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Abstract

The aim of this project is to define the cup and cap product op-
erations on the Morse cohomology of closed manifolds. We first con-
struct the Morse homology by strict analogy to the methods of Floer
homology. We explore the following topics: the geometry of manifolds
of maps, Fredholm operators, genericness of transversality, comple-
mentarity of compactness and gluing and orientation of these Banach
spaces, which form the foundation of this functional analytic Morse
theory. By adapting the techniques of this construction, we define the
cup and cap products by counting Y-shaped trajectories that arise by
consideration of a triple of Morse functions.
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1 Overview of Functional Analytic Morse
Homology

In this section, we give a summary of the main ideas that we will explore in
this article.

We start by endowing the space of sections of the pullback bundles of T'M
by smooth compact curves with a H?-topology. Then by applying the ex-
ponential map to these sections, we obtain a space of trajectories in M which
is a Banach manifold. We construct Banach bundles over this manifold by
using the fibre derivatives of the exponential map. It turns out that the
smooth curves adapted to the gradient flow lines of a Morse function, f are
the zeros of a section map, F(y) = 7 + Vf o . These solutions are called
time independent trajectories.

We then move on to show that this map is in fact a Fredholm map i.e. its
differential is a Fredholm operator and its index is equal to the difference in
Morse index of a pair of critical points. This is first done in the trivial case
then we show that the results can be transferred to the manifold by means
of appropriate trivialisation.

Although zero is not always a regular value of this map, there exists a generic
set of Riemannian metrics for which this holds. So the Implicit function the-
orem allows us to conclude that the zeros of F' is a Banach submanifold
(without boundary) and has as tangent space the kernel of DF and hence
due the regularity its dimension is equal to the Fredholm index.

We may compactify this submanifold by adding broken trajectories. This is
essentially a consequence of the Arzela-Ascoli theorem and the fact that M is
compact. Since compactness does not guarantee that each broken trajectory
arises as a boundary, we are led to construct a gluing operation that glues
two trajectories into one trajectory in a higher dimensional space such that
we may construct a sequence converging to that broken trajectory. In this
sense, compactification and gluing can be viewed as complementary opera-
tions.

In order to define a homology theory over Z we need to define an orientation
concept for this Banach manifold. This is achieved by constructing a deter-
minant bundle using the Fredholm operators associated the trajectories. The
main obstacle here is that we need a concept of orientation compatible with
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the gluing of trajectories. Along with the time independent trajectories, we
consider time dependent trajectories and A-parametrised trajectories which
join critical points of a pair of different Morse functions.

These trajectories allow us to define chain maps between chain complexes
generated by two Morse functions such that they induce an isomorphism
in homology. Hence we conclude that the Morse homology is in fact inde-
pendent of the choice of Morse function. We deduce the Poincaré Duality
theorem as a direct consequence of this independence. In the final chapter,
we define using a triple of Morse functions a space of trajectories which only
go halfway between their critical points. We then show that the space of
such trajectories that meet at the ends is a Banach submanifold whose di-
mension can be described by the index of an appropriate section map. By
a corresponding compactness-gluing result, we deduce that for appropriate
Fredholm indices, the connected components of this manifold are closed one
dimensional manifold which can be compactified by adding similar broken
trajectories. The cup and cap products can then be defined by counting
these Y-shaped trajectories.



2 Space of Trajectories

Throughout this article we denote by (M, g) a smooth and closed Riemannian
manifold.

Definition 2.1. The Hessian of a smooth function, f on M at p is a bilinear
map on T,M defined by:

Hy()(X,Y) = g(VxV[(p),Y(p)) = X(Yf)(p) + (VxY)f(p).

Definition 2.2 (Morse function). A smooth function, f on a manifold, M
is a Morse function if its Hessian (matriz) is invertible at each of its critical
point, p.

Observe that if p is a critical point of f, then (VxY)f(p) = 0 and since
XY f)p)—=Y(X[f)p) =df(p)X,Y] =0, where [-, -] denotes the Lie brack-
ets, the Hessian is in fact a symmetric bilinear form. Note that this is equiv-
alent to df h0 in T* M, since the zero section can be naturally identified with
M so that the horizontal bundle at (p,0) is 7,M and the vertical bundle
is TyM. The invertibility of the Hessian implies it defines an isomorphism
between T),M and T M.

Recall that in classical Morse theory, the gradient flow lines between two
critical points, x and y satisfy the differential equation:

¥ =V[fon(t),

with the boundary conditions lim; ,_,, y(t) = z and lim,,,, y(t) = y. We
want to define a Banach manifold structure on this space of trajectories
connecting the critical points of f and so we need to construct an appropriate
coordinate chart. In order to do so, we need to set up some structures. We
refer to [3] and [11] for the details.

Definition 2.3. We define a compactification of the real line and endow it
with a smooth manifold structure as follows: Let R := R | J{#o0} with chart
map,

h:R—[~1,1]
-1, = —0
ht) =< 7= teR

1, t = +oo.
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We can define the set of compact smooth curves in M joining x,y € M by:
Cry(R, M) = {y e C*(R, M) : y(~») =z ,7(+0) = y}.
Using this definition of R, we see that if f € C'(R,R) then,

/ —1\/ / —1y\/ 1
FO1 =1 ohy oW B < s (Foh™ ) g

Since (f o h™') is a C'-function on a compact interval, (f o h™1)'(s) attains
in fact a maximum value. Hence in particular we see that f’ € L2 The
foundation of this Banach manifold will be based on the Sobolev spaces.

Definition 2.4. We define the Sobolev Space, W"P(R, R™) where p € [1, +0)
and k € Ny by

WEP(R,R™) := {f € LP(R,R") : fD e LP(R,R") for 0 <i < k},

: = (S fOIP, ) (i)
with norm || fllkp = (Xiso 1fP|5:)7, where f©) are to be understood as the
i'" derivative of f in the sense of distributions.

We shall only deal with the case k¥ = 1 and p = 2, so that H'? = W2 is
also a Hilbert space with the natural inner product given by:

<f7 g>1,2 = <f7 g>L2 + <f,7 g/>L2'

Note that the space of smooth functions is not Banach, its completion w.r.t
the Sobolev norm equivalently defines the Sobolev space. We shall also need
the following fundamental theorems associated with Sobolev spaces:

Theorem 2.1 (Sobolev Embedding Theorem). LetU < R be open, if kp > n
and k—np < 1, then the following continuous embedding into the Holder space
holds:

WEP(U) < C™(U) for each a € (0,k —n/p]

hence, in particular, H?(U,R") — C°(U,R").

Theorem 2.2 (Rellich-Kondrachov Theorem). Let U < R be bounded, if
deZs, kp>mn and k —np < 1, then the following embedding holds:

WHHEP () s WEP(U) for each q € [p,x)

and moreover it is compact.
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From the above estimate, we get that if A € C*(R,GL(n,R)) and s €
H'"2(R,R") then,

| As[l12 < ¢ lIsll.2 , where ¢ = 2max{[|A||o, || A"]]o0}-

If we know further that f € C'(R,R) satisfies f(£00) = 0, then from funda-
mental theorem of calculus and the above estimate, we obtain

s)ds| < ds

~

|f(t) m

<c

t2 ; tg
— |f(t)| < 3 by setting to = +o0 = fe L*(R,R) = fe H"*(R,R).

The reason for introducing the Sobolev space is that we want our space of
trajectories to be a Banach manifold together with a notion of differentia-
bility and since the Sobolev space is the ideal candidate that satisfies these
properties, we can model our space of trajectories using H?(R,R").

Definition 2.5. Let & be a C*(R) finite dzmenszonal vector bundle on R
with smooth trivialisation ¢ given by ¢ : € = R x R™. We are able to define
a Sobolev structure on the associated vector space of sections of & as follows:

HY2(€) = {0, (s)(t) = ¢~ '(t,s(t) : s € HY*(R,R™)}
so that ¢, (s)|[12 == |[s]|12-
Remarks:

1. The Banach Space topology induced on H'?(¢) is independent of our
choice of trivialisation. Indeed, suppose 1 is another trivialisation then
the change in trivialisation is given by 1 o gb e C*(R,GL(n,R))
hence, H¢; st’Q =:|[od (s)|l12 < 1 [|0;! sH . Similarly we obtain
[ ts]|0, < e ||y s||1f727 which show that the norms induced by each
triv1ahsat10n are equivalent.

2. The contractibility of R implies the existence of a global trivialisation.
If two maps, f,¢ : R — R are homotopic then their pullback bundles
are isomorphic. Since R is contractible, this means that the constant
map and the identity map are homotopic. As the pullback bundle of a
constant map is trivial, the vector bundle is trivial as well.
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We also notice that the map, H'? is a (covariant) functor from the category
of smooth vector bundles into the category of Banach spaces. In fact, this
functor is continuous.

Definition 2.6. A functor

Q2 : Vecgo (R) — Ban

is called a section functor if it associates to each smooth vector bundle, & on
R, a vector space Q(E) of sections in & such that Q maps each smooth bundle
homomorphism ¢ : & — n to a linear map Q¢ € L(2(E),(n)) defined in a
natural way by (2.¢) - s = ¢ - s, and

€, : C*(Hom(g, ) — L{Q(E); 2(n))
is continuous (w.r.t the associated norms).

By analogy to the definition of the H? functor, we can also define the L?
functor and furthermore we have:

Lemma 2.3. The functors H“* L? : Veccx(R) — Ban are section functors.

Proof. In the above remark, we have checked that the induced norm defines a
Banach space topology and that the norms induced by any trivialisations are
equivalent. In view of definition 2.5, w.l.o.g we may assume we are dealing
with the trivial case, i.e. £ = R x R?, n = R x R™, H"2(¢) = H?(R,R"),
L*(¢) = L*(R,R") and C*(Hom(¢,n)) = CP(R,M(m x n,R)). Now it
suffices to verify the continuity of Hy* and L2. Let A € C*(R, M(m xn,R)),
then
SUP||s]|g,2=1

1 As]lo2 < [[Allwo - [[sllo2 === l|Allc(z2.12) < [|All e,
which proves continuity of L2.
By direct calculation and using that 2{u,v) < [|ull§, + [|v|[§ 4, We obtain

1(As)ll52 < 20 14's]lg2 + 1481155 ) < 20 1A'][G 5 - 15115 + AL - 11s'][6.5 )-

Using the same estimate as above and the fundamental theorem of calculus,
we obtain

[Is(t)* = |s(to)[*] =

t1 d
f E<|3(t)|2’ [s(t)P>dt | < H=‘5||32 = ||5]]e < |]5]]1,2-
to

Combining these two estimates yields,
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14s][15 < CAG, + [1AIIZ ) - [ls]]7

SUP|js|; =1

——5 Allegma,ma) < ey 141B + AIE (1)
Hence if A4, — A in C*(Hom(¢,n)) then ||A], — A'||o2, ||An — Allc — O
implying ||A,, — Al|z(m1.2,51.2) — 0 which proves continuity of H,”. O
Remarks:

1. Our definition of R ensures that all the norms appearing in the above
proof are finite.

2. For A e H"*(Hom(,n)), the estimate ||A||o, < ||A][12 and (1) imply
Hy* - H'*(Hom(g, ) — L(H(€); H(n))

is continuous which is a stronger condition as it does not require smooth-
ness but just the square integrability of the homomorphism and that
of its weak first derivative.

3. The Sobolev Embedding theorem gives the continuous embedding of
sections, H?(&) — CY(¢).

Definition 2.7. We define the set,
Pi2 = {expos e C°(R, M) : s € H'?(h*0), he CF,(R, M)}

where (expos)(t) = expy) s(t). Due to the Sobolev Embedding theorem, s €
HY2(h*O) — C°(h*O) and as such s(+0) = 0, so Py contains continuous
curves joining critical points x and y.

77;;5 can be described as the set of continuous curves on M that can be
homotoped via the exponential map to smooth curves between critical points.
In order to show that this set is indeed a smooth Banach manifold, we need
to construct a smooth atlas.

Lemma 2.4. Given &, 1 € Vece=(R) and an open and convex neighbourhood
of the zero section, O < &, then any smooth map f € C*(O,n) satisfying
f(£90,0) = (£90,0) (w.r.t any trivialisation) induces a continuous map on
HY2(0) = {se H"*(&) : s(R) < O} given by,

fe : HY?(O0) — H"(n)

s +— fes = fos.
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Although the above lemma holds for any smooth vector bundle on R, in this
article we only deal with the pullbacks of the tangent bundle by smooth and
compact curves and in this case we notice that there is an obvious choice for
such an f, namely the exponential map (acting between pullback bundles).
So let h e CY, (R, M), then we define the pullback by

h*TM 225 TM

R—"'— M

where 7o pry(t,€) = hopri(t,€). Also, h*O < h*T'M is open since O is.
For a closed (compact and boundaryless) Riemannian manifold, (M, g), we
know that exp |, is a local diffeomorphism in an open neighbourhood of zero
in T,M for any p € M. So there exists an open neighbourhood, O of the zero
section in the tangent bundle 7 : T'M — M such that

(r,exp) : O = Ac M x M
§ = (7(8) exp(§))

is a diffeomorphism.

Proof of lemma 2.4. Since f is a smooth bundle map on O, so in particular
the differential of its fibre restriction defines a continuous function on R and
can be uniformly bounded due to the compactness of R and as such f, are
Lipschitz continuous. So w.r.t any trivialisation of £, we have:

|fi(z) — fi(y,)| < ¢ |zy — yi|, where @y, y, are fibre elements at t € R

and given a smooth section, s, letting z; = s(t) and y; be the zero section we
obtain from the triangle inequality:

[f o (s@)] = [fe(s(®))] < ¢ [s)] + | £(0)]-

Since f;(0) € C*(R,n) hence is in H?(n), again w.r.t any trivialisation im-
plying fos € L?(n). Considering the second order differential of f;, similarly
as above we obtain the estimate:

\df (@) — dfi(ye)| < |a — 9

and analogously this shows that (f os)’ € L?(n) hence f, is well-defined and
is continuous w.r.t the H%? norm since ||s,||1.2 — 0 implies ||(f © $)n|l12 —

0. [l
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We can now give the fundamental theorem that will allow us to define smooth
charts for P2,

Theorem 2.5. The map, f. defined in lemma 2.4 is smooth and its k'
derivative is given by D¥f.(s) = Hy*(F¥fos).
Here F'f : O — Hom(&;n) denotes the fibre derivative of f, i.e. the derivative

of fp w.r.t the fibre elements in O,, more explicitly
Ff)(w) =241 (f(v+ tw)) where v,w are in the same fibre.
t=0

FEf:O - Hom(£E®...®&n) =~ Hom (€@ ... ® & Hom(E;n))
—_— —_—

k times k-1 times

Sketch of proof. The proof is by induction. The case k = 0 has been proven
in lemma 2.3. For k = 1, given z,y € O in the same fibre, we define:

©:0®0 — Hom(&, n)

Oz,y) > — Uol Ff(x+t(y—x))dt—Ff($)] -

By a change of variable we have that

Ow.)(y—) = [ Ffla)da—Ffa)ly—2) = 1) - 1) ~ FI @)y —),

T

which implies together with the second remark on page 9,
fils) = fu(s0) + H*(Ffosg) - (s = s0) + H"*(©)(s0,5) - (s = s0).

Using that H'?(0)(so, s0) = 0, limy ., H"*(0)(s,s0) = 0 and the above
equation, this gives
Dfi(s0) = Hy*(F'f © 50)

which is moreover continuous on H'?(0). For k = 2, we consider the map
g(t,&) = Ff(t,§)—F f(t, so(t)) which satisfies the properties of f and so from
case k = 1 this gives: D?f,(so) = Dgsso = Hi>(F2f o s9) and repeating the
same argument (formally by induction) the proof is accomplished. O

Note that in the above proof, the convexity of O ensures that © is well-
defined.

Theorem 2.6. 73;;33 is a smooth Banach manifold with atlas (strictly speaking
this is a parametrisation, i.e. the chart is actually given by the inverse)

{H"Y(h*0), HI’Q(eXph)}hec&(RM”, where H%?(exp,,)(s) = exp os.
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Proof. Define B

on h*O >R x M

(t,8) — (¢, expp) &)
As seen earlier this is a local diffeomorphism, i.e. ¢, is an embedding in
an open neighbourhood of the graph of h. Let Uy, := ¢»(h*O) < R x M,
HY2(U,) == {g € COR, M) : (t,9(t)) < Uy, ¢," o (id,g) € H**(h*O)} <
C? (R, M) and
H1’2(¢;1) . H1,2(Uh) N H1,2<h*0)
g ¢ o (id, g)

then it follows that from these definitions that

U Hl’z(Uh)

heCZ, (R,M)

defines an open cover for P2(R, M) and {Hl’z(gbgl)}hecg%(RM)} is a family of
bijective maps. To conclude that P;;Z is a smooth Banach manifold we need
to check that the transition maps are indeed smooth. So suppose Uy, (U #
&, we need to show H1’2(¢;1) o H%?(¢; 1)1 is a diffeomorphism. We now
appeal to our fundamental theorem 2.5 above. Let O, = ¢, (U,(U;) <
h*O and analogously define Of so that these sets satisfy the conditions of
lemma 2.4. Considering the maps:

Qg =5 00 Op — Of
(I)fh<t7 5) = (tv eXp;(lt) (eXph(t) 5))

which satisfy ®g,(4+00,0) = (£0,0) since our curves converge to critical
points 2 and y, thus applying theorem 2.5 gives that HLQ(QSJ?l) o HY2(¢, 1)1
and (H"?(¢;') o HY2(¢,") 1)1 = HY(¢;,") o H"?(¢;')~" are smooth as
required. O

Given this Banach manifold, we now want to construct a vector bundle on
it which will allow us to define the section map, F upon which this whole
theory is founded. To do so we need to look at the Levi-Civita connection,
K on (M,g). We first recall some facts about the vertical and horizontal
bundle of a fibre bundle, 7 : E — B. The vertical bundle, V' is a subbundle
of TE defined as:

V={¢eTFE :dr(&) =0}

i.e. V, is the tangent space to the fibre at each point, e € F and the horizontal
bundle, H is a (non-canonical) complementary space of V' such that TE =
V @ H. A connection is a projection, K onto V and hence defines H. In
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the case of a vector bundle, the fibres are simply vector spaces and as such
there is a natural isomorphism between the fibre and V,, thus we can write
K : TE — E. Returning to our case, where £ = T'M, B = M, we simply
have the decomposition T(T'M) = V @ H = ker(dr) @ ker(K). Hence we
also see that K (&), and dr(€)u, are isomorphisms. Since exp : O — M
is a local diffeomorphism, dexp(§) is an isomorphism for each & € O, so the
following mappings are well-defined isomorphisms:

Viexp(€) = dexp(§) o (dr(&)im) ™" TrigM = Texpe)M,

Vaexp(§) = dexp(§) o (K(E)w,) ™" : TrigM = Texp(e) M.

Vyexp(€) is thus the fibre derivative of the exponential map at . In the
zero section, the horizontal bundle, H can be canonically identified with the
tangent bundle, TM giving that V;exp(0)(7/(0)) = 4 (exp(v(t),0)),—o =
7' (0), i.e. Vyexp(0) = Id. Similarly, Vs exp(0) = Id. Consequently,

O(&) = (Vaexp(€)) ™ o Vaexp(§) = (K(§) o (7 (&))"

is a smooth map with ©(0) = Id and its fibre derivative at 0 is 0. These
definitions allows us to write the fibre derivatives of the transition map, ®y,
by

Fop(t,§) = Vs exp(exp;(lt) (expy e €)™ o Vaexp(§). (*)

Also, using that V£ := K(f) and dT(f) = h, for section & based at h we
have

% (exp&) = Viexp(&)(h) + V2 exp(§)(Vig). (x)

The following theorem allows us to define Banach bundles, including the
tangent bundle, on our space of trajectories, P;;j.

