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Abstract

An important problem in contact and symplectic topology is the question
of which contact manifolds are symplectically fillable, in other words, which
contact manifolds are the boundaries of symplectic manifolds, such that the
symplectic structure is consistent, in some sense, with the given contact struc-
ture on the boundary. The homotopy data on the tangent bundles involved in
this question is finding an almost complex filling of almost contact manifolds.
It is known that such fillings exist, so that there are no obstructions on the
tangent bundles to the existence of symplectic fillings of contact manifolds;
however, so far a formal proof of this fact has not been written down. In this
paper, we prove this statement. We use cobordism theory to deal with the
stable part of the homotopy obstruction, and then use obstruction theory,
and a variant on surgery theory known as contact surgery, to deal with the
unstable part of the obstruction.
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Chapter 1

Introduction

Contact and symplectic topology involve manifolds equipped with differen-
tial forms with particular properties. These manifolds arose in Hamiltonian
mechanics, and have wide applications in physics. Symplectic topology is
the study of symplectic manifolds, which are manifolds of even dimension
equipped with a symplectic form, that is, a closed nondegenerate differential
2-form. Contact topology is, in a sense, the odd-dimensional analogue of
symplectic topology. It is the study of contact manifolds, which are mani-
folds equipped with a contact structure, which is a subbundle of the tangent
bundle that is the kernel of a contact form. A contact form is a 1-form α such
that dα is a symplectic form on the kernel of α. We define contact manifolds
formally in Section 3.1, and symplectic manifolds in Section 7.2.

If we have a contact manifold M of dimension 2n− 1, a question we can
ask is: can we find a symplectic manifold W of dimension 2n, such that its
boundary is M , and the symplectic structure is consistent, in some sense,
with the contact structure on the boundary? We call such a manifold W a
symplectic filling of M , which can be a strong or weak filling.

To show that this question could have a positive answer, we look at the
structures induced on the tangent bundles of contact and symplectic mani-
folds. We begin in Chapter 2 by explaining complex and symplectic linear
algebra, which will allow us to understand these structures on the fibres
of these tangent bundles, which are vector spaces. We then give a brief
account of fibre bundles, which allows us to define vector bundles, with ad-
ditional structures imposed smoothly on their fibres, especially the complex
and symplectic structures we look at in Sections 2.1 and 2.2.

In Chapter 3, we define contact manifolds, and explain the almost con-
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tact structure induced on their tangent bundles by the contact structure. An
almost contact structure is not quite the same as a complex vector bundle
structure on the tangent bundle, since the tangent bundle has odd rank. In-
stead, it is a complex structure on a subbundle of the tangent bundle, such
that the tangent bundle consists of this complex subbundle plus a trivial
line bundle. We then define complex and almost complex manifolds, where
an almost complex manifold is a manifold with a complex structure on its
tangent bundle. Finally, we define stably complex manifolds, which are gen-
eralisations of almost complex manifolds, and we show that almost contact
manifolds are stably complex.

We then develop the theory of universal bundles in Chapter 4, which
gives us a bijection between vector bundles, up to isomorphism, and homo-
topy classes of maps into spaces known as classifying spaces. Additional
structures imposed on vector bundles, such as the almost contact and almost
complex structures defined in Chapter 3, are equivalent to liftings of these
maps from one classifying space to another, which we explain in detail. This
enables us to describe structures on the tangent bundle of a manifold, such as
almost contact and almost complex structures, as homotopy-theoretic data
associated with manifolds. We construct universal bundles for the specific
structures that we need. We also develop the theory of stable vector bundles
so that we can classify the homotopy data associated with the stable tangent
bundles of manifolds, which are the key to cobordism theory.

The homotopy obstruction to symplectic fillings of contact manifolds is
an almost complex filling, which is an almost manifold W , whose boundary is
M , such that the complex structure on the tangent bundle of W induces the
almost contact structure at the boundary of M . Cobordism theory, which
we develop in Chapter 5, gives a partial answer to the question of whether
such fillings exist. However, the filling that we find is a stable complex filling
of the almost contact structure, which is a weaker result than we need.

