On Symplectic Cobordisms Between Contact Manifolds

Chris Wendl Humboldt-Universität zu Berlin

Slides available at:

http://www.math.hu-berlin.de/~wendl/publications.html

Prologue

The following famous quotation is due to George Orwell:

All animals are equal, but some animals are more equal than others.

The following is not:

Most contact manifolds are non-fillable, but some are more non-fillable than others.

Outline

- Part 1: On Symplectic Fillings
- Part 2: On Symplectic Cobordisms
- Part 3: A Hierarchy of Obstructions
- Part 4: Open Books and Fiber Sums
- Part 5: Non-Exact Cobordisms (or some low-tech proofs of results that used to seem hard)

Part 1 On Symplectic Fillings

Definitions

 (W, ω) compact, symplectic, $\partial W = M$. Assume η is a Liouville vector field, i.e.

$$\mathcal{L}_{\eta}\omega=\omega,$$

defined near ∂W and pointing transversely outward. Then

$$\lambda := \iota_{\eta} \omega$$

satisfies $d\lambda = \omega$ and is a positive contact form on M, defining a contact structure $\xi = \ker \lambda$.

 (W, ω) is a **strong** (symplectic) **filling** of (M, ξ) .

$$((-\epsilon, 0] \times M, d(e^{t}\alpha))$$

$$(W, \omega)$$

 (W, ω) is an **exact filling** of $(M, \xi) \iff$ η (or equivalently λ) exists globally.

Gromov '85, Eliashberg '89 (M,ξ) overtwisted \Rightarrow not fillable.

Proof requires technology:

e.g. holomorphic curves, Seiberg-Witten, Heegaard Floer...

A modern proof: overtwisted \Rightarrow the ECH contact invariant vanishes.

Recall Embedded Contact Homology:

Assume dim M = 3 and choose:

- Contact form α for ξ
- Compatible J on $\mathbb{R}\times M$

Choices \rightsquigarrow

- Chain complex C_{*}(M, α) generated by sets of Reeb orbits
- Differential $\partial : C_*(M, \alpha) \to C_*(M, \alpha)$ counting embedded *J*-holomorphic curves in $\mathbb{R} \times M$.

$$\mathsf{ECH}_*(M,\alpha,J) := H_*(C_*(M,\alpha),\partial)$$

matches the Seiberg-Witten Floer homology of M (Taubes '08).

ECH contact invariant := "homology class of the *empty* orbit set"

$$c_{\mathsf{ech}}(\xi) = [\emptyset] \in \mathsf{ECH}_*(M, \alpha, J).$$

Taubes '08 + Kronheimer-Mrowka '97: $c_{ech}(\xi)$ is an invariant of (M, ξ) , and is nonzero whenever (M, ξ) is strongly fillable.

 (M,ξ) overtwisted \Rightarrow contains a "Lutz tube" (Eliashberg classification '89)

 \Rightarrow an orbit γ spanned by a unique embedded rigid *J*-holomorphic **plane**. Thus

 $\partial(\gamma) = \emptyset,$

so $c_{ech}(\xi) = [\emptyset] = 0$, \Rightarrow not fillable. \Box

Remark 1

Same argument proves trivial contact homology: $HC_*(M,\xi) = \{1\}.$

Remark 2

Conjecturally, $c_{ech}(\xi)$ is equivalent to the Ozsváth-Szabó contact invariant in Heegaard Floer homology. **D.** Gay '06:

 (M,ξ) has Giroux torsion $\geq 1 \Rightarrow$ not fillable.

Recall:

 (M,ξ) has *Giroux torsion* N if it contains $[0,1] \times T^2 \ni (s,\phi,\theta)$ with contact structure

 $\xi_N := \ker \left[\cos(2\pi Ns) \, d\theta + \sin(2\pi Ns) \, d\phi \right].$

Proof by ECH: count holomorphic **cylinders** $\Rightarrow \partial(\gamma_1 \gamma_2) = \emptyset \Rightarrow c_{ech}(\xi) = 0.$

(Corresponding Heegaard result by Ghiggini, Honda, Van Horn-Morris '07.)

Part 2 On Symplectic Cobordisms

Definitions

 (W, ω) compact, symplectic,

$$\partial W = M_+ \sqcup (-M_-),$$

with Liouville vector field η near ∂W pointing outward at M_+ and inward at M_- .

Call this a symplectic cobordism from (M_-, ξ_-) to (M_+, ξ_+) , and write

$$(M_-,\xi_-) \prec (M_+,\xi_+).$$

If η exists globally, call (W, ω) an **exact cobordism** and write

$$(M_{-},\xi_{-}) \prec (M_{+},\xi_{+}).$$

Observe $M_{-} \prec M_{+}$ implies $M_{-} \preccurlyeq M_{+}$.

Each is a preorder (reflexive and transitive) on the contact category.