Theorem 2.7. Let II : Vecox — Ban be a section functor such that 11, :
HY“?(Hom(&,n)) — L(I1(E);T1(n)) is continuous. Then the domain of 11
can be extended uniquely to continuous vector bundles which are of the form
g*T'M for ge 77;:2 and moreover

NPyTM) = | T(g*T™)
9ePy (RM)
s a Banach bundle on 73;”5.

The proof is essentially defining a fibre at each g = exp,, s by

H(g*TM) = {Jg-v:vell(h*TM)},
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where Jy,(t) = Vaexp (£(t)) € CO(Hom(h*T M, g*TM)) and & € C°(h*O)
and verifying that .J,;, provides a smooth trivialisation which is again achieved
by theorem 2.5. We note that L? and from the second remark on page 9, H'?
both satisfy the condition on II. Moreover from (*) we have the identity,

Vaexp(®pros)) o (Flppos)-v=Vaexp(s)- v,
from which we deduce that:
(Jgf)fl O Jgp = Hi’2(F(I)fh o S) = D(I)fh*(8>.

Since the tangent space of a manifold isomorphic to the modelled space by
the differential of the chart map, we have that the image of Jy, is in fact the
tangent space at g € 77;7’2 . Hence

HY2(PPTM) = | ) H" (g, TM)
9Py (R,M))

is the tangent bundle of P2, i.e. TP)? = HY(Py*TM).

a:,y’
Theorem 2.8. Given a smooth vector field, X on M s.t X(z) = X(y) =0,
then the mapping ngy(R M)sy— 4+ XoyeC®(*TM) can be extended
to a smooth section, I' from P2*(R, M) in the Banach bundle L*(Py2*TM).
We omit the proof of this theorem which is again just a verification of smooth-
ness. We point out here that using our chart coordinates, the above triviali-
sation given by Jg,, and () we can trivialised I" by:

I: HY(h*O) — L*(h*0O)
€ Vik +0(8) h+ Vaexp() ™ (X o exp,)(€)
We shall refer to this crucial trivialisation throughout this article.
Corollary 2.8.1. Given a smooth Morse function f on M, the mapping
. pl2 21,2
PPy, — L*(P,, " TM)
s—>s+Vfos

describes a smooth section in the L?-bundle and locally can be represented at

veCy, by

Foery - H?(7*0) — L*(v*T M)

Floeny (§)(t) = V(1) + g(t,£(2)),

where g : R x v*O — ~*TM is smooth and maps to the same fibre, sat-
isfies g(£00,0) = 0 and is endowed with the asymptotic fibre derivatives
Dyg(+00,0) = 0, which are the conjugated linear operators of the Hessians
of fat x and y, respectively.
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The fact that Dyg(+00,0) = 0 is conjugated to Hessian can easily be seen
from the above trivialisation together with fact that F©(0) = 0 and the
fibre linearisation of V f corresponds to the Hessian of f. In general, we can
replace the vector field, V f by

Vhy

h
hy = ‘ , where e _ 0, for |t| > R.
A1+ 2| VR

A ot

This asymptotically constant time dependent vector field, which we will con-
sider in more detail in the compactness section, will be crucial in proving
that the Morse homology is independent of the choice of Morse function.
The space of trajectories, 73;;5 consists of continuous curves connecting x
and y and in particular, contains the curves lying in the intersection of the
stable manifold of y and unstable manifold of x. The reason for considering
the above map, F' lies in the fact that its zeroes correspond to these curves.

Proposition 2.1. The zeroes of F : Py — L*(Pp2*TM) are exactly the
smooth curves which solve the ODE s = V f o s and satisfy the conditions
lim; o s(t) = x and lim;_, 1, s(t) = y.

This proof is accomplished by the following straightforward, yet crucial,
lemma which will also be useful to prove the compactness of this submanifold
of zeroes.

Lemma 2.9. Let X : U(0) — R be a smooth vector field defined on a neigh-
bourhood of 0 € R™ such that X(0) = 0 and DX(0) is non-singular and
symmetric. Then, there exists € > 0 s.t for each solution s = X(s) with
limy; o s(t) = 0 we can find constants ¢ > 0 and to(s) € R s.t |s(t)] < c e
fort > to(s).

proof of proposition 2.1. (=) Since each solution, « is weakly differentiable
(due to the definition of P}7 using the Sobolev space) so it suffices to check
for smoothness. We argue by bootstrapping and using the fact that f is
smooth, i.e. 7/ = —Vfoy =" = —%(Vf 0y) =¥ = —gt—i(Vf 07), S0 7y
is smooth (in the weak sense) and the Sobolev Embedding theorem implies
it is indeed smooth.

(<) We now want to show that a smooth solution, s is indeed in the zero
section of F. In view of the manifold structure we defined on R, it suffices
to show that soh™ : [ —=1,1] — M is C' and (so h™!) o h(+o0) = 0 then
it holds that is in the Sobolev space and as such is in P;:g. We already
have from above, (soh ) o h = §(t)- (1 +2)2. For a Morse function, f, its
Hessian (in local coordinates) satisfies the above lemma, with the vector field
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satisfying Vf(xz) = Vf(y) = 0. The fact that M is compact and X = Vf
is smooth imply it is Lipschitz and the relation X (s) = § gives |$§| < d|s]
hence s decreases exponentially as well. This yields the desired limit on

(so h=1Y(t). O

In classical Morse theory, we needed the transversality condition, i.e.

W1 (z)hW/(y), such that the sum of their tangent space span the tangent
space of the manifold itself. Then from the theorem about transversality
(which is a consequence of the Implicit function theorem), W/ (z) (W7 (y)
is submanifold of M. In order, to achieve a similar result in this setup, we
notice that if we show that DF(s) is surjective for each s € F~1(0) then the
(Banach space version) Implicit function theorem will give us a submanifold
structure on F~1(0). However in the infinite dimensional setting it is not that
straightforward, this leads us to the notion of Fredholm operators.



3 Analysis of Fredholm Operators

Before analysing the section map F', we start with the trivial case and then
transfer the results to the non-trivial case in a way that is independent of
the choice of coordinate charts. So we look at linear operators on the trivial
bundle, R x R” of the form,

Fu: H*(R,R") — L*(R,R")
s— s+ As,

where A € CP(R,End(R")), i.e. A(t) is an n x n matrix for each ¢ and
[| Al < +00.

The fundamental theorem of this section is that Spectral flow is equal to the
Fredholm Index, i.e. the net change in the number of negative eigenvalues of
A is equal to the Fredholm index of Fly4.

Definition 3.1. A linear operator, K : X — Y is compact if K(B(0,1)) is
compact, i.e. the image of unit ball is precompact.

Definition 3.2. A Fredholm operator is a bounded linear operator, F : X —
Y, where X, Y are Banach spaces such that dim(ker(F)), dim(coker(F)) <
+0 and R(F) is closed. We define the Fredholm index of F' by

ind(F) = dim(ker(F")) — dim(coker(F)).

If we drop the assumption that coker(F') is finite dimensional, F is then called
a semi-Fredholm operator.

An equivalent definition:

Definition 3.3. F': X — Y is a Fredholm operator if there exists a compact
operator, K :' Y — X such that Id—F o K and K o F' — 1d are compact
operators.

We shall denote the space of Fredholm operators by F(X,Y’) and the space
of compact operators by Com(X,Y).
Remarks:

1. In the above definition, R(F') is closed is a redundant condition: let C'
be a complementary space to R(F') in Y, then since C' =~ coker(F), it
is finite dimensional. F induces an injective map, F : X /ker(F) — Y.
Solet S : X/ker(F)@®C — Y by S(z,y) = F(x) + y, then R(F) =
S(X/ker(F) @ {0}). Since S is a bounded linear bijective map, the
Inverse Bounded theorem implies it is a toplinear isomorphism and as

such S(X/ker(F) @ {0}) is closed since X /ker(F') @ {0} is.
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2. A linear isomorphism is a Fredholm operator of index 0. So we may in-
terpret Fredholm operators as nearly invertible operators when working
in infinite dimensional spaces.

Properties of Fredholm Operators

1. It Fy € F(Y, Z) and Fy o Fy € F(X, Z) then Fy € F(X,Y) and
iIld(Fl o FQ) = 1nd(F1) + lnd(Fg)

2. F(X,Y) is open in L(X,Y) and moreover, ind : F — Z is a locally
constant function.

3. If K is compact and F' is Fredholm then F' + K is Fredholm and
ind(F + K) = ind(F)

Sketch of proof.

1) We simply consider the short exact sequence 0 — ker(Fy) < ker(FyoF,) —
ker(F1) [\ R(F) — 0 and by dimension counting it follows that ker(F3) is
finite dimensional. A similar argument can be carried out for the cokernel.
2) Denote by K,C and R the kernel, cokernel and range of F' respectively.
Then we can write X = X{@ K and Y = Y@ R. F induces an isomorphism,
Fy : Xy —» R. We can choose € > 0 such that if ||FF — L|| < € then the
induced map, Ly is an isomorphism as well. Let p be the projection on R
and 7 : X; — X, then Ly = po Lo and p, Ly, ¢ are Fredholm of indices
—dim(K), 0, dim(C) hence from property 1) 0 = ind(S) — ind(F').

3) is trivial from the second definition of Fredholm operator. ]

Definition 3.4. Given a Hilbert space, H a bounded linear operator, A is
self-adjoint (s.a) if (Azx,y)y = {x, Ay) for each x,y € H.

We will use the following notations;
S={AeGL(n,R): Ais s.a}

A={AeC)R,End(R")) : AT = A(+w) € S}

In classical Morse theory, we saw that the Hessian matrix is self-adjoint
and we defined the Morse index of a critical point of f as the number of
negative entries of the Hessian matrix in Morse coordinates, or equivalently
the number of negative eigenvalues. We define by analogy the Morse index
of a self-adjoint operator, A by:

pn(A) = #(@(A)[R),
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where o(A) = {\ : det(A — AI) = 0} denotes the finite spectrum of A, i.e.
the set of eigenvalues counting multiplicity. The map, F' can also be viewed
as,

F: C)(R,End(R")) — L(H"*; L?)

F(A(t)) = Faw.
This is map is continuous since,

+00

(Fa = Fe)lloz = (| (A= By at)" < 14~ Bl lsle
—00
SUP|[s||1 o=1

||FA - FBHﬁ(HM;L?) < ||A - B||oca

so taking A — B in C} gives Fy — F in L.
We aim to prove the following theorem:

Theorem 3.1. If A€ A, then F4 is a Fredholm operator.

Lemma 3.2. Given Banach spaces, X, Y and Z and F € L(X;Y), K €
Com(X;Z) and ¢ > 0 such that

lzllx < e ([Fzlly +[[Kz||z), forall ze X

then F is a semi-Fredholm operator.

Proof. We first show that ker(F') is finite dimensional then R(F) is closed.
Pick a sequence {zy}72, < ker(F') with ||zx|| = 1, then we get ||z, — || <
c(||K (s, — xm))||). Since K is compact, we can extract a convergent subse-
quence of {Kuxy}{, and hence of {z;}{_,. This implies S = {z € ker(F) :
l|z||x = 1} is sequentially compact hence compact. By Riesz’s lemma, the
unit ball in an infinite dimensional space is not compact; hence ker(F') must
be finite dimensional.

Suppose now that Fx, — y € Y, then we need to show there exists z € X
such that Fx = y. Let’s assume {z}}~; is bounded then we can extract a
convergent subsequence of {Kxzy}r,, say {Ky}r—,. Hence we have

Y = ymllx < ¢ ([[F(yn — yn)lly + 1K (Yn — ym)l|2)-
Since {y};~ is Cauchy and X is Banach,
ypr — 2= Fy, —> Fz

and by uniqueness of limit y = Fz. If {z}}2, was unbounded, then w.l.o.g
we may assume {z}7, ¢ ker(F) and furthermore, Hahn-Banach theorem
implies that ker(F) has a closed complementary space. By normalising we
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may set ||zx||lx = 1, so we get that Fxy — 0. On the other hand, the
compactness of K and our assumed inequality imply that we may extract
a subsequence,{yx}7, converging to z with ||z||x = 1 and Fz = 0, which
contradicts that z ¢ ker(F). O

We shall also need some simple properties of the Fourier transform to prove
theorem 3.1.

Definition 3.5. The Fourier transform of f is defined by;

7)) = f ¢ () da

R

when it exists. (Note that it always exists for L' functions).
Theorem 3.3. F is an isometry on L*(R,R™), i.e. [|F(f)llo2 = |f]lo.2-

Proof. F is an isometry on the Schwartz space and the latter is dense in L2,
so we may extend to L? by continuity. O

Properties of Fourier Transform

1. F is linear.

2. F(f) =iy F(f)

Proof of theorem 3.1.

The proof is carried out in 4 steps:

S1: Let A € A be a non-zero constant map. Then we define a map w : L? —
L? by wos(t) =t-s(t). From the properties of F, we can write

Fy=F"o(iw+ A)oF.

Since A is invertible so 0 is not an eigenvalue. Denote by Ag = min |o(A)| > 0.
If we define an operator,

B :R" — End(C")
a—ial + A

For A € A, the spectral theorem implies that A has real eigenvalues and its
eigenvectors provide an orthonormal basis, hence 0 ¢ o(B) = ia + o(A) =
B~! exists and has eigenvalues (0(B))™" = [|B(a) 7| < supye ) A" =
1/A/A% + a?. Let

C:R" — End(C")

a— V1 + a?
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SO
1 1
|C()B(a) Y| < V1+ a2 ———— < max(~—,
AR+ o? Ao
By the isometry of F and the Polarisation Identity, we also have (Fx, Fy)rz: =
{x,y)r2. Hence

1)=:d

KF'CBTFE myre| = KCBTVFE Fipra| < [|CB~ [ [[€lloz [[ml]oz2

|F'CB' FF'BFs|[§, = |[[V1+ a2Fs|f;
= f (1+ oz2)|]-"s(oz)|2doz
R
= || F()|[52 + IF)5 = lIslfi
this yields ||s|l12 < d [|F"'BF|lo2 = d ||Fas||

S2: We can generalise the above inequality for any A € A as follows:
There exists T' > 0 such that

|[s]l1,2 < cr||Fasllo2 if s|[-1.) = 0.

The proof is essentially using the continuity of A, i.e. [|[A* — A(¢)|] — 0 as
t — +o0. Then we can apply the estimate from S1 to A*.

S3: We now show that F) is semi-Fredholm.

1 1
§|s|2 + 2(3, As) + 2| As|* = 5 ($+2As,84+2As) =0

T T 1 T T
= J 1§ + As|dt > f (15]2/2 — |As|*) dt = —J 5] dt —||A||OOJ 5|2 dt
-T -T 2) 7 -

So choosing ¢ > 0 large enough gives

= sy <e [ O+ s

Considering a smooth cut-off function,

[0, |tl=T+1
/3(15)_{17 it <T

with B(t) # 0 for |t| € (T, T + 1), we have s(t) = B(t)s(t) + (1 — B(t))s(t).
Hence (s satisfies the above estimate and (1 — f)s is as in S2, using the
triangle inequality we obtain:
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s[l1,2 < c(||s|z2[=r—1,741] + [|Fa8]]o,2)

We can rewrite the above as:

[[s]]1,2 < c(||Ks]lo2 + || Falloz2)

where,
K:HYZR,R") - H*([-T - 1,T +1],R") — L*([-T — 1,T + 1],R").

Here the first map is simply by restriction as (1 — f(t))s(t) has compact
support, [-7 — 1,7 + 1] and the second map is from Rellich-Kondrachov
theorem which is a compact embedding. So lemma 3.2 allows us to conclude
that F4 is semi-Fredholm for any A € A and hence from self-adjointness in
particular, F_4r is also semi-Fredholm.

S4: To conclude that Fy4 is Fredholm, we need to show coker(Fy) is finite
dimensional. Since L? is Hilbert, we have an orthogonal decomposition

L? = R(FA) @ R(Fa)* and coker(F,) = R(F4)*
= forr e R(Fa)", (r,5+ As) =0 V¥se HY”. CF(R,R") is dense in A"
= (r,¢)r2 = —(r, Ap)2 Vo € C¢°
= (r, o2 = —(ATr, 2

i.e. ris weakly differentiable and 7 = ATr e L? - re H'*?and 0 = 7—ATr =
F_AT (T)

= coker(Fy) = ker(Fyr)
so from S3, dim(coker(Fy)) < + O
In view of the above theorem, we denote by ¥ < F(H"(R,R"), L*(R, R")),
the set of operators, Fy. We can define an equivalence relation as follows:
Fy ~ Fg if A* = B* iee. the Fredholm operators are equivalent if they

are equal at 00 and denote the equivalence classes by Op,. The following
lemma will be crucial in orientating the space of trajectories.

Lemma 3.4. O, is contractible in ¥.

Sketch of proof. Let A be a class representative. Define a homotopy by:
H:[0,1] x Op, — Op,
H(a,Fg) = Fi—a)-Bta-a

so that H(0, -) is the identity and H (1, -) is the constant map. The continuity
of H follows by a simple proof by contradiction argument. O
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From property 2) of Fredholm operators and the above lemma, it follows
that the index is in fact constant on each equivalence class, i.e. the index of
F4 depends only on A*. Remember that our objective is to prove that the
Spectral flow equals the Fredholm Index. In order to simplify the proof we
make the following observation:

If A € S then it is diagonalisable since the spectral theorem implies the
existence of an invertible matrix, C' such that

M O - 0
cac-1 )\.2 ()
0 0 - \,

and w.l.o.g we may order the eigenvalues by sign, i.e. sgn(Ap;1) < sgn(Ag)
and furthermore, that by swapping columns of C' if necessary, assume that
det(C) > 0. So applying the above to A(+c) = A*, we can find C* €
C*(R,GL(n,R)) such that

CEAT(CF)™! = diag(\F, ..., \))

n

and is asymptotically constant such that C'(t) = C* for [¢| > 1. Note that
the fact that we chose det(C*) > 0 ensures that such a smooth function
C(t) exists since C* belong to the same pathwise connected component of
GL(n,R). Then a simple computation gives

CFAC™" = Feiopoac-

By the asymptotic assumption, for large ¢, C~! = 0 and hence CF,C~! €
The folio{)ving theorem will allow us to make the connection between the
relative Morse index (or Spectral Flow) and the Fredholm index. We point
out here that our definition of the relative Morse index using the spectral
flow allows us to work in infinite dimensional settings since the calculation of
the Spectral flow avoids us having to consider o0 — o0 which does not makes
sense for critical points of infinite indices.

Theorem 3.5.
ind(Fy) = j(A™) — p(A%)

Proof. With regards to the above discussion and lemma 3.4 , we can simply
consider A(t) = diag(A;(t), ..., \n(t)) satisfying the properties in our discus-
sion. Under these circumstances, we see that

ker(Fu) = {se H'"? : 5= —As} = {se H"? : 5, = —\;s;, i = 1,...n}
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The differential equation % = —)\y < y = be™™ can have an asymptotically
zero solution at +oo (—o0) only if A > 0(A < 0). We see immediately that
s € ker(Fy) if and only if A\; < 0 and A} > 0 giving that:

dim(ker(F4)) = number of corresponding A s changing sign from -ve to +ve
= max(u(A7) — p(A"),0).