In Chapter 6, we show that we can reduce the stable complex filling to an
almost complex manifold, and moreover, this manifold is an almost complex
filling of an almost contact structure on M that is homotopic to the original
structure outside of some embedded disc of the same dimension M , seen as
a CW-complex. Finally, in Chapter 7, we define contact surgery, which is
a variant of surgery theory, and use this, and the closely related notion of
symplectic handle attachment, to change the homotopy data in a suitably
chosen embedded disc in M of the same dimension as M to obtain an almost
complex filling of M .
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Chapter 2

Vector spaces and vector
bundles

Much of this project will deal with vector bundles, specifically, tangent bun-
dles of manifolds, with some additional structure. We begin by describing
additional structures that can be defined on real vector spaces.

2.1 Complex vector spaces

Definition 2.1.1. Let V be a real vector space. A linear complex structure,
or more simply, a complex structure on V is a linear map J : V → V satisfying
J2 = −I; equivalently, J is a matrix in GL(V ) such that J2 = −I.

We call the pair (V, J) a complex vector space.

Only even dimensional spaces admit almost complex structures, as we
have det(J)2 = (−1)dimV , and J is a linear map of real spaces, so det(J)
must be real, hence dimV must be even. In particular, since J2 = −1, we
can use J to define multiplication by complex scalars: for v ∈ V , let iv = Jv,
so that (x + iy)v = xv + yJv. Hence the map J gives V the structure of
a complex vector space, justifying the definition. This must have complex
dimension dimC V = 1

2
dimR V , as C is a 2-dimensional real vector space.

Proposition 2.1.2. Every even-dimensional real space admits a complex
structure.

Proof. We can define a linear map J0 : R2n → R2n by the 2n × 2n matrix

J0 =

(
0 In
−In 0

)
which satisfies J2

0 = −I2n, so that J defines a linear complex
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structure on R2n. Hence every even-dimensional real vector space V ∼= R2n

admits a linear complex structure.

We call this complex structure J0 the standard complex structure on R2n.
The real vector space R2n with basis {e1, . . . , en,−en+1,−e2n}, where {ej}j≤2n

is the standard basis, becomes a complex vector space with basis {e1, . . . , en},
since iej = J0ej = −en+j for 1 ≤ j ≤ n. This makes it easy to see how
complex conjugates work. Let v ∈ R2n such that v =

∑2n
j=1 vjej. Then we

have

v =
2n∑
j=1

vjej =
n∑
j=1

vjej −
2n∑

j=n+1

vjej.

We can construct a similar basis for any complex structure J .

Proposition 2.1.3. Let J be a complex structure on R2n. Then we can find
a basis {b1, . . . , bn, c1, . . . , cn} such that Jbj = cj.

Proof. Start with any nonzero vector b1 ∈ R2n, and let c1 = Jb1. Clearly
these two vectors are linearly independent over R, as if c1 = λb1 for some
λ ∈ R, we have λ2 = −1, which is impossible. Hence span{b1, c1} is a 2-
dimensional subspace of R2n. Choose b2 /∈ span{b1, c1}. As above, Jb1 /∈
span{b1}. We also have Jb2 /∈ span{b1, c1}, since if Jb2 = λb1 + µc1, then
b2 = J4b2 = J3(Tb2) = J3(λb1 + µc1) = (−λc1 + µb1), using J2 = −I. Hence
we now have four linearly independent vectors {b1, b2, c1, c2}. Repeating this
process gives a basis {b1, . . . , bn, c1, . . . , cn} such that Jbj = cj. We call this
basis a complex basis of (R2n, J), since {b1, . . . , bn} is a basis for (R2n, J) over
C, using ibj = cj..

