a fully periodic function and consider solutions f : R —» R that are also
fully periodic.

Theorem 9.41. For any integer m > 0 and smooth function g : T" — R, all C?-solutions
f:T" - R to the equation Af = g are also smooth.

I would encourage the reader at this point to take out a piece of paper and consider whether
Theorem might be proved by some trick as simple as the ODE discussion at the top of
this subsection. You will quickly run into difficulties, because the Laplace operator A gives us
information about a particular linear combination of second partial derivatives of a solution f,
but we cannot deduce from this anything about any individual partial derivative. From this
perspective, Theorem is a very surprising result. It follows from the next theorem, which is
of a slightly more technical nature since it involves Sobolev spaces. To prepare the statement,
observe that by Proposition [@.4], A defines a bounded linear operator

A : H3(T") — L*(T"),
which is defined in the obvious way on the dense subspace C*(T") but requires Fourier trans-

forms in order to define Af for f € H?(T™)\C?(T"). Recall that functions in H?(T") need not be
twice differentiable in general; when n > 3, they need not even be continuous (cf. Theorem [@0.10).

Theorem 9.42. If m e N and f € H*(T") satisfies Af € H™(T"), then f € H™2(T").

To prove Theorem from this statement, observe that if g € C™(T"), then g € H™(T")
since g has derivatives up to order m that are continuous, and therefore also in L?(T"). If
f € C?*(T™) satisfies Af = g € C®(T"), it follows that f € H?(T") and Af € H™(T") for
every m € N. Theorem then implies f € H™*2(T"), thus f belongs to all of the Sobolev
spaces H*(T™) for s > 0, and is therefore smooth according to the Sobolev embedding theorem

(Theorem [O.10]).

Proof of Theorem[9.43. Suppose f € H?(T") and Af = g € H™(T") for m € N. The Fourier
coefficients of f and ¢ are then related by

Af =27, 2 (2miky)? fio = —Ax?|k[* fi = G
j=1 j=1

23The minus sign in the definition of the Laplace operator appears in some sources and not in others. It is
appropriate if one wants to consider the spectrum of the operator: the minus sign ensures that all of its eigenvalues
are positive. For our present discussion this makes no difference.
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for all k€ Z™. For s < m + 2, this implies
o k 2s N 5—2) ([~ i~
S weRe-c ¥ BRar-o ¥ opreapce ¥operar
keZm {0} keZm {0} keZ™\ {0} keZ™\ {0}
< CglFm
for a suitable constant C' > 0, thus f € H™"2(T").
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10. DISTRIBUTIONS

Throughout this section, we assume unless stated otherwise that
QcR”

is an open subset, and we again consider functions on 2 with values in an arbitrary finite-
dimensional inner product space (V,( , )) over the field K € {R,C}. At the beginning of §9
we heuristically sketched the definition of a Banach space W™P(Q2) consisting of functions in
LP that have derivatives up to order m also in LP. Here we assume m > 0 is an integer and
1 < p < 0. The quickest rigorous definition of this space is as the closure with respect to the
W™ P-norm

(10.1) [flwme ==Y 10 flLs,

|a|<m

of the space of all smooth functions f : @ — V with ||f|wm» < c0. There is nothing wrong
with defining W"™P(Q) in this way, but it leaves open the question of precisely which functions
actually belong to W™P(Q). For p = 2 and Q = R", we found an elegant solution to the
this problem in §9 by using the Fourier transform to identify differentiation with the operation
of multiplication by a polynomial, so that the space H™(R") := W™2(R") could be defined
without having to explicitly differentiate its elements. We also saw that functions of class H™
really need not be m times differentiable, e.g. Example describes a function in H*(S') that
is of class C'! on the complement of one point but has its derivative blowing up at that point. To
understand this phenomenon properly in the cases p # 2 or 2 & R™ where the Fourier transform
is not available, we need a new trick for talking about derivatives of functions that might not
be classically differentiable.

10.1. Weak derivatives. The trick we have in mind arises from the following straightforward
exercise combining Fubini’s theorem with integration by parts:

Exercise 10.1. Show that if f : Q — V and ¢ : Q — K are functions of class C' and ¢ has
compact support in §2, then for each j =1,...,n,

f(p-ﬁjfdmz—f ojp - f dm.
Q Q

Hint: The function ¢f has an obvious extension to a C'-function on R™ that vanishes outside
of Q. Compute g, 0;(¢f)dm.

In this exercise, requiring ¢ to have compact support ensures on the one hand that ¢-0; f and
0jp - f are both Lebesgue-integrable functions, and it also eliminates the boundary terms that
would otherwise appear when carrying out integration by parts. The resulting formula can be
used to uniquely characterize the partial derivatives of f: namely, if f: Q@ >V and g: Q2 >V
are functions of class C' and C? respectively such that

(10.2) J pgdm = —J djp - fdm for all p e CYP (),
Q Q
then g = 0;f. Indeed, h := g — 0; f is then a continuous function on (2 satisfying
J wh =0 for all peCP(Q),
Q

and if h(x) # 0 for some z € Q, then the latter relation is contradicted by any smooth bump

function ¢ that satisfies ¢(x) = 1 and vanishes outside a sufficiently small neighborhood of .
Notice: the condition (I0.2]) does not explicitly mention any derivative of f. In fact, both

sides of the relation are well defined as soon as f and g are locally integrable functions on §2.
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Definition 10.2. A function f € L{ _(Q) is said to be weakly differentiable if there exist
functions g1, ..., g, € LL () such that for each j = 1,...,n,

loc
f ©g;dm = —f dip - fdm for all e P
Q Q

We then call g; a weak partial derivative of f with respect to the variable z;, and write
0;f = g;.
Three important remarks should be understood immediately:

(1) If f is of class C', then its classical partial derivatives are also weak partial derivatives,
thus for this class of functions there is no ambiguity in denoting weak derivatives by 0; f.
(There will occasionally be ambiguity if we talk about functions that are differentiable
almost everywhere—these sometimes also have weak derivatives, but sometimes they do
not.)

(2) In contrast with classical derivatives, weak derivatives are well defined only up to equality
almost everywhere, i.e. if g = 0;f weakly and h = g almost everywhere, then h is also
a weak derivative of f. Similarly, f can be changed on a set of measure zero without
changing its weak derivatives.

(3) Related to the second point: weak differentiability is a property of the whole function
fe LIIOC(Q), and it is not purely local, i.e. it generally makes no sense to ask whether
[ is weakly differentiable at an individual point z € €, nor what the value of 0; f(x) is,
though one can ask what { 0; f dm is for any given measurable subset £ < Q.

Since weak derivatives of locally integrable functions are also locally integrable functions, one
can iterate the definition in obvious ways to define higher-order weak differentiability and weak
derivatives 0 f, which will be uniquely characterized by the relation

f ©-0%fdm = (—1)af Pp-fdm  forall e CPQ).
Q Q

There is again no problem in making sense of this condition since ¢ is always assumed to be
infinitely differentiable with compact support; we only need f and 0%f to be of class Llloc.

Let us clarify that a function may indeed have a weak derivative without being classically
differentiable:

Exercise 10.3. Show that the function f : R — R : z — |z| has weak derivative f'(z) := z/|x|.
(It is not necessary to specify a value for f/(0) since {0} — R is a set of measure zero.) Then
show that f’ € L{ (R) is not weakly differentiable.

For functions that are not of class C', we have not yet shown that weak derivatives are
uniquely defined almost everywhere, but this is true, and follows from:

Lemma 10.4. If f € LL _(Q) satisfies (@ f dm = 0 for every smooth compactly supported func-

loc
tion p : 0 > R, then f =0 almost everywhere.

Proof. Given x( € €2, choose € > 0 small enough so that the closed e-ball B,(zg) about zg lies
in Q, and consider the function g € L'(R") defined by

. {f on Be(xo).

0  everywhere else.
Choose an approximate identity p; : R™ — [0, 00) with shrinking support. For x € B, (7o) and
J sufficiently large so that supp(p;) © B2(0), the function p;(z —-) : R* — [0,00) then has

24The function ¢ € C () in this definition can be taken to have either real or complex values; it does not
matter.
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compact support in Be/y(z) © Be(wg) and can therefore be regarded as an element of C¢°(2),
implying that the convolution

(pj * g)(x) = J pi(x —y)g(y) dy = f

R™ Beja(z)
vanishes for x € B,/y(wo). By Theorem 514, p;j * g — g in L'(R") as j — o0, so we conclude
that g (and therefore f) vanishes almost everywhere on B./y(70). Since 2 can be covered by
countably many subsets of the form B, /,(z9) with xo €  and € > 0, it follows that f vanishes
almost everywhere in €. O

pi(z —y)g(y) dy = L pi(x — ) fdm

Corollary 10.5. If f € Llloc(Q) is weakly differentiable, then its weak partial derivatives are
unique up to equality almost everywhere. O

Exercise 10.6. Consider the Cantor function f from Example [6:2] on the domain Q := (0,1) <
R, which has classical derivative f’ = 0 at almost every point. Show however that f is not
weakly differentiable.

Hint: Show first that if a weak derivative existed, it would necessarily vanish almost everywhere
on each of the intervals that are removed to form the Cantor set.

10.2. Test functions and the space of distributions. Let us fit the notion of weak deriva-
tives into a larger context. We saw in Exercise [[0.3] that locally integrable functions can be
weakly differentiable without being classically differentiable, but also that not all functions in
LllOC have weak derivatives. We will now see that if our notion of what a “function” can be
is suitably enlarged, then every Llloc function can be understood to have a derivative in some
sense.

The key observation is that for weak differentiation, what matters is not the values of a

function f : € — V at points in §2, but rather the values of the linear map
Af:CSO(Q)—>V:<pI—>J of.
Q

This suggests that instead of talking about functions on 2, we should talk about linear maps
CE(2) — V, e.g. in the case V = K, we are talking about the dual space of C°(£2). To do
this properly, we should consider only linear functionals that are continuous, which requires
endowing C§°(£2) with a topology.

Definition 10.7. A test function on {2 is defined to be a smooth function ¢ : Q@ — K with
compact support, and the vector space of all such functions is denoted by Z(Q2). A sequence
;€ 2(Q) is said to converge to v, € Z(12) if there exists a compact subset K < €2 such that
¢; has support contained in K for every j € N U {00} and 0%¢; converges uniformly to 0%y
for every multi-index a. A K-linear map A : 2(2) — V is then said to be continuous if and
only if A(p;) = A(ps) for every convergent sequence ; — @ € Z(Q).

Putting Definition 0.7 on firm mathematical footing requires the following result, whose
proof is outsourced to §I0.8]in order to avoid too much of a digression into abstract topology:

Proposition 10.8 (see §I0.8]). The space of test functions Z(2) admits a natural topology that
induces the notions of convergence and continuity described in Definition [10.7

Definition 10.9. A scalar-valued distribution on € is a continuous K-linear functional A :
2(Q) — K. Similarly, a vector-valued distribution with values in the finite-dimensional vector
space V over K is a continuous K-linear map A : 2(Q2) — V. We shall generally assume that all
our distributions take values in a fixed vector space V', and denote the the space of vector-valued
distributions by

2'(Q) = {A: 2(Q) - V | Ais K-linear and continuous} .

The space 2'(Q2) is endowed with the weak*-topology, i.e. the locally convex topology generated
by the seminorms |Al, = |A(p)| for all ¢ € 2(Q). In particular, a sequence A; € 2'(Q)
converges to Ag € Z'(2) if and only if A;(p) = Ax(p) for every v € 2(9).
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Remark 10.10. If V' is a complex vector space, then one can regard it as a real vector space (of
twice the dimension) and set K = R without changing any result in the theory of distributions.
The reason is that every real-linear map from the space of real-valued test functions to a complex
vector space has a unique complex-linear extension to the space of complex-valued test functions.
Thus for most purposes, it makes no difference whether we set K to be R or C, and many books
on distributions treat only the case K = R. We will need to set K = C however when we discuss
Fourier transforms in §10.61

Note that choosing a basis of V' identifies each vector-valued distribution with a finite tuple
of scalar-valued distributions, just as for vector-valued functions. Since the choice of the space
V almost never plays an important role in our discussion, we shall suppress it from the notation
whenever possible.

Example 10.11. There is a natural linear map

LIIOC(Q) - ‘@,(Q) : f = Af7 Af((P) = J;] pr dm7

and by Lemma [[0.4] this map is injective. (Exercise: check that Ay : 2(2) — V is continuous.)
In this way, every locally integrable function determines a distribution, and we shall often abuse
terminology by identifying one with the other, e.g. when we say “A € 2'(Q2) is a function,”
we mean that there exists a (necessarily unique up to equality almost everywhere) function
f €Ll (Q) such that A = Ay.

loc

Convention. We will sometimes also denote the action of a distribution A € 2'(£2) on test
functions ¢ € 2(2) by

(A, ) = Ale),
and abbreviate the case of a locally integrable function f € L (Q) by

loc
(fip) == Ap(ep) = L of dm.

Exercise 10.12. Show that the map L () — 2'(Q)) in Example [0.11] is continuous, where

loc
L () is endowed with the Fréchet space topology defined in §0.3]

Example 10.13. The most popular scalar-valued distribution that is not a function is what
physicists call the Dirac delta function: for each z € Q, we define §, € 2'(Q) by

0z () 1= ().
On ©Q = R", one typically abbreviates § := §y for the J-function centered at the origin, so
that pretending 0 is an actual function on R™ gives rise to the usual formula (g, ¢(2)d(x) dz =
©(0). A formal change of variables transforms this into d,(p) = @(x) = §z. ©(y + x)d(y) dy =
§gn ©(u)d(u — z) du, motivating the notation

§5(-—x) =3, € 2'(Q).

Example 10.14. Suppose p is a measure defined on the Borel subsets of {2 < R"™ such that
p(K) < oo whenever K © Q is compact. Then A(p) := {, ¢ duu defines a real-valued distribution.
The distributions Ay in Examples I0.IT] (with f : © — [0,00)) and ¢, in Example I0.13] are both
special cases of this, with measures defined by

W(E) = Lfdm and  p(E):=

1 ifzekFE,
0 otherwise

respectively. The latter is of course also known as the Dirac measure centered at z.