Note that the second equality follows due to our ordering of the eigenvalues
by sign. Similarly from the result in S4 of theorem 3.1,

dim(coker(Fy)) = dim(ker(F_ 7))
= dim(ker(F_,))
— max(—(u(A") — p(4")),0).
[l

Having now proved that the change in Morse index is equal to Fredholm
index, we need to transfer these results to the non-trivial case, i.e. when our
bundles are H"*(¢) and L*(§). Referring back to our operator, F' : P2 —
L?*(P2*TM) which has local representation, F(£)(t) = V() + g(t,£(t)),
we wish to transfer the result of the above theorem to a linearisation of F'
(which we shall see is Fredholm). Since the covariant derivative, V; is R-
linear, so the linearisation of F' at s is of the form V; + Dsg(s). This should
be enough motivation for the following definition.

Definition 3.6.

— 2y, r2(ey. Fas=Vis+Asst Ae C°(R, End(¢))
ey = {FA RO = L) with AT = (A5)T and are invertible

In the above definition, V denotes a covariant derivative associated with the
vector bundle, £ on R. Note that since ¢ is a trivial bundle, we may choose
a frame field (dependent on a trivialisation), i.e. a set {sq,...,s,} of smooth
sections which form a basis for the fibre at each p € R. Then we may write:

Vis = Vi(a;s;) = a;8; + a;Vysi = a;8; + a;ligsy

Here we have used the Einstein notation, i.e. b;s; = X' ,b;s;. So we may
write in coordinates given by the frame field together with a trivialisation,

Vis = § + I's, where I'e (R, End(R")) and s € H"*(R,R"™).

Remark that the trivialised covariant derivative is obtained by Vi®s =
¢V, 's with ¢ as in definition 2.5. Before using the Fredholm property,
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we need to ensure that our calculations does not depend on our choice of
trivialisation. By the product rule, we see that the change of trivialisation
acts on the trivialised covariant derivative as follows:
. o .
UV (W) = (a + U+ I s,
where ¥ = ¢ - ¢~ € C*(R,GL(n,R)). So the trivialised operator, F'¥ =
¢ o Fao¢p! changes as
. 0 .
UFY(Us) = (é + U 4 UTIDT  UTAT) s,

So by our analysis in section 1, U(+00) = 0 and we see that if T'(+00) = 0,
then

VR = % +UTAD,

So if the Fredholm property (finite dimensional kernel and cokernel) holds
for trivialisation, ¢ then it holds for any trivialisation, ¢ with same index.

Lemma 3.6. Given the tangent bundle, T on Riemannian manifold, (M, g)
with a covariant derivative, V, by pulling back by a curve, u : R — M, we
obtain a covariant derivative, u*V on the pullback bundle u*T M and for this
induced covariant deriwative I'(+00) = 0.

Proof. Choosing a local frame field for 7'M, we have the representation:
Vow(p) = Dw(p) -v +v-T(p) - w,

where I'(p) is an n x n matrix. Since %(+00) = 0 and in the pullback bundle,
WM, [ V] (€(u(t))) i= u* (Vigoé(t)) (see [9)). So D() = a(t)-(u(t)) and
hence I'(+0) = 0. O

Hence if Fp € Y¢ v, then by trivialising we obtain
¢-Fp-¢ ' eOp,, with AT = ¢(£o0)B(+mw)p *(+w0),

i.e. we have reduced our problem to the trivial case in a manner which is
independent of ¢, so we have a well-defined notion of Fredholm operator on
the pullback bundle. Thus, we can say that Fg is a Fredholm operator and
from theorem 3.5, ind(Fp) = u(A~) — p(A*1). Returning back to the map
F:Pyi— L*(Py2*TM), we have:

Corollary 3.6.1. F : P> — L*(Pp2*TM) is a Fredholm map, i.e. its
differential, DF(s) is a Fredholm operator, and

ind(DF(s)) = p(Dag(—0,0)) — pu(D2g(+0,0))
= p(z) — pu(y).



4 Transversality

The aim of this section is to show that transversality is a generic condition, in
other words, we can find perturbations such that F'h0 and as a consequence,
F~1(0) is a manifold. To give a motivation for transversality, we consider the
surfaces given by 22 + 3> — 22 = 1 and = = 1. The intersection of these two
manifolds is given by {(1,y, +y) : ¥y € R} which is not a manifold. However
notice that if we allow a small perturbation of x = 1 to x = 1.01, then the
intersection is indeed a manifold. A more precise statement of the above
observation is given by the following theorem.

Theorem 4.1. Let f: M — N be a smooth map between finite dimensional
manifolds and f is transverse to a submanifold, P < N, i.e. df(p)(T,M) +
Tt P = TipyN Yp € f7H(P), then f~Y(P) is a submanifold of M and
codim(f~1(P)) = codim(P). Moreover, if f is not transverse then it can
be perturbed so that it becomes transverse.

The first part of this theorem is proved by a direct application of the Implicit
function theorem and the second part of the above theorem is proved using
Sard’s lemma.( See [10]) In the above example, f was the inclusion map,
7. The trouble is that this theorem does not generalise directly to infinite
dimensional manifolds due to the fact that Sard’s lemma does not have an
infinite dimensional analogue. However, Smale generalised the Sard’s lemma
for the class of Fredholm operators:

Theorem 4.2 (Sard-Smale’s Theorem). If F' : M — V is a smooth Fredholm
map between Banach spaces, then the regqular values of F' is a generic set.

The key idea of the proof is to use the Fredholm properties to reduce the
theorem to the finite dimensional case and apply Sard’s lemma. [12]

Definition 4.1. A Baire space, X is a topological space such that if {Up,}r_,
is a collection of open dense sets, then ﬂ;czl U, is also dense.

Theorem 4.3 (Baire Category theorem). Every complete metric space is a
Baire space. Hence in particular, all Banach spaces are Baire.

Definition 4.2. A Gs set is a subset of a topological space such that Gs =
Nr_, Uy, where each U, is open.

Hence if ¥ < X such that X is a G set with each U,, dense, then X is also
dense. We say that G < X is generic w.r.t a condition on the points on X if
the condition holds for some set ¥ < G.
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Note: Genericness is stronger than simply being dense. The set, I of ir-
rational numbers are generic in R since I = [ ,{¢}° but Q is not generic
although it is dense in R.

We now state the fundamental theorem of this chapter:

Theorem 4.4. If G and M are Banach manifolds and 7 : E — M 1is a
Banach bundle with fibre, E and ® : G x M — E is a smooth map such that

for each g € G,
Q,: M - E O,(m) = D(g,m),

i.e. G can be viewed as the parameter set defining sections of E and there 1s

a countable trivialisation, {(U,¥)}r_, such that 0 is a regular value of

VU:=preotpo®:GxU - E|y >UxE—-E

i.e. DW(g,m) is onto V(g,m) € ¥=(0) and ¥, : U — E is a Fredholm map
of index v ¥g € G. Then there exists a set, ¥ (as above) such that ®,*(0)
is a closed submanifold for each g € . (Here 0 is understood to be the zero
section.) i.e. W 0.

Before proving the above theorem we need the Banach version of the Implicit
function theorem [8] and the following lemma:

Lemma 4.5. Suppose V : E x ' — G is a surjective linear map between
Banach spaces given by V(e, f) = Wy(e) + WUa(f) such that Uy, Vs are linear
and Vy is a Fredholm operator, then EE x F' can be decomposed as E x F' =
ker(V) @ H for some closed subspace, H.

This lemma is proved using the fact that the Fredholm map gives a decom-
position of the codomain into the its range and a finite dimensional space
then using that ¥ is onto.

Theorem 4.6 (Implicit function theorem). Let U,V be open sets in Banach
spaces, E,F and f : U xV — G be smooth such that Dy f(a,b) is an isomor-
phism with f(a,b) = 0, then there is a smooth map, g : Uy — V where Uy is
an open neighbourhood of a € U with f(x,g(z)) = 0 Va € U.

proof of theorem 4.4. The proof consists of 3 steps:

S1: We show that Z := U~1(0) is a submanifold.

Since we have a countable trivialisation satisfying the above properties hence
if we can prove it for one given trivialisation (U, ), then we can simply
take the intersection of all such sets and to obtain ¥ by the Baire category
theorem. So w.l.o.g we may assume that we are in the trivial case. So let
U = pry o1 o @, then by the first assumption:

UV:GxM—-E
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has 0 as a regular value and

D\If(g,m) : TgG X TpM = T(g,m)(G X M) - T\y(%m)E ~E
D‘P(gﬂn)(’l},ﬂ)) = Dl\y(gvm)v + DZ\Ij(gam)w

and by second assumption D,V is a Fredholm operator of index r. By the
above lemma we get the splitting condition on the Banach space, T,G' x T}, M

-

and by surjectivity we have DoW (w.r.t the coordinates from the lemma, i.e.
D\If} H) is an isomorphism hence we may apply the Implicit function theorem

= 7 is a submanifold of G x M and T{y,,)Z = ker(D¥(g,m))

S2: pry is Fredholm of index r

7Y .,0eE

Pﬁl

G
Let z = (¢9,m) € Z, then Dpry : T,Z — T,G. Since pri(g,m) = g so
ker(Dpry) = T,, M (\T.Z. Since DoV(z) : T,,M — Tp»)E = E so let (0) =

m and +'(0) = v then
DyV(z)v =0 < V(g,7v(t)) = constant

Since (g,7(0)) = z € Z, 50 ¥(g,v(¢t)) = 0i.e. ker(DoV) = T,,,M (T, Z hence
dim(ker(Dpry)) = dim(ker(DyV)) < +o0
We now look at the cokernels:

DV : T,G — Typ)E = E

so coker(D1V) = E/R(D, V). Similarly coker(Dpry(2)) = T,G/R(Dpry).
D1V induces a map:

D1V : T,G/R(Dpry) — E/R(D,V)
[v] = [D1¥(v)]

DV (z)(v,w) =0 for (v,w) € T,Z gives D1¥(2)(v) = Dy¥(2)(—w) so
[D1®(v)] = 0 = D1V(z)(v) = Dy¥(—w) for some —w = (v,w) € T,Z =
[v] = 0. Since DV¥(z) is onto, so is D1V and hence is an isomorphism i.e.
dim(coker Dpry)) = dim(coker(DyW)) < +00 so Dpry is Fredholm with index
T

By Sard-Smale’s theorem, the regular values of pr; are generic, i.e. we have
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found a generic set, X.
S3: ®,1(0) is a submanifold Vg € X

Let b € X such that W(b,m) # 0 ¥Ym € M, then it does not intersect the
0-section and as such is trivially transversal. So suppose ¥(b,m) = 0, i.e
(b,m) € Z, for some m € M, so it suffices to show that DW,(m) = Dy W (b, m)
is onto, then we can conclude by the Implicit function theorem. By surjectiv-
ity of DW(b, m) we know that for any v € E there exists («, ) € T,G x T,,, M
such that

v = DVU(b,m)(e, §) = D1®(b,m)(a) + D2®(b, m)(8)

And from the above, since b € ¥, Dpr;(b,m) is also surjective and so there
exists (o, 3") € TwmZ such that Dpri(b,m)(c/, ') = a hence a@ = o,
Furthermore, (o, ') € TipmyZ = ker(D®(z)) so D1¥(a) + DoW(B) = 0
=y =DyU(8—f),ie DyV is onto so we conclude this proof. ]

Note that map, F is dependent on g and f. We shall show that £'~1(0) is a
manifold for generic choice of the metric, g. (We point out here that instead
we could have fixed g and show that F'~*(0) is a manifold for generic choice
of f.) Recall that V f is a vector field on (M, g) defined by g(V f, X) = df (X)
for any smooth vector field, X € I'(T'M). So in order to ensure that FmhO0,
we need to find an appropriate Riemannian metric, g and to show that this
is a generic property. We also need to endow it with a Banach manifold
structure so that we may apply the above theorem. To do so, we fix a metric,
go and find a generic set of variations. We define g(X,Y’) = go(AX,Y’) where
A € End(T'M) such that A is self-adjoint w.r.t gy, positive definite and ||A —
Id|| < ¢, i.e. Ais close to the identity map. These restrictions on A ensure
that ¢ indeed defines a Riemannian metric. Hence w.r.t the new metric, g
the vector field has the form V,f = A-V, f. We still need a Banach manifold
structure on the space of symmetric endomorphisms, hence we construct an
appropriate norm which will endow it with a Banach topology.

Definition 4.3. Let & be the smooth vector bundle of endomorphisms of the
tangent bundle, i.e. & = End(T M), endowed with a norm |-| and a covariant
derivative, V (naturally induced by the Levi-Civita connection) and {e,}nen
be a sequence of real numbers. We define a norm on the space of smooth
sections of &, by :

lslle = £7geq max [9¥s].

where |[V¥s|(p) = max{|V,,..Vy,sp)| : ||z]| =1, 2, € T,M i =1,2,....k}.
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This norm defines a Banach space,
C(§) = {s € C7(&) : [[slle < +o0}

provided the sequence, {ej};2 is chosen such that C¢ # ¢F. The fact that the
space is Banach can easily be seen from the fact that any Cauchy sequence
in C¢(§) necessarily converge to a point in the completion of C¢(§) and if
S, — s then the triangle inequality implies s € C¢(&).

Lemma 4.7. There exists a sequence {e,} such that C¢(§) = L*(€).

See [5] p.808 for details of the proof. The key idea is to construct an ap-
propriate sequence such that C¢(§) contains functions which approximate
characteristics functions which in turn are dense in L? hence so is C¢(¢). Tt
is clear that if 0 < e, < €/, Vn then |[|s||c < ||s||¢ and obviously we have
sl < C - ||s]|e where C' = max{ey, ..., ex}.

Definition 4.4. We denote by E,, := End,, (TM), the vector bundle on
M whose fibres are linear maps which are self-adjoint w.r.t the Riemannian
metric, go (which clearly is a vector space). Notice that Ey, is a subbundle of
€. So we define a Banach space of sections in Ey by C°(Ey,). Let T,y < E,,
consists of those endomorphisms which are positive definite w.r.t gy hence

T,, naturally defines a Riemannian metric on M wvia the formula, g(X,Y) =
Go(AX,Y) for AeT,.

So we obtain a Banach manifold of parameters by:
GQO = Ce(Tgo> = {S € Ce(Ego) : 3(p) € (Tgo)p Jor each p e M}v

which from the above lemma, is continuously embedded in C°(T},) and so
defines an open set in C°(E,,) containing the identity map, Id. We note
that C°(T,,) < C°(E,,) is open (since if A is positive definite then a direct
computation shows that if ||[B — A|| < 1||A|| then B is positive definite as
well) and the latter is a Banach space hence T4yC(Ty,) = C°(Ey,).

As we mentioned earlier in order to show that our homology theory is inde-
pendent on our choice of Morse function, we will have to consider two more
types of trajectories (in addition to the time independent trajectories). Be-
low we define a homotopy between two Morse functions and we define the
h*P-trajectories or time dependent trajectories by () = X}, 0v(t). These are
trajectories which transit smoothly over time from trajectories of f to tra-
jectories of f#, i.e. they connect critical points of f to those of f# and it is
exactly these trajectories that will enable us to define chain homomorphisms
between Morse complexes.
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Definition 4.5. A homotopy, h*® : R x M — R between f* and f? is finite
if there exists R > 0 large enough such that

po_ [ f ift<-R
TV B ift=R.

If moreover, for each xo € M such that Vhy(zg) = 0 for each t, i.e. xq is a
critical point for all functions, hy, (xo is said to be an R-critical point) we
have that 5

=+ Hyy () : H2(a3TM) — LX(a3TM)

1s onto then the homotopy is said to be reqular.

Here x3TM is the pullback bundle given by the constant map, v : R —
{zo} and H,,(h:) is the Hessian. Since the Hessian at xq defines a bilinear
form, it also defines a unique endomorphism of H'? (by Riesz Representation
theorem).

Note that for any given pair of Morse functions, f* and f?, we can always
find a finite regular homotopy. Suppose we have a critical point, xy such
that £ + H?(h)(zo) is not surjective then we can replace h*® by a new
homotopy h*? + k, where k is a perturbation in a small neighbourhood of
xo, i.e. ky € CP(M,R) such that dk; # 0 for some ¢, hence zg is no longer a
critical point an R-critical point. Since our manifold is compact, this process
can be repeated finitely many times for each such critical point.

We now need to consider that the map,

D : Gy x Py — L*(Py7)
— Y+ A Vanh 0.
L+ el JA -9, h

(A, )

In order to apply theorem 4.4, we need to check that D(pry o 1h o ®)(A,~)
is surjective for each pair (A,7) € ®1(0) and is a Fredholm map of index,
p(z)—pu(y). Since the fibre at v is simply L*(y*TM) = E, so (pryopo®)(A, v)
can simply be represented in local coordinates by the map:

® Gy, x H?(v*O) — L*(v*TM)
(A,€) = Vi& + O(h + (Vaexp(€)) ™" 0 X, o (exp,, &).

From corollary 3.6.1, we know that for any A € G,,, ®(A,-) is a Fredholm
map i.e. D®4 is a Fredholm operator and has index u(x) — u(y), so we just
need to check that the zero section is a regular value of ®.
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Theorem 4.8.
D®(A, ) : C(Ey,) x HY?(v*O) — L*(v*TM)

is surjective for each (A,&) such that ®(A,&) = 0 for any finite reqular
homotopy, hy.

Proof. We already know that D®4(§) = Dy®(A,¢) is Fredholm and also

a
ds

Voyexp(§)™H (A + sB)Vh,
SO\ AL [l AV b2

_ (Lt [uPIAVIP)(BYR) = AVh(AVR BYR) | o
(1 + [haPIAV Rl 2 o

D1®(A,6)B = Vyexp(€)) ™!

For simplicity of notation we rewrite d(t) = D1®(A,¢), and

_ B()z(t) + a()(BH)z()y®)]* — y(t)u(t), Bt)x(t)))
d<t> o 2 2)3/2 )
(1 + la(®)ly(@)[?)
so pick (A, &) € @71(0), then by the Fredholm property, R(Dy®(4,€)) is a
closed subspace of L? with finite codimension. Since R(D®) o R(Dy®) =
codim(R(D®)) < codim(R(Dy®)) < 400 and hence closed as well. So let

c¢(t) be in the (orthogonal) complement of the range such that

<D(I>(A’ §)<Bv 77)7 C>L2 = 0.

To complete this proof, we need to show that ¢ = 0, hence R(D®) = L2
i.e. D® is onto. From the above inclusion, we get (Dy®n,c¢) = 0 Since
c € C = coker(Dy®) = ker(F)y) for some A € A, so ¢(t) is a smooth solution
to ¢(t) = X(t)c(t). The theory of PDE implies that there exists a unique
solution (for c(t) # constant). Moreover if c¢(ty) = 0 for some ¢y € R, then
c™(ty) = 0 for all n so ¢(t) = 0. So we may choose B(t) with arbitrarily
small compact support and hence we may reduce the above to a pointwise
problem, i.e. replace ¢(t) by ¢ = ¢(tg) for some fix ¢y € R.