Some facts about cobordisms

Abbreviate $M = (M, \xi)$. Let M_{ot} denote anything overtwisted.

- $\emptyset \preccurlyeq M \Leftrightarrow \mathsf{fillable}$; $\emptyset \prec M \Leftrightarrow \mathsf{exactly fillable}$
- No *M* satisfies $M \prec \emptyset$. (Stokes theorem)
- All *M* satisfy $M \preccurlyeq \emptyset$. (Etnyre-Honda '02)
- If $M_{-} \preccurlyeq M_{+}$ and M_{-} is fillable, then M_{+} is also fillable. For example,

 $M \preccurlyeq M_{\text{ot}} \Rightarrow M \text{ not fillable.}$

• $M_{\text{ot}} \prec M$ for all M. (Etnyre-Honda '02)

Are overtwisted contact manifolds more nonfillable than some others?

Is there a non-fillable ${\cal M}$ such that

 $M \not\prec M_{\mathsf{ot}}$

for all overtwisted M_{ot} ?

Yes:

 $M \not\prec M_{ot} \Rightarrow$ by adapting a holomorphic disk argument due to Hofer, M always has a contractible Reeb orbit.

There are non-fillable examples without contractible orbits, e.g. (T^3, ξ_N) for $N \ge 2$ $(\Rightarrow$ Giroux torsion N - 1).

We'll show: these *do* admit non-exact cobordisms to some M_{ot} (a result of Gay '06 for $N \ge 3$).

Exercise for bored listeners:

There are symplectic cobordisms from (T^3, ξ_{std}) to (S^3, ξ_{std}) , but they are never exact.

Part 3 A Hierarchy of Obstructions

Theorem (joint with J. Latschev) For closed contact manifolds (M, ξ) in all dimensions, one can use Symplectic Field Theory to define the *algebraic torsion*

$$\mathsf{AT}(M,\xi) = \inf \left\{ k \ge 0 \mid [\hbar^k] = 0 \in H^{\mathsf{SFT}}_*(M,\xi) \right\}$$

$$\in \mathbb{N} \cup \{0,\infty\},$$

which has the following properties:

1. $AT(M,\xi) < \infty \Rightarrow$ not strongly fillable.

2.
$$HC_*(M,\xi) = \{1\} \Leftrightarrow \mathsf{AT}(M,\xi) = 0$$

- 3. positive Giroux torsion $\Rightarrow AT(M,\xi) \leq 1$.
- 4. For every integer $k \ge 0$, there are examples (M_k, ξ_k) with $AT(M_k, \xi_k) = k$.
- 5. $(M_-, \xi_-) \prec (M_+, \xi_+) \Rightarrow$ $\mathsf{AT}(M_-, \xi_-) \leq \mathsf{AT}(M_+, \xi_+).$

Morally:

"Larger $AT(M,\xi) \cong closer$ to fillability."

Remark 1

As we'll see, all examples I know for which $AT(M) < \infty$ satisfy:

- 1. ECH contact invariant = 0
- 2. $M \preccurlyeq M_{ot}$

Hence by Etnyre-Honda, they are (non-exactly!) cobordant to everything.

Remark 2

An analogue of $AT(M,\xi)$ can be defined via ECH. Heegaard???

The examples (M_k, ξ_k)

Part 4 Open Books and Fiber Sums

Initial Goal:

Find more general contact subdomains (M_0, ξ_0) (possibly with boundary) such that

 $(M_0,\xi_0) \hookrightarrow (M,\xi) \quad \Rightarrow \quad c_{\operatorname{ech}}(\xi) = 0.$

Observation:

Informally, there is a correspondence (Hofer-Wysocki-Zehnder, Abbas, W.)

pages of supporting open books \longleftrightarrow embedded J-holomorphic curves

 $\pi: M \setminus B \to S^1$

Two operations on open books (and contact structures)

1. Blow up a binding component $\gamma \subset B$: Replace γ with $\hat{\gamma} := (\nu \gamma \setminus \gamma) / \mathbb{R}_+ \cong T^2$. \rightsquigarrow natural basis $\{\lambda, \mu\} \in H_1(\hat{\gamma})$.

2. Binding sum of $\gamma_1, \gamma_2 \subset B$: Blow up both and attach such that $\lambda \mapsto \lambda, \ \mu \mapsto -\mu$.

 \cong contact fiber sum along γ_1, γ_2 (Gromov, Geiges)

 $\gamma_1 \cup \gamma_2$ replaced by one "*interface*" torus.

Definitions

Blown up summed open book := result of blowing up and/or summing some binding components of an open book.