Example 10.15. Here is a distribution that is not a special case of Example [0.14t for k € N
and xz € Q c R, define

Alp) = ().
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Exercise 10.16. Verify that the linear maps 2(2) — V described in Examples [0.11] 10.13]
[[0.14] and are all continuous.

The trick via integration by parts in the definition of weak differentiation now generalizes as
follows.

Definition 10.17. Given A € 2'(Q) and j = 1,...,n, the distributional derivative (or
derivative “in the sense of distributions”) of A with respect to the variable z; is a distribution
0;A € 2'(Q) defined by

(0;8) () := =A(95¢0).
More generally, if « is any multi-index with order || > 0, one defines 0*A € 2'(2) by

(0N () := (=1 A(@%).

It is easy to check that the distributions in Definition [0.17] are always well defined continuous
linear maps, so every distribution is infinitely differentiable, and the operators ¢* : 2'(Q2) —
2'(Q) are continuous linear maps. In this language, a function is weakly differentiable if and
only if its derivative in the sense of distributions is also represented by a function. For functions
of class C!, the distributional derivatives can always be represented by the classical derivatives.

Exercise 10.18. The function f(z) := z/|x| appeared in Exercise [[0.3] as the weak derivative
of the function |z|. Show that the derivative of f in the sense of distributions (meaning the
derivative of the distribution Ay) is 26.

Example 10.19. Up to a sign, the distribution in Example is the kth derivative of the
d-function: concretely, A = (—1)k59(ck).

When we talk about distributions represented by functions, we typically assume these func-
tions to be locally integrable so that expressions like SQ ¢ f dm make sense for all o € Z(Q2). This
is not always strictly necessary, however: the next exercise exhibits a locally integrable function
that is not weakly differentiable in the sense of Definition [[0.2] but its distributional derivative

can (with a little care) be represented by a function that is not of class Li .

Exercise 10.20. Show that the function f(x) := In|z| is locally integrable on R, and its
derivative in 2'(R) is given by

Alf(‘P) = p.V.J o) dr := lim #(@) dz.
R Z =0 Jigjze T
Here the notation p.v. stands for “Cauchy principal value” and is defined as the limit on the
right. Check that this expression gives a well-defined distribution even though 1/x is not a
locally integrable function on R.

The product of a distribution A € 2'(Q2) with a smooth scalar-valued function f € C*(Q)
defines a distribution fA € 2'(f2) via the obvious formula

(fM)(p) := A(fe).
This is well defined because ¢ — f¢ defines a continuous map 2(Q2) — 2(Q2); note that this
depends on f having derivatives of all orders (though it does not need to have compact support),
so the product of an arbitrary distribution A with a non-smooth function is not well defined in
general. It is easy to check that for every f e C®(Q), the linear map 2'(Q2) — 2'(Q) : A — fA
is also continuous.

Exercise 10.21. Show that for f € C*(Q) and A € 2'(Q), distributional derivatives satisfy the
Leibniz rule

0;(fA) = (0;/)A + fo;A,
where on the right hand side, 0; denotes a classical derivative in the first term and a distributional
derivative in the second.
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10.3. Smoothness of distributions. For applications of distributions in the theory of PDEs,
we need a more concrete understanding of the relationship between classical and distributional
derivatives. This includes the answers to two questions:

e How well can an arbitrary distribution be approximated by a C"™-function? (see Corol-

lary [0.32))

e How can one recognize whether a given distribution is representable by a C™-function?

(see Theorem [10.33))

The most useful tool toward these ends is a generalization of the convolution operator.

10.3.1. The convolution. Recall from §5.2] that for any locally integrable function f : R™ — V
and any test function ¢ € Z(R"™), the convolution ¢ * f : R™ — V is a well-defined function at
every point « € R™. It can be expressed in terms of the distribution Ay € 2'(R") if we introduce
two natural operations on the space of test functions: one is the translation operator
To : Z(R™) - P(R"), Top(x) = p(x +v) for veR",
which we considered on LP-spaces in §5.11 The other is the antipodal reflection operator
oc: IR") > IR"),  op(z) = p(-2).

Both 7, and ¢ extend naturally to operations on the space of distributions on R™. For f €
L (R™) and p € Z(R"), we have

loc
Muse) = [ p@fe+vde = [ oo —0)f@)dr = sl

which motivates defining
7 Z'(R") —» 2'(R"), ToA = Ao Ty,
Similarly,

Aoslo) = [ e@)f(-a)do = [ p(-o)f(@)do = As(ov),

and we therefore define
o:92'(R") - 2'(R"), oA :=Aoo.
One verifies easily that 7, and o are each continuous linear maps on both Z(R") and 2'(R").
The convolution of ¢ € 2(R") with f € LL (R™) can now be expressed as

loc
(px f)(z) = f vz —y)fly)dy = f oy — ) fy) dy = f T209(y)f(y) dy = As(T-20¢).
It is therefore sensible to define the convolution of any distribution A € 2'(R"™) with a test
function ¢ € Z(R") as the function ¢ * A : R — V given by
(10.3) (pxA)(x) := AMT—r0p) = T A(op).

With a little care, this definition can be extended to include distributions that are defined
only on an open subset {2 € R". Given subsets A, B ¢ R"™ and v € R", let us denote

Atv:= {xiveR"‘xeA},
A+ B:= {xiyeR"|xeAamdyeB},
—A:= {—xeR"‘meA}.
Then for any function ¢ : R” — K with support in a subset K < R", and for any v € R,

n

supp(p) c K = supp(ryp) c K —v and supp(op) c —K.

It follows that for open sets 2,9 < R"™ and v € R", there is a well-defined continuous linear
operator
To 1 D(2) = 2(Q) whenever Q—vc,
and similarly
o:2(0) - 2() whenever -Qc .
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Now if A € 2/'(Q) and K < R" is any compact set containing the support of ¢ € Z(R"™), then
([I0.3]) defines ¢ = A as a function on the open set

Q= {xeR” ‘ —K+xCQ}.
One must keep in mind that this set may be empty, but we will mostly be interested in situations

where K is an arbitrarily small compact neighborhood of the origin, in which case ' is a
nonempty subset of €. Since convolutions of functions are symmetric, we define

Axp:=pxA.

Exercise 10.22. Prove that for v € R™ and k = 1,...,n, the operators 7,, o and 0k, acting on
either the space of test functions or the space of distributions, are related to each other by

Ty © O = Ok O Ty, 000, =—000, Ty OO = 0 OT_y.

We will see below that even in cases where A is not a function, the function ¢ = A inherits
the smoothness of ¢. The proof of this rests on the smoothness of the translation operator 7,
as a function of zz € R™, i.e. the fact that for any fixed p € Z(R") and A € Z'('), the function
x — (1:A)(¢) = A(T_,p) is smooth on a suitable open domain in R™. This follows in turn from
a more general result related to differentiation under the integral sign.

The setting for the result we need is as follows. Assume U < R™ and 2 < R" are open
subsets, ¢ : U x Q@ — K is a smooth function such that ¢, := ¢(z,-) € Z(Q) for every x € U, and
fe L%OC(Q). One can then consider the function F' on U defined via the parameter-dependent
integral

Fz) = Lm,y)f(y) dy = As(2).

If o satisfies sufficient hypotheses for the application of Theorem [L4] then one should expect
this function to be smooth and satisfy

olel p olol o ool
= d frd A .
5o (%) , Tz (@, 9)f(y)dy = Ay | 52~ (x,)
for every multi-index « in the variables x = (x1,...,2;,) € U < R™. It turns out that under a

mild assumption about the support of ¢, this also works when Ay is replaced by an arbitrary
distribution:

Proposition 10.23. Assume U < R™ and 2 < R™ are open subsets and ¢ : U x Q - K is a
smooth function such that for every compact set K c U, ¢|kxq has compact support. Then for
any A € 2'(Q), the function

F:U->V:z— Aop(z,-))

olel p ool
oxo (z) = A ( oxo (=, )>

for all multi-indices o in the variables © = (x1,...,Ty) €U < R™.

18 smooth and satisfies

The proof requires two preparatory lemmas about the space of test functions.

Lemma 10.24. Under the assumptions of Proposition [II.Z23, the map U — D() : x — p, 1=
o(x,+) is continuous.

Proof. Given a convergent sequence x; — T in U, choose a compact set C' © U containing an
open neighborhood of x,. By assumption, there then exists a compact set K < (2 such that ¢,
vanishes outside K for all z € C, thus supp(p,;) < K for all j sufficiently large. It thus remains
only to prove C®-convergence of ¢, to ¢, . Uniform convergence follows from the fact that
since C' x K is compact, ¢ is uniformly continuous on C'x K. The same argument proves uniform
convergence 0%p;; — 0%, for all multi-indices a in the variables y = (y1,...,y,) € @ € R",

. olaly, . .
since ayf is also continuous. O
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Lemma 10.25. Under the assumptions of Proposition [I0.23, the functions ¢, := @(x, ) : Q —
K satisfy

. Prthe, — Pz O

lim Fether — ¥z 9¥

hl—rﬁl) h 6xk (x, )
for everyxeld and k =1,...,m, where ey, ..., ey € R™ denotes the standard Fuclidean basis,
and the convergence of the limit is in the topology of 2(f).

Proof. Fix z €e Y and k € {1,...,m}. For all h € R\{0} close enough to 0, we can assume x + hey,
belongs to a compact subset in U such that all the functions ¢;4pe, @ 8 — R have support
contained in some fixed compact subset K < ). Now use the fundamental theorem of calculus
to write

1
0
Prina(0) = o) = [ 25+ thesy) e,
0 0Tk

and note that for any multi-index « in the variables y = (y1,...,y,) € @ € R™, the operator %

can be passed under the integral sign on the right hand side since ¢ is smooth. We thus have

A onine, (y) —wa(y)\ 2 dp
oy™ h oy Oxy,

Since %;ﬂc—i(m + they,y) can be assumed to vanish for all y ¢ K and |h| sufficiently small,
uniform continuity implies that the integrand on the right hand side becomes arbitrarily small

uniformly in y € 2 as h — 0. g

Proof of Proposition [I0.23. The continuity of F' follows immediately from Lemma [10.24] and the
continuity of A. The main task is thus to prove that F' has first partial derivatives given by

@ =4 (5560).

since a similar application of Lemma [[0.24] will then imply that these derivatives are also con-
tinuous, and the argument can be repeated inductively for all higher-order derivatives. For the
computation of gz—i (x), one can again appeal to the continuity of A, together with Lemma [T0.25]
which gives
F(.%' + hek) - F(l') o A(‘:Om+hek) - A((Px) — A Pr+he, — Px S A a_@(x’ )
h h h oxy,
as h — 0. U

Corollary 10.26. For an open set 2 < R™ and a compact set K < R"™, consider the open set
U= {xeR" ‘ K—l—ch}.

For any ¢ € 2(R™) with supp(p) c K, associate to each A € 2'() the function Fy defined on
U by

Fy(z) := (1eA)().
Then Fy is smooth and satisfies 0%Fp = Fpap for every multi-indez «.
Proof. Apply Proposition [0.23] with the smooth function Y x Q@ - R : (z,y) — o(y —z). O

This is enough preparation to prove the first main result about the convolution.

Theorem 10.27. Suppose A € 2(Q) for an open set Q@ < R™, and ¢ € Z(R™) has support
contained in the compact set K < R™. Then (I0.3)) defines a smooth function ¢ = A on the open
domain Q' := {zx e R" | — K +x < Q}, and it satisfies

0%(px A) = (0%@) x A = @ * (0"A)
for every multi-index o, where the operator 0% denotes a classical derivative in the first formula
and a distributional derivative in the second.
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Proof. The second formula is immediate from Corollary [[0.26] and the definition of the convo-
lution. Since 0 commutes with translation operators and anticommutes with o, we also have

(0 % Ok M) (2) = TeOkA(op) = RA(T—e00) = —A(OpT-209p) = AMT—200kp) = TuA(00kp)

= (Opp = A)(x)
for all z € Q" and k = 1,...,n. The relation ¢ * 0*A = 0%p * A follows from this by induction
on the order of differentiation. O

Since @ * A is always a smooth function on €, it also defines an element of 2'(€2'). We would
next like to give an alternative characterization of this distribution. For the case A = Ay with
f e LYQ), f can be extended to a function on R™ vanishing outside of Q without changing the
values of o« Ay = ¢ f on . For any ¢ € ('), we can similarly extend ¢ as 0 on R™\(,
and then use Fubini’s theorem to show

(pet)= [ v@es N = [ @l - dedy

R™ xR™

| @A ov@ @) dedy = | (eI 0)dy = (e )
n>< n n
It turns out that this formula remains valid when f is replaced by an arbitrary distribution.
The proof requires a preparatory exercise.

Exercise 10.28. Show that for any ¢,¢ € 2(R"™) with supp(¢) € K < R™ and supp(y)) <
K' < R", p*1 is also in Z(R™) and has supp(p * ¢0) € K + K'. Moreover, if 1; is a sequence
converging to ¢ in Z(R™), then ¢ *1; — ¢ =1 in Z(R").

Hint: Focus on proving uniform convergence of ¢ #1; to ¢ *1. Everything involving derivatives
then follows easily from the formula 0%(p * 1)) = 0%p % = @ * 0*.

Proposition 10.29. For any A and ¢ satisfying the assumptions of Theorem [10.27 and any
P e 2(Q), the smooth function op =1 has compact support in Q, and

(o Ay) = (A, o0 x1).

Proof. Since supp(cp) € —K and 1) has compact support in €', Exercise together with
the definition of ' in Theorem imply op * 1 € 2(Q).