We can define the automorphism group of real spaces with complex struc-
ture.

Definition 2.1.4. Let R2n be equipped with the standard complex structure
J0. We define the complex general linear group of R2n to be the group of
invertible matrices that commute with J0 and denote this group GL(n,C).

The correspondence between multiplication by J0 over R and multipli-
cation by i over C means that this group can easily be identified with the
usual definition of the general linear group GL(n,C) of Cn. We have there-
fore described GL(n,C) as a subgroup of GL(2n,R). We could define the
group with respect to any choice of complex structure, but these can all be
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identified with GL(n,C) in the same way, so all of these general linear groups
would be homeomorphic.

Proposition 2.1.5. The space Jn = {J ∈ GL(2n,R) : J2 = −I} of
complex structures on R2n, with the subspace topology, is homeomorphic to
GL(2n,R)/GL(n,C) with the quotient topology.

Proof. The group GL(n,R) acts on the space of complex structures Jn by
conjugation, so for a complex structure J ∈ Jn and a matrix A ∈ GL(2n,R),
we have the action GL(2n,R) × Jn → Jn, (A, J) → AJA−1. Since we can
define a complex basis with respect to any given complex structure, this
action is also transitive, since we can find a matrix in GL(2n,R) that maps
one such basis to another by conjugation, making Jn a homogeneous space.
The stabliser group of this action is the set of matrices, for some J ∈ Jn,
such that AJA−1 = J , which is, by definition, homeomorphic to GL(n,C).
Hence Jn is homeomorphic to GL(2n,R)/GL(n,C).

Suppose that A ∈ GL(n,C) ⊂ GL(2n,R). Let A =

(
A11 A12

A21 A22

)
, where

the Ajk are n× n matrices. We have AJ0 = J0A, so(
A11 A12

A21 A22

)(
0 In
−In 0

)
=

(
0 In
−In 0

)(
A11 A12

A21 A22

)
⇒
(
−A12 A11

−A22 A21

)
=

(
A21 A22

−A11 −A12

)
⇒ A =

(
A11 A12

−A12 A11

)
.

This allows us to write A = A11 + iA12 in the complex basis, since iej =
−ej+n, so we can define the conjugate of A, A = A11 − iA12 in the complex

basis, which gives A =

(
A11 −A12

A12 A11

)
in the real basis, and the conjugate

transpose, A† = A
T

= (A11 − iA12)T in the complex basis, which gives

A† =

(
AT11 −AT12

AT12 AT11

)
in the real basis.

Definition 2.1.6. A matrix A ∈ GL(n,C) is called unitary if A† = A−1.
Clearly, the set of all such matrices forms a group, which is called the

unitary group and denoted U(n).
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We can identify this with the usual definition of the unitary group over C

by identifying the real matrix A =

(
A11 A12

−A12 A11

)
with the complex matrix

A11 + iA21 as above.
The final point to note is that for A ∈ GL(n,C) ⊂ GL(2n,R), we have

A† =

(
A11 A12

−A12 A11

)†
=

(
AT11 −AT12

AT12 AT11

)
=

(
A11 A12

−A12 A11

)T
= AT .

Hence A ∈ GL(n,C) is unitary if and only if A ∈ GL(2n,R) is orthogonal.
This gives U(n) = O(2n) ∩GL(n,C) ⊂ GL(n,R).

2.2 Symplectic vector spaces

Definition 2.2.1. Let V be a vector space over a field F. A symplectic form
on V is a bilinear form ω : V × V → F that is

1. alternating, that is, ω(v, v) = 0 for v ∈ V ,

2. nondegenerate, that is, ω(u, v) = 0 for all v ∈ V implies that u = 0.

We call the pair (V, ω) a symplectic vector space.

