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What do these questions have in common?

1. Topology

Given a closed manifold M , is it the boundary of a compact manifold?

2. Global analysis

Given two (almost) complex manifolds W and W ′, what is the structure of
the space of holomorphic maps W →W ′?
Is it smooth? Is it compact? Is its topology interesting?

3. Hamiltonian dynamics

Given H(q1, p1, . . . , qn, pn), does H−1(c) contain periodic orbits of

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
?
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Basic notions

Symplectic structures (dimW = 2n)

Contact structures (dimM = 2n− 1)

The following answer to Question 3 may serve as motivation:

Theorem (Rabinowitz-Weinstein ’78)

Every star-shaped hypersurface in R2n has a periodic Hamiltonian orbit.
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Basic notions

Definition

A symplectic structure on a 2n-dimensional manifold W is an atlas of
local coordinate charts (q1, p1, . . . , qn, pn) such that Hamilton’s
equations are coordinate-invariant.This determines a symplectic 2-form:

ω = dp1 ∧ dq1 + . . .+ dpn ∧ dqn.

The boundary ∂W is convex if it is transverse to a vector field that dilates
the symplectic form: LV ω = ω.
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An example from complex geometry

A Stein manifold is a complex manifold (W,J) with a proper
holomorphic embedding

(W,J) ↪→ (CN , i).
(Grauert)⇔ (W,J) admits an exhausting plurisubharmonic function
f : W → R, meaning

ωJ :=
i

2
∂∂̄f = −d(df ◦ J) is symplectic (on all complex submanifolds).

Then ωJ is dilated by ∇f , so Wc := f−1((−∞, c]) is symplectic with
convex boundary Mc := f−1(c).
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An example from complex geometry

The maximal complex subbundle

ξ := TMc ∩ J(TMc) ⊂ TMc

is then a contact structure on Mc, i.e. it
is maximally nonintegrable.

(W,ω) symplectic with contact boundary
 contact structure ξ on M := ∂W (unique up to isotopy):

“∂(W,ω) = (M, ξ)”
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Some problems in contact topology

1. Classification of contact structures

Given ξ1, ξ2 on M , is there a diffeomorphism M →M taking ξ1 to ξ2?

2. Weinstein conjecture

Do Hamiltonian flows on compact contact hypersurfaces always have
periodic orbits?

3. Fillings and cobordisms

What are all the symplectic fillings of (M, ξ)?
Which (M ′, ξ′) admit symplectic cobordisms
to (M, ξ), i.e. “(M ′, ξ′) ≺ (M, ξ)”?
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Rigidity and flexibility

Gromov (ICM 1986): “soft” vs. “hard” symplectic geometry

SYMPLECTIC GEOMETRY

flexible

rigid

flexible

rigid

Insight: The interesting questions are on the borderline.
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Flexibility

Flexibility (“soft”) comes from the h-principle,

e.g. the
Whitney-Graustein theorem (1937):

γ0, γ1 : S1 # R2 are regularly homotopic⇔ wind(γ̇0) = wind(γ̇1).

Examples of symplectic flexibility

Existence of symplectic structures on open manifolds [Gromov 1969]:

{sympl. forms}
deformation

1:1←→ {almost C-structures}
homotopy

There is a flexible class of Stein structures: two such structures are
Stein homotopic ⇔ homotopic as almost complex structures.
[Cieliebak-Eliashberg 2012]
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Flexibility

Two “overtwisted” contact structures ξ1, ξ2 are isotopic ⇔ they are
homotopic. [Eliashberg 1989] + [Borman-Eliashberg-Murphy 2014]
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Rigidity

Rigidity (“hard”) comes from invariants: Gromov-Witten, Floer
homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

(S3, ξstd) has a unique Stein filling up to deformation. [Gromov 1985],

[Eliashberg 1989]

∃ symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]

The 3-torus admits an infinite sequence of
contact structures that are homotopic but
not isotopic. [Giroux 1994]

Only the first is fillable [Eliashberg 1996], and its
filling is unique. [W. 2010]

Chris Wendl (HU Berlin) When is a Stein manifold merely symplectic? November 28, 2017 10 / 19



Rigidity

Rigidity (“hard”) comes from invariants: Gromov-Witten, Floer
homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

(S3, ξstd) has a unique Stein filling up to deformation. [Gromov 1985],

[Eliashberg 1989]

∃ symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]