To prove the stated formula, we shall exploit the linearity of A by approximating the integral
defining F(z) := (op * ¥)(z) = (. op(z — y)¥(y) dy with Riemann sums. For ¢ > 0 and
any given x € R™, the compact support of ¢ implies that the function y — op(x — y)¥(y) is
nonzero on at most finitely many points in the lattice eZ™ < R™, thus we can define a function
F.:R" - K by

Fo(z):=¢" Y ople —y)dly) = " Y 7yop(@)i(y).

yeeL™ yeez™

In fact, this is a finite linear combination of smooth functions with compact supports contained
in —K + supp(v) ¢ —K + Q' < Q, thus it belongs to 2(Q) and its support is contained in a
compact subset of {2 independent of e. The function F,(x) can also be written as (g, fe . (y) dy for
a step function f ; : R — K whose value at each y is the value of fo ;(y) := ocp(x—y)¥(y) at the
nearest lattice point y € €Z™. Since ¢ and 1 are both uniformly continuous, for every § > 0 there
exists €y > 0 such that | fez — foz]|co < 0 for all z € R™ and € < ¢, thus Fi converges uniformly
to F as ¢ — 0. The same is then true for all derivatives: since 0“F(x) = (0%(op) * ¥)(x)
and 0°F(z) = €" 3 70 0%(0p)(z — y)¢(y) for all multi-indices «, the same arguments imply
that all derivatives of F, converge uniformly to F', hence F, — F in 2({2). The continuity and
linearity of A then imply

(A, opxp) = A(F) = El_igl+ A(F,) = lim €" Z PY(y)A(T—yop(x)) = lim €" Z P(y)(pxA)(y).

+ +
=0 yeez™ =0 yeez™
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This last expression is a Riemann sum approximating the integral {, 1 (y)(¢ * A)(y) dy, whose
integrand is also a smooth function with compact support, so the sum converges to the integral
as € = 0. U

10.3.2. Approximation of distributions by smooth functions.

Example 10.30. The Dirac §-function 6 € 2'(R™) satisfies (¢0)(z) = §(7_p00) = T7_0¢0(0) =
op(—z) = @(x), i.e. pxd =0 % ¢ = p for every p € Z(R").

The definition of the term approzimate identity in §5.4] can now be restated as follows: a
sequence of smooth functions p; : R — [0, 00) is an approximate identity if and only if

pj =6 in  Z'(R"),
where we are of course identifying the functions p; with the distributions A, € 2'(R™) that they
determine. If p; also has shrinking support, then we can assume for any given open neighborhood
2 c R” of the origin that p; belongs to Z(12) for large j.
Now suppose A € Z'(2) is an arbitrary distribution on some open set < R”, and p; is

an approximate identity with supp(p;) = B,, for some sequence r; — 0. The convolutions
Aj := p; * A are then defined on the subsets

(10.4) Q;:={z e Q]| dist(z,R"\Q) > r;},

whose union for all j is . It follows that any ¢ € 2(Q) has support contained in €2; for all j
sufficiently large, so that the integrals §, pA; dm := SQJ_ @Ajdm can be defined for large j by
regarding the integrand as 0 wherever ¢ vanishes. The statement of the following result should
be understood in these terms.

Theorem 10.31. Suppose p; : R™ — [0,00) is an approximate identity with shrinking support,
A e 7'(Q) is a distribution defined on some open set Q@  R", and A; := pj = A. Then for every
e D), SQ ©Ajdm — A(p).

Proof. Assume j is large enough for supp(¢) to be contained in the domain of A;. Then according
to Proposition [10.29]

L eAjdm = (pj = A, p) = Aop; * ).

The functions op; are also an approximate identity with shrinking support, so the result follows
via the continuity of A and the following claim: for any approximate identity p; with shrinking
support and any ¢ € Z(Q2), the functions p; * ¢ have compact support in Q for all j sufficiently
large and converge in Z(2) to ¢ as j — 0. Indeed, Exercise [0L28 implies that supp(p; * ) lives
in an arbitrarily small compact neighborhood of supp(y) for large 7, and Theorem .17 gives
convergence p; * ¢ — ¢ in CX (2). In light of the supports, C|S -convergence in this situation
implies uniform convergence of all derivatives and thus convergence in Z(f). U

Corollary 10.32. For every open set @ < R™, C°(2) is dense in 2'(Q).

Proof. Given an approximate identity p; with shrinking support, define A; := p; * A, a sequence
of smooth functions defined on the nested sequence of open subsets ; Qs < ... < |J e €
described in (I0.4]). Choose a corresponding sequence of smooth functions 5; : @ — [0,1] with
supp(f;) < ©; and Bj|Qj_l = 1. Then B;A; can be extended to smooth functions on €2 that
vanish outside of Q;, and since every ¢ € Z(2) has support in Q; for j large, Theorem [I0.31]
implies 8;A; —> A in 2'(Q). O

10.3.3. Distributions of class C™.

Theorem 10.33. For a distribution A € 2'(Q2) on an open set Q@ < R™ and integers m, k > 0,
the following conditions are equivalent:

(1) A is represented by a function of class C*T™;
(2) 0“A is represented by a function of class C* for each multi-index o of order m.
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Proof. The main step is to prove the special case with £ = 0 and m = 1, as the rest then follows
by a straightforward inductive argument. Let us therefore assume A € 2/(Q)) has the property
that oA = Ay, for every k = 1,...,n, with continuous functions g € C%(€2). The goal is then
to show that A = Ay for some f € C1(Q).

Choose an approximate identity p; with shrinking support, and consider the sequence of
smooth functions f; := p; * A, which are defined on a nested sequence of open subdomains
; < Q whose union is 2. By Theorem I0.27, 0i.f; = p;j * gi for each k = 1,...,n, and since
the gi are continuous, it follows via Theorem 517 that dxf; — g in C _(£2). We claim that
f; also converges in CL () to a function f € C1(Q). Indeed, by the fundamental theorem of
calculus, every z € ) has a convex neighborhood U,, < 2 in which for x = z¢ + h € U,, with

h=(h,... hy)€R",
n 1

(10.5) Fi(@) = Filwo) = ), hkf Ok fj(zo + th) dt,
k=1 VO

and the right hand side converges uniformly in x to >}, _; hy Sé gr(xo+th)dt. If f;(xo) converges,
it follows that f; converges uniformly on a neighborhood of x, and the limiting function will
then satisfy

n 1
F@) = Fa0) = 3. | auoo -+ th) e,
k=1 0

implying that f is of class C'' on this neighborhood with ¢, f = gi. The claim will thus follow
if we can prove that f;(xg) converges. To this end, choose a test function ¢ : R® — [0,0)

that is positive at z( and has support in a neighborhood U;,, of zy which can be assumed to be
arbitrarily small. By Theorem [I0.37],

(10.6) lim ofjdm — A(e).
J—0 uzo
Now if fj(xo) does not converge, then at least one of the following occurs after passing to a
subsequence:
(1) |fj(xo)] — oo. Since (I0E) implies that |f;(z) — f;j(zo)| is bounded independently
of j for all z € U,,, it follows if supp(p) is sufficiently concentrated around zy that

‘Suxo ef; dm‘ — o0, contradicting (I0.6).

(2) foj—1(xo) and foj(xg) each converge to different limits. A similar argument via (I3
then implies that if ¢ has support sufficiently concentrated near x(, then Su ©fo;-1dm
)

and Su @ faj dm each converge to different limits, giving another contradiction to (I0.6)).
z

These contradictions prove the claim.

We've now proved that f; converges in CL_(Q) to a function f € C(£2), and it follows that
for every ¢ € 2(Q), (o ¢ f; dm — (o ¢ f dm. The latter equals A(y) according to Theorem [I0.31]
so A=Ay O

Here is a consequence that is much less obvious than it looks:

Corollary 10.34. If f and g are two functions on a connected open set 0 < R™ that have the
same weak first-order partial derivatives almost everywhere, then f — g is equal to a constant
almost everywhere.

Proof. The assumptions imply that h := f — g satisfies A’ = 0 in the sense of distributions. Since
0 is a continuous function, Theorem [[0.33] then implies that A is equal almost everywhere to a
C'-function whose classical gradient is zero; since € is connected, that function is a constant. [

Exercise 10.35. Consider a linear differential operator of the form L = )] c,0“ acting on
scalar-valued functions on R™, where the coefficients ¢, are scalars and the sum runs over
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finitely many multi-indices, which may be of various orders. A distribution K € 2'(R") is called
a fundamental solutio for the operator L if it satisfies LK = .

(a) Show that if K is a fundamental solution for L, then for every smooth compactly sup-
ported function f: R” —» K, u := K = f is a smooth solution to the partial differential
equation Lu = f.

(b) Find a locally integrable function K : R — R that is a fundamental solution for the
operator 02, and verify explicity that u := K  f satisfies u” = f for any f € C{°(R).

Exercise 10.36. Show that the functions
1

(n — 2) Vol(Sn—1)|x|n—2
where Vol(S"™!) > 0 denotes the volume of the unit sphere in R, are in L{_(R") and are

fundamental solutions for the Laplace operator A := — Z?Zl 0? on R™ with n > 2. In particular,
they have (weak) first derivatives

1
K(x):= —%ln |z|  for n =2, K(x):= for n > 3,

bz
Vol(Sn—=1) |z|?’

and their second derivatives (in the sense of distributions) take the form

Kj(x) = @K(m) =

_ 1 T}
- Vol(Sn—1) |z|n+2’

Kji(x) := 0j0,K (x) for j # k,

1
and 6]2~K = ——0 + Kj;, where
n
2 2
K;; = E J
J (x) Vol(S"‘l) - |x|n+2 ’

and the evaluation of Kj; € 2'(R™) on test functions is defined via principal value integrals as
in Exercise [0.20] that is,

(Kjk,p) := lim Kji(x)e(z) d.
0" Jrm\Bp
10.4. Product distributions. In this subsection we assume for simplicity that all distributions
are scalar valued, though the discussion can be generalized for vector-valued distributions with
minor adjustments (see Remark [[0.42]).
Recall that for any two o-finite measure spaces (X, ) and (Y, v), there is a product measure
p®von X ®Y, which is uniquely determined by the condition

(h®v)(A x B) = p(A)v(B)

for arbitrary measurable sets A € X and B c Y. Fubini’s theorem is essentially the statement
that product measures exist and are unique, together with a useful recipe for computing integrals
with respect to product measures. We would now like to establish a variation on Fubini’s theorem
for distributions.

Definition 10.37. If f: X »> K and ¢g: Y — K are two scalar-valued functions on sets X and
Y respectively, we define a scalar-valued function f®g: X xY — K by

(f®9)(z,y) = f(x)g(y).

Given two open sets 1 < R™, Qo c R™ and distributions A; € 2'(Q1) and Ay € 2'(Q2), a
distribution on Q7 x Qs © R™*" is called a product distribution for A; and As, and denoted
by A1 ® Ay € Z'(Q1 x Q), if it satisfies

(A1 ®A2)(g01 ® QDQ) = A1 (ng)AQ(gDQ) for all ©1 € @(Ql) and Y2 € .@(92)

25Fundamental solutions are also often called Green’s functions.
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Example 10.38. If A; and Ay are given by measures as in Example [[0.14] then the product
measure defines a product distribution A; ® As. (Note that a measure satisfying the condition
stated in Example [0.14] is always o-finite.)

Exercise 10.39. Use Fubini’s theorem to show that for any locally integrable scalar-valued
functions f € Ll (Q1) and g € L{ (), f ® g belongs to L (% x Q) and Apgy = Ay @ Ay €
.@,(Ql X Qg)

In the setting of Exercise [[0.39] Fubini’s theorem provides the following recipe for evaluating
Af ® A4 on an arbitrary test function ¢ € Z() ® §22): extending f and g to functions on R™
and R™ that vanish outside 2 and €’ respectively, the compact support of ¢ in Q x Q' makes
(z,y) — o(x,y)f(x)g(y) a well-defined function in L'(R™*") and thus implies

(Af @Ay ) = Lng o(z,y) f(x)g(y) dz dy = meM o(z,y) f(z)g(y) dz dy

[ ( [ et dy) F(w)dz = Ag (x> Aylp(, )
-[ ( [ etwasw dx) 9(5) dy = Ay (3 = Ar((1)))

Implicit in our notation in the last two lines is that = — Agy(¢(z,-)) and y — Af(e(-,y)) define
smooth compactly supported scalar-valued functions on Q and €' respectively, so they can be
regarded as test functions and fed into distributions for evaluation. As an easy consequence of
Proposition [0.23] the same holds when Ay and A, are replaced by arbitrary distributions:

Exercise 10.40 (cf. Proposition [[0.23]). Show that if ; < R™ and Qs < R" are open sets,
w0 € D(Q1 x Qo) and A € 2'(21), then ¥(y) := A(p(+,y)) defines a smooth compactly supported
function on .