 \rightsquigarrow compact mfd. M (maybe with boundary), and fibration

$$\pi: M \setminus (B \cup \mathcal{I}) \to S^1$$

Here:

- B (the "binding") = a link
- \mathcal{I} (the "interface") = a disjoint union of 2-tori with homology bases $(\lambda, \pm \mu)$
- $\partial M = 2$ -tori with homology bases (λ, μ)

pages := connected components of fibers. π is *irreducible* \Leftrightarrow fibers connected.

Planar := irreducible with genus 0 pages.

Any blown up summed open book decomposes into *irreducible subdomains*

$$M = M_1 \cup \ldots \cup M_n$$

glued along interface tori.

Definition

The decomposition *supports* a contact structure ξ on M if there is a Reeb vector field X such that:

- 1. X is positively transverse to all pages
- 2. X is positively tangent to all boundaries of pages
- 3. Characteristic foliation at $\mathcal{I} \cup \partial M$ is parallel to $\pm \mu$

Proposition

Unless $B \cup \mathcal{I} \cup \partial M = \emptyset$, a supported contact structure exists.

(Otherwise $\pi: M \to S^1$ has closed fibers.)

Examples

Consider simple open books on the tight S^3 and $S^1 \times S^2$:

(1) Two copies of S^3 with disk pages binding sum \rightsquigarrow tight $S^1\times S^2$

(2) Two copies of tight $S^1 \times S^2$ two binding sums $\rightsquigarrow (T^3, \xi_1)$

(3) Two copies of $S^1\times S^2$ one binding sum \rightsquigarrow overtwisted $S^1\times S^2$

Definition

A blown up summed open book is *symmetric* if it has exactly two irreducible subdomains, all its pages are diffeomorphic, and it has no binding or boundary.

Examples

(1) and (2) are symmetric, (3) is not.

(5) One copy of $S^1 \times S^2$, sum one binding component to the other \rightsquigarrow Stein fillable torus bundle T^3/\mathbb{Z}_2

(sorry, I can't draw this)

(6) Three copies of $S^1 \times S^2$, two binding sums and two blow-ups \rightarrow ([0,3/2] $\times T^2$, ξ_1), i.e. *Giroux torsion domain*

(7) S^3 summed to $S^1 \times S^2$, remaining binding blown up $\rightarrow Lutz \ tube$

Definition

For $k \ge 0$, a compact contact domain (M_0, ξ_0) with supporting blown up summed open book is a *planar k-torsion domain* if:

- 1. It is not symmetric.
- 2. The interior contains a planar irreducible subdomain

$$M_0^P \subset \operatorname{int} M_0,$$

the planar piece, whose pages have k + 1boundary components. We call $M_0 \setminus M_0^P$ the padding. A closed contact 3-manifold has *planar* k*torsion* if it admits a contact embedding of a planar k-torsion domain.

Some planar torsion domains of the form $S^1 \times \Sigma$

Theorem

If (M,ξ) has planar k-torsion then it is not strongly fillable. Moreover,

- 1. $c_{ech}(\xi) = 0$ and $AT(M,\xi) \le k$
- 2. Overtwisted \Leftrightarrow planar O-torsion
- 3. Giroux torsion \Rightarrow planar 1-torsion
- 4. The examples (M_k, ξ_k) for $k \ge 2$ have planar k-torsion but no Giroux torsion.

Part 5 Non-Exact Cobordisms

Eliashberg '04 (symplectic capping): symplectically attaching 2-handles to binding → 0-surgery removes the binding

Gay-Stipsicz '09: doing this at *some* (not all!) binding components → symplectic cobordism between two open books

Blown up version can attach a round 1-handle

$$S^1 imes [0,1] imes \mathbb{D}$$

to remove an interface torus and cap off pages.

Theorem

If (M_{-}, ξ_{-}) has planar k-torsion for $k \geq 1$, then $(M_{-}, \xi_{-}) \preccurlyeq (M_{+}, \xi_{+})$ for some contact manifold (M_{+}, ξ_{+}) with planar (k-1)-torsion.

Moreover, this induces a U-equivariant map

$$\mathsf{ECH}_*(M_+,\xi_+) \to \mathsf{ECH}_*(M_-,\xi_-)$$

taking $c_{ech}(\xi_+)$ to $c_{ech}(\xi_-)$.

(Last part is known for Heegaard in simple open book case; J. Baldwin '09)

Corollary

M with k-torsion is cobordant to something overtwisted, and hence to everything.

 $(\Rightarrow \text{ not fillable and } c_{ech}(\xi) = 0.)$

Final Remark

Using such cobordisms, the proof that M_{ot} is not fillable can be reduced to the following:

Lemma

Suppose (W, ω) is a compact symplectic manifold with all boundary components either convex or Levi-flat, and it contains an embedded symplectic sphere of self-intersection 0. Then all boundary components of W are symplectic sphere-bundles.

Proof uses *closed* holomorphic curves; it's still technology, but it's *simpler* technology. Just read McDuff "Rational and Ruled..." 1990, and think about it.