The 3-torus admits an infinite sequence of
contact structures that are homotopic but
not isotopic. [Giroux 1994]

Only the first is fillable [Eliashberg 1996], and its
filling is unique. [W. 2010]

Chris Wendl (HU Berlin) When is a Stein manifold merely symplectic? November 28, 2017 10 / 19



Rigidity

Rigidity (“hard”) comes from invariants: Gromov-Witten, Floer
homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

(S3, ξstd) has a unique Stein filling up to deformation. [Gromov 1985],

[Eliashberg 1989]

∃ symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]

The 3-torus admits an infinite sequence of
contact structures that are homotopic but
not isotopic. [Giroux 1994]

Only the first is fillable [Eliashberg 1996], and its
filling is unique. [W. 2010]

Chris Wendl (HU Berlin) When is a Stein manifold merely symplectic? November 28, 2017 10 / 19



Rigidity

Rigidity (“hard”) comes from invariants: Gromov-Witten, Floer
homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

(S3, ξstd) has a unique Stein filling up to deformation. [Gromov 1985],

[Eliashberg 1989]

∃ symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]

The 3-torus admits an infinite sequence of
contact structures that are homotopic but
not isotopic. [Giroux 1994]

Only the first is fillable [Eliashberg 1996], and its
filling is unique. [W. 2010]

Chris Wendl (HU Berlin) When is a Stein manifold merely symplectic? November 28, 2017 10 / 19



Rigidity

Rigidity (“hard”) comes from invariants: Gromov-Witten, Floer
homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

(S3, ξstd) has a unique Stein filling up to deformation. [Gromov 1985],

[Eliashberg 1989]

∃ symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]

The 3-torus admits an infinite sequence of
contact structures that are homotopic but
not isotopic. [Giroux 1994]

Only the first is fillable [Eliashberg 1996], and its
filling is unique. [W. 2010]

Chris Wendl (HU Berlin) When is a Stein manifold merely symplectic? November 28, 2017 10 / 19



Rigidity

Rigidity (“hard”) comes from invariants: Gromov-Witten, Floer
homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

(S3, ξstd) has a unique Stein filling up to deformation. [Gromov 1985],

[Eliashberg 1989]

∃ symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]

The 3-torus admits an infinite sequence of
contact structures that are homotopic but
not isotopic. [Giroux 1994]

Only the first is fillable [Eliashberg 1996], and its
filling is unique. [W. 2010]

Chris Wendl (HU Berlin) When is a Stein manifold merely symplectic? November 28, 2017 10 / 19



Rigidity

Rigidity (“hard”) comes from invariants: Gromov-Witten, Floer
homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

(S3, ξstd) has a unique Stein filling up to deformation. [Gromov 1985],

[Eliashberg 1989]

∃ symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]

The 3-torus admits an infinite sequence of
contact structures that are homotopic but
not isotopic. [Giroux 1994]

Only the first is fillable [Eliashberg 1996], and its
filling is unique. [W. 2010]

Chris Wendl (HU Berlin) When is a Stein manifold merely symplectic? November 28, 2017 10 / 19



Rigidity

Rigidity (“hard”) comes from invariants: Gromov-Witten, Floer
homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

(S3, ξstd) has a unique Stein filling up to deformation. [Gromov 1985],

[Eliashberg 1989]

∃ symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]

The 3-torus admits an infinite sequence of
contact structures that are homotopic but
not isotopic. [Giroux 1994]

Only the first is fillable [Eliashberg 1996], and its
filling is unique. [W. 2010]

Chris Wendl (HU Berlin) When is a Stein manifold merely symplectic? November 28, 2017 10 / 19



The middle ground: quasiflexibility

Stein is generally more rigid than symplectic, e.g. Ghiggini ’05 proved

Stein(W )→ Sympconvex(W )

is not always surjective on π0.

Open question

Is there a manifold with two Stein structures that are symplectomorphic
but not Stein homotopic?

Main theorem (Lisi, Van Horn-Morris, W. ’17)

Suppose dimRW = 4, J0 and J1 are Stein structures on W , and J0
admits a compatible Lefschetz fibration of genus 0.Then

J0
Stein∼ J1 ⇔ ωJ0

symp∼ ωJ1 .

We call these Stein structures “quasiflexible”.
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Lefschetz fibrations

π : W 4 → Σ2 with isolated critical points

π(z1, z2) = z21 + z22

in local complex coordinates.