Theorem 10.41 (Fubini’s theorem for distributions). In the setting of Definition [I0.37, there
exists a unique product distribution A1 ® Ay € Z'(Q1 x Q3), and its evaluation on arbitrary test
functions p € 2(Q1 x Q3) is given by

(10.7) (A1 ®A2) () = A1 (z = Aa(p(x,+))) = Ao (y = Ar(e(+y))) -

Proof. We first prove the uniqueness of A1 ® Ao. Given two product distributions for A; and A,
their difference is a distribution A € 2'(2; x Q3) such that A(p ® 1) = 0 for all ¢ € 2()
and ¥ € Z(£2). The idea is now to use an approximate identity to approximate A with smooth
functions that vanish. For k = 1,2, let p<1) and p§-2) : R™ — [0, 00) denote approximate identities

J
on R™ and R" respectively, both with shrinking support. The functions p; := pgl) ® p§2) :

R™*"™ — [0,00) then also have shrinking support, and by Fubini’s theorem, they satisfy

J pjdm = (J pg-l) dm) (J pgz) dm) -1 as j— oo,
RmMm+n m n

so by Lemma [5.12] p; is an approximate identity on R™*". Theorem [I0.31] then implies that
for any ¢ € (1 x Q2), pj = A is a smooth function defined on a neighborhood of the support
of ¢ for j sufficiently large and satisfying

f e(pjxA) > A(p) as  j— oo
QxQ/

But the function p; * A is given by

(pj * M) (@,9) = Ty Mopy) = A a0p\ @7 yop?)

for all (z,y) € R™*™ in its domain of definition, so taking (z,y) € 1 x Q9 and j large enough
(1) (2

for 7_ : -
or T_y0p; ;

implies that p; * A vanishes, proving A(y) = 0.

and T_yop ) to have support in 1 and 5 respectively, the defining property of A
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It is easy to see that both of the expressions on the right hand side of (I0.7)) evaluate like a
product distribution on test functions of the form ¢ ® pg € Z(21 x Q9), thus with uniqueness
established, the rest of the theorem will follow if we can show that both of these expressions
really define distributions, i.e. they are continuous linear maps on Z(£; x £23). The proof works

the same for both expressions, so let us focus on the first one and consider the linear map
A 9(Q1 x Q) — K defined by

Alp) = A1 (z = Aa(p(z,+))) -
To show that this is continuous, suppose p; — @ in Z(; x ), and pick compact subsets
K; < @ and Ky < Q such that supp(yp;j) € K := K; x Kj for all j. Then the sequence ¢; is
also convergent with respect to the C*-topology on

Di (1 x Q) 1= {p € Z(h x Q) | supp(p) © K},

which is a closed subspace of the Fréchet space of C*-functions with bounded derivatives of all
orders on €2 x ). Since A restricts to a continuous linear functional on this subspace, a standard
result on continuous linear operators (see Lemmas [0.93] and [[0.94] in §10.8, or [RS80, §V.1])
implies that there exists a continuous seminorm || - | on Zx(£21 x Q2) such that |[A(e)| < |¢|
holds for every ¢ € Zx (21 x Q2). Since the topology on Zi (1 x Q9) is generated by the
increasing sequence of norms || - [cm for m € N, this actually means that for sufficiently large
constants C' > 0 and m € N,

IA(p)| < Cllp|em  forall ¢ e D (21 x Qo).

This estimate applies in particular to the sequence ¢; and its derivatives 0%¢; for every multi-
index . Writing ¢;(x) := Aa(p;(x,-)), Proposition [0.23] gives

lal .
00‘%(35) = A2 (a 90] (1-, )) ,

ox®

thus

ool olel .
|0%eo () — 0% ()| = PO (g, ) — L ¥

x
ore ’ ore

(.%', )

X

ox® ox®

lot| lal .
Ao (a Lk (.%', ) - a—%(xa ))

Cm
< Cllgw = @jlemeal =0 as  j— o0,

giving C'*-convergence 1; — 1. Since supp(p;) < K1 x Ks, we also have supp(v;) < K
for all j, thus ¥; — ¥y in Z(£1), and the continuity of A; now implies A(p;) = Ai(¢;) —
A1 (Y0) = Alpo) O

Remark 10.42. One can also define the notion of a product distribution A1 ® Ay if Ay is scalar
valued and Aj is vector valued (or the other way around), but in this case an extra definition is
needed before one can make sense of (I0LT7), as x — Az(p(z,-)) is now a vector-valued function
and thus does not belong to 2(€21). The quickest way to rectify this is to choose a basis e1, .. ., e
of V and extend Ay : 2(21) — K to a linear map from the space of compactly supported smooth
functions Q1 — V to V by Ai(3]; pje;) := X Ailpy)e; for ¢1,....0p € (). It is easy to
check that this definition is independent of the choice of basis, and Theorem [[0.41] then becomes
valid for the product of a scalar-valued and a vector-valued distribution.

10.5. The Sobolev spaces WP()). Let us now explain how to generalize the Sobolev spaces
H™(R™) to arbitrary open domains 2 ¢ R™ and p # 2. The theory of distributions is not strictly
needed for this discussion, but it makes some aspects of it seem easier and more natural.

Definition 10.43. For an open set 2 < R"™, an integer m > 0 and a real number p € [1, ],
the space W™P(Q) is defined to consist of all f € LP(2) such that for every multi-index o with
|a| < m, the weak derivative 0” f exists and is also in LP(€2). The norm on W"™P() is defined
by

|flwrme == > 10%f[ L.

la|<m
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Remark 10.44. In contrast to §9 we are not considering non-integer values of m in our definition
of W™P(Q2). Such a notion does exist but is much more complicated to define; details may be
found in [AF03].

It is not hard to show that W™ P(Q) is a Banach space, as it admits a natural continuous
linear inclusion
W™P(Q) — @ LP(Q)
la|<m
sending each f € W™P(Q) to a finite tuple of LP-functions whose “a-coordinate” is 0%f, and
Exercise below shows that the image of this inclusion is a closed subspace. More generally,
one defines

WieP(Q) := {f € LY .(Q) | f has weak derivatives 0°f € LI () for all |a| < m},

loc loc
which is equivalently the space of functions on Q (up to equality almost everywhere) whose
restrictions to every open subset with compact closure are of class W™P. As with Lf, = (cf. §0.3),
one can use the W™P-norms over an exhausting nested sequence of open subsets with compact
closures Q1 c QcQc Q... c UjeN Q; = Q to endow I/Vl?c’p(Q) with the structure of a
Fréchet space.

Exercise 10.45. Suppose f; € W™P(Q) is a sequence such that for every multi-index a of order
at most m, 0% f; is LP-convergent to some g, € LP(£2). Show that the function f :=lim;_,o f; €
LP(Q) is then in W™P(Q) and satisfies 0“f = g, for all |a| < m.

Hint: For any test function ¢ € 2(R"), the LP-convergence 0*f; — g, implies L'-convergence
on the support of .

Example 10.46. As shown in Exercise [I0.3] the function f(x) := |z| on R has a bounded weak
derivative, thus f € W1P(Q) for every bounded open interval 2 = R and 1 < p < 00. This shows
that there is no value of p for which functions of class WP must be everywhere differentiable
in the classical sense.

One can use approximate identities to show that the subspace
W™P(Q) n C®(Q) ¢ WM™P(Q)

is dense for all p < oo, thus an equivalent definition of WP (Q) for these cases would be as the
closure of the space of smooth functions on €2 with respect to the W™P-norm. The next exercise
proves a slightly stronger variant of this result in the case 2 = R".

Exercise 10.47. Prove via the following steps that C{°(R") is dense in W™P(R™) for every
m = 0 and p < 00:

(a) If f e W™P(R") and p; : R™ — [0, 0) is an approximate identity with shrinking support,
use Theorems [5.14] and to show that f; := p; = f is in W™P(R") n C°(R") and
converges in WP to f as j — o0.

(b) Fix a smooth function ¢ : R” — [0, 1] that equals 1 on the unit ball and has compact
support in the ball of radius 2, and let (x) := ¥(ex) for € > 0. Show that for any
fe WmP(R™) n C®(R"™), Yef — fin W™P as e — 0.

Hint: You need to estimate |0“[(1 —v¢)f]|;» for every multi-index o with o] < m.
Consider separately the terms that either do or do not involve derivatives of ).

Remark 10.48. While C*(Q2) n W™P(Q) is always dense in W"™P((2), it is not true for arbitrary
open domains 2 ¢ R” that C°(Q2) is dense in W™P(Q). In general, the W P-closure of Ci°(12)
defines a closed subspace W;""(2) € W™P(Q) that is often useful in applications to boundary
value problems, as it can be regarded as the space of W""P-functions on () that “vanish at the
boundary”. The proof in Exercise [0.47] that C°(R™) is dense in W"™P(R") implicitly makes use
of the fact that one has an infinite amount of room in R” to “stretch out” the cutoff functions

1P without losing control of their derivatives. This trick does not work more generally, e.g. when
Q) c R" is bounded.
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We can now clarify the relationship of W™P(Q) to the Sobolev spaces we defined earlier via
the Fourier transform.

Proposition 10.49. For every integer m > 0, W™2(R") = H™(R").

Proof. Both spaces are linear subspaces of L?(R™), and by Theorem and Exercise [0.47]
both contain the Schwartz space . (R™) as a dense subspace. One can easily show that the
W™2norm and H™-norm are equivalent on .&(R"), thus the two spaces are the closures of
. (R™) with respect to equivalent norms, and are therefore identical. ]

Exercise 10.50. Prove:

(a) If f is an absolutely continuous function on an interval [a, b], then its classical derivative
1! (defined almost everywhere according to Theorem [6.7)) is also its weak derivative on
the domain (a,b), hence f € Wh((a,b)).

Hint: For any ¢ € 9((a,b)), ¢f defines an absolutely continuous function on [a,b] that
vanishes at the end points.

(b) If fe Wlicl (Q) for an open subset 2 c R, then f is equal almost everywhere to a function
that is absolutely continuous on every compact subinterval of €.

Hint: On [a,b] c ), define g(z) := Sax f'(t) dt and apply Corollary [10.34.

(c) For any open interval 2 c R, there exists a constant ¢ > 0 such that

Ifleo < clflwin forall  feWwh(@).

Hint: The fundamental theorem of calculus implies | f(z)— f(y)| < ||f'| 1 for all z,y € Q,
and thus |f(z)| = |fllco — | f/| 1 for all x € .

Exercise 10.51. Consider the function f(x) := ln‘ln|x|‘ on the r-ball B, < R"™ about the
origin for some r € (0, 1).
(a) Show that the classical first derivatives 0; f, defined on B,\{0}, are also weak derivatives
of f on B,.
Hint: Since f and 0;f are both in LY(B,), for any ¢ € 2(B,) supported in some cube
@ < B, around 0, you can approximate SQ 0j(¢f)dm by integrating over Q\{|z;| < €}
for small € > 0, and then use integration by parts. There will be a boundary term; you
need to show that the singularity of f at 0 is not bad enough to make the boundary
term matter as € — 0.
(b) Show that for n = 1, f ¢ WYP(B,) for any p > 1, but for n > 2, f € WHP(B,) if and
only if p < n.

We saw in §9that in general, functions of class W1 need not be anywhere differentiable, and
on higher-dimensional domains, Exercise [[0.51] shows that they need not even be continuous—
the continuity result in Exercise is special to one-dimensional domains. The Sobolev
embedding theorem gives sharp criteria saying to what extent the functions in any given Sobolev
space must be classically differentiable. The proof of this important result, which generalizes
Theorems and beyond the case p = 2 and Q = R"”, belongs more properly to a course
on PDEs, so we will not include it, but here is the statement:

Theorem 10.52 (Sobolev embedding theorem). Suppose k € N and p € [1,00) satisfy the
relation

0<k—-—n/p<1,
and < R™ is either R™ or an open subset whose closure is a compact C-smooth manifold with
boundary Then for every integer m = 0 and every « € (0,1) with o < k —n/p, there exists a
continuous inclusion

Wk—&-m,p(g) o O (Q)

26The hypothesis on 2 can be generalized considerably; here we are only stating a version that can be under-
stood without too many extra definitions. The theorem as stated remains true for any (bounded or unbounded)
open domain 2 c R™ whose boundary satisfies something called the “strong local Lipschitz condition”; see
[AF03], §4.12] for details.
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Exercise 10.53. Show that in the situation of Theorem [[0.52], whenever €2 is bounded and the
strict inequality o < k — n/p is satisfied, the inclusion Wk+m7p(_Q) — C"™*(Q) is compact. In
particular, there is a continuous inclusion W**™P(Q) < C™(Q) whenever kp > n, and it is

compact if 2 = R™ is bounded. (See §0.3 for the definition of the Banach space C™(f2).)

Theorem motivates thinking of functions in W#P(Q) as functions that have “k —n/p
continuous derivatives” whenever kp > n, where the number k—n/p need not be an integer. This
intuition is further supported by the following generalization of the obvious inclusion H!(R") —
H?#(R"™) for t > s. The case with © bounded is known as the Rellich-Kondrachov compactness
theorem (cf. Theorem [0.14]):

Theorem 10.54. Under the same assumptions on € as in Theorem[I10.52, suppose 1 < p,q <
and k,m = 0 are integers satisfying

n n
k>=m, p<g, and k——2>=2m— —.
p q
Then there exists a continuous inclusion W*P(Q) < W™4(Q), and this inclusion is compact if
the inequality k — % >m — % is strict and Q) is bounded.

Exercise 10.55. When (2 is a bounded interval (a,b) ¢ R, Theorem [[0.52] says that for all
integers m > 0, there are continuous inclusions

1
WtmP((a,b)) < C™%((a,b)) if O<a<1l, l<p<mwanda<1-—-—
p

W2tml((a, b)) < C™%((a,b)) if O0<a<l1.
Prove this as follows:

(a) Deduce the inclusions W2! < C%* for a € (0, 1] from a continuous inclusion W21 < C1
using Exercise

(b) Deduce the inclusion WP < CY for every p > 1 from Exercise

(¢c) For a < z < y < b, the fundamental theorem of calculus implies |f(z) — f(y)| <
1" 21 ([, for f € WP ((a,b)) since (by Exercise [0.50) f is absolutely continuous. Use
Holder’s inequality to deduce a Holder-type estimate |f(x) — f(y)| < | f'|r - |2 — y|*
for 0 < a <1 —1/p whenever p > 1. The proof for m = 0 is thus complete.

(d) Extend the result to all m € N by induction.

According to Theorem [M052] the condition kp > n guarantees continuity for functions of
class W*P on n-dimensional domains. We saw in Exercise that the situation is slightly
better when n = 1: here the condition kp = n already suffices for continuity, but the function in
Exercise [0.5T] demonstrates that this is false in dimensions n > 2. The situation with kp = n
is often called the Sobolev borderline case. Even in dimension one, the borderline case has the
disadvantage that functions of class W' need not be Hélder continuous, and so in contrast to
Exercise [0.53} the inclusion W1(Q) — C%(Q) for bounded intervals 2 = R is not compact.

Exercise 10.56. Find a sequence of smooth functions f; : (—1,1) — R such that |f;|,: and
If ],|| 1 are bounded but f; has no C%-convergent subsequence.
Hint: Construct f; so that it converges in L' to a (discontinuous) characteristic function.