= (Bx + o(Bz|y|* — yly, Bz)),&) = 0. (2)

Here B = B(ty), similarly for z,«,y. Since B € End , (1,M), where p =

XDy (1) § (f0), 50
Pz = 2(y,y) — y(y, 2)
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is symmetric w.r.t (-, -y as (Pz,w) = (z, Pw). Moreover, {(Pz, z) = |y|?|z|* —
{y, z) = 0 by Cauchy-Schwarz inequality hence P is a positive operator, hence
o(P) = 0 implying that (P — AI)~! exists for any A < 0. We rewrite (1) as

(I +aP)Bzx,é)=0
—(Bz, (I + aP)&) = 0 VB € End, ,,(T,M)

In particular, we may choose symmetric B such that (Bz, (I + aP)¢) # 0,
so we get contradiction unless x(t) = 0. Since ®(A,&) = 0 hence exp, ¢ is
constant but since h*? is a finite regular homotopy, D>® must be onto, hence
c(t) = 0 as required. O

Hence theorem 4.4 applied to the above map, ® gives that F~1(0) = ./\/lg;y

and ./\/l;’:lyﬁ are closed submanifold of P2 for generic Riemannian metric and
has dimension p(z) — p(y) since the regularity at 0 implies the Fredholm
index is equal to the dimension of the kernel of DF and the Implicit function
theorem also tells us that its tangent space at u is given by the kernel of
DF,, where DF, is the differential of F' in the local trivialisation at u, in
other words, the dimension of the manifold is equal to the dimension of its
tangent space which is equal to the Fredholm index.

As we mentioned earlier, we also need the above result for the more general
A-parametrised trajectories which will be crucial to show that the induced
chain homomorphism, ®** by h*” is in fact independent of the actual choice
of homotopy.

Suppose we have two finite regular homotopies:

af N — fa’ t<—R
for i = 1,2 which we homotope by:

H:[0,1] xRx M - R

« av tS—R
Hﬁ(A’t"):{;B t>R

Haﬂ(oa " ) = hgﬂa Haﬁ(lfa ) = htllﬂ

The Fredholm map, G’ for the A-trajectories is obtained by replacing Vh,
by VH®(\,t,-) in X},,,

G :[0,1] x P12~ — L*(PL? «TM)

TasYp To,YpB

. VHB(\ ¢, -
() A1) + A )
L+ [Hoo P [V Hos
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Theorem 4.9. Let hgﬂ , h?ﬁ be regular smooth finite homotopies with associ-
ated Morse-Smale metrics, then there exists a generic set of A— homotopies,
H and a generic set of suitable homotopies of the Riemannian metric,
such that (G**)~1(0) is a (u(ws) — plyg) + 1) dimensional submanifold of
[0,1] x PL?

To,Yg "

Proof. The proof that 0 is a regular value of G*? is same as in theorem 4.8,
hence we just need to satisfy the Fredholm condition. So let G*?(\,n) = 0,
where we allow \ to vary. We consider the linearisation of G’ in local
coordinates,

DG’ (\,n) : R x HY(y*TM) — L*(v*TM)
(T7 5) — DlGaﬁ<)‘> 77)7— + D2Ga/8()‘> 77)5

Here R denotes T3[0,1]. Since hS” and h$”? are regular, so DoG*#(0,7) and
DyG*%(1,n) are surjective from theorem 4.8. Also DoG*?(\, ) are Fredholm
operators (although we cannot say that they are surjective as well), so it
follows that DG*? is Fredholm as well since R is 1-dimensional.

ind(D2G(0,7n)) = dim(ker(D2G(0,7))) — dim(coker(D2G(0,7)))
= (o) = p(ys) = 0
Since both DyG(0,n) and DG(0,7) are surjective so this increases the di-
mension of the kernel of DG(0,n) by 1, more precisely for each 7 € R, we

can find ¢ such that DG?(0,n)(7,£) = 0, and by continuity of DG*? in X
and the fact that the Fredholm index is locally constant, we get

ind(DG*(A,1)) = ind(DG**(0,1)) = 1 + p(xa) — p(yp)-
O
Remark here that (G*?)~1(0) unlike £~1(0) is not a boundaryless manifold
since it has boundaries corresponding to A = 0, 1. Throughout the rest of

this article, we shall always assume that a generic metric has been chosen so
that the transversality property holds.



5 Compactness

Observe that the Implicit function theorem only tells us that ng,y is a finite
dimensional boundaryless manifold. In this section we aim to define what it
means to compactify this manifold. To motivate this idea, we consider the
2-torus with critical points, u, v,z and y.

Y u Y
v x v
Y u Y

We observe that the space of trajectories on the lower left in Mg;y approach
arbitrarily the edges in M;;v X ./\/l{’y7 this is the so-called broken trajectory.
In this case we observe that there are 2 possible broken trajectories in each
square, hence a total of 8 distinct broken trajectories. Before making this idea
rigorous, we need to introduce the concept of unparametrised trajectories.
More precisely, if y(t) € MZ  then so is v(t + ¢) for any ¢ € R. So we may
identify these 2 curves under the equivalence relation, v ~ 4 if (¢) = v(t +c¢)

for some real c.

Lemma 5.1. The group, (R, +) act freely and properly on Mj;vy by

Rx M, - M,
(17) = ver=7(+7)
Sketch of proof. If we could identify M = with W*(z)(\W?*(y), then we
know from classical Morse theory that the induced group action would be
free and proper. (See for e.g [1] ) Here W*(x) and W*(y) denote the unstable

manifold of x and stable manifold of y, respectively. This identification is
done by a simple evaluation map, E which we restrict to Mg;y ie.

E: Mj;y — W (x) ﬂWS(y) eM
v — 7(0)
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It is straightforward to check in local coordinates that this map is indeed a
diffeomorphism. Then our equivalence relation can be identified via:

yer=E" ot 0E(y)

where 1), denotes the flow along integral curves defined by —V f which as we
mentioned above acts freely and properly.

[]

We denote the space of group orbits by ./\//\lgy = M£7y/R, i.e. this is the set
of unparametrised trajectories. Also observe that if we define ¢ = f o F,
then ¢~'(a) = MI% is a (u(xr) — p(y) — 1) dimensional manifold for any
regular value a = v(0). Geometrically, MJ;Z consists of those curves, v €
MY such that f(7(0)) = a which by the above lemma identifies with

Yy
FHa) W (z) YW*(y). So ]/T/l\g;y\ is simply the number of unparametrised
curves joining x to y.

Recall that for metric spaces, compactness is equivalent to sequential com-
pactness so we may formulate the notion of compactness w.r.t to our space
of (unparametrised) trajectories as follows.

Definition 5.1. A subset, K /(/l\iy 1s compact up to broken trajectories of
order k if for any sequence {l,}nen < K either

1. 4, has a convergence subsequence in K, or

2. there exists critical points, x = yo,Y1,.--,¥; = y such that 2 < 1 < k

with trajectories, v; € /\/lgj . and suitable reparametrisation times,
Tny,; Such that
| i
oc
Uny ® Tng; — > Uj

for some subsequence {ny}ren.

Note: Convergence in ./{/t\u,{y is understood to be in the quotient topology

induced by our equivalence relation so that u, — @ in /\/lg;y

there exists a sequence t,, such that w,(- + t,) — u(-) in M/ .

if and only if
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The picture on the left corresponds to case 1 and the picture on the left
shows convergence to broken trajectories and we also see that the choice of
reparametrisation times determines to which broken trajectory the curves
converge to. It is due to this splitting that we cannot have H? convergence
but just C}5, convergence.

Lemma 5.2. Fvery sequence of trajectories, {u,}neny < ng,y has a conver-
gent subsequence in the Cy.. norm, i.e. there exist ny s.t

C'([-R,R])
k

ve CP(R, M)

Un

VieN and YR > 0
We shall appeal to the Arzela-Ascoli theorem to extract such a subsequence:

Theorem 5.3. Arzela-Ascoli theorem

Let { fi}ier be a family of continuous functions from a compact metric space,
X to a metric space, Y. Then {fi}icr is precompact (in C°(X,Y)) if and
only if each {f;}icr are pointwise precompact and equicontinuous.

proof of lemma 5.2. In order to apply Arzela-Ascoli theorem, we need equicon-
tinuity and pointwise precompactness. The latter follows directly from the
fact that M is a compact manifold. The equicontinuity condition is obtain
from the estimate:

f iy (7) 27 — J:<—un, V[ o uydr

- [ s ouirnar

— Fun(s) — F(un(t))

< f(x) = fly), . un(17) > x,y as 7 — —o0, +00 respectively
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Note that our compact Riemannian manifold, M has the distance metric
given by:

o) =t { [ Bl i20) =2, 2(7) =)

Also by the Hopf-Rinow theorem this metric makes our manifold into a com-
plete metric space. So

d(un(t), un(s)) < J |0, (T)|dT

Holder
|t — s - 4/ ]un )|2dT

t—s

so by Arzela-Ascoli, on any compact interval [—R, R] we can find a subse-
quence, ng such that
C°([-R,R])
Ui | ve C°([—R, R))

hence we have CP  convergence. To conclude convergence in C2, we once

again as in lemma 2.8 use a bootstrapping argument. Since V f is smooth,
we have

Cloc :
Up, = =V fou, —> -Vfov=1

The fact that © exists follows by uniqueness of convergence. Since u =
D(V f)V fou so we may repeat this argument and so on (formally by induc-

0

C .
tion), to conclude u,, —2 v with v = Vfowv. O

With consideration to convergence of type 1, we need to show:

1,2
Lemma 5.4. If v e ML, then u, —% v, i.e. convergence is in the H"?
norm (rather than szmply o).

Proof. We proceed in 2 steps. We first show that u,(t) — y as t — +o

uniformly in n € N, i.e. Ve > 03T > 0 s.t Vt > T, d(u,(t),y) <€ Vn. Since
C*[~R,R] ) =

we know that for any R > 0, u, v and v(+o) = y, so we need to
look at the convergence near y. Observe that

={pe By :[f(p) = f)| < eand [Vf] <€}

defines a fundamental system of neighbourhood of y, where B(y) is a neigh-
bourhood of y with y as the only critical point, since V f(y) = 0 and hence
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for any neighbourhood, U(y) 3 y by choosing € > 0 small enough we can
always ensure that N, < U(y).

Since M is compact, |V f| attains a maximum on M hence in particular is
Lipschitz continuous so from the explicit calculation in the previous lemma
we have:

IV f(un()) =V fun(@®))]] < e/|s = t] , where ¢ =/ f(z) — f(y) max [V f].

Suppose by contradiction that convergence is not uniform, then this means
that we can extract sequences {t;}, {ny} — +0o0 such that |V fo(u,, (tx))| > €
for each k. So if [ty — s| < § = €2/4c* then |V f(uy,(s))| > €. Hence

tr+0 d

i (0)) = Flum, 46 = | 2 flum (D = [ i, ()i

tr dT tr

>4 - |Vf(unk)|2 = 0e?/4

here we once again used that df(u) = (Vfowu,4) and —V f ou = u. Since
flow lines are decreasing, f(un,(t)) = f(y) for each t. So we get

fun (t)) = f(y) = 6¢*/4 Yk eN
Since uy, CIEREL L for any R > 0 and ¢, — o0, we get d(up,, (tx),y) <
d(un, (tr), v(ty)) + d(v(te),y) — 0 which is a contradiction. The same argu-
ment can be carried out for x. This accomplishes the first step. From lemma
2.8, we get in local coordinates (taking z,y to be 0 under the chart),

lun(t)| < ce M vt >T

It is by step 1 here that we may assume that this 7" is independent on u,,.
For u,, close to v, we have

u, = exp, £(t) for &(t) e H2(v*TM)

S0 ||y, — v||12 — 0 since we have a uniform exponential decay near the ends
and C'* convergence on the interior, [—T, 7. O

We may now state the fundamental theorem of this section:

Theorem 5.5. ./T/l\:’;y is compact up to broken trajectories of order p(x)—u(y),
i.e. any trajectory can split into at most p(x) — p(y) broken trajectories.

00
loc

o}
Proof. From lemma 5.3, we know that there exists a sequence u,, —> v €
C*(M,R)and v = =V fouv . Ifve Mg;y then from lemma 5.4, this proves
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type 1 convergence. So we need to show if v ¢ M7 then v e M]  for some
critical points w, z of f. Since f(u,) € [f(y), f(x)] so by C}5, convergence,
f)e[f(y), f(x)] as well. We also have the estimate:

[ iipas < o) = sy = [ lots)ras < o

=T

From this inequality and by the C}5 -convergence, we deduce that as ¢ — +o0:

IVIw®)] = o) =0

which tells us from proposition 2.1 that indeed v € M .. As we saw in
the picture earlier, the reparametrisation times determine to which broken
trajectory convergence occurs to. w.l.o.g we may assume z # y and w = x, SO
let f(y) < a < f(z) and we pick sequence 7, such that f(u, ®7,) = a. Then

Cibe. ~
by lemma 5.3, we get a subsequence such that w, e 7, —5 v and now we
have f(v) € [f(y), f(w)] (otherwise it would coincide with v by uniqueness
of convergence) .

So we may repeat this process iteratively until we end up in H'? conver-
gence. Under the Smale transversality condition, there can only exists a
non-constant trajectory if p(v(—o0)) — p(v(+00)) = 1, so ignoring trivial
trajectories we have that the order is indeed u(x) — p(y) since we have the
ordering pu(y) < ... < p(v(—0)) < p(v(+0)) < ... < p(x), i.e. any sequence
can break into at most p(z) — u(y) broken trajectories. O

Note that we assumed that M is compact, in general if M is only complete
then we need f to be a coercive function, i.e. f~1(—c0,a] is compact for
each a € R. (which is trivial in our situation). We now need to analyse the
compactification for h*? and H) trajectories.

Theorem 5.6. Let {u,}neny © Mzgﬁxl be a sequence of h®®-trajectories, then
atp

either
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1. there is a subsequence ny, such that u,, — v e ./\/lh Bml in the H2-norm,
or T
2. there are critical points, T, = 2°, ..., 2% of f* and x%, ,xlﬁ = x5 of P

)
with 1= k+ 1= p(al) — p(ah) cmd h“ﬁ trajectories

Ta,Tg

i fo j Vi heB
Ua € an,wé+17 U,B € M:Bé $Jé+17 /Uaﬁ € M

with reparametrisation times T Tg ., such that

CYTL;
) o) . c® . c®
l 1 loc
Up ® Ty, — v Uy ® Tén BNLUEN vé, Up —> Unp

and, as in the previous theorem, we have
p(ad) < o < plak) < p(af) < . < p(ah).

Sketch of proof. The proof of this theorem is similar to that of the time-
independent case. In order to apply Arzela-Ascoli we need equicontinuity
since precompactness is guaranteed by compactness of M, so let {7,}nen <
M then,

TasYp
t

A3a(t) (5)) < f () 7

S

+00

r
<Vlii=sl /[ Ko

J—0

[+00 ‘Vh7‘2
=/t —s|- .

Jowo 1+ ‘h7’2|VhT’2

(100 d +00

<vﬁ—ﬂ‘J ZEMT%(MW=1[ h(t, (1)) dt

J—0 —00

=4/|t—s|- \/fo‘ — fP(zg) + 2CR, C = max|ht|

Here we used the fact that:

d : |V hy|?
—Mt@D:<M— : )O(ﬂ
@ A1+ 2 hef? !

and fy(+) = Zh(t,-) so that for [t| > R, hi(-) = 0. By Arzela-Ascoli, we have
proved the analog of lemma 5.3 for h*’-trajectories, i.e. there exists n; such
that

jo0)

Uy, 2% € C(R, M)
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so for sequence {7} ,}nen We must have that 7/, < —R and for {Tén}neN
we must have that Tgn > R. Note that reparametrisation does not affect
the above estimate. So again picking sequences such that f(u,, e Tfm) =a

(similarly for Tg ,,) and arguing as in the previous theorem we can conclude
this proof. O

We now state the corresponding result for Ad-parametrised trajectories.

ap
Theorem 5.7. Let {( A, Un) bnen < ./\/lfj,yﬁ be a sequence of Hy trajectories.
Then either there exists a subsequence which converge in the HY2-norm or
we can find reparametrisation times T Tén and trajectories

a,n’

. B
i o j i A HY
Vo € My s VB €My s (M) € Mady,

such that

. 0 . . c© . [0S
Up, ® Ty, S0, Uy e Tgn Lo, vé, Ay Up) —2> (A,véﬂ)
The proof is along the same lines as the h*? case, the equicontinuity and
pointwise boundedness follows from the fact that both M and [0, 1] are com-

af
pact. We also point out here that ./\/lfj,yﬂ is 0-dimensional if u(z,) — p(ys) +
1 =0 and so it is a finite set (again by compactness) of {(\;, u;)}F_, trajec-
tories.
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Compactness of the space of trajectories only asserts that trajectories in
M for p(xz) — p(y) = 2 can break into 2 or more trajectories in M

T,y1
Mﬁhw X ./\/lf , for n = 2, however this does not imply that each broken
traJectory can arise in this way, i.e. given a trajectory in /\/lyk yess WE cannot

say that there exists a sequence of trajectories converging to it. The assertion
of this fact is given by the complementary operation to compactification
called gluing. The analysis involved in the concept of gluing is quite technical
so we shall refer to [11] for details. We start off by stating the fundamental
theorem of this section:

Theorem 6.1. Given a compact set of broken trajectories, K < ./\/lf XMJZ,
we can find p(K) > 0 and a smooth map, called the gluing opemtor +#

#: K x [p(K), +0) - M],
(u, v, p) = u#pv

such that #, : K — MY is an embedding (i.e. injective map with D#,

Y
injective as well) for each p = p(K) and for K c /\/lf x M

y.2» 7F induces a
smooth embedding

~ A~ ~

#: K x [p(K), +0) — M!

cy ~ A
such that u#pv —% (U,0) as p_— +o. Moreover, any sequence of un-

pammetmsed trajectories, w, € ./\/lxz such that w,, — (a ) is in fact in the

image of #, 1.e. the gluing map # provides an “inverse” for the compactifi-
cation process.

The construction of this operator is accomplished in 3 steps:

1. We construct a pre-gluing map, #9 : MI x M/ — P12 such that
uFov (R) and u(R) | Jv(R) are close in the metric sense and complying

OO

with u#ov G, — (4,0) as p — +o0.

2. We then associate to u#)v a trajectory in M£Z in a non-canonical man-
ner. This is the crucial step in constructing #. It is by an application
of the Banach contraction mapping principle that we shall show that if
p is large enough, then there is in fact a unique such choice. More pre-
cisely we find a unique section, 7 such that u#,v = CXPypon Y € MQZ

3. Finally we simply need to verify that this mapping is indeed an em-

bedding.
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Construction of the Pre-gluing map, #}

We start off by defining the simplest gluing operation. Let K < M_J;y X M{;Z
be compact, then given (u,v) € K we may choose (u,7) € C7, x C7°, which
are asymptotically constant at y, i.e.

where this T is dependent on @ and @, such that v and v are in neighbourhood
of & and ¥ respectively, i.e. there exists £ € HY2(a*T M) and n € HM?(0*T M)
such that u = exp;(§) and v = exp;(n). Since we assumed K is compact, we
may find a finite subcover and pick T to be the maximum of all such 7. We
may then define

T, O(t) = {

and so u#,0 € C;°, for p > T + 1. Note that smoothness follows from
the fact that @ and v are each smooth and are asymptotically constant at y
hence @#,0 is constant on interval (—1,1). So given smooth cut-off functions,
B R — [0,1] where

0, t<0 1, t< -1
6+(t):{1 t>1 "7 (t>:{0 £>0

we define:
Definition 6.1 (Pre-gluing map).
#° . K x [pg,0) — 73;55

ugtpu(t) = expay, a0 (B (1) (expg " uw)(t + p) + B (t) (expy " v)(t — p))

More explicitly,

u,(t), t<—1
u#pu(t) = § exp, (87 (t) exp,*(uy) + B (t) exp, H(v-p)) (1), [t <1
vy (1), t=1

for p = T where we used the notation u,(t) = u(t + p). Moreover, since £ €
HY(@*TM), n e HY(@*TM) and * are smooth, we have that u#ov(t) €
C*([R, M) c 77;:5.
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z

#¢ is smooth in u,v. Using that Tyye,Pro = HY*((u#ov)*TM), T,M}, =
ker DF, and T,M] , = ker DF, (from the results of transversality) we get
its derivative:

D#9 : ker DF, x ker DF, — H"?((u#%v)*T'M)
(&) — Vaexp(B8~ (Vaexp ' €), + B (Vaexp ™' n)_,)

Construction of actual gluing map, #,

For simplicity we shall use the notations xy = (u,v,p) € K x [,o_o, ), wy, =
uFov € 73;7’5 and F, to be the trivialised operator, " at v € C*(R, M), more
precisely,

E,: H2(v*TM) — L*(v*TM)
N+ (Vaexp,(n)) ™" o F o (exp,)(n)
We mention here that F,, is well-defined since w, is smooth by construction.