Note that we have 0 = ω(u + v, u + v) = ω(u, u) + ω(v, v) + ω(u, v) +
ω(v, u) = ω(u, v) + ω(v, u), so that ω(u, v) = −ω(v, u), so that an alter-
nating form is skew-symmetric. If the field has characteristic not equal to
2, then ω(u, v) = ω(v, u) ⇒ ω(v, v) = −ω(v, v) ⇒ ω(v, v) = 0, so that
skew-symmetric forms are alternating. In particular, over R, the alternating
condition on ω is equivalent to a skew-symmetry condition.

Definition 2.2.2. The standard symplectic form on F2n with co-ordinates
(x1, . . . , xn, y1, . . . yn) is

ω0 =
2n∑
j=1

dxj ∧ dyj.

With respect to a fixed basis, every bilinear form α can be represented
as uniquely as a matrix Ω such that α(u, v) = uTΩv. The conditions on
ω means that Ω must be skew-symmetric and invertible. Hence if V is
finite-dimensional, its dimension must be even, as an odd dimensional skew-
symmetric matrix is singular. In particular, using the standard basis for F2n,
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the standard symplectic structure ω0 can be defined by ω(u, v) = uTJ0v,

where J0 =

(
0 In
−In 0

)
as in Section 2.1.

As for real vector spaces with complex structure, we can define the auto-
morphism group of symplectic vector spaces.

Definition 2.2.3. Let F be a field, and let F2n be equipped with the standard
symplectic structure ω0. We define the symplectic group of this space to be
the set of invertible matrices A such that ω0(Au,Av) = (u, v) for all u, v ∈ V
and denote this group Sp(2n,F).

The condition means that (Au)TJ0(Av) = uTJ0v for all u, v, which is
equivalent to u(ATJ0A)v = uJ0v for all u, v, so that Sp(2n,F) + {A ∈
GL(n,F) : ATJ0A = J0}. We could define a similar group for any sym-
plectic structure, but all such groups can be identified with each other via
their defining matrices, as in the case of different complex structures.

This group is not to be confused with the symplectic group Sp(n) ⊂
GL(n,H), the quaternionic analogue of the orthogonal and unitary groups
over R and C respectively, which is compact. When there is a possibility
of confusion, we refer to Sp(2n,R) as the real symplectic linear group, and
Sp(n) as the compact symplectic group. The notation and language used in
the literature to refer to these different symplectic groups varies.

We can derive an important property of the unitary group U(n) from this
definition. We have the following subgroups of GL(2n,R) with their defining
equations:

1. the orthogonal group O(2n) with equation ATA = I2n;

2. the complex linear group GL(n,C) with equation AJ0 = J0A;

3. the symplectic group Sp(2n,R) with equation ATJ0A = J0;

and from Section 2.1, we have O(2n) ∩ GL(n,C) = U(n). Any two of the
three equations above imply the third, so this gives us

O(2n)∩GL(n,C) = O(2n)∩ Sp(2n,R) = GL(n,C)∩ Sp(2n,R) = U(n).

This is known as the 2-out-of-3 property of the unitary group.
From this point, all symplectic vector spaces are assumed to be real finite-

dimensional vector spaces.
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Definition 2.2.4. Let U be a subspace of the symplectic vector space (V, ω).
We define the symplectic complement of U , Uω = {v ∈ V : ω(u, v) =

0 for all u ∈ U}.

Proposition 2.2.5. For a subspace U of (V, ω), Uω is also a subspace of V ,
and dimU + dimUω = dimV .

Proof. Let ω(v,−) represent the 1-form on V where ω(v,−)(w) = ω(v, w).
Since ω is nondegenerate, the the map

φ : V → V ∗

v 7→ ω(v,−)

is an isomorphism, where V ∗ is the dual of V . Define a related linear map,

φU : V → U∗

v 7→ ω(v,−)|U .

By definition, the kernel of this map is Uω, which is therefore a subspace of
V .