Remark 10.57. The Sobolev embedding theorem furnishes one major reason why it is useful
to study the properties of all the LP-spaces for 1 < p < oo, rather than just L?, which might
otherwise be easier since the latter is a Hilbert space. As a concrete example, suppose you
are studying a first-order PDE for functions on 2-dimensional domains. If you want to work
only with Hilbert spaces but also want all your functions to be continuous, then Theorem
requires you to take functions of class H™ = W™?2 with m > 2, which involves at least one more
(weak) derivative than the PDE itself actually needs. In such a situation, it may be easier to
work with functions of class WP for some p > 2, as these are continuous, and one only needs to
compute first-order derivatives in order to verify whether a given function belongs to this space.
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10.6. Tempered distributions and Fourier transforms. Since we are going to talk about
Fourier transforms in this subsection, we need to assume K = C.

We would now like to define Fourier transforms of functions for which the usual integral
formula cannot even approximately make sense, e.g. functions that are not in L?(R"), and ideally,
distributions. One can almost deduce the correct definition by considering the distribution
Ay € 2'(R™) corresponding to a function f € L'(R"): by Fubini’s theorem, we have

Fro=[ o ([ err@a)a=[ ([ o) roa = 7.70)

for all ¢ € Z(R™). This suggests defining .Z A € 2'(R") for arbitrary A € 2'(R") by (FA)(p) :=
A(Z p), but this definition as it stands does not quite make sense: % ¢ might not have compact
support, in which case it is not a test function and A(Z ) will not make sense for arbitrary
distributions A. The solution is to replace the usual space of test functions with the Schwartz
space .7 (R"), since the latter is closed under the Fourier transform.

Before defining what a continuous linear functional on . (R"™) is, we need to define a topology
on . (R™). As with Z2(R™), we would like this topology to be relatively strong, so that as many
functionals as possible are continuous, but also to have the property that continuity can be
characterized purely in terms of convergent sequences (cf. Proposition [[0.8]). This turns out to
be easier for .(R") than for Z(R"): the natural choice is to endow .#(R"™) with the topology
generated by the countable family of seminorms

I¢lla,s = l2*0"@lico

for all multi-indices «, 3, so convergence o — ¢ in .(R™) will mean that for every polynomial
function P : R® — R and every multi-index $3, the functions Pd%¢p;, converge uniformly on
R™ to Po%p. Tt follows easily from the completeness of the C-norm that sequences that are
Cauchy with respect to all of these seminorms must also converge, hence .7 (R™) is now a Fréchet
space. In particular, the topology we have defined on . (R™) is metrizable, thus continuity and
sequential continuity of functions defined on .(R™) are equivalent notions.

Exercise 10.58. Show that the natural inclusions 2(R") — . (R") and . (R") — W"™P(R")
for all m > 0 and p € [1,00] are continuous.

Exercise 10.59. Show that the following linear operators .(R") — .(R") are continuous:

(a) 0* and ¢ — x%p for every multi-index «;

(b) .# and F*.

Definition 10.60. A complex-valued tempered distribution on R" is a continuous complex-
linear functional A : . (R"™) — C. Similarly, a vector-valued tempered distribution with values in
the finite-dimensional complex vector space V' is a continuous complex-linear map A : . (R") —
V. We shall generally assume that all tempered distributions take values in a fixed vector space
V', and denote the the vector space of vector-valued tempered distributions by

SR ={A: SR") >V ‘ A is complex linear and continuous} .

The space ./ (R") is endowed with the weak*-topology, i.e. the locally convex topology generated
by the seminorms [All, := [A(g)] for all p € #(R™), hence a sequence A; € /(R™) converges
to A € 7/ (R") if and only if Aj(p) = Ax(p) for every ¢ € Z(R™).

The inclusion 2(R") — % (R") in Exercise gives rise to a natural continuous inclusion
(R — P'(R™), i.e. every tempered distribution is also a distribution in the usual sense.
The converse is false, and in fact /(R™) does not even contain all locally integrable functions,
e.g. f(z) := e does not define an element A 7 € '(R) since there exist functions ¢ € .7 (R)
for which SR pfdm is not defined. However, most important examples of distributions are
also tempered distributions: these include large classes of functions as in the following two
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exercises as well as standard singular examples like the Dirac §-function and its derivatives.
By a slight abuse of notation, we shall write L _(R™) n .#/(R") for the space of all locally
integrable functions f on R™ such that ¢f € L'(R") for every ¢ € .#(R") and the formula
A¢(p) := Szn @f dm defines a tempered distribution Ay € .#/(R™).

Exercise 10.61. A function f € L] (R™) is said to have polynomial growth if it satisfies
| f| < |P] for some polynomial function P : R" — R; equivalently, this is true if and only if there
exist constants C' > 0 and k € N such that

|f(z)] < C(A + |z|¥) forall zeR™
Show that any function with this property is in .%/(R"™).

Exercise 10.62. Show that LP(R™) c ./(R") for every p € [1, 0], and the inclusions LP(R") —
' (R™) are continuous.

Hint: Use the continuity of the inclusions . (R") — L9(R") and the natural injection LP —
(L?)* for % + % =1

Partial derivative operators are defined as continuous linear maps on .%/(R™) in the same way
as Z'(R™); continuity in this case follows from the continuity of 0¢ on .7 (R™) (Exercise [[0.59).
The product of a smooth function f € C*(R"™) with a tempered distribution A € .#/(R™) is not
well defined unless ¢ — fp is a continuous map . (R") — .(R™), which is not true e.g. for
flx) = ¢** on R, but is true if f and its derivatives of all orders have polynomial growth as
in Exercise I0.61l Under this assumption, it is straightforward to show that the Leibniz rule in
Exercise [[0.2]] also holds for tempered distributions.

Remark 10.63. For a function f € L} (R") that defines a tempered distribution, we now have two
potentially inequivalent definitions for the notion of weak derivatives 0;f, depending whether
we want 0;f to define an element of 2'(R") or ./(R™). In the latter case, it needs to sat-
isfy a stronger condition involving integration against test functions in .(R™), a larger space
than Z(R™); it could happen for instance that f has a locally integrable weak derivative 0; f that
grows too fast at infinity to define a tempered distribution, in which case the stronger condition
fails. However, if a weak derivative 0; f does define a tempered distribution—which is always the
case for instance if 0; f is of class L? for some p, and notably if f belongs to a suitable Sobolev
space—then it also satisfies the stronger condition, i.e. it is also a derivative of f in the sense of
tempered distributions. The reason is that, by Exercise [0.64] below, Z(R") is dense in .(R"),

so any two tempered distributions that evaluate the same on Z(R"™) are identical.

Exercise 10.64. Show that for any ¢ € .#(R™) and the family of compactly supported smooth
cutoff functions ¢ : R" — [0, 1] in Exercise [0.47), ¢ep — ¢ in .Z(R™) as € — 0. In particular,
Z(R™) is dense in .7 (R"™).

Hint: For any multi-indices o and 3, the condition ¢ € .(R™) implies H:U“@BQOHCO(Rn\Bm -0
as R — oo. (Why?)

The next set of exercises generalizes the convolution operator and its main properties from
§10.3] to the context of tempered distributions.

Exercise 10.65. Recall the translation operator 7, for functions f on R™ and v € R™, defined
by (tuf)(x) := f(z +v).
(a) Show that for every pair of multi-indices o and 3, there exists a constant C' > 0 and a
finite set of pairs of multi-indices {(cy, 8;)}}.; such that

N
Imollas < C (2 ||<P|a¢,5i> (L+]o[*)  forall pes(R"), veR"
i=1

2
27The word “tempered” refers to conditions as in Exercise [I61] and [0L62) that rule out functions like e®
which grow too fast at infinity.
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In particular, 7, is also in .’(R") for every ¢ € .(R™) and v € R™.
Hint: By Exercise[82, you can assume |0°p(x)| < ﬁ for some k € N arbitrarily large
and a constant ¢ > 0 determined by k and finitely many seminorms of . Estimate
|220% p(x + v)| by looking separately at the cases |z| < 2|v| and |z| = 2Jv|.

(b) Show that Lemmas[10.24] and [0.25] remain valid with the space of test functions replaced

by the Schwartz space (ignoring all conditions that involve compact support).

Exercise 10.66. Reread the proof of Corollary and verify that, in light of Exercise [0.65]
the function Fj(z) := (7,A)(p) defined on R™ for any A € //(R™) and ¢ € ¥ (R"™) is smooth
and satisfies 0“F) = Fpap for all multi-indices o.

Exercise 10.67. Show that for any ¢ € . (R") and A € ./(R"), the formula (I0.3]) defines a
smooth function ¢ * A on R™ satisfying 0*(¢ *A) = (0%¢p) * A = @ (0*A) for all multi-indices .

Exercise 10.68. Consider the convolution of two Schwartz functions ¢,y € Z(R").

(a) Show that ¢ * 1 is continuous and bounded on R™.

(b) Show that if 1); is a sequence converging in .#’(R") to 1, then ¢ *; converges uniformly
to o x .

(¢c) For k =1,...,n and a function f on R", let Pyf denote the function on R™ defined by
(Pef)(x) := zf(x), so e.g. by Exercise [[0.59, Py defines a continuous linear operator
L (R") - Z(R™). Show that Py(¢=*1) = (Pry) *1 + ¢ = Pyep, and deduce that Py (¢ 1))
is continuous and bounded.

(d) Deduce that ¢ = ¢ € #(R"), and for any sequence 1; — ¢ in . (R"), p % 1; — @ *
in Z(R™).

Proposition 10.69. For ¢ € ./(R") and A € ' (R™), ¢ * A is a polynomially bounded function

and thus defines an element of #'(R™). Moreover, if ¢; € .#(R") converges to ¢ in 7 (R"),
then the tempered distributions @;j = A converge to ¢ = A in ' (R™).

Proof. We start by proving that ¢ = A has polynomial growth. By one of the standard character-
izations of continuity for linear operators on locally convex spaces (see Lemmas [[0.93] and [[0.94]
in §I0.8] or [RS80, §V.1]), the continuity of A : .#(R™) — V means that there exists a finite set
of pairs of multi-indices {(a;, 3;)})¥., and a constant C' > 0 such that

N
AP < C Y ¢las  forall  pes(RY).
i=1
Using Exercise [[0.65] the convolution ¢ * A thus satisfies

N N
(g # M) (@)] = [A(T=209)| < C Y [7-2(09) a5 < C Y il + [2[1%) < C'(1 + |
i=1 i=1

for suitable constants ¢; > 0, C' > 0 and k € N sufficiently large. In this expression, the constant
C > 0 is determined entirely by A, while only ¢1,...,cy (and therefore also C”) depend on ¢;
looking more closely at Exercise [[0.65] we see moreover that they can be bounded linearly in
terms of finitely many of the seminorms [/¢|s,g. For this reason, if p; — ¢ is a convergent
sequence in . (R™), the same argument gives

(@ = A) () = (5 = M) (@)] = [A(T—0(p — ;)| < Cj(1 + |2[*)
for constants C; > 0 that converge to 0 as j — oo, thus for any ¢ € ./ (R"),

|(p = Aop) — (gpj x A )| < f ||+ |p = A — ©; x Al dm < C; f[{gn |(x)](1 + |x|k) dz — 0.

n

0

Exercise 10.70. Use Proposition and the density of Z(R") in ./(R") to deduce that the
relation (¢ = A1) = A(op = 1)) also holds for all ¢, € . (R™) and A € &' (R").
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Exercise 10.71. Suppose p; : R” — [0, 00) is an approximate identity with shrinking support.
Prove:
(a) For any p € L (R"), pj * p = ¢ in /(R") as j — .
(b) For any A € /(R"), pj*A — Ain.'(R") as j — 0. (This proves that C°(R")n.7"'(R"™)
is dense in .'(R™).)
(¢) For any f € C®(R") n .'(R™) and the family of compactly supported smooth cutoff
functions 9. : R™ — [0, 1] in Exercise 1047, ¥ f — f in .#’(R™) as € — 0. (This proves
that C°(R™) is dense in .&/(R™).

While distributions are easier to work with than tempered distributions for many purposes,
the major advantage of the latter is that they admit natural definitions of the Fourier transform
and Fourier inverse operators.

Definition 10.72. We define .7, Z* : ' (R") — '(R") by

(FA)(p) == Alp) :=A@)  and  (F*A)(p) = A(p) i= A(@).

The continuity of .# and .7 * on .(R") (Exercise [[0.59]) implies that they are also continuous
on ./(R™), and the relations .Z.%* = .Z7*% =1 extend immediately from .7 (R") to .//(R"™).
The calculation via Fubini’s theorem at the beginning of this subsection shows that our definition
of ZA and F*A forany A = Ay with f € L'(R™) matches the result of the usual integral formula.

Exercise 10.73. For f € L?(R™), use approximation by L'-functions to show that FNy =Agzy
and F*A; = Azxy¢, where F f and .F* f are defined as in §8

Remark 10.74. Recall from Lemma [[0.4] that two locally integrable functions are equal almost
everywhere if and only if they define the same distribution. The same is true for tempered
distributions since Z2(R") < .(R™). Exercise [[0.73] thus shows that the most general possi-
ble definition of the Fourier transform, given by Definition [0.72] matches the definition we
previously had for functions in L?(R"™).

We can now make rigorous sense of formal relations such as (g, e 2T dy = §(x) that
appeared in §8 for instance:

Exercise 10.75. Regarding the Dirac d-function and the constant function 1 as tempered
distributions on R", show that .#(§) = .#*§ = 1, hence .Z7*(1) = F(1) = 4.

Exercise 10.76. Show that the relations in (84]) between the operators .%, .#* and 0“ remain
valid when f € .#(R") is replaced by a tempered distribution A € .7/ (R").

Exercise 10.77. Show that the relations .# (¢ * A) = $A and F*(pxA) = @A hold for all
v e L (R") and A € S'(R™).

10.7. Distributions with compact support. We saw in §8 that the Fourier transform ex-
changes regularity properties of a function with decay conditions at infinity, e.g. one can see this
in the relations (84) that transform differentiation into multiplication by polynomials, and the
fact that Lebesgue-integrable functions have continuous Fourier transforms. We would now like
to explain a beautiful extension of this phenomenon into the realm of distributions.