So if we find an appropriate 7 such that F;, (1) = 0. then we can conclude
that exp,, 7 is a zero of F', i.e. we have found a trajectory in Mg;z.

In order to find this section we need to construct a normal bundle, i.e. a
vector bundle that is orthogonal to the tangent bundle and this bundle ob-
viously depends on the embedding, i.e. it is non-canonical. We now want
to restrict our attention to these glued trajectories only, so we define the
following pullback Hilbert bundles via #° : K x [pg, 0) — 73;;3 by,

H:=#*HY (P2 TM) = #*TPy? and L :=#"L*(Py2*TM) i.e.
#

o%
1,2
% )
H TP,

K x [meO) i) ,P;:g
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Here the inner product on this bundle is naturally induced by the Riemannian
metric, g. Same for L. We shall denote the fibres at x by H, and L,. The
inclusion map ¢ : K — ./\/lj;y X /\/lgz also induces a pullback bundle on
K X [pg, ) and so induces another Hilbert bundle denoted by:

(H'2)? o= i (H(Pyy TM)| g > HY (P2 TM)| )y )

Here we restrict to the Sobolev sections of the pullback bundles by trajecto-
ries in Mg;y and M&Z. These pullback bundles enable us to identify the map,
F,, defined above with a smooth bundle map, F\ : H, — L,. In essence,
what we have done is construct a natural way to transfer Banach bundles on
73;’3 to bundles on K x [p,,0) via our pre-gluing map. We see from these

notations that
Fy (0) = F(wy)

from the fact that Vyexp(0)~! = Id, and the fibre derivative of F}, at 0 is
D, := D,F\(0) = DF,, (0): H, — L,

and we know that DF,, (0) is simply the trivialised Fredholm operator of the
form: 5

&JFA()

we analysed in the Fredholm section.

Definition 6.2. With respect to the bundles, (H%?)*> and H we define an
extension of the linearisation of #; as follows:

(H'2)
l /
[0, 00

&p(t), t<—1
(E#n)(t) = 3 Vaexp(f~(Vaexp &), + 7 (Vaexp™'n)_,), [t] <1
n-p(t), t>1

which naturally coincides with D#°.

Our aim is to now find a normal space to T/\/liyz. We already have this
tangent bundle as a subbundle of H 1’2(P;:§*TM )‘ ! 80 we need a concept
of orthogonality to distinguish between these tangeht and normal vectors.
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The key idea is to apply the linearised operator # then project onto the
tangent bundle orthogonally and show that the complement space indeed is
a normal bundle. As we mentioned earlier we also have to appeal to the
contraction mapping principle but we first need to construct an appropriate
contraction map.

Definition 6.3. From our analysis in the transversality section, D, = DF,
and D, = DF, are surjective Fredholm operators for (u,v) € /\/lf X /\/lgz,
and their kernels define the tangent spaces so

(ker)? = U ker D, x ker D,, = (H"?)?

XEK x[po,0)

defines a subbundle of dimension ind(D,) + ind(D,), so we define
Ly = {vy € Hy? = Hy : (o, #,m)3° = 0 for all (€,n) € ker D, x ker D, }

i.e. Li consists of vectors in H, which are orthogonal (w.r.t the L* inner
product) to the range of # | (er)2-

Theorem 6.2. There exists p1 = po such that for p = p; and (u,v) € K the
Fredholm operator, D, 1s surjective and

¢, = Po#, :ker D, x ker D, = ker D, = H,

is an isomorphism, where P is the orthogonal projection onto ker D, given
by H, = ker D, @ (ker D,)* where orthogonal decomposition is with respect

to (-, )02
We conclude from the above theorem that
dim(ker D,) = dim(ker D,,) + dim(ker D,,)
= pu(z) — ply) + py) — p(z)
= (@) — p(z)

Hence since D, is Fredholm,
= ] Iy
X€K x[p,00)

is a finite codimensional vector bundle such that we have the bundle decom-
position

H = Ll S R(#|(ker)2)'
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Lemma 6.3. There exists c > 0 and p > 0 such that

IDx€llr2 = - [[€]lr2
for all p = p and for all € € Li
See [11] for the proof of this technical lemma.

proof of theorem 6.2 . We argue by contradiction. Suppose ¢, is not onto
then there exists £ € ker(D,) such that £ ¢ P(R(#,)). Since span({) <
ker(D, ) so by the decomposition

H = span(¢) @ (span(€))*

we have that R(#,) < (span(£))" hence (R(#y),&) = 0i.e £ € Ly From the
lemma this implies £ = 0, hence a contradiction.
Surjectivity of D, and D, from transversality gives

ind(Dy) = p(z)—p(z) = dim(ker D, )+dim(ker D,) > dim(ker D,) = ind(D,)

hence D, is surjective and so counting dimensions shows that ¢, is indeed
an isomorphism.

[]

In particular we are led to

H =L+ ®ker D, where ker D := U ker D,

x€K x[p,o0)

since if there exists { € ker D such that § ¢ R(#|(ker)2) then as in the above
proof £ = 0. Hence we also see that R(#|er2) = ker D. So L is indeed an
appropriate normal bundle.

As mentioned earlier w, = u#jv is not in ./\/lg;z, so we need to find a unique

section of the bundle, H — K x [p, c) such that exp,, v(x) € M .. Accord-

C(D
ing to our fundamental theorem we also need that exp,, v(x) —= (u,v) as

00
loc

c
p — oo with respect to the compactness property. Since w, — (u,v) as
p — o0 by construction, so it is sufficient to show 7(x) — 0 sufficiently fast
so that the above convergence holds. Since H, = ker D, @ Li and D, is

onto, DX] I L+ = L is an isomorphism so we denote by G its right inverse.
Similar to lemma 6.3, we obtain the estimate:

Lemma 6.4. There exists p; = p1 and a constant d > 0 such that

1Gx&ll12 < dl[€lfo2
for each x € K x [p2,0) and each & € L,
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Considering the Taylor series expansion of F) for s near 0, we have
Fy(s) = F(0) + Dy(0) - 5 + Ny (0, 5)

such that N, (0,s)/||s|[12 — 0 as ||s|l1,2 — 0. A direct computation for z,y
near 0 gives:

Ny (0,2) = Ny(0,9) = (Dx(y) = Dx(0))(z = y) + Ny(y, 2 — )

So we obtain the estimate

[N (0,2) = Ny(0,9)[52 < C ([x][Y2 + [lyl12) 1z —yll2
where C'is a constant. The fact that C'is independent of x is once again due
to the compactness of K and M. Together with the above lemma, we have
the inequality:
|Gy Ny (0, 2) — G Ny (0, )|

)

<d HNX(O>37) - Nx(0>y)Hi)<,2
<d-C(l[=|[{ + [lyI[F2) [z — yllis
and

G EX ) < d [IF(0)[5.2 = d [[F(wy)llo2

for p = po of course.

The following lemma shows that as p — o0, our approximate glued trajec-
tories indeed converge to actual trajectories, i.e. they tend to zeroes of the
map, F.

Lemma 6.5. There exists m > 0 and o« > 0 such that
[F (wy )52 < ce™™
for all p = po and (u,v) € K.

The proof is essentially to observe that for |¢t| > 1, w, correspond to actual
trajectories namely, u, and v_,, hence F'(u,) = F(v_,) = 0. So we need to
analyse this trajectory for [t| < 1. By our choice of asymptotically constant
curves, @ and v, we may reduce the problem in local coordinates at y and
appeal to lemma 2.8 to get the required estimate.

We summarise the estimates we have collected so far:

HGXFX<O)H>1<,2 <ae ™ for p = po

|G N (0, 2) = G (0,9)[[F < dlf2][fo + HlylY2) e —yIR
for x,y € B(0,€) for small € > 0 and where G, = (DX‘LL)*l.
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Lemma 6.6. There exists a unique v(x) € B(0,€) (| Ly such that

Fo(v(x)) = 0 and [[y(x)||fy < d e™

for constants d,m > 0 and p = py.

Theorem 6.7 (Banach Contraction mapping principle). Given a non-empty
complete metric space, (X,d) and a contraction map, T : X — X then T
has a unique fized point, i.e. there is a unique x € X such that T'(x) = z and
moreover it is given by x = lim, o T (x,) for any choice of xo and setting
Le+1 = T(ZEk)

proof of lemma 6.6. We may choose p large enough so that |G, F\ (0)|[{, < §
then we define

¢:H, - H,
x> =G F\(0) — GyNy (0, )

From the second inequality above we get the estimate:

l6(x) — W)l < 2Ce|lz —yll,

By choosing e smaller if needed we may assume ¢ is a contraction map.
Then appealing to the contraction mapping principle, we find unique v(y) €
B(0,€) () Ly such that ¢(v(x)) = 7(x) and together with F, (y(x)) = Fy(0)+
D, (0) - v(x) + Ny (0,7(x)) this leads to:

G Fy(v(x)) = 0= F(v(x)) =0

Moreover,
IVO)IR2 < [Iv(x) = ¢(0)[[F2 + [|e(0)[]X
1
< 5l OOlR2 + 1903,
Le [[Y(0)[Ya < G F(0)[[fy < d e O

By the uniqueness of v(x), we can now define the gluing map by:

UF U 1= eXPyga, V(X)

and from the above lemma F, (v(x)) = 0 hence F(exp,, 7(x)) = 0 so it is
indeed a trajectory in MY ..

The Embedding property

Concerning the embedding property we refer to [11] for the proofs of the
following theorems.
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A~

Theorem 6.8. There exists p(K) > 0 such that the unparametrised gluing
map,
# K x [p(K),0) — M,
(1,9, p) > Ut 0
is a smooth embedding. Here 0 is once again identified with u(0) such that
f(u(0)) = a for some a € [f(y), f(z)] and for u#,0 we may choose an

appropriate Ty, , such that f(u#,0(Tuv,)) = a. (Same for v with some

belf(2), f()])

Theorem 6.9. Given broken trajectories (u,v) € /T/l\gjy X /T/l\gz, for any se-
quence p, — ©, we have

Lo O e s

0
loc

Moreover, for any sequence, W, € M:J;Z such that w,, —= (U, v), there exists

~

N such that for k = N w, € R(#).

Sketch. The proof of the first part is essentially to choose appropriate reparametri-
sation times, 7, such that f(u#,,0 e 7,) = a then as in the compactness
section we obtain:

o8]
loc

. c
Since
Y(xn)(Th)| < c- e -0 as p, > ©

then from our construct of the pre-gluing map and we obtain
ﬁ#pnﬁ °7, — ﬂ#;nﬁ o7, — U(Ty — pp)

here convergence is pointwise and so w = u by uniqueness of limit. Choosing
another appropriate sequence of reparametrisation times we get the result
for v. .

For the second part, it suffices to observe that if w, Cee, (@, 0) then it
eventually lies in a neighbourhood where lemma 6.6 works. Then by the
existence and uniqueness of a fixed point and the fact w, is a solution, it

must be in the range of #. m

So we have finally proved the fundamental theorem 6.1 stated at the begin-
ning of this section. Since M/ _ is a p(x) — pu(2) — 1 dimensional manifold,

T,z
so for critical points of relative Morse index 2, Mgz is a boundaryless 1-

dimensional manifold, so that each of its connected component is either dif-
feomorphic to S* or (—1,1). If it is diffeomorphic to the circle then there are
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no broken trajectories since it is in fact a closed manifold. On the other hand
if it is diffeomorphic to (—1,1) then we know that it has a compactification
by broken trajectories corresponding to ends {0} and {1}. In fact there are
exactly two distinct broken trajectories since working in a neighbourhoods
(—1,—1+¢) and (1 —¢, 1) and appealing to the existence and uniqueness of a
solution in each neighbourhood we deduce that both glued trajectories must
be distinct. We make this observation into a definition which will be crucial
to prove that 0% = 0.

Definition 6.4. Let ./\A/l:{z denote the set of simply broken trajectories with
p(x) — u(z) = 2 and define the equivalence relation

(@11, 01) ~ (lig, Da) <= (A, 01) ~ (2, 02) in MI,

where a pair of broken trajectories are equivalent if when glued in /T/l\iz they
belong to the same pathwise connected component or put differently they are
equivalent if they correspond to the ends of the same connected component.
From the above observation, each equivalence class contains exactly 2 ele-
ments. This equivalence relation is called the cobordism equivalence since the
broken trajectories correspond to disjoint boundaries of a connected compo-
nent of MI _ and are one dimension lower. Also note that this set is finite.

T,z
We now still need to consider the h®’-trajectories and A-parametrised tra-
jectories.

In the h®3-trajectories situation there are two additional possible type of
gluing that needs to be considered namely gluing of trajectories where one
depends on the homotopy and the other one on either f* or f* and the case
when both trajectories depend on the homotopy. We shall once again restrict
to relative Morse index 2. For the first case, there are two possible types of
broken trajectories, MJx  ~x MZ:Z , and MQZZB X ./\/lic‘;,yﬁ. The analysis is
similar as in the time-independent case. The difference is essentially in the
definition of the pre-gluing map. For the first type of broken trajectory we
define:

ng(t), t < —p+ 1
u#ovp(t) = 3 exp,, (B, [exp, ! (u)]a, + B [exp,(va)])(t), [t —p| <1
vn(t), t=-p+1
and second type:
Uh<t), t < P — 1
unu(t) = 4 exp,, (B, [expy; (un)] + B [expy; (v)]-2,) (1), [t —p| <1

v_2p(t), t=p+1
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Notice here that a time-shifting by the gluing parameter, p is only carried
out at the time independent trajectory. Then by analogy we obtain the
corresponding gluing theorem:

Theorem 6.10. For a compact set of simply broken trajectories K c /\74‘3% X
MZ:ZB we can find py and a smooth embedding map, # such that

# K x [pg, 0) — M
(117 Uhap) e (a#pvh)

0
loc

and once again as p, — 0 we have U#, v, —=> (4,v,). [Same for K <

hes Vil
M X fog,yﬁ ]

ZTa,Zg

Coming back to the second situation, i.e. when (uqg, us) € MEE s M

Ta,Tg Tg,T
we define in this situation the pre-gluing map by ’
Uuas(t + R), t<—1
(uas#rvs,)(t) = § expy, (B [expy, (uas)]r + BT [expy; (vs,)]-r) (), [t <1
VB~ (t - R), t>1

Moreover in this case the gluing map, #pg also determines the codomain,
ay

h )

M;E . and as such we need to define an appropriate homotopy:
o hP(t+ R,-), t<0

Wg (t) = 8

h V(t_RW)a t=0

We again have the same embedding property for the gluing map in this
situation. An important consequence of this, which we shall use to prove
independence of our chain homomorphism corresponding to different Morse
functions, is stated as follows:

Theorem 6.11. For isolated h-trajectories, i.e.

(o) = plxg) = p(zy)
there is an R > 0 such that the gluing map

045 B ~ [e%
Hp MY MPTT S M

Lo, XB Z3,Ly Loy, Ty

s an isomorphism.

To conclude this section, we state the gluing theorem for A-trajectories.
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Theorem 6.12. Given a compact set, K c Mi,yﬁ X ./\//\155726 of mized simply

broken trajectories and \-trajectories, (A, uy,0) then there exists po > 0 and
a smooth embedding map,

#1 K x [pg,0) — M

Ta,Zg
(()\,U)\),?A},p) = ()\,U)\)#ﬁlf} = ()\,U)S\)

00
loc

such that for any sequence p, — o, we have w; —=> (uy,d) and A\ — . [

Same for //\/\liz’y& x MH ]

Yo 28



7 Orientation of Space of Trajectories

The analysis carried out so far enables us to define the Morse Homology over
the finite ring, Zy = {0,1} but in order to extend our homology theory to
the ring of integers, Z we need the concept of orientation. Recall that an
orientation of an n-manifold is just a choice of a volume form, i.e. a nowhere
vanishing section of the bundle, A"(T*M). To define an analog concept of
orientation on our space of trajectories, we first observe that each trajectory,
u e C®(R, M) has an associated Fredholm operator, Dy F (u). We shall define
an orientation concept using these Fredholm operators. Since this section is
quite long, we first give an overview of the main ideas involved:

We start by defining an orientation concept for a general topological space
which has a Fredholm operator associated to each point. This is done by
constructing a determinant bundle which provides an analog to the top ex-
terior power of the cotangent bundle. An orientation is then defined a non-
vanishing section of this line bundle. Then looking at the trivial case, there
exists an orientation that we can define on O, € ¥ since it is contractible.
We define a gluing map of these Fredholm operators in different classes in
such a way that it induces an orientation on the target class which is inde-
pendent of the actual gluing map and which obeys the rule of associativity.
We then move on to the non-trivial case where we have that each trajectory,
u has an associated Fredholm operator, D,. We construct suitable triviali-
sations that enable us to transfer to the trivial case in a coherent manner.
Then we show that the concept of gluing of operators developed in the trivial
case is actually compatible with the gluing map constructed in the previous
section. Finally we show that there indeed exists a choice of orientation that
is coherent w.r.t all the equivalence classes.

Definition 7.1 (Quillen’s Determinant Bundle). Given finite dimensional
vectors spaces, E and G, we consider their exterior maximum power deriva-
tive, i.e. A™*E = A™E)E which is a 1-dimensional vector space with basis
{ex A ... A en} where, {e;}l | is a basis for E and define their determinant
bundle by
Det(E,G) := (A" E) ® (A">G)*

where V* simply denotes the dual of V. For a Fredholm operator, F €
F(X,Y) we define

Det(F') = Det(ker(F), coker(F'))

Notice that due the Fredholm property, Det(F') is well-defined. So given a
continuous function, f: Z — F(X,Y) where Z is a topological space, we can
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define a fibre, Det(f(z)) at each z. However we cannot immediately deduce
that this indeeds form a line bundle on Z.

Remark:

If there exists an open neighbourhood, U < Z such that dim(ker(f(z))) is
constant for z € U, then since the Fredholm index is locally constant it follows
that dim(coker(f(z))) is constant as well. Then

U{z} x ker(f(z)) = U and U{z} x coker(f(z)) = U

2€Z 2€Z

are vector subbundles of Z x X and Z x Y respectively, where the cokernel is
naturally identify with the complement of the R(f(z)). Since for each z € U,
ker(f(z)) = R¥, where k is independent of 2, we naturally obtain a smooth
trivialisation, ¢ : 771(U) = U x Rk, similarly for coker(f(z)). So Det(f)
indeed defines a line bundle on Z.