Theorem (Thurston, Gompf)

If [fiber] 6= 0 ∈ H2(W ;Q), then W admits a canonical deformation class
of symplectic forms with ω|fibers > 0.
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Lefschetz fibrations with boundary (over D2)

∂W = ∂vW ∪ ∂hW , where

∂vW := π−1(∂D2)
fibration−→ ∂D2 = S1,

∂hW :=
⋃
z∈D2

∂
(
π−1(z)

) ∼= ∐(S1 × D2)

⇒ ∂W inherits an open book decomposition.
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Thurston-Gompf for Stein structures

Lemma (Lisi, Van Horn-Morris, W.)

Suppose π : W → D2 has no closed components in its singular fibers
(i.e. π is “allowable”). Then W admits a canonical deformation class of
Stein structures such that the fibers are holomorphic curves, and the
contact structure on ∂W is supported (in the sense of Giroux) by the
induced open book decomposition.
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Heavy artillery

Fundamental lemma of symplectic topology (Gromov ’85)

On every symplectic manifold (W,ω), there is a contractible space of
“tamed” almost complex structures{

J : TW → TW
∣∣ J2 = −1 and ω(X, JX) > 0 for all X 6= 0

}
.

Given a Riemann surface (Σ, j), a map u : Σ→W is called
J-holomorphic if it satisfies the nonlinear Cauchy-Riemann equation:

Tu ◦ j = J ◦ Tu

⇔ in local coordinates s+ it,

∂su+ J(u) ∂tu = 0.

This is a first-order elliptic PDE.
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Ellipticity

‖u‖W 1,p ≤ ‖u‖Lp + ‖∂su+ i ∂tu‖Lp

⇒ moduli spaces of holomorphic curves are (often)

smooth finite-dimensional manifolds,
compact. . . up to bubbling and breaking.
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Switching on the machine. . .

Lemma (W. ’10)

Suppose (W 4, ωτ ) is a 1-parameter family of symplectic fillings of (M3, ξ),
where ξ is supported by a planar open book (i.e. its fibers have genus
zero).

Choose a generic family Jτ of ωτ -tame almost complex structures on
the symplectic completion (Ŵ , ω̂τ ).

Then the open book extends to a smooth family of Lefschetz fibrations

W
πτ−→ D2

with Jτ -holomorphic fibers, and they are allowable if ωτ is exact for
any τ .
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Then the open book extends to a smooth family of Lefschetz fibrations

W
πτ−→ D2

with Jτ -holomorphic fibers, and they are allowable if ωτ is exact for
any τ .

Chris Wendl (HU Berlin) When is a Stein manifold merely symplectic? November 28, 2017 17 / 19



(Ŵ , ω̂τ0, Jτ0)

a only if !

�

0

not exa
t!

Curves have index 2� 2g.

Proof of main theorem:

Symple
ti
 deformation

=) isotopy of Lefs
hetz �brations

=) homotopy of Stein stru
tures.



(Ŵ , ω̂τ0, Jτ0)

a only if !

�

0

not exa
t!

Curves have index 2� 2g.

Proof of main theorem:

Symple
ti
 deformation

=) isotopy of Lefs
hetz �brations

=) homotopy of Stein stru
tures.
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(Ŵ , ω̂τ0, Jτ0)

a only if !

�

0

not exa
t!

Curves have index 2� 2g.

Proof of main theorem:

Symple
ti
 deformation

=) isotopy of Lefs
hetz �brations

=) homotopy of Stein stru
tures.
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(Ŵ , ω̂τ4, Jτ4)

Remark: This does not work with higher-

genus open books. Curves have index 2−2g.

Proof of main theorem:

Symple
ti
 deformation

=) isotopy of Lefs
hetz �brations

=) homotopy of Stein stru
tures.
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=⇒ homotopy of Stein structures.



Conclusion

Even rigid structures can be. . .

somewhat flexible.

flexible

rigid

flexible

quasiflexible

rigid

flexible

quasiflexible

rigid

flexible

quasiflexible

rigid

Some questions for the future

Is there quasiflexibility in higher dimensions?

Is there a quasiflexible class of contact structures in dimension 3?
(planar?)
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Thank you for your attention!

Pictures of contact structures by Patrick Massot:

https://www.math.u-psud.fr/~pmassot/exposition/gallerie contact/
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