Definition 10.78. The support supp(A) c Q of a distribution A € 2'(f2) is the complement
of the union of all open subsets U < €2 such that A(¢) = 0 for all p € Z(Q2) with supp(p) < U.
Equivalently, supp(A) is the intersection of all closed subsets V < € such that A(p) = 0 for all
v € 2(Q) with supp(¢) NV = .

Remark 10.79. The support of A € 2'(Q) is in fact the smallest closed subset such that A
vanishes on all test functions with support disjoint from supp(A), or equivalently, its complement
is the largest open subset U = Q such that A(y) vanishes whenever supp(p) < U. To see that
O\ supp(A) has the latter property, observe that for any ¢ € Z(Q2) with supp(¢) nsupp(A) = &,
the compactness of supp(y) implies that it is contained in the union of a finite collection of open
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subsets Uy, ..., Uy such that supp(v) < U; implies A(yp) = 0 for any ¥ € Z(2). One can then
use a partition of unity to write ¢ as Zf\il @; for some ¢; € () with supp(y;) < U;, implying
A(pi) =0 for all i and thus A(e) = 0.

Example 10.80. If f € L () vanishes outside of some closed subset V < Q, then supp(Ay) ©
V.

Example 10.81. For any A € 2'(Q) and f € C®(Q), fA € 2'(Q) has supp(fA) < supp(f)
since f¢ =0 whenever ¢ € Z(2) has support disjoint from that of f.

Lemma 10.82. A distribution A € 2'(Q) has compact support if and only if there ewists a
distribution A € 2'(Q) and a smooth compactly supported function f : Q — K such that
A= fAN.

Proof. The statement is obvious in one direction since supp(fA’) < supp(f). Conversely, sup-
pose there exists a compact subset K < Q such that A(¢) = 0 whenever supp(¢) N K = (.
Choose an open neighborhood U < 2 of K with compact closure and a compactly supported
function f : Q — [0, 1] such that f|;; = 1. We claim that fA = A. Indeed, for any ¢ € Z2(Q2), we
can write ¢ = fp+ (1 — f)p, where (1 — f)p vanishes on U, thus its support is disjoint from K,
implying A(p) = A(fe) = (fA)(p)- 0
Proposition 10.83. If A € 2'(2) has compact support, then A extends to a continuous linear

map on the space C*(Q) of all scalar-valued smooth functions with the C{=.-topology.

Proof. Suppose ¢; € Z(2) is a sequence converging in the CX -topology to ¢ € Z(02). By
Lemma [T0.82], we can write A = fA’ for some A’ € 2'(2) and a smooth function f : Q — K with
support in a compact set K < Q. Since ¢; — ¢y in the C®-topology over K, it follows that
fej is C®-convergent to fo, thus fo; = foe in Z(Q), so that the continuity of A’ implies

Alpj) = N (fo;) = N(fow) = Aej).
This proves that A : 2(Q2) — V is continuous with respect to CX -convergence. Since (1) is
dense in C*(£2) with respect to this topology, it follows that A has a unique continuous extension
to the larger space. O

Remark 10.84. Proposition [[0.83] also has a converse; see Proposition [10.104]

In light of the obvious continuous inclusion . (R") < C®(R"), in which C*(R") carries the

C® -topology, we also have:
Corollary 10.85. Every compactly supported distribution A € 2'(R™) is also a tempered distri-
bution, i.e. it has a unique extension to a continuous linear map on . (R"). ]

If fe L: _(R™) has compact support, then f also belongs to L'(R"), so its Fourier transform

) 3 loc
is given by

fo) = | e @) do = Ay,

where we have used Proposition [[0.83 to extend the domain of Ay to smooth functions such as
x +— e~ 2™PT that need not have compact support. As we saw in §8 the fact that f is of class
L' implies that ]? is continuous, but we can now say more: since the product of f with any
polynomial is also a compactly supported Llloc—function and therefore belongs to L!'(R"), f also
has continuous derivatives of all orders, i.e. it is smooth. The remarkable fact is that this result
still holds when f is replaced by an arbitrary compactly supported distribution, which may have
very badly behaved local singularities but still satisfies the best possible “decay” condition at
infinity:

Theorem 10.86. For any compactly supported distribution A on R™, F f and F* [ are smooth
functions on R™ given by

FAp) = Me?™e), FFA(p) = A(TPT),

where Proposition [I0.83 is used for evaluating A on smooth functions with noncompact support.



108 CHRIS WENDL

Proof. By Exercise [[L.76], smoothness will follow immediately once we have proved that the
stated formulas for #A and #*A are correct, as multiplying A by any polynomial preserves
the condition of compact support. We shall focus on the formula for #A, since the parallel
statement for .#*A has an almost identical proof. By Lemma [I0.82] it would be equivalent to
prove that for every A € 2'(R"™) and every compactly supported smooth function ¢ : R” — K,
1//17\ e ./(R") is given by the function p > A(xe 2™P%) on R™. The latter encapsulates two
claims:

(1) The function g(p) := A(pe~?™P*) has sufficiently tame behavior at infinity to define a
tempered distribution;
(2) For all p € Z(R™),

(10,8 01.8) = | el dv.
For the first claim, let us show that g has polynomial growth. Indeed, a straightforward change-
of-variable calculation gives

P(a)e T = FH(r0)(2),
thus
9(p) = M(F*1,0) = (F*N)(1p0) = T pA()) = 7, A(0(09)) = (04 = A)(—p),

and the claim follows from Proposition since o) € .7 (R™) and A € .7/ (R™).

In light of this result, both sides of (I0.8]) now clearly define continuous linear functions of
v € L (R™), so to prove that they are identical, it will suffice to show this for all ¢ in the dense
subspace Z(R™). The goal is thus to prove that

Az vt [ e oman) = [ pawe )

holds for all A € 2'(R™) and ¢, € Z(R™). Writing 1 € 2'(R") for the scalar-valued distribution
1(¢) := {zn ¢ dm, Theorem [0.4T] identifies both sides of this equation with (A ® 1)(F) for the
test function F € 2(R"™ x R") given by F(z,p) := ¥(x)p(p)e ™7, O

10.8. Appendix: The topology of the space of test functions. For a working knowledge
of the theory of distributions, it is usually not necessary to understand the topology of the space
2(2) beyond the notions described in Definition [[0.7 of convergent sequences and continuity
of linear maps on 2(2). Nonetheless, the further development of the theory requires knowing
that 2(£2) can also be viewed as a topological vector space, in which convergence and continuity
are determined by the topology. You may have noticed in Definition [I0.7] that the notion of
convergence in () is extremely strict, i.e. it is very hard for a sequence of test functions to
converge. This strictness is an advantage, because it means that it is that much easier for a
linear functional on Z(2) to be continuous; in other words, having fewer convergent sequences
in 2(Q) makes the space of distributions 2'(Q) larger. This will mean that the topology of
2(R) needs to be quite strong@ e.g. it needs to involve conditions on derivatives of arbitrarily
high orders, and therefore cannot be described merely in terms of a norm, so Z(2) will not be a
Banach space. One might reasonably hope for it to be a Fréchet space, like the Schwartz space
Z(R™) (see §10.6]), but this will also turn out to be too ambitious (see Remark [[0.89]). The next

best thing would be a locally convex space, and this is not hard to achieve.

28Given two topologies 71 and T2 on the same set X, one says that 71 is stronger (or finer, or larger) than
Tz if every set in 72 also belongs to 71. One also says in this case that 7z is weaker (or coarser or smaller)
than 7:. Making a topology on X stronger makes it harder for sequences in X to converge and harder for maps
from other spaces into X to be continuous, but easier for maps from X to other spaces to be continuous.
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10.8.1. Definition and properties of the topology. For a compact subset K < (), consider the
linear subspace
DK (Q) = {go € 2(Q) ‘ supp(p) < K}

The countable family of norms || - [¢m for integers m > 0 endows Zk(€2) with the structure
of a Fréchet space such that convergence of a sequence ¢; — ¢ in Zk(2) means uniform
convergence 0%p; — 0%py for every multi-index o. We shall assume Zk(f2) to be endowed
with this Fréchet space topology from now on. It will frequently be useful to observe that since
Pk () is metrizable, a function defined on Zk (2) is continuous if and only if it is sequentially
continuous.

According to Definition [[0.7), a convergent sequence in Zk (2) is also convergent in Z(£2), so
the topology we define on Z(2) should have the property that the obvious inclusion

(10.9) P2k (Q) = 2(9Q)
is sequentially continuous for every compact set K < ). If these inclusions are continuous, and
| - | is a seminorm on Z(2) that is continuous with respect to its topology, then || - || will also

restrict to a continuous seminorm on Zk(€2). The following definition therefore produces the
strongest locally convex topology on Z(2) for which the inclusions (I0.9) are all continuous.

Definition 10.87. A good seminorm on Z(2) is a seminorm whose restriction to the subspace
Pk (Q) € 2(Q) is continuous for every K < Q compact. We endow 2(2) with the locally convex
topology generated by the family of all good seminorms, i.e. a set U = 2() is open if and only
if for every ¢ € U, there exists a seminorm || - | on Z2(€2) such that

{pea2@|lw-y¢l<1}cu
and | - | is continuous on Zx () for all K < Q compact *]

The next exercise shows that good seminorms on Z(£2) exist in abundance, thus the topology
we have defined on Z(f) is quite large.

Exercise 10.88. Show that each of the following defines a good seminorm on Z(Q):

(a) |¢la := maxzeq [0“p(x)| for any multi-index a.. (The C™-norm for any m > 0 is a finite
sum of seminorms of this type, thus it is also a good seminorm.)

(b) llelf := || fe| where || - | is any good seminorm and f : Q@ — R is any smooth function.

(©) lelfa = |fela for any multi-index o and continuous function f : & — R. For this
example, the open set {||¢|tqo < 1} describes all ¢ € Z(§) that satisfy [0%¢| < 1/|f]
everywhere on ), where we adopt the convention 1/0 := o0 so that the condition is
vacuous wherever f = 0.

Remark 10.89. The following observations show that the topology we’ve defined on 2(Q2) cannot
be metrizable, so 2(12) is not a Fréchet space. If d Were a metric defining the topology of 2(f2),
then for every ¢ € 2(Q), the sets U; := {w € 2(Q ‘ d(p, ) < 1/3} for j € N would define
a countable sequence of neighborhoods of ¢ with the property that every neighborhood of ¢
contains Uy, for some k € NP> Since the topology is determined by good seminorms, this would
equivalently mean that there exists a sequence of good seminorms || - |; for j € N such that
for every good seminorm | - [, the set {¢) € 2(Q) | [¢] < 1} contains {¢ € 2(Q) | [¢[x < 1} for
some k € N; in other words,

[-]<|-|g for some keN.

291 describing the topology of 2(2) in this way, we are using the easily verifiable fact that the maximum
of any finite collection of good seminorms is also a good seminorm, and so is any positive multiple of a good

seminorm. This implies that for any collection of good seminorms || - ||; and any ¢; > 0 with ¢ = 1,..., N, the
finite intersection of the open neighborhoods {¢) € 2(Q) | |[¢ — ¢|: < &} for ¢ = 1,..., N can equally well be
described as {1y € 2(Q) | | — ¢| < 1} where | f| := max { W o, %} defines another good seminorm.

30A collection of neighborhoods with this property is called a countable neighborhood base of . A
topological space in which every point admits a countable neighborhood base is called first countable. What
Remark [T0.89] shows in effect is that every metrizable space is first countable, but 2(Q) is not.
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By Exercise [[0L8Y] it would follow that for every continuous function f :  — R, there exists
k € N such that

Ifeleo < fele forall ¢ e ().

To see that this is impossible, pick a sequence of nontrivial functions ¢1, @2, ps,... € Z(Q)
whose supports are pairwise disjoint compact sets K1, K9, K3,... c £, and choose f : 2 — R to
be a continuous function that satisfies

ps Aol K; forall jeN.
lejllco

Then | fej|co > |¢;ll; for every j € N, giving a contradiction.

Lemma 10.90. If p; — @ in the topology of Z(2), then there exists a compact subset K < §)
such that @; € DK (Q) for every j e N U {c0}.

Proof. If not, then after replacing ¢; with a subsequence, we can find a sequence of points
x;j € ) that lie outside the support of ¢4, have no accumulation point, and satisfy ¢;(z;) # 0
for every j. Choose a continuous function f : @ — (0,00) such that f(z;) < |¢;(z;)| for
every j. Then by Exercise [0.88 U := {¢ € 2(Q) ‘ l¢ — @] < f} is an open neighborhood of
Y In Z(Q), but ¢; ¢ U for every j, so p; cannot converge to Yo . O

Corollary 10.91. A sequence ¢; € Z(Q2) converges to g € Z(Q) if and only if there exists a
compact set K < Q such that ¢; € Pk () for all j € N u {0} and p; = @ in the topology
of Dk (). O

As preparation for the next result, we need some general facts about continuity for linear
maps between locally convex spaces. A preliminary remark about locally convex topologies is
in order. If X carries the locally convex topology generated by a given family of seminorms
{|x|a}aer,then by definition, every open set in X is a union of finite intersections of sets of the
form {z € X ||z — zo|o < €} for arbitrary 29 € X, a € I and € > 0. Equivalently, a set U < Y is
open if and only if for every xg € U, there exists a nonempty finite subset Iy < I and numbers
€q > 0 for a € Iy such that

x € X with | — zplla <eq forallaely = zel.

The seminorms || - | : X — [0,00) are each continuous functions, and in the situation above,

|zl == Xaer, Hf”“ also defines a continuous seminorm; the aforementioned condition can then
(e}

equally well be described as
rxe X with |z —x0| <1 = zel.

This provides a briefer way of characterizing open sets: & < X is open if and only if for every
xo € U, there exists a continuous seminorm |- | such that every = € X with |z — z¢| < 1 belongs
to U. The sufficiency of this condition is clear since continuity of || - | implies that every set of
the form {z € X | ||z — zo| < 1} is open.

Lemma 10.92. On a topological vector space X, a seminorm |- | : X — R is continuous if and
only if the set {x € X | |z| <1} € X is open.