If f(2) does not have a locally constant dimensional kernel, then we use the
following trick:

Since f(z) is Fredholm, it has a finite codimensional range, say with basis
{y1, ..., Yyn} so we define a linear map, ¥ : R" — Y by ¥(e;) = y;, then

~

Folz) R"x X > Y
(h, k) = ¥(h) + f(z) - k

is Fredholm since 1 is trivially a compact operator (see property 3 of Fred-
holm operators) and also f,(z) is surjective hence coker(f,(z)) is trivial.
Since surjectivity is a regular property (proof is similar to isomorphism be-
ing regular) and the Fredholm index is locally constant, we can find a neigh-
bourhood, U(z) of z such that fw|U(z) is a surjective Fredholm operator of
constant index for any y € U(z), we further define

foly) : R"x X - R"xY
(h,k) = (0, fy(y))

so ker(fy(2)) = ker(fy(2)) and coker(fy(y))) = R". We get the following

exact sequence:

0 — ker(f(y)) > ker fy(y) <2 R™ > coker f(y) — 0
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where dy (k) = (0, k), do(h, k) = h, and d3(h) = ¢(h) mod R(f(y))
since ker(d;) =0
R(dy) = 0@ker(f(y)) = ker(dy)
R(dy) = {heR": 3 k s.t fu(y)(h, k) = 0} = ker(ds)
R(ds) = coker(f(y))
We conclude with the following lemma:

Lemma 7.1. Given an exact sequence,
0B % B — . 25 0
(Amain) = ®Z Odd(Amain)

Sketch of proof. Choose a basis for F; and extend by exactness to a basis of
E5 and repeat. Then there is a natural choice of an isomorphism which is in
fact independent on the choice of basis. n

there is a canonical isomorphism, ¢ : X)

1 even

~

A" ker(f(y)) @ A"R™ — A" ker(fy(y)) @ A™* coker(f(y))

Multiplying both sides by (A™** coker(f(y)))* ® (A™R™) and using that
(A™>V) @ (A1 )* xR by E®@n* — n*(§) and VW = WV, we get:

A" ker f(y) @ (A" coker f(y))* = A™ ker f,(y) © (A"R")"

ie.  Det(f(y)) = Det fu(y)

so Det(f(y)) defines a line bundle on Z, since by the above remark Det( fy(y))
does. We can now define an orientation of f.

Definition 7.2. An orientation of f : Z — F(X,Y) is a non-vanishing
section of the determinant bundle, Det(f) — Z.

Returning back to our situation we have that each trajectory, v has an asso-
ciated Fredholm operator, namely DF, which we can now use to construct
an orientation on this space of trajectories. As in the section of Fredholm
analysis, we will first develop the orientation concept for the trivial bundle,
R x R™ and use a trivialisation to transfer it to the non-trivial case in way
that does not depend on the choice of trivialisation. The main hurdle in our
situation is that we need an orientation concept that is compatible under
the gluing operation. We will henceforth use the same notation as in chap-
ter 3. From lemma 3.4, we may choose asymptotic representatives for each

contractible class, Op, = O(A~, A").
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Definition 7.3. Let K,L € ¥, where K = % +Aand L = % + B with
A, B being asymptotically constant with K+ := A* = B~ =: L™, we define a
gluing of operators K and L by:

K#,L = Fy € O(K, L")

Alt+p), t<0
A"(t):{A(t—g), >0

Vp = po(K, L) such that A(- + p)|j—1,400] = AT = B~ = B(- — p)|[—c0,1] under
the asymptotic assumption.

It follows from our definition and theorem 3.5, that

ind(K#,L) = u(A”) — u(BY) = u(A™) — u(A%) + u(B™) — u(B*)
= ind(K) + ind(L)

Clearly the class, Oy, does not depend on parameter, p but only on the
asymptotic behaviour of the operators. If we define the index and gluing
operators on the equivalence classes, O, then the above relation can be
written as

+ o (ind,ind) = indo #

In words, the sum of the indices is equal to the index of the glued (asymp-
totically constant) operators. Hence we consider the determinant bundle on
the equivalence classes, ©p, defined by

Det F— O(K*, K™)

where F': O(K~, Kt) — F(X,Y) (which we showed is continuous) such that
F(A) = Fy4, more explicitly, A — (%4—14(75) with A* = K*. Since (K™, K)
is contractible any fibre bundle over it is trivial, in particular, Det F is a
trivial bundle, i.e. there exists a non-vanishing global section, hence these
determinant bundles are indeed orientable.

As mentioned above we need to show that given arbitrary orientations of O
and Op, these induce an orientation of ©g4 ; and furthermore, this orien-
tation does not depend on the choice of class representatives.

From lemma 3.4, we know that each equivalence class is contractible, so given
K° K' € Ok, we can define a homotopy, K7 : [0,1] x O — O (similarly
for ©p).
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From our previous construction, given K7, L™ € F(H"?(R), L*(R)) with
K™ = L™, we can find a linear maps, 7 : R¥ — L? such that:

Det(K.) = Det(K") and Det(L;,) = Det(L")

Moreover, we can assume that /7 (a) € H%?(R) has compact support for each
a € R™ since we know that K Ty~ 1s a surjective Fredholm operator and hence
there exists € > 0 such if ||[K7y — F||; < € then F is a surjective Fredholm
operator. So it suffices to replace ¥7(a) by 97 (a) for an appropriate cut-
off function, § such that we can take F = K74,-. Note that since [0,1] is
compact and K7 is continuous, we can choose 3 and € independent of 7.

Definition 7.4. With consideration to the extension to surjective Fredholm
operators, we need to modify definition 7.3, with compact support assumption
on Y7, and again due to the compactness of [0,1] and continuity of K, we
can choose py large enough such that for p > po(T),

K. #,L7 :RFxRF x X > Y
(a,b,8) = (K"#,L7) - s + 7 (a)(- + p) + ¢¥7(B)(- — p)

Theorem 7.2. Noting that R¥ x R¥ x X is a Hilbert space, we define an

orthogonal projection, P} onto finite dimensional subspace, ker([A(;T#pLATW)

such that for p > ps > py, [Aqﬁ#pﬁl} 18 surjective and the following map 1is
an 1somorphism,

¢, = Py o, : ker IA(;T x ker IA/;T = ker([gﬁ/ﬂ#pf/;f)
((a,u), (b,v)) — PpT(a, b,u, +v_,).

Proof. The proof is identical to theorem 6.2, by replacing D, D, and D, by
K-, Ly and Kj.#,Ly. O

Hence this induces the isomorphism :
(A™™ker K7,) ® (A" ker L],.) = A™* ker(K[.#,L]) (3)
from previous construction, we also have:
Kl -#,L7 R* x R x H"* — R* x R* x L?
(a,b,u) — (0,0, (K- #,L7-)(a,b,u))

which is equivalent to K- #,L;. = (KT#,JLT)M@MP. We also see that:

coker(K 7 #,L7.) = R* x R* for p > ps
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Using the canonical isomorphism:

~

(Amaka>* ® (Amaka>* = (AmaXRQk)*
WRN—>w AN

and multiplying (3) by (Am®>RF)* @ (AmXRF)* we get
(A" ker K7 ) ® (A" RF)* @ (A™* ker L], )* @ (A™*R")* = Det(Ky#,Ly)

= Det(K7) ® Det (L] ) = Det(K [ #,L7-)
So we obtain an isomorphism:

Det K™ ® Det L™ = Det(K™#,L")

The above also gives us a vector bundle isomorphisms on [0,1] 5 7, hence
this shows that induced orientation is actually independent on our class rep-
resentatives. So to summarise we have defined a gluing operation for asymp-
totically constant operators which is compatible with our orientation concept
and which does not depend on the actual representatives. Using similar tech-
niques as above, we can also prove that the orientation induced by our gluing
map is an associative operation as well. We now give the conclusion of our
analysis as a theorem :

Theorem 7.3. Given asymptotically constant operators, K, L such that K+ =
L~ and orientations, ox and oy, of the determinant bundles, O and Oy, re-
spectively, then for all p > po

#,:(K,L) — K#,L

induces an orientation on Oy, denoted by ox#or which is independent on
the representatives, K, L and furthermore,

(ox#or)#om = ox#(orF#om)

So far, we have been able to define an orientation concept on trivial bundles
which is compatible w.r.t the gluing operation. As stated earlier, we now
want to transfer our results to the non-trivial bundles, i.e. the pullback
bundles given by the smooth trajectories in M. One of the problem we
run into is that if 2 trajectories have the same endpoints, then we need
to know how the pullback tangent spaces at the endpoints are related in
order to define a compatible orientation at these points. More explicitly,
say u(£o0) = v(+o0) then by reparametrising we have that u o v is a loop,
where #(t) = v(—t). If (uo0)*TM =~ S' x R" then we can find a canonical
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orientation, however it may also happen that this bundle is not trivial, i.e.
we obtain a Mobius band. Moreover, we also have to take into account that
each Fredholm operator, Dy F'(u) is associated with a trajectory, u, so need
to define an appropriate equivalence relation taking into consideration the
trajectories. We denote X, +7ar+v as in definition 3.6 simply by X sra.

Definition 7.5. Let K € Yy«7) and L € Yyxryr, then we define an equiv-
alence relation by (u, K) ~ (v,L) if and only if u(£oo) = v(+w) and
K*=1L%¢ End(Tu(io@)M).
Given trivialisations,

by u*TM S R x R”

similarly for ¢,. We say ¢, and ¢, is an admissible pair for (u, K) ~ (v, L)
of

1. ¢u(—0) = ¢p(—0)
2. ¢u(+0) - ¢ (+00)7t = diag(+1,1,...,1) € GL(n,R) and

3. the trivialised operators are equivalent, ¢p,K¢,' ~ ¢,Lo; !, i.e. they
agree at infinity.

Remark: There always exists an admissible pair. If ¢ : (uov)*TM =~ S'xR",
then letting ¢, be the restriction of ¢ to the half loop defined by u and ¢, be
the restriction to the other half loop and with an appropriate reparametrisa-
tion, we see that ¢,, ¢, form an admissible pair with ¢, (+w0) = ¢,(+00). On
the other hand, if we have a Mobius band, then due to the “twist”, we can
simply fix ¢, (—0) = ¢,(—0) then “untwist” at the other endpoint by mul-
tiplying by diag(—1,1,...,1), i.e. either ¢,(+00) = diag(—1,1,...,1) ¢,(+0)
or diag(—1,1,...;1) ¢y(+0) = ¢,(+00). (We can think of this as adding a
twist to the Mobius band in an appropriate manner so that it undoes the
original twist).

These admissible trivialisations allow us to transfer the orientation problem
on the non-trivial bundle to the trivial case, more precisely, these trivialisa-
tions induce an orientation on the non-trivial bundle which is independent
of the actual choice of admissible trivialisation. We will assume throughout
the rest of this section that K and L are equivalent.

Theorem 7.4. Let (¢,v) and (¢',1') be admissible pairs for (u, K) ~ (v, L)
and let ox and oy, be arbitrary orientations of Det(K) and Det(L), respec-
tively. We may trivialise the sections by ¢(ox) = 0px -1 and (or) = Oyry—1.
Then

d(ok) = Y(or) - o, where v is a strictly positive function on © g1
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if and only if,
¢'(ox) = Y'(or) - B, where B is a strictly positive function on © gy

i.e. ¢lox) ~ (o) < ¢'(ok) ~ ' (or)

Hence we conclude from this theorem that an admissible pair induces a unique
orientation on an equivalence class, [u, K] i.e. it suffices to orient any L €
[u, K], then this will orient all the other elements. Equivalently, for any
admissible pair, (¢, ),

ok ~ op < ¢(or) ~Y(or).

Sketch of proof. Suppose ¢(ox) ~ (o). We want to show that ¢'(ox) ~
Y (or) equivalently ¢'¢~d(ox) ~ ¢/'vp~'(or). So it is sufficient to show
that det(y)'1¢/¢1)(£o0) > 0 and that a(ox) ~ ok for a(t) e GLT i.e. it
is invertible and has positive determinant, where L = a - K - a~! (the exis-
tence of this « is from the fact that they are equivalent). By our admissible
assumption, (' 1¢'¢p71)(—o0) = Id and since it varies continuously and is
never singular hence it is in the connected component GL*(n) and hence
("=t ¢'~1)(+o0) = Id as well. For the second part, we may assume that
a(+o0) = Id by row reducing. Furthermore we may assume K = % + Id and
that

cos(f) sin(6)
sin(f) cos(6)

0 Id

at) =

where (t) € C°(R,S') is asymptotically constant. (See [11] for details of
these assumptions)

Then
0 —1
0

0 Id

aKy=a - K-a'=K+0-

Since ||0]]o.2 < +9 and K is an isomorphism by reparametrising o(t) we may
assume that [|[K —a - K- a7 ||z < [|0]]oz2 is small enough so that o(K) is an
isomorphism and so induces an isomorphism on the orientations.

]

We now need to induce coherent orientations w.r.t gluing of paths, i.e. given
orientations for 2 classes, we need to induce a compatible orientation on the
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glued trajectory. So we need to look once again at our pre-glued trajectories,
uF#ov(t).
So let u(+00) = v(—w) = y, then since our manifold is compact, we can
always find a normal neighbourhood, U(y) then by means of a coordinate
chart, I' = G o exp, ! where G is an isomorphism of the tangent space at y
and R™ we have:

r: TM‘U(y) — U(y) x R"

By assuming that u(—1, +o0],v[—o0,1) < U(y), the above trivialisation by
restriction to the trajectories of u and v in U(y) induces trivialisations:

¢ ulfy o TM = (=1, +0] xR" , ¢ :off ) TM = [—o0,+1) x R"

then we may extend these to trivialisations ¢ and v on v*TM and v*T'M
respectively. This can be done for instance by choosing a smooth function,
f which is 1 on [—00,—2] and 0 on [—1,0] with 5 < 0 on (=2, —1), then
defining o1 = 3 - ¢! + 5_1 for a smooth trivialisation ¢, that agrees with
¢ at —1. So we define gluing for trivialisations, ¢ and 1 as follows:

o#o + (uo0) TM = R x R

ot +p), t<-—1
d#(t) = { Tugooys |t} <1
Pt —p), t=+1

In essence, for the ends of u and v close enough to y we glue them by means
of the pre-gluing map which as we saw in the last section coincides with u
and v for |t| > 1 then since I" is compatible with the charts, ¢ and ¢ by the
above construction, so we have a natural definition for trivialisation of the
pullback bundle by the pre-glued trajectory that coincides with ¢ and .

Definition 7.6. Let K € ¥ «ry, L € Xyxpr and we denote their trivialisa-
tions by K, and Ly, respectively. Observe that

(Ko = 000 + ) (2 + Axlt + 0)olt + )" = (K,),

In order to define a gluing of operators as in the trivial case, we want them
to be asymptotically constant at those ends, so we choose asymptotically con-
stant representatives by:

0

K¢asza+5i'AK¢+B+'A?(¢E@K¢

0
Lwas:§+ﬁ_‘Az¢+6+'ALwe®L¢
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and clearly Kpos(+0) = Lyas(—®0). So since we already know how to glue
trivial asymptotic operators in a way that is compatible with orientation (the-
orem 7.3), so we have an isomorphism:

Det Kgas % Det Lyqs = Det (K pas# Lipas) (%)

We may simply define gluing of operators by gluing of their constant repre-
sentatives since in view of theorem 7.4 this is sufficient to orient

®K¢#2L¢ = @K¢a.s#pL1/;as )

i.e. we write Ky#oLy = Kyas#tplupas for p = 1. By (%), the induced orienta-
tion does not depend on our choice of asymptotic constant representatives.
So we can now transform back to the non-trivial bundle by,

K#ZL = ((b#zw)il([(ﬁs#;[’l/))((b#zw) € Z](u#;’,ﬂu)*TM

To summarise:
We have constructed a gluing operation
#p 0 [u, K] x [v, L] — [ugfpo, K~ L] = [u, K]#)[v, L]
which induces a canonical orientation o(u#9v) on the class [(u#5v), (K#L)]

by o([u, K]) and o([v, L]) from (). Moreover from the trivial case, we also
have the associativity property:

(o([u, K])#o([u, L]))#o([u, M]) = o([u, K])#(o([u, L])#o([u, M])).

We now state the results for the trajectories solving F(u) = o+ Vfou =0
with the associated Fredholm operators,

D, : H*(u*TM) — L*(u*TM)

which is simply the linearisation of our operator, F' in local coordinates at
u and in a trivialisation of the Banach bundle, L? (as already seen in the
gluing section). Also recall that we showed that these Fredholm operators
are actually surjective, i.e. coker(D,)* =~ 1* for both the time-dependent
and time-independent trajectories.

Note that in above analysis, we defined a gluing operator, #° for Fredholm
operators, we still need to verify that this orientation is indeed compatible
with the actual trajectory gluing, #, since the glued trajectory already has
the associated Fredholm operator, D4 ., i.e. we need to show that the
orientation associated to [u#,v, Dug,] agrees with [u#ov, Dy #9D,].
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Theorem 7.5. Considering the gluing map,
Mgy x M, . 3 (u,v) — uF,ve M,,
given orientations, o|u, D,] and o[v, D,], the isomorphism
D#, : Det(D,,) ® Det(D,) = ker D,, x ker D, = ker D,z ., = Det(u#,v)

induces the same orientation o[u#,v, Dy .| as o[u, Dy,]#o[v, D,] and more-
over,

[u#pv7 Du#pv] = [U#ZU, Du#ZDv]

The proof consists of first showing that trajectories u#,v and u#jv are ho-
motopic and that this homotopy induces an isomorphism of Det(D,4 ) and
Det(Dyysy). Hence [u#,v, Duy,o] = [u#5v, Dyys,] have the same orienta-
tion. Then we verify that [u#{v, Dugs,| = [u#,v, Du#,D,] by constructing
a homotopy of isomorphisms to our above defined gluing operator. The
reader to is referred to [11] for details of these constructions. A similar anal-
ysis leads to the corresponding result for the time-dependent trajectories.

With regards to the A\-parametrised trajectories, we have to consider G**(\, ~)
(defined in the transversality section). Although DG is a surjective Fred-
holm operator, DG is not always surjective. So we once again use lemma
7.1 and the exact sequence:

0 — ker(D;G*%) & ker(DG™?) 2 T,[0,1] = R %> coker(DyG?) — 0
to obtain the isomorphism:
Q : Det(DyG*?) = Det(DGY) = A™>(DG?)

Hence w.r.t the Fredholm operator, Dy F,, = D,, € ZuiTM, where uy is a
A-parametrised trajectory, we once again have that the orientation induced
by Q and that induced by the gluing operator we defined are compatible:

Theorem 7.6. Considering the gluing map,
ME e M5 (A, up),v) — (/\,u,\)#fv = (:\,w;) e M

ZTaYp Yps28 Ta,Yp

gwen orientations, o[uy, Dy, | and o[v, D,] then the isomorphism induced by
Q induces the same orientation as the one we defined, i.e.

O[U’Xv Dw;\] = O[UA’ DUA]#O[’UA) D’l})\]

and moreover,
[an Dw;] = [UA#ZU> DU,\#ZDu]'
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The proof is similar to the previous one but by taking into consideration the
surjective operator, D*? then using  to transfer the orientation to DyG*?.
See [11].

