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Problem 2 (topology):

Is a given closed manifold M the boundary of
any compact manifold W72

How unique is W7

Problem 3 (complex geometry / PDE):
Given a Riemann surface > and complex man-
ifold W, what is the space of holomorphic
maps > — W72

(Finite dimensional? Smooth? Compact?)

Problem 4 (mathematical physics):
How trivial is my TQFT?
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Definition. A symplectic structure on a 2n-
dimensional manifold W is a system of lo-

cal coordinate systems (q1,p1,.--,qn,pn) in
which Hamilton’s equations are invariant.

It carries a natural volume form:

dp1 dqy ... dpn dgn.

oW is convex if it is transverse to a vector
field Y that dilates the symplectic structure.
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“locally twisted” (maximally nonintegrable),
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nian) vector field.



M = O0W convex ~» contact structure

& CTM,

a field of tangent hyperplanes that are
“locally twisted” (maximally nonintegrable),

and transverse to the Reeb (i.e. Hamilto-
nian) vector field.

Example: 73 := 81 x st x §1

— boundary of T2 x D = D*T2 C T*T?2.
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1. Classification of contact structures:
given &1,&> on M, is there a diffeomor-
phism ¢ : M — M mapping &1 to &7

2. Weinstein conjecture:
Every Reeb vector field on every closed
contact manifold has a periodic orbit?

3. Partial orders: say (M_,¢{_) < (My,&4)
if there is a (symplectic, exact or Stein)
cobordism between them.

(My,&4)

(M—,&-)

When is (M_,§{_) < (M4,£4)7
When is ) < (M, £)? (Is it fillable?)
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Theorem (Eliashberg '89).
If &1 and & are both overtwisted, then
(M,&1) = (M, &) < &1 and &> are homotopic.

“Overtwisted contact structures are flexible."”

Theorem (Gromov '85 and Eliashberg '89).
¢ overtwisted = (M,€) not fillable.

Non-overtwisted contact structures are called
“tight” .

They are not fully understood.
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Then (M, €) tight = (M',¢") tight.

Surgery ~» handle attaching cobordism:

4-dimensional
2-handle

== v _—
— -~

[0,1] x M
— M
— -

O(([0,1] x M) U (D xD)) = —-Mu M’
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(M, &) with Reeb vector field ~»
P = {periodic Reeb orbits on M}.

A = graded commutative algebra with unit
and generators {gy},ep-

W := {formal power series F'(gy,p~,h)} with,
[pfy, q,y/] — 5’y,’y’h‘
- .3 O
F € W, substitute p,y 1= ha—% ~> operator

Dp : Al[n]] — A[[R]

“Theorem’ : There exists H € VW with
2 = 0 such that Dy(1) = 0 and

Ker Dy

SFT N A
HETT (M, €) = Ho (AL, D) =50

is a contact invariant.
Symplectic cobordism (M_,&{-) < (M4,&4)
~ natural map

T (My,€4) — HT (M-, €-)
preserving elements of R[[A]].
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Example
If no periodic orbits, then H2F (M, &) = R[[1]].

Definition (Latschev-W.).
We say (M, €) has algebraic k-torsion if
(%] =0 e HRF (M, ¢).

AT(M, &) :=sup{k | [F" 1] #0e HPFT(M &)}

Example
Overtwisted =
all “interesting”’ contact invariants vanish:

HPT (M, &) = {0} = [1] =0 = AT (M, &) = 0.

Theorem. Algebraic k-torsion = not fillable.

(Al =0€e HPF T (M,¢€)

AN

[h] # 0 € H2FT(0)
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A beautiful idea (Witten '82 + Floer '88):

(X, g) Riemannian manifold, f : X — R generic

Morse function. Then singular homology
Ho(X;Z) 22 He (2% <D dy)

where df counts rigid gradient flow lines,

z(t) + Vf(z(t)) = 0.

index 2

SFT of (M,& = kera):
“oco-dimensional Morse theory” for the
contact action functional

CIDZCOO(Sl,M)—)R::UI—)/Sl:B*a,

with Crit(®) = {periodic Reeb orbits}.
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Gradient flow:
Consider 1-parameter families of loops
{us € C®(St, M)} ;er with

85?1/3 + VCD(/U/S) = 0.

~s cylinders u : R x S — R x M satisfying the
nonlinear Cauchy-Riemann equation

Osu + J(u) Opu = 0
for an almost complex structure J on R x M.
For a symplectic cobordism W and Riemann

surface >, consider J-holomorphic curves

w2 \{z1,-..,z2n} > W

approaching Reeb orbits at the punctures.

C=—
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The Cauchy-Riemann equation is elliptic:

lullpip < llullze + [[0su 4 i Opul| Lp
— Spaces of holomorphic curves are (often)

e smooth finite-dimensional manifolds,

e compact up to bubbling / breaking.
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The Cauchy-Riemann equation is elliptic:

lullpip < llullze + [[0su 4 i Opul| Lp
— Spaces of holomorphic curves are (often)

e smooth finite-dimensional manifolds,
e compact up to bubbling / breaking.

=

7 RXM+
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[\
)

R x M_

TN R

>

:
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N
l
Qi
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R x M_
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Definition of H

r+:= (47, ...,’yk ) lists of Reeb orbits

Mg(IT, =) := { rigid J-holomorphic curves
in Rx M with genus g, ends at I‘i}/parametrization

_ _ — +
Hi= Y #(Mg(TT,r)/R) 1" ph
g+, r—
_I_
—
/ \ RXM
==
Rx M
< —r- >

SFT compactness theorem:
Mgy (T, =) = {J-holomorphic buildings}

H2 counts the boundary of a 1-dimensional
space = H? = 0.
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Example

Suppose Rx M has exactly one rigid J-holomorphic
curve, with genus 0, no negative ends, and
positive ends at orbits vq1,...,7%.

ME=N2

R x M
L — T
— I

Then

0
Substituting p,, = h—— gives
Iy,

k—1
Dy (G - - - quk) =h

= [WF"11=0¢e HFT(M,¢)

= AT(M,¢) <k-—1.

14
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