Proof. In one direction, the implication is an immediate consequence of the definition of conti-
nuity and the fact that (—1,1) < R is open. For the converse, we use the fact that for every
zg € X and € > 0, the invertible affine map ® : X — X : x — x¢ + ex is a homeomorphism,
thus if B := {z € X ||| < 1} is open, then so is ®(B) = {z € X | |z — 20| < €}. Given this,
if V < [0,00) is any open subset and z¢ € X satisfies |zg| € V, then choosing any € > 0 such
that (|zol| — €, |zo|| + €) = V, the triangle inequality implies that every € X in the open set
(€ X | |z—z0] < ¢} satisfies |z] < |lzo|+|z—z0] < [zo] +¢ and |z] > Jzo||z0—z] > [zol—e,
so this open subset belongs to the preimage of V under |||, proving that this preimage is open. [
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Lemma 10.93. Suppose X is a locally convex space whose topology is determined by the family
of seminorms {|| - [|a}aer- Then a seminorm | -|| on X is continuous if and only if there exists a
nonempty finite subset Iy I and a constant C' > 0 such that

|z <C 2 |z|lo  forall xe€X.

a€ely

Proof. We claim first that if | - |1 is a continuous seminorm and |- | < | - |1, then | - | is also
continuous. Indeed, consider B := {z € X | |z| < 1}, and for any z¢ € B, choose € > 0 such
that [lzo| + € < 1. If | - |l is continuous, then the set U := {z € X | [# — z¢|1 < €} is an open
neighborhood of xp, and if | - || < || - |1, then every = € U satisfies

[z < llzoll + |z = 2ol < f[zo]| + & =201 < o] +€ <1,

implying & < B. This proves that B X is open, so by Lemma [[0.92] | - | is continuous.

By the assumptions of the lemma, the seminorms | - ||, are continuous for all « € I, thus
C et | la is also a continuous seminorm for any C' > 0 and any finite set /o = I. The claim
in the previous paragraph thus implies one direction of the lemma.

For the other direction, assume | - | is continuous, so B := {z € X | |z| < 1} is an open set.
Since the family of seminorms {|| - |o}aer generates the topology of X, it follows that B contains
a neighborhood of 0 € X in the form

U:= {x e X ‘ |]a < €q for every o € IO}
for some nonempty finite subset Iy I and real numbers {€, > 0}4er,. In other words,
(10.10) |2]o < €q for every € Iy = |z| < 1.

We claim that ||z]| < C' 3] ¢/ [*]a holds for every z € X, where C' > 0 is a constant independent
of z. There is nothing to prove if |z| = 0, so consider z € X with |z > 0. At least one of
the |z for « € Iy must then also be positive, as otherwise multiplying x by a sufficiently large
positive scalar would produce a contradiction to (I0I0). The quotient

Q(z) =

[Edl
ZCVEIO HxHOé

is therefore well defined whenever |z| > 0, and we claim that on this subset of X, it is bounded.
If not, then there exists a sequence z; € X with |z;| > 0 and Q(z;) — o0. But each x; can be
multiplied by a positive scalar without changing the value of Q(x;), thus we are free to assume
without loss of generality that the denominator in the definition of Q(z;) some fixed constant
less than mingeg, €, for every j. In this case, (I0I0) implies that the numerator is less than 1
and thus gives a bound on Q(x;), which is a contradiction. O

Lemma 10.94. For two locally convexr spaces X and Y, a linear map A : X — Y is continuous
if and only if for every continuous seminorm || - ||y on Y, there exists a continuous seminorm
|- |lx on X such that |A(z)|y < ||z|x-

Proof. Assume the second condition holds, ¥V < Y is an open set, and zg € X is a point with
Yo := A(xp) € V. The openness of V implies that for some continuous seminorm which we will
denote by | - [y, {y €Y | |y —yolly <1} defines an open neighborhood of y that is contained
in V. If |- |x is a continuous seminorm on X satisfying |A(z)|y < ||z||x for all X, it follows
that {z € X | |# — zo|x <1} is an open neighborhood of zy in X such that for all z in this
neighborhood, |A(z) —yolly = [|[A(z —x0)|y < ||z —20|x < 1, implying z € A=1 (V). This proves
that A=!'(V) = X is open and thus that A is continuous.

Conversely, suppose A is continuous and | - |y is an arbitrary continuous seminorm on Y.
Then B := {y €Y | |y|y <1} is open, hence A"'(B) c X is an open neighborhood of 0 and
therefore contains U := {x € X | |z|x < 1} for some continuous seminorm |- | x on X. In other
words, we have

(10.11) lz|x <1 = [A(z)]y <1
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for all x € X. We claim that |A(x)|ly < |z|x holds for all z € X. If |A(z)|y = O there is nothing
to prove, so assume |A(z)| > 0. Then |z|x must also be positive, as otherwise multiplying x
by a sufficiently large positive scalar produces a contradiction to (I0.IT]). It follows that the
quotient Q(z) := |A(z)|y/|z|x > 0 is well defined whenever its numerator is nonzero, and
clearly it does not change if x is multiplied by any positive scalar, thus we are free to assume
|z|x = 1—¢ for any € > 0 arbitrarily small. Under this assumption, (I0IT) implies |[A(z)[y <1
and thus Q(z) < 1/(1 — €); since € > 0 was arbitrary, it follows that Q(x) < 1. O

Proposition 10.95. For any locally convex space X, a linear map A : 2(Q) — X is continuous
7x(Q) + I () = X are continuous for all compact K < (.

Proof. Since the inclusions Zx(Q) — Z(f)) are continuous, the statement is obvious in one
direction. We need to show that if A has a continuous restriction to every Zx (), then it is
continuous on Z(£2). For this, it will be convenient to choose an open covering of 2 by countably
many subsets {2} eny with the following properties:

(1) The covering is locally finite, i.e. every point in  has a neighborhood that intersects

at most finitely many of the €1;;

(2) K, :=Q; is compact for every j.
For a concrete construction of {€;}en, choose a strictly increasing sequence r; > 0 with
lim;_, 7 = sup{|z| | € Q}, another sequence €; > 0 such that r; —e; > 0 and r; —¢; > 11
for every j = 2, and define

Qj = {x e | Ti—1 —€j—1 < |£C| < ’I“j}

where for j = 1 we interpret the lower bound on |z| as a vacuous condition. With this construc-
tion, it is clear that one can also find a sequence of smooth functions p; : 2 — [0, 1] such that
each p; is supported in €; and % 1P =1, where the sum is finite at every point due to the

local finiteness of the open coverlng. Any p € 2(2) can now be decomposed as
¥ = Z 3> where @; := p;jp has support in Kj.

Observe that for every ¢ € Z(2), only finitely many of the functions ¢; can be nonzero: indeed,
the local finiteness of the covering {€2;} implies that at most finitely many of the sets ; can
intersect the compact set supp(y).

To show that A : 2(2) — X is continuous, it suffices by Lemma [[0.94] to show that for
any continuous seminorm || - | x on X, there exists a good seminorm |- || on Z(2) such that
IA(p)lx < ||l for all ¢ € 2(€2). The topology of P, (€2) for each j € N is generated by the
monotone sequence of norms || - [cm for m = 0,1,2,..., thus continuity of A on P (£2) implies
that there exists an integer m; > 0 and a positive number c; such that

IA)x < ¢ildlom;  forall ¢ e Tk, (Q).

Since the sum ¢ = >}, ¢; is finite for each p € Z(Q) and p; € Dk, (Q) for j =1,2,3,..., we can
apply the triangle inequality and write

[A@)x < ZIIA% Ix < chll%llcm < dlelems,

where each of the modified constants cj >0 depends on the C™J-norm of p; but not on . With
these constants fixed, it is easy to check that
o0

lel := 2 Glellomiay)

j=1
defines a good seminorm on Z(f), as for any compact K c €2, the restriction of this seminorm
to Pk () has only finitely many nonzero terms, and C*®-convergence in Zx () implies that

31A collection of functions p; with these properties is called a partition of unity on 2.
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each individual term converges. Since |A¢|x < || by construction, this establishes that
A:2(Q) - Y is continuous. O

The following easy consequence completes the proof of Proposition T8

Corollary 10.96. For any locally convex space X, a linear map A : 2(Q) — X is continuous if
and only if it is sequentially continuous, i.e. for every convergent sequence p; — @o in Z(Q2),

Apj) = Apw)-

Proof. By a standard result in point-set topology, continuous maps are always sequentially
continuous. Conversely, if A : Z(Q2) — X is sequentially continuous, then its restriction to
Pk (Q) for each compact set K < ) is sequentially continuous, and since Z (2) is metrizable,
it follows that the restriction of A to Pk () is also continuous. By Proposition [[0.95] A itself
is therefore continuous. O]

Remark 10.97. By another standard result in point-set topology (see e.g. [Wenl8|, §4]), a se-
quentially continuous map f : X — Y between two topological spaces is continuous whenever
X is first countable. We did not claim this to be true for Z(2), which is not first countable
according to Remark [[0.89, but Corollary says that it is nonetheless true specifically for
linear maps to other locally convex spaces. Philosophically, the reason this works is that Z(£2)
can be viewed—in a sense to be made precise in §I0.8.2] below—as a limit of a family of spaces
in which sequential continuity does imply continuity, namely the metrizable spaces Zk () for
K < Q) compact.

10.8.2. Inductive limits. The topology we’ve defined on Z({2) is often referred to as an inductive
limit topology. While one can understand all of its properties without knowing what this term
means, let us take a moment to discuss the wider context in which it arises.

We need to introduce a few notions from abstract category theory. For the particular appli-
cation relevant here, the “category” we have in mind is the class of locally convex spaces (these
are the objects of the category), and the natural class of maps between two such spaces consists
of all continuous linear maps (these are the morphisms of the category). We shall formulate the
definitions below in terms of this particular category just for concreteness, but they would still
make sense in any other category, e.g. topological spaces and continuous maps, vector spaces
and linear maps, groups and group homomorphisms, and so forth.

Suppose I is a set with a pre-order <, i.e. < is reflexive (av < «) and transitive (o < [ and
B < v implies a < ), but the relations a < § and 8 < « need not imply a = 3, so < need not
be a partial order. The pair (I, <) is called a directed set if for every pair «, 8 € I, there exists
~v € I with v > a and v > 5. An obvious example is N with its usual total order <:=<. A more
interesting and relevant example for our purposes is to define I as the set of all compact subsets
in a fixed open set Q < R", with K < K’ defined to mean K — K’. Notice that the ordering
relation in this example is a partial order, but not a total order since for any two compact
subsets, it need not be true that either is contained in the other. It forms a directed set because
whenever K, K’ ¢ Q are both compact, K U K’ is another compact subset of Q that contains
both of them.

Definition 10.98. A direct system (or inductive system) of locally convex spaces consists
of a directed set (I, <) and a family of locally convex spaces {X,}aer together with continuous
linear maps ¢gq : Xo — X defined for each o, 3 € I with oo < 3, such that

Yaa = Idx,
and the diagram
X, 222 x5 20 X
Pra

commutes for every triple a, 8,7 € [ with a < 8 < 7.
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The notion of “convergence” for a direct system must necessarily look somewhat different
from what we’ve seen before for sequences as there is no meaningful topology to be defined
on the “set” of all locally convex Spaces The idea is instead to measure the convergence of
a direct system {Xq,@go} in terms of the continuous linear maps from each X, to other fixed
spaces.

Definition 10.99. For a direct system {X,,g,} of locally convex spaces over the directed
set (I,<), a target {Y, fo} of the system consists of a locally convex space Y together with
associated continuous linear maps f, : X, — Y for each « € I such that the diagram

Xo —20 5 X

oA

commutes for every pair «, 8 € I with a < S.

Definition 10.100. A target {Xy, o} of the direct system {X,, pgq} is called a direct limit
(or inductive limit or colimit) of the system and written as

Xoo = li_r)n{Xa}

if it satisfies the following “universal” property: for all targets {Y, fo} of {X4, ¢ga}, there exists
a unique continuous linear map fo : Xoo — Y such that the diagram

X, 22 X
fo

N

Y

commutes for every a € I.

The essential meaning of a direct limit can be encoded in the diagram

X, =222 X5 20, X, o lim{X,)

where we assume o < f < v < ... € I. The key feature of the space li_)m{Xa} is that whenever a
space Y and continuous linear maps X, — Y in a commuting diagram of this type are given, the
“limit” map from lim{X,} to Y indicated by the dashed arrow must also exist (as a continuous
linear map) and be unique.

Note that these definitions on their own give no guarantee for any given direct system that a
direct limit must exist, and if it exists, then it is generally not unique. Indeed:

Exercise 10.101. If {X, f,} is a direct limit of {X,, 3} and Y is another locally convex space
such that there exists a continuous linear isomorphism v : X — Y with a continuous inverse,
show that {Y, 1 o f,} is also a direct limit of {X,, pga}-

Remark: The invertibility of v is needed only for showing that {Y, ¢ o f,} satisfies the universal
property; it is already a target without this.

The non-uniqueness exhibited by the exercise above is however the worst thing that can
happen: if {X, fo} and {Y, g} are any two direct limits of the same system {X,,¢s,}, then
the universal property provides unique continuous linear maps g : X = Y and foo : Y > X
satisfying go © fo = ga and fy 0 go = fo for every a € I. It follows that fo 0 goo is the unique
continuous linear map X — X satisfying (fx © gw) © fo = fa for every a € I, which implies

32And strictly speaking, the collection of all locally convex spaces is far too large to be called a set; it is instead
a proper class. This remark is included only for the sake of readers who truly care about abstract set theory.



LEBESGUE, FOURIER AND SOBOLEV 115

foo © 9o = Idx. A similar argument shows go © foo = Idy, thus X and Y are isomorphic, and
there is a distinguished isomorphism relating them. For this reason, we typically refer to “the”
(rather than “a”) direct limit of any system for which a limit exists.