We now want to orient the equivalence classes in such way that their orien-
tations are compatible with gluing. The picture to have in mind here is that
M, x MIand M, x M, both consist of broken trajectories that can
be glued into the space Mj;z, so we need to verify that there exists choices
of orientations such that the induced orientations are coherent, i.e. there is a
choice of orientations on these four spaces of trajectories so that when glued

the induced orientations are the same on M/ _.
Definition 7.7. Denote by
A:={[u,K] :ue C?(R,M), Ke Xy}

the set of all equivalence classes of Fredholm operators along compact curves
joiming critical points of some Morse function, f. Then any map, o which
picks an orientation olu, K| of each class [u, K| is called coherent if it is
compatible with the gluing operation, i.e.

olu, K|#o[v, L] = o|u#v, K#L]
We denote Cy = {0 : 0 coherent}. Let

D={f:A— {1} f([u, K]#[v, L]) = f([v, K]) - f([v, L])}
be the group acting on Cp by

I % CA — CA
(f,0)- ([U,K]) = f([uv K]) : U[U7K]

Note that I' is indeed a group with group operation, fog = f - g, inverses,
fl=—fandId = 1.

Theorem 7.7. Cy # O, i.e. there exists coherent orientations and I' acts
freely and transitively, i.e. all the stabilisers of Cy are trivial and any two
coherent orientations are related by some f eI

Proof. Cy # @ We give a constructive proof. Consider the constant trajec-
tory, ug(t) = xo € M then the associated Fredholm operator, Ky = D, €
yrra is given by
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with A e C*(End(uiTM)) being the Hessian of f at critical point, x¢. Hence
A is an isomorphism, so Det(D,,,) = A°{0} ® (A°{0})* = R® R* so we may
orient [ug, Dy, ] by 1 ® 1*. Let

S* ={[u,K] e A :u(+x) =z}

and fix an orientation, o[u, K] for each element of S~. We also have S* =~ S~
by [u(t), K—, K*] — [u(—t), K*, K~]. So the relation

olu(—t), K*, K~ |#o[u(t), K~, K*] = o[ug, K|

(since K™ = Kj) fixes an orientation for each [u(t), K—, K] in S*.

Now considering

[V, Ko, K] € S~ with v,(+20) = u(—0)
[w,, K, Ko| € ST with w,(—o0) = u(+00)

By the associativity rule, we already have an orientation on [u, K] given by

O-[qu KCH K_]#O'[U, K]#O-[w’lm K+7 KO] = J[UO]'

So by repeating this process we have actually constructed a coherent orien-
tation, 0. To summarise, we start at a critical point and choose arbitrary
orientations for curves starting at that point, then this fixes an orientation
for curves ending at that point. Using the rules of associativity, we construct
a coherent orientation on A.

[' acts freely By the above construction and the definition of I', it is clear
that

f([u, K])o[u, K] = ofu, K] < f([u, K]) =1
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[ acts transitively Let 01,09 € Cy and let o7 = f - 09, where f : A — {+1},
then a direct calculation and using that f2 = 1 shows that:

UI[U7K]#O-1[U7L] = f[U#U,K#L] ’ f[u7 K] ’ f[U, L] ) 0'1[U, K]#Ul[va L]

= flu, K] - flv, L] = flu#v, K#L] ie. fel
]

This concludes the section of orientation of our Banach space of trajectories.
We are now in position to define the Morse homology over the ring of integers.



8 Morse Homology

In this chapter, we shall use all the results obtained from our analysis in
previous chapters to define the Morse homology and show its independence
on the choice of Morse function. As a result we obtain Poincaré Duality
theorem as a simple corollary of this invariance. In order to make appropriate
sign choices in our construction, we need to consider, in contrast to coherent
orientations, canonical orientations of the Fredholm classes, [u, K] € A for
isolated trajectories. We shall use the natural notations u, wuj, and (A, uy) for
the each three types of trajectories.

1. Time independent case, MI  with p(z) — pu(y) =1

Mg;y is a 1-dimensional manifold with Tung = ker D,, and recall
also that D, is onto hence it has a trivial cokernel. We may thus find
a canonical orientation by

0# —Vfou=ueckerD, = Det D,

since F'(u(t)) = 0 implies % is in the kernel of the linearisation of F.
Also % is invariant under reparametrisation by the 1- dlmensmnal time-
shifting. So we denote this canonical orientation on /\/l by []. (The

other possible choice naturally being u)

2. Time independent case, ./\/lx v With pu(xa) — p(ys) = 0

We still have that D, is onto and since the relative index is zero, ker D,
is trivial as well. Hence Det D,, =~ R®R*. So we choose the canonical
orientation, [1 ® 1*].

af
3. A-parametrised case, ./\/lf;,yﬁ with p(z) — u(ys) +1=0

Although we have that DG®? is onto, DG in general is not. So we
once again use the canonical isomorphism constructed in the previous
chapter,

Q : Det D,G*P = A" ker DG?

. HYP . . .
where D,G*? = D, € Surryr- Since Mazly, is a 0-dimensional mani-

fold and DG®? is onto so it also has a trivial kernel and hence we get the

af
canonical orientation 1 ® 1* on T} ,\,M)ng,yﬁ. The index formula from
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theorem 4.9 also implies that dim(ker D,,,) = 0 and dim(coker D,, )
1. Recall that DG = DG + DyG*P and it is onto so coker(D,, )
R(D;G*?). Hence we obtain the canonical orientation 1® (D;G*- a—a/\)
on [uy, Dy, | in P,

lle

*

These canonical choice of orientations define the coefficients (in Z) that arise
w.r.t the boundary map, 0.

Definition 8.1. Given a fixed coherent orientation, o € Cy, we define the
characteristic signs, T(u) associated to the isolated trajectories considered
above by:

1. T(@)ola] = [a]
2. 1(up)olup] = [1® 1%]
3. 7(ug)oluy] = [1® (DG - %)*]

So 7(u) are the signs (£1) that arise by comparing a coherent orientation
and the canonical orientation. We are now in position to define the Morse
Chain Complex. From now on we shall denote all three types of trajectories
by u as long as there is no risk of confusion.

Definition 8.2 (Morse Complex). Let f € C*(M,R) be a Morse function
and denote by Crity(f) its critical points of index k and the free abelian group
over 7 generated by Critg(f) by Cy. Given a coherent orientation o € Cy we
define the boundary maps,

Ok : Cr(f) = Cr-a(f)
T Y )y

yeCritg—1(f)
where
> 7(@), if plx) —ply) =1

<ZE, y> = aeﬂi,y
0, otherwise

So (x,y) in fact counts the number of (unparametrised) trajectories joining
x and y (which is finite by compactness of M ) with coefficients determined
by the characteristic signs. The chain complex is written out as,

8k.1 0 ak—l 0
+ > Cpp1 — Cp =B Cpoy — - 5 ()

Note that here Cy, =0 for k = (n+1).
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We shall prove the fundamental theorem of this article:

Theorem 8.1. For any fized o € Cy, given Morse functions, f® and f?,
there is a canonical isomorphism

L Ho (%) = Ha(f7)
which satisfies the relations,
1. {0 @)’ = )"
2. ¢¢* =1d
3. @ = (o)~

Hence our homology theory is in fact independent on the choice of Morse
function. We first need to check that our boundary map indeed satisfies
0% = 0. A direct computation gives:

FPr=a| Y, &y

yeCritg_q f
= ) Y. e yr= ), >, T@7(®):z
z€Crity_o f yeCrity_1 f z€Critg_o f (ft,ﬁ)EMz,z

) > > r(@)r@)z

z€Critk—2 f [(2,0))e My, /~ (@0)E[(E,D)]

where the last equality follows from the fact that MN can be decomposed into
equivalence classes where each class consists of exactly two broken trajectories
corresponding to the opposite ends of the connected components of M{;Z.
Hence if we were working over the finite field, Zy then we could immediately
conclude that 02 = 0. To reach the same conclusion, we need to show that

7(w)7(01) = —7(Us)7(v2)

for 7(@,)7(01) and 7(u2)7(0s) corresponding the opposite ends on a connected
component. By the theory of coherent orientations, we have

olu|#o[v1] = olu#01]
= ol D]
= olts]#o[02]
where the second equality is due to the fact that u;#v; and us#wvy belong to
the same connected component of M/ _ and as such have the same orientation
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induced by o. From our definition of the characteristic signs we also have the
relation:

[@:]#[0:] = 7(@0;)7(0;)o[A;]#o[5:] for i = 1,2
So we need to look at how the gluing operation, #/, transforms the canonical
orientations. Recall the isomorphism given by :

A7£7yxRiM£7y
(a,7) > U, =u(-+7)

Given broken trajectories in M\;Z (connected component), we can find € > 0
and a gluing parameter, py such that the following diagram commutes:

A ) #
{t} ey X {0} (e — M2,
@T l/R

(pO — € po + 6) L) M\g,z

where, ¢(p) = (Up—pys Vpy—p) (this corresponds to a shifting by p as in the def-

inition of the pre-gluing map) and ¢(p) = '&%E\p@. Moreover, we also consider
the diffeomorphism given by:

¢: M2, 5 (~1,1)

We now look at the canonical orientations:

Given % € Ts,(—1,1), we obtain e = ;1% € T¢(p0)/\//\lg,z' Then the time-
shifting invariance induces the orientation vector (e, Z) on M2_. On the

other hand, the vector a_ap € T,y (po — €, po + €) (note that this corresponds to
the direction p increases, i.e. convergence to broken trajectories) is mapped

o
T,z

to the orientation vector, w*a% € T¢(p0).KA\ and to the orientation vector

(@, =) on {U}(—ce) X {V}(—c,) Dy ®. So by commutativity, #,, identifies
(@, —0) with (¢*a%, £). So to study the change in orientation given by #,,
it now suffices to compare e and @b*a% or equivalently, % and (¢ o w)*a%.

If ¢(i#,01) — 1 as p — o0 and ¢(Ue#,02) — —1 as p — .

then £ is identified with a% for (fi1,1) and —£ is identified with a% for
(g, 0g).

This can be viewed as:
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where the arrows on the broken trajectories correspond to the canonical ori-
entation (u, —v) and the opposite pointing arrows correspond to the direction
of convergence of unparametrised trajectories as p — o0, i.e. a_ap- So we deduce
that the gluing operation induces opposite signs on canonical orientations,
ie.

hence do 0 = 0.

The next step is to define a chain homomorphism between the chain com-
plexes associated to two Morse function, f* and f”. It is here that the h®5-
trajectories will prove to be useful. We define for these trajectories:

Coy s Celf*) x Cu(f7) > Z

2 7(w), if p(za) — p(zg) =0
(Ta; Tp) = UEMgz?zB
0, otherwise

By analogy to our definition of the boundary maps we define the chain ho-
momorphism by:

O Cr(f*) = Cil(f*)

q)ga(xa) = Z <x0m $ﬂ> g

zgeCrity (fP)

We need to verify that the diagram:

Cr(f*) === Cr1(f)

B
o] |,

Cu(f?) —Z O (f7)
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commutes, i.e. 0% o @ia = CID’,fa o 0% So from this relation we see that ®
induces a well-defined map in homology.

Sketch of proof. A direct computation gives

(o bl — o)y = Y [Z 3 Z T (uag) - 7(itg)

wlys)=h=1  pl@g)=kuapeMi, o uﬁeMzB g

- X > Z 7(Uagp) - T(ﬂﬁ)] Ys

(ya) k UaBEMy,X Y UQEMza Yo

We need to show the terms in the square brackets vanish. In this situation
we get two different possible broken trajectories namely:

1. (uag,fbg) Mh o Mfﬁ

Ta Yp g yﬂ

2. (@l Vag) € ML x ME™

Yo Yp
depending on h*? of course. Considering the first case, we have 2 types of
cobordism equivalence:
A A A paB f8 .
L. (uag, tg) ~ (wap, bg), where (wag, 0g) € Mg o x My, (this means
that they are the boundaries of some connected component)
Our canonical choice of orientation gives the orientation (1®1*,uz3) on

WP MI° i 2
My X Mgy, S0 we need to see whether this corresponds to £ or

_a% under gluing. A similar analysis as in the proof that ¢? = 0 can

be carried out. The difference being that for mixed broken trajectory
a time-shifting by —2p is only carried out for ug ( in (uag,us)) when
glued. So we get the picture:
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then as in the previous proof, we get opposite orientations, i.e.

~ A

T(Uap)7(lig) = —T(Wap)T(0p)

2. (Uap,Ug) ~ (Ua, Vap), Where (Uy, vVag) € Mg;’ya X MZ:ZE
Now we get the picture:

In this case we get :

~ ~

7(tap)7(Ug) = T(Vap)7 (la)

Since there is a one to one correspondence between mixed broken trajectories
as the boundaries of a connected component, we can conclude this proof.
More precisely, for type 1)-1) the product of characteristic signs cancel out
in the first term of the above equation i.e. 0”0 @io‘ since they have opposite
signs and for type 1)-2) the corresponding terms from the first and second

term cancel out again. (same for 2)-2) and 2)-1).)
0

So given Morse functions, f* and f? we have constructed a chain homomor-
phism, ®* (depending on h*?) which induces a homomorphism in homology,
i.e.

O Hy(f*) — Ho(f7)

where Hy(f) := ker 0/ Im(0k41).

We now need to show that this homomorphism is in fact canonical, i.e. it
is independent of our homotopy, h®?. It is here that the A-parametrised
trajectories will prove to be useful.



8 MORSE HOMOLOGY 76

Lemma 8.2. Given two regqular finite homotopies, hg‘ﬁ and h({‘ﬁ together with
the associated chain homomorphisms, @ga and @?a, we may find a family of
chain homomorphisms,

‘Ijga P Cu(f*) — Ck+1

such that
q)f‘,; @5‘,; Op oW — WP o o2

i.e. we have the (non-commutative) diagram:

oY 5 Oy (2
ALt Cr1(f?) —5 Gy (f*) —> Cra(f*) ——
58

\I’ﬁa/ V
B
g k-1

-2 G (F7) £>Ck (f%) —>Ck; (fP) —— -

Proof. Considering the A-homotopy of homotopies, H;‘B between hg‘ﬁ and

h?ﬁ . We once again define by analogy to the definition of 0.

W Cu(f*) = G (f)
Ty Z (To,28) 28

m(zp)=k+1
where, (x, 2z5) = > 7(uy) and M = < [0,1] x Py 2zﬁ and p(zy) —

Aun)eME, .

p(zg) + 1 = 0, hence it is a O-dimensional space and by compactness results
is a finite set, so W}, is well-defined. A direct computation gives:

Fowir) = Y, | N D > rwr(ag)]es (@)

M(Iﬂ):k M(Z,B) k+1 ()‘ UA)ean 128 uﬁgM:sz g

Lo ) (o)1) |25 (5)

zp)=k  u(ya)=k—1 (ANox)eM{l, o, aaeMi,

aYa

W10 aa(l,a) =
w(

(@1 = @o)(7a) = | Y rw) - Y rw)|n (©

;,L(:L‘B)=M(Ia) ule./\/lgclhzﬁ UOEMZCOx,zg

This one dimensional manifold is not necessarily closed hence it may have
boundaries so this leads us to consider 4 possible cases. Each of its connected
component can be diffeomorphic to:
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1. [0,1], i.e. it has two boundaries in M0 5 Ump , corresponding to
A=0,1.

2. S, in which case there is no boundary or broken trajectories,

3. (0,1), i.e. it has a compactification by 2 distinct broken trajectories,
or

4. (0,1] and [0, 1), i.e. it has 1 actual boundary and 1 broken trajectory.

Case 2) is trivial.

Case 3) is the similar to the previous theorem. Subtracting (5) from (4) we
see that terms corresponding to mixed broken trajectories cancel out.

For case 1), our choice of canonical orientation, 1 ® 1* under the isomor-
phism €2 induces orientations pointing towards the interior of the connected
component at A = 0 and outwards at A\ = 1. So if the boundary consists of
trajectories, uqg, Vos € Mﬁz 5 then the orientations at the boundaries are in
opposite directions hence we get 7(uqs) = —7(vap). We get the same result
if both boundaries are in M’;:;B.

On the other hand, if the trajectories are in different space of trajectories
then their orientations agree (both pointing either to the left or to the right)

hence we obtain

T(Uag) = T(vagp)-
So in equation (6), the terms corresponding to this case cancel out leaving
out only terms that have exactly one (proper) boundary.

For case 4), as mentioned above we already know the canonical orientation
at A =0 and A = 1 so we need to look at the orientation at the broken tra-
jectory. There are two possible types of broken trajectories namely (uy,ug)
and (U, vy). We picture these 4 possible situations as follows:

Lo Lo
U Ueg,
% Uy — Yo Uy —

Ug U
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Ty Lo
U Ug,
Uy — Z/ﬁ Ugt— y;
ﬁg )
g g

which give the following relations:

Subtracting equation (5) from equation (4) and using the above relations, we
see that it is equal to the reduced equation (6) from case 1). This completes
the proof.

[

So given c¢ € Critg(f®) such that 0% = 0, i.e. ¢ € ker(0“) then (®; — ®y)(c) €
8
R(0,_,) so we conclude that
CI)I* = (I)O*

i.e. any chain homomorphism induces the same map in homology (indepen-
dent of the homotopy chosen).

Lemma 8.3. The above induced map in homology satisfies the following
composition rule :

©17 0 @Y = @1 Hy(f*) — H.(f7).

-1
and so it follows that these maps are isomorphisms with (@lﬁ) = @57 and
e =1d.

Proof. Let x, € Crity(f®), x5 € Crity(f?), z, € Critg(f7) so that p(z,) =
((xg) = p(z,), then from theorem 6.11, there is a bijection between M"*”

Ta,Tg

MY and M;LZ”’% Note here that the homotopy ~A*? is determined by the

TB>Ty

X
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gluing map, #pg. Due to the canonical orientation, 1 ® 1* on these spaces
of trajectories it follows that 7(uag)T(ugy) = T(Uap#RUSy) = T(Uay). SO We
get,

000 & (z,) =[N D T(uap)ws

rg Ua B tho&ﬁ

ZTa,Tg

- ZZ Z Z T(Uap)T(Upy )1

T T8 upg, e MET, uape M

) S0 D YT

Ty Tg uﬁWEMggLV uaBEMﬁgijﬁ
= " (z4)

The third equality follows from theorem 6.11 and the above relation of char-
acteristic signs. So we obtain

®17 0 B ([wa]) = 2 ([al)

It is important to note here that this homotopy depends on z,, 23 and z.,
so we cannot immediately say that this relation holds for all critical points.
However, we may repeat this process for each triple of critical points using
appropriate homotopies but from the previous lemma the map induced in
homology is independent of the homotopy chosen so indeed the above relation
in homology holds for all critical points. O]

So we have proved the fundamental theorem of this section. Hence from
now on, we may simply denote the homology groups by H.(M). Using the
group, I' defined in the orientation section we can also show that the Morse
homology does not depend on the chosen coherent orientation as well.( See
[11] for the details) To conclude this section we define the Morse cohomology
and prove the Poincaré Duality theorem.

Given a chain complex, (C,.(f), d,) we define the cochain complex, (C*(f),0*)
as its dual, i.e.

(Sk 61@71 _ 5k—2 (50
---<—Ck+1<—Ck Ckl <—CO

C*(f) = Hom(Cx(f),Z) and 6"(c})(cks1) = ¢;(Orr1Crs1)
We define the cohomology group by H* := ker 6*/Im 6*~1.
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Theorem 8.4. Poincaré Duality Theorem
For a closed orientable n-manifold, M, there is a natural isomorphism between
the k'™ homology group and the (n — k)™ cohomology groups, i.e.