Example 10.102. Given an open set 2 < R", take (I, <) to be the set of all compact subsets
K c Q with K < K’ defined to mean K ¢ K’. There is then a direct system {Xg, ok’ k}
over (I, <) such that Xg = Pk () and gk  is the obvious inclusion map Zk (Q) — Pk (),
defined whenever K c K'. Define i : 25 () — 2(Q) also as the natural inclusion for each
K € I. Proposition can then be reinterpreted as the statement that {Z(2), ¢k} is a
universal target for the direct system {Zx(2), vk’ i}, in other words,

2(9) = lig(Zx(2)}.

This is why the topology of 2(2) is often called the inductive limit topology determined by
the natural Fréchet space topologies of Zk(2) for all compact K < Q.

Remark 10.103. One really should call the topology on Z(f2) a locally convex inductive
limit topology, as omitting the words “locally convex” can potentially cause confusion. A
topologist would interpret the words “inductive limit topology” to mean a universal target in
the sense of Definition but with X, and Y allowed in general to be arbitrary topological
spaces (not necessarily topological vector spaces), and all maps required to be continuous but
not necessarily linear. It is not hard to show that the direct limit in this sense of the system
{ZK (), K’ K} can be identified again with the vector space Z(£2), but endowed with an even
stronger topology, for which a set U < 2() is open if and only if U N Dk (Q) € Dk (Q) is
open for every compact K < ). This topology has the same notion of convergent sequences as
the locally convex topology we defined, and it has the nice property that for any topological
space X, a (not necessarily linear) map f: 2(2) — X is continuous if and only if its restriction
to Pk (2) is continuous for every compact K < 2. However, since this topology contains sets
that are not open in the locally convex inductive limit topology, it cannot be locally convex—in
fact there is no good reason to expect Z(2) with this topology to be a topological vector space.

10.8.3. Comparison with other topologies. There are other natural topologies one could imagine
defining on the space of smooth functions with compact support, and it is natural to wonder
why the inductive limit topology defined in §10.8.1] is a better choice. The obvious answer is
that since we defined the topology on Z2(Q2) to be as strong as possible while still being locally
convex, this makes the space of distributions 2'(f2) as large as possible. But let us briefly discuss
some alternatives. In order to avoid confusion, we will refer to the space of smooth compactly
supported functions £ — R in this subsection as

Cy’ (),

reserving the notation 2(Q2) for the case where this space is endowed with the specific topology
from §10.8.11
Alternative 1: The C5 -topology.

The space C*(Q) of all (not necessarily compactly supported) smooth functions 2 — R admits a
natural Fréchet space topology for which convergence means uniform convergence of derivatives
of all orders on compact subsets. This is often called C’ -convergence. A countable family
of seminorms for the C¥ -topology, also sometimes called the weak or compact-open C%-
topology, is given by

[£lm.j := lelcmx,) — for integers m >0, j =1,

where K1 ¢ Ky c K3 C ...UjeN K; = Q is any exhausting sequence of compact subsets such
that K is contained in the interior of K1 for every j. This gives the right notion of convergence
because every compact set is contained in K; for j sufficiently large, and it defines a metrizable
topology since the family of seminorms is countable (see e.g. [RS80L Theorem V.5]). Continuity
on C*(Q) is thus equivalent to sequential continuity, and since the notion of C}X -convergence
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can be expressed without referring to the specific choice of exhaustion K1 ¢ Ky © K3 ..., the
C® -topology is also independent of that choice.

As a subspace of C®°(€2), C5°(€2) inherits a metrizable topology for which convergence means
C® -convergence. The first thing to notice, however, is that Cg°(£2) is not a Fréchet space with
this topology, i.e. it is not complete, because it is not a closed subspace of C*(2). In fact,
by choosing any sequence of smooth cutoff functions p; € Cg°(2) with pj|r;, = 1 for every j,
it is easy to check that for every ¢ € C*(2), ¢; := pjp — ¢ in CF,, thus C°(f2) is dense
in C*(Q) with respect to the C}% -topology. This has an immediate consequence for the space of
continuous linear functionals on C°(€2): any linear functional A : C§°(2) — R that is continuous
in the C|% -topology must admit a continuous extension to a linear functional on C'°(£2). Most
distributions clearly do not have this property; since functions ¢ € C*(2) can grow arbitrarily
large near infinity or near the boundary of 2, even globally integrable functions f : 2 — R do
not generally define continuous functionals of ¢ € C*(£2) under the pairing A¢(p) := {, @ f dm.
On the other hand, it is possible to give a precise characterization of the distributions for which
this works.

Proposition 10.104. A distribution A € 2'(Q) is continuous with respect to the C2.-topology
on CP(Q) if and only if it has compact support.

Proof. In one direction, this statement follows from Proposition I0.83l For the converse, conti-
nuity of A € 2'(Q) with respect to C{°_-convergence implies since Ci°(£2) is dense in C*(£2) that
A extends to a C}> -continuous linear functional on C*(£2). If supp(A) is not compact, then for
every compact set K < €, there exists a test function ¢ € Z(Q) with supp(¢) n K = ¢J and
A(p) # 0. We can therefore find an exhausting sequence of compact subsets K1 ¢ Ky C
Ky c ... c UjeN K; = Q and associated test functions ¢1,¢2,¢3,... € Z(2) such that
supp(p;) © K;\K;—1 and A(p;) # 0 for all j. For any choice of constnts ¢; € R, the se-

quence Yy := Z?:I ©;j € 2(Q) is then C? -convergent to a smooth function 1, € C*(Q2), but

lo
the constants ¢; can easily be chosen to make sure that A(yy) = Z?zl cjA(pj) diverges as
k — o0, giving a contradiction. O

Alternative 2: The C®-topology.
The countable family of norms || - |cm for integers m > 0 determines a Fréchet space topology
on the subspace

Cy(Q) := {p € C*(Q) | 0*¢ is bounded for every multi-index a} = C*(1).

The associated notion of C'®-convergence means uniform convergence for derivatives of all orders,
not just on compact subsets but globally on €2, thus C*-convergence implies (but is not implied
by) C> -convergence, and the C*-topology on the subspace C°(2) is strictly stronger than
the C> -topology. This sounds like good news for the theory of distributions, as it means that
the space of C'®-continuous linear functionals is larger than the space of compactly supported
distributions considered in Proposition I0.J04l But the next exercise shows that it is still not
large enough to contain all locally integrable functions.

Exercise 10.105. Find a sequence ¢; € Ci°(R) such that ¢; — 0 in the C'®-topology, but
§g @jdm =1 for all j. This implies that the distribution Ay : 2(Q) — R defined via the locally
integrable function f := 1 on R is not continuous with respect to the C*-topology.

A further hint that the C*™-topology is not an ideal choice for Z(Q2) arises from the obser-
vation that C°(2) is not a C®-closed subspace of C;°(£2); one can easily find C®-convergent
sequences of compactly supported functions whose limits do not have compact support. It fol-
lows that every C'®-continuous linear functional on C{°(€2) must admit a continuous extension
to a subspace of C}°(Q) that is strictly larger than C°(Q2). Exercise shows that even
relatively tame functions like f = 1 on R need not define distributions that are extendable in
this sense.
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Remark 10.106. One other theoretical drawback of the C*®-topology is worth mentioning. All
the other topologies discussed in this section can be defined in more general contexts, e.g. for
the space of compactly supported smooth functions on a finite-dimensional manifold, and the
weak and strong C'®-topologies can even be defined for spaces of smooth maps from one finite-
dimensional manifold to another. Generalizations of this type are essential for certain funda-
mental perturbation results in differential topology (see e.g. [Hir94, Chapter 2]). The definitions
in this setting become more complicated, as they necessarily involve choices of local coordinate
charts, and one must then verify that the topologies defined in this way are independent of
choices. For the weak C*®-topology and its strong variants to be discussed below, this is not
difficult, because while the C"-norm of a function can certainly change if one composes the
function with a smooth coordinate transformation, this change can be bounded as long as it is
only being considered over a compact subset. The ordinary C*-topology for functions 2 — R
is simpler to define, but since it involves C"-norms over noncompact sets, it does not have such
coordinate-invariant properties and thus cannot be defined in a meaningful way for functions on
a noncompact manifold.

Alternative 3: The (strong) Whitney C'*-topology.
To describe the Whitney C'*®-topology, one should first describe the Whitney C™-topology for
0 <m < o on C®(Q). We give two definitions: first, it is the smallest topology containing all
sets of the form
Ulp.a, f) = { e C(Q) [ [0°( — ¢)| < f}
for arbitrary choices of p € C*(Q2), multi-indices « of order at most m and continuous functions
f:Q — (0,00). Equivalently, one can generate this topology with sets of the form

(10.12) Vig, {9} ik {ed) = {1 € C2@) | [0 = plon ) < i}

for all positive choices of ¢ € C®(f2), locally finite open coverings {€2;};er of Q, and collections
of numbers {k; € {0,...,m}}ier and {e; > O}ier.

Exercise 10.107. Show that the two definitions of the Whitney C"-topology given above are
equivalent.

The Whitney C®-topology is now defined to be the smallest topology on C*() that
contains the Whitney C™-topology for every m > 0, i.e. it is generated by the sets U(p, «, f)
without any bound on the order of the multi-index «, or by V(¢, {}, {ki}, {€;}), in which the
set of integers {k; = 0};es is always required to be bounded, but no fixed bound is imposed.

It is straightforward to transform the definitions of U (i, c, f) < C®(2) and V(¢, {2}, {ki}, {&})
into conditions of the form {|¢ — ¢| < 1} for suitable seminorms | - |, thus the Whitney C*-
topology is locally convex. One can however use the argument of Remark to show that
it is not first countable, and thus not metrizable. Here is a clear advantage of the Whitney
topology in comparison with the C* and C}% -topologies:

Proposition 10.108. In the Whitney C®-topology, C3°(2) is a closed subspace of C* ().

Proof. One needs to show that C*(Q)\CFP(Q?) is open. If ¢ € C°(2) does not have compact
support, then there exists a continuous function f : £ — (0,00) and a sequence z; € Q with no
accumulation point such that f(z;) < |¢(z;)| for all j. The set {1y e C*(Q) | | — | < f} is
then a Whitney-open neighborhood of ¢ consisting of functions ¢ that satisfy ¢ (x;) # 0 for all
7 and thus never have compact support. O

A similar argument to Lemma [T0.90] and Corollary [0.91] also shows:

Proposition 10.109. A sequence in C{°(€2) converges in the Whitney C®-topology if and only
if it converges in Z(). O

One can easily show that the seminorms one uses to define the open sets U(p,a, f) or
V(e, {0}, {ki}, {&;}) are also good seminorms in the sense of Definition [[0.87), thus the topology
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of 2(Q) contains the Whitney C'®-topology, and Proposition reveals that the two topolo-
gies are evidently quite similar. In fact, the Whitney C°-topology is already strong enough to
make all functionals of the form Ay (o) = §, ¢ f dm for f € L] () continuous, thus the Whitney
C®-topology also has this clearly desirable property. The next example shows however that the
topology of 2(R) is strictly stronger, so that the space of distributions is still strictly larger
than the space of linear functionals on Ci°(f2) that are continuous in the Whitney topology. In
light of Corollary [[0.96] this also reveals that for the Whitney topology on C{°(2), sequential
continuity of a linear functional does not imply continuity.

Example 10.110. Consider the real-valued distribution A : Z(R) — R defined by
o0
Alp) =Y oM (k).
k=0

This is well defined on any individual test function ¢ € Z(R) since only finitely many terms in
the sum are nonzero, and the same is true for any convergent sequence of test functions, thus
A is sequentially continuous and therefore continuous on Z(R). But it is not continuous with
respect to the Whitney C®-topology on CP(R). To see this, consider A=((—1,1)). If this were
open in the Whitney topology, then there would need to exist a finite collection of multi-indices
aiq,...,ay and continuous functions fi,...,fn : R — (0,00) such that ﬂ;V:lZ/l(O,aj,fj) c
A1((=1,1)), meaning
|0%¢| < fjforall j=1,...,N = |A(p)] < 1.

But this condition constrains only finitely many derivatives of ¢, thus one can always find a
function that satisfies it but has |A(¢)| = 1 due to the behavior of some derivative of even
higher order.

Alternative 4: The (very) strong C*-topology. A minor modification to the definition of
the Whitney C*®-topology gives rise to an even stronger topology which we shall refer to as the
strong C®-topology>] 1t is generated by all sets of the form V(p, {2}, {k:}, {€:}) as in (I0.12)), for
arbitrary locally finite open coverings {Q;};er, sets of nonnegative integers {k;};e; and positive
numbers {¢;};er. The crucial difference is that in our definition of the Whitney C'®-topology, the
set of integers {k;};er was always required to be bounded, and this is no longer required. Note
that since the open covering {2;}es is locally finite, only finitely many of the sets can intersect
any given compact subset of 2, but there still may be infinitely many sets in the covering. The
result is that neighborhoods generating the strong topology are required to satisfy conditions
on only finitely many derivatives over each individual compact subset, but globally on €2, there
may be conditions on derivatives of all orders.

If one only considers convergence of sequences, then there is no difference between the strong
and Whitney C*®-topologies: Proposition admits the same proof for the strong topology
and shows that it also has the same notion of convergence as Z(f2). That it is nonetheless
strictly stronger than the Whitney topology follows from Example [[0.T10] and the following:

Exercise 10.111. Show that the strong C*-topology on C{°(f2) is equivalent to the topology
of 2(Q).

The strong C'®-topology is thus merely a different perspective on the locally convex inductive
limit topology, one that does not require talking about the Fréchet subspaces Zk (2) with K <
compact. This approach to the topology of Z(2) is discussed in more detail in [Hor66, §2.12],
which gives in particular an explicit family of good seminorms generating the topology.

33The literature is not unanimous on the terminology for these topologies: different sources may use the words
“strong topology” or “Whitney topology” to refer to either of alternatives 3 and 4, and one occasionally even finds
an authoritative source that fails to distinguish between them. (I am thinking especially of [Hir94], which defines
the Whitney topology in §2.1 and the strong topology in §2.4 but states erroneously that they are equivalent.)
Alternative 4 is occasionally also called the very strong C*-topology, e.g. in [[1103].
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