Hy(M) S H" (M) k=0,1,...,n

Proof. Given any Morse function, f we may define the homology groups,
Hy(M). We notice that — f is also a Morse function and so defines Hy(M) as
well, due to independence of the Morse homology on the function. We also
observe that there is natural 1-to-1 correspondence,

xr— T

This is easily seen from the fact f and —f have the same critical points and
that if the Hessian of —f at x has r negative eigenvalues then the Hessian of
f at x has n — k negative eigenvalues. So there are natural isomorphisms:

Cr(—f) = Cpie(f) = C™*(f)

and by definition, the boundary maps, 0~/ agree with the coboundary maps
6 giving Hy(—f) =~ H"*(f). Together with the fact that Hy(—f) =~ Hy(f),
this proves the stated isomorphism. O]

Having now defined the Morse homology and cohomology, we now want to
look at two crucial operations that comes with cohomology structure namely
the cup and cap product.



9 Cup Product in Morse Cohomology

In this section, we shall construct by analogy to the techniques covered in the
previous chapters Y-shaped space of trajectories, also referred to as Feynman
diagrams.

Definition 9.1. Let & € Vec(R ) and &,&3 € Vec(@Jr) be smooth vector
bundles on the half-lines with global trivialisations, ¢; fori = 1,2,3, we then
define

H2(60608) = ¢ (HP®R R @ H?R" R @ H*R",R"))

where o7 = (1), don s 3a ). This defines a Banach space with a norm in-
duced by ||(s1, 52,50)l |12 = S, Ilsillvz. Here B = [0, +0] is given a man-
ifold structure by the chart:

h:R"—[0,1]
;27 t>0
hlt) _{ 1? t =+

(Similarly for R )

Given three distinct Morse functions, fi, fa, f3 on M we denote their critical
points by z;,y; for i = 1,2,3 respectively. Let h; € C*(R, M) such that
hi(—0) = x; and h;(+0) = y;. From now on, we shall restrict h; to R and
ha,hs to R

We define

A~

Potyoys i= {(exp 081, €Xp OSg, €XP 0S3) : S; € H1’2(h;k(9), 1= 1,2,3}

where O once again denotes the injectivity neighbourhood associated to the
exponential map.

Since we endowed the half-lines by the natural submanifold topology all the
analysis carried out in the section on space of trajectories can be carried out in
the same way. So by strict analogy to theorem 2.6, we can prove that Py, 4, 4.
is a Banach manifold with chart {D]_, H*2(h:O), Dy_, eXPp } (b hashs)eco(1)-
We shall denote this manifold simply by P when there is no risk of confusion.
Now consider the map, G which is only defined locally in coordinate charts
by

G : Poyypys — R x R”
(15 72,73) = (51(0) = 42(0),41(0) — 45(0))
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where 4,;(0) = ¢(;(0)) for a chart map, ¢. This map is locally given by,

Gioc : H? (RO ® h30 ® h30) — Ty yM x Thyo)M = R™ x R”

(171, m2,m3) = (m(0) — exp;ll(o) eXPpy(0) M2(0),
m(0) — expﬁll(o) eXPpy 0y 13(0))
where we chose ¢ to be a normal coordinates chart at hy(0). Since this map
is simply an evaluation map and is linear in the first variable, it is easy to see
that DG(71, 72, 73) is surjective for we can always choose a section that takes
any specific value at a point. So by the Implicit function theorem, G~1(0) is
a submanifold of P of codimension 2n i.e.

P =G 0) = {(71,72,73) € P 71(0) = 73(0) = 73(0)}

Geometrically, P consists of Y-shaped structures:

Y2
V2

§a!
€

V3
Ys

This manifold is usually called a graph moduli space, where 7, is an incoming
edge and 7, and <3 are outgoing edges. The endpoints and the point of
intersection are called vertices.

Definition 9.2. We define a section map, F' by

F:P — LXP*TM)
(71,72:73) = (1 + Vfioy, Y2+ Va0, 93 + Vfz073)

This map is indeed well-defined since it can be written explicitly as F' =
Fy ® F> @ F3 where each F; is defined as in corollary 2.8.1.

We now want to prove that this map is indeed a Fredholm map and we need
to compute its Fredholm index. From our analysis in the Fredholm section,
it suffices to carry out the proofs for the trivialised linearisation of I’ and we
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may then transfer the results to the non-trivial operator in a way independent
of the chosen trivialisation. So from now on, we may assume

DF = @&}_,DF; : @, H"*([R*R") —> &}, L*(R*,R")

DF(Sl, S9, Sg) = (81 + Alsl, 5‘2 + AQSQ, <§3 + A383)
where A; : R — M(n,R) and Ay, As : R — M(n,R)

The fact that DF' is a Fredholm operator follows immediately from theorem
3.1 since the proof remains unchanged if we replace R by the half-lines R*
and R~ and so the proof can be carried out in each component. We now need
to compute the index of DF, so we start with the map DF}. For simplicity
of notation we denote this map by K and A; by A. Given any § > 0, we
define a function, s € C*(R, [0,1]) such that

and let Ks(t) := 2 + Bs(t)A(t). By a simple computation we have the esti-
mate:

1K = Klle < [[All, - 1185 = 1l

So by choosing ¢ small enough, we have that Ky is a Fredholm operator as
well and has the same index as K. Hence w.l.0.g we may start off by assuming
A(0) = 0 and define a continuous odd extension by

A —A(—t), t=0
Alt) = { A(t), t<0

so that A(+m0) = —A(—00) and A(—x0) = A(—x).
We also define .
D: H"*(R,R") — L*(R,R")

n— i+ An
From theorem 3.5, it follows that

ind(D) = p(A(=0)) — j(—A(—20)) = 2u(A(~=0)) - n.
We decompose HV(R,R") := HY(R,R") ® H?*(R, R") where

Ho*(R,R") = {ne H"*(R,R") : n(—t) = n(t)} and
H,*(R,R") = {ne H*([R,R") : n(~t) = —n(t)}
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Similarly we decompose L*(R,R") = LZ(R,R") ® LZ(R,R"). Since by con-
struction D maps odd functions to even functions and even functions to odd
functions, we can decompose the operator D as well.

D=D.®D,: H*R,R") @ H*R,R") — L*(R,R") ® L*(R,R")

Lemma 9.1. The diagram,

HY2(R,R") —2= L2(R,R")

| o]

HY2(R-,R*) —22 [2(R-,R")

is commutative where o and B are the restriction maps and D is the restric-
tion of D, and moreover, the maps o and 3 are isomorphisms.

Proof. Tt is clear that if n € L2(R) then 3(n) € L?*(R™) so this map is well-
defined. Since L2(R) consists of odd functions, it follows that /3 is injective.
Given any & € L?(R™), we can naturally extend it to an even function, &
so that |[¢]lo2 = Vv2||¢|lo2 < o0 hence 8 is onto as well. Using the same
argument, we deduce that « is injective. However, we still need to verify sur-
jectivity since it is not obvious that the even extension is necessarily weakly
differentiable.

We need to show that given n(t) € H?(R™), its even extension,

. t), t<0
(t) = { Z(—t), t>0

has weak derivative

i),  t<0
§(t) = { 717’7(—1&), t>0

then it follows that 7 € HM*(R) and «a(f) = n. Let {g;}3_, be a smooth
partition of unity such that

1, t<-0
gl(t):{o t=>0

and go(t) = ¢g1(—t) so w.l.o.g we may assume g3 is even. Then a direct
computation gives
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fRéﬁﬁdt:JR iil.gm ﬁdt=ifR (6)

Since ¢g; and ¢gy are test functions on R~ and R* respectively and n(t) €
H'"2(R™), so we get

ifR (qbéi) ndt = — J_: o(t)n(t) dt + LOO o(t)n(—t) dt

0 )
_Lﬁwwm@a+ﬁawwW4Mt

Also [|g1lle = [|g2llc = 1 and [|¢[|oc and esssupe_s0; 7] are both bounded,
hence we see that as § — 0 the last two integrals converge to zero and the
first two integrals converge to our desired expression. So it suffices to show
that as 6 — 0,

5o, ' 5
| (om)ide= | Ggider [ oguide o0
-0 —0 —0

The first integral clearly converges to zero by a similar argument as above.
The trouble with the second term is that when 6 — 0, g3 — 400 so we
cannot immediately conclude that it converges to zero. However we may
assume that ||g3||c < C/0 for some constant C' > 0. (For instance we can
choose g3(t) = exp(1 — 62/(6% — 2?)) on (—6,0). )

Moreover, from the fundamental theorem of calculus we have that

|| oo -0

since g3(d) = g3(—d) = 0. Hence a direct computation gives

0 0
[ st a] - | [ aewio - sio)a

§
<JJ@@NM.ﬁm|awmw—¢mmmn

te[—0,0]
<2C- S[ug)a] lo(t)n(t) — ¢(0)n(0)] > 0 as 6 — 0.
te[~s,

Here we have used the continuity of 7 which follows from the Sobolev embe-
ding theorem. This completes the proof. O
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By the property of Fredholm operators, ind D, = ind D, (since ind(a) =
ind(5) = 0).

Now considering,

H2(R,R") —22 [2(R,R)

| 7|
HY2(R-,R") —25 [2(R-,R")
where H)*(R™,R") = {n e H"*(R™) : 7(0) = 0} and Dj is the restriction of

D,. (3 is again an isomorphism by the same argument as in the above lemma.
By repeating the same steps as above, we are once again led to estimating

5 0
|| eiiat= [ 00+ ot-nmomoat.
Since n(0) = 0 and it is continuous at ¢ = 0 (by Sobolev embedding theorem),

given any € > 0, there exists 0 > 0 such that |n(t)| < € for t € [0,0]. This
gives the estimate

C
<2ljglle - -6 =0,

)
‘ f b7 dt
5

Hence we once again obtain that the restriction map, « is an isomorphism
and so ind(D,) = ind(Ds). Observe that HY2(R~) has codimension n in
H'“?(R™). Hence we have ind(Ds3) = ind(D3) — n.

Here we used the fact that decreasing the dimension of the domain of a
Fredholm operator by h reduces its index by h as well. This can easily be
seen as follows: suppose the dimension of the kernel decreases by k then it
follows that the dimension of the cokernel increases by h — k and hence the
Fredholm index decreases by h.

So we calculate ind(D) = ind(D,) + ind(D,) = 2ind(D;) — n implying that
ind(DFy) = ind(Ds) = pu(A(—0)). This proves the index formula for the
incoming edge. Now looking at DF5, we consider the extension given by:

T | Aa(t), t=0
A“”‘{—Aﬂ—w,|ﬂ<o
Using the same notation as earlier, we get
ind(D) = ind(—Ay(+m0)) — ind(A(+x0))

= n— p(A(+0)) — p(A(+))
= 1~ 2u(A(+0)).
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A

The same analysis leads to 2ind(DFy) —n = ind(D) = n — 2u(As(+w0)) ie.
ind(DF,) = n — p(Az(+0)). Similarly we get ind(DF3) = n — u(As(+00)).
So,

ind(DF) = Z ind(DF;) = pu(A1(—0)) — u(Az(+00)) — p(Az(+0)) + 2n.

i=1

Restricting our domain to P which has codimension 2n in P and using the
same argument as above, we get

ind(DFp) = nd(DF) — 2n = p(As(=0)) = p(Az(+0)) — p(Az(+0)).

Remark: Note in fact this result can be extended directly to the case when
we have k edges, k1 of which are incoming and k— k; are outgoing. Definition
9.1 can be naturally adapted for k£ vector bundles on the half-lines. We then
define our above function, G by G(v1,...,7) = (51(0) — 42(0), ...,41(0) —
4(0)) and denote the critical points of incoming edges by x; and those of
the outgoing edges by y;. We see that proof of the Fredholm index is still
unchanged and we get for the corresponding section map, F'

ind(DF) = Z play) + D [n—p(w)]

which gives

k1 k
nd(DF| ;) = 1)+ 3 [n— ()] —nl— 1)
-1 I=k+1
k1 k
= D ula) = 25 plw) = nlks — 1)

l=k1+1

This leads to a more general operation on cohomology called the Massey
product.

From now on we shall restrict to the submanifold, P. The transversality
argument can again be carried out by strict analogy. Considering each com-
ponent of F' we find generic sets of Riemannian metrics, 1, >, 33 then by
the Baire Category theorem X := ﬂ§:1 >; is a generic set as well. Hence
we see that the 0-section (more precisely 0@ 0@ 0) is a regular value of F'
and by the Implicit function theorem we have that MJt/2/5 = F=1(0) is a

Z1,Y2,Y3
Banach submanifold (without boundary) of P for generic metric, g € ¥ and
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has dimension ju(z1) — ju(yn) — 1(ys).

We denote the space of Y-trajectories for critical points, x1,y. and y3 by
MIbI2ls  We now need to define a compactification of this Banach manifold
by broken trajectories.

Theorem 9.2. Let p(x1) — pu(y2) — plys) = 1 so that M2 s o 1-

x
dimensional manifold. Then given any sequence {un@vn(@wn}ml ' yg./\/lgllg];i
if there does not exist a subsequence which converges in the HY-norm
(1|(s1,52,83) |12 = S, |Isillia ) then there exists one critical point x' €
Crit(f1), ¥ € Crit(f2) or 2’ € Crit(fs) (distinct from x1,y2 and ys respec-

tively) and a subsequence, ny such that exactly one of the following holds:

CCX)
1. (U Vg ) = (,0,0) € MEEE

0
loc

2. (Uny,, Ungy Wny ) —= (u,v,w) € e MIr2Ss

Ily Y3
0

C
5 Gt ) % (000) € ML

Proof. The proof relies essentially on suitably modifying this problem so that
we can use the results from the section on compactness. Considering the
vertex where the edges meet, we have a sequence of points {u,(0)}r_, in M
and due to the compactness of M we may extract a convergent subsequence,
Uy, (0) — z € M. We may view u,,, v,, and w,; as elements of M M2 and
M7 respectively. In order to apply lemma 5.2 and lemma 5.4, we need to fix
the endpoints as well. In general we cannot say that u,; € Mg;ll g foralljeN
since for different js, we may have that the trajectories do not converge to the
same critical point y;. But since there are only finitely many critical points,
we can extract a further subsequence such that indeed {uy, };2, = M . By

extracting further subsequences for the two other edges, we have

r1,Y1°

(Ung> Vng, Wy ) € M MP - x MT2for every ke N

z1,Y1 z2,Y2 x3,Y3
So by lemma 5.2, we have

C®[-R,R]

Un,, ue C(R, M) for any R >0

Similarly for v,; and wy,, .
If we have that u(—o) = 21, v(+0) = ys and w(+w0) = y3 then together

with the fact that «w(0) = v(0) = w(0) = Z and lemma 5.4 this imply that in
fact we have H'2-convergence in the space of Y-trajectories in contradiction
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to our hypothesis. So w.l.o.g suppose u(—w) # x1, then by theorem 5.5
there exist 2,y € Crit(f;) such that u € ./\/li},y. So we have convergence to a
broken trajectory i.e.

Up, — (W, u) € M x MI

/ /
Z1,T Ly

Since v’ is endowed with a 1-dimensional time-shifting invariance and Mﬁgg
is a 1-dimensional manifold, by dimension counting it follows that we cannot
have broken trajectories on the other two edges. So we have

C®[~R,0] C[0,R] C[0,R]
Up, ——> U, Up, ——V, Wy, ——— w for any R >0

Hence this shows that 1. holds. Similarly we can consider broken trajectories
of the other edges.
We illustrate these three cases:

]

For the more general situation, when we do not impose any dimension re-
strictions, the proof is carried out exactly the same way and by appealing to
theorem 5.5 again we obtain one Y-shaped structure with the end vertices
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connected to chains of edges of time-independent trajectories, i.e. we have
the compactified space,

——f1.f2:f3 o, f f-
M$17y2ay3 - U Mgcclyfﬁ Ja M X Mz,dz’
Crit(f;)
i=1,2,3

We state the following gluing result without proof:
Theorem 9.3. Let K be a compact subset of M2 Mf;llx/ then there

x/ »Y2,Y3
exists a smooth gluing map, # and a constant px > 0 such that

# : K X I:pK) ) Mf17f27f3

T1,Y2,Y3

and for each p € [px, ™), #, is an embedding. Also as p — o we have that

(w, v, w)#,u — Gee, ((u, v, w),u).

As seen in the gluing section, this means that that M/ 1’{/271;33 is a 1-dimensional
manifold without boundary whenever p(z1) — p(y2) — 1(y3) = 1 and can be
compactified by adding broken trajectories as its boundaries. We shall omit
matters of orientation and work over the finite field, Zs. Since any closed 1-
dimensional manifold is either diffeomorphic to the circle or the open interval,
(0,1), hence the number of boundary points is always even i.e. =0 mod 2.

As a result we see that:

f1,f2,f f
YooY mbk s,
p(@")—ply2) wz')=
—pu(y3)=0 w(z1)-1
f1.f2,f3 f2
* Z Z ‘Mﬂmy Y3 ‘My Y2

p(a)—p(y) ply')= (7)

—p(y3)=0 u(y2)+1

f1,f2,f3
+ Z Z ‘M$11y27z
p(r1)—p(y2) z
—p(2")=0 u(y3)+1

3] -

Y3

Note that since we are summing over O-dimensional Y-trajectories and due
to the compactness of M, these sums are all finite. We are now ready to
define the cup product operation.

Definition 9.3. We define a bilinear map on the cochains as follows:

— 1 CH(fo) ® CU(f5) — CFHI(fy)

yiot= )L [MEESe

w(w)—p(y)
—u(2)=0
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where x* y* and z* are the duals of critical points x,y and z of f1, fo and f3
respectively.

Lemma 9.4.

0(y* — =) = (0y") — 2" +y* — (6z7)
Proof. Since the map is bilinear it suffices to show that the relation holds for
the dual of critical points. So for p € Crity;4+1(f1) we compute directly,

6(y* — 2*)(p) = y* — 2" (dp)

u(p)—p(z)=1

= XN |l A

w(@)—p(y) p(p)—p(z)=1

—p(2)=0

(6y") — 2*(p) = ]M ("~ =)(p)
p(r) )
- Z Y M

(r) p(r)—p(y)=1

—u(Z)—O

V=00 = 3 ]M (v" — "))
p(s)—p(z)

- Z S IMd] R

)=p(y) p(s)—pu(z)=1
fu(S)—O

So from equation (7), the asserted identity holds (over Zs).
[l

We deduce immediately from this lemma that if [y*] € H*(f;) and [2*] €
HY(f3) then 6(y* — 2*) = 0. Hence since the cohomology does not depend on
the Morse chosen function — induces a cup product operation in cohomology,
ie.

— : HY(M)® H/ (M) — H*(M).
We now move on to define the cap product in Morse cohomology. Using the
notation of definition 9.3, we define

~ Ck+j(f1) ®Ck(f2) - Cj(f3)

voyt= )L MR

pl(@)—p(y) _
“n(z) =0
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To show that this bilinear map indeed induces a well-defined map in coho-
mology, we need a similar relation as in lemma 9.4. Instead of deriving this
relation from scratch, we make the observation that:

o ~y") = (" — 2") () for any 2 € C7(f3)

Then:
Z(0x ~y")) = 6(z%)(z ~y7)
=y* = 6(z%)(z)
= 0(y" — 2")(x) + (0y") — 2*()
= (y* = 2")(0x) + 2" (x ~ dy”)
= 2%(0x ~ y*) + 2% (z ~ dy*)

So we get the relation
o ~y*) =0 ~y*" +x —~ oy*
which allows us to conclude that —~ induces the cap product operation,

~: Hy (M) ® H¥(M) — HI(M).
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