Let α ∈ U∗ be a linear form on U . Extend this to a form α̃ ∈ V ∗ on
V ⊃ U . By surjectivity of the map v → ω(v, ∗), there exists a v ∈ V such
that α̃ = ω(v,−). Now we have φU(v) = φ(v)|U = α̃(v)|U = α, so that φU is
surjective.

We know that dimU∗ = dimU , so we can apply the kernel-rank theorem
to get dimUω + dimU = dimV .

Corollary 2.2.5.1. For a subspace U of (V, ω), we have (Uω)ω = U .

Proof. By definition, if u ∈ U , then ω(u, v) = 0 for all v ∈ Uω, so that
u ∈ (Uω)ω. Hence U ⊂ (Uω)ω. By the lemma, dimU = dim(Uω)ω. Hence
(Uω)ω = U .

Definition 2.2.6. Let U be a subspace of (V, ω). We say that U is

• symplectic if U ∩ Uω = {0},

• isotropic if U ⊂ Uω,

• coisotropic if U ⊃ Uω,

• Lagrangian if U = Uω.
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We have the following properties of a subspace U of a symplectic vector
space (V, ω):

Proposition 2.2.7. 1. U is a symplectic subspace if and only if the re-
striction ω|U of ω to U is a symplectic form on U,UT .

2. U is isotropic if and only if Uω is coisotropic.

3. If U is Lagrangian, dimU = 1
2

dimV .

4. If U is isotropic, ω defines a symplectic form on Uω/U .

Proof. 1. The condition U ∩Uω = 0 is equivalent to saying the restriction
ω|U of ω to U is nondegenerate. Hence ω restricts to a symplectic form
ω|U on U , hence the term symplectic subspace. Using (Uω)ω = U , we
have ω|Uω a symplectic form on Uω as well.

2. The fact that (Uω)ω = U means that U is isotropic if and only if Uω is
coisotropic and vice versa.

3. The fact that dimU+dimUω = dimV means that if U is a Lagrangian
subspace of (V, ω), we have dimU + dimU = dimV , so that dimU =
1
2

dimV .

4. Suppose U is isotropic, so that U ⊂ Uω. Let v1, v2 ∈ Uω, and u1, u2 ∈
U ⊂ Uω. Then ω(v1 + u1, v2 + u2) = ω(v1, v2) since all other terms
in the expansion vanish, as u1, u2 ∈ U, u1, u2, v1, v2 ∈ Uω. Hence ω is
a well defined bilinear form on Uω/U . The form will be alternating,
since it is alternating on V . If there exists some v0 ∈ Uω such that
ω(v0, v) = 0 for all v ∈ Uω, by definition, this means that v0 ∈ (Uω)ω,
which means that v0 ∈ U , so that [v0] = [0] in Uω/U . Hence the form
is nondegenerate, so the form is symplectic.

We can use the first part of this proposition to define symplectic bases as
we defined complex bases in Section 2.1.

Proposition 2.2.8. Let (V, ω) be a symplectic space. There exists a basis
{e1, . . . , en, f1, . . . , fn} such that symplectic form ω can be written as

ω =
n∑
j=1

e∗j ∧ f ∗j ,
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where ∗ denotes the dual of a vector.

Proof. Suppose that V has dimension 2n. Let e1 be any nonzero vector. Since
ω is nondegenerate, we can find f1 such that ω(e1, f1) 6= 0; by rescaling, we
can choose f1 such that ω(e1, f1) = 1. We then have that ω is a symplectic
form on span{b1, c1}, so that span{b1, c1} is a symplectic subspace, by the first
part of Proposition 2.2.7, so that span{b1, c1}ω is also a symplectic subspace,
using (Uω)ω = U .

We can therefore apply this process repeatedly to obtain a basis {e1, . . . ,
en, f1, . . . , fn} such that ω(ei, fi) = 1 by construction, ω(ei, ei), ω(fi, fi) = 0
since ω is alternating, and if i 6= j, we have (ei, fj) = 0, since fj ∈ span{ei}ω.
These conditions completely describe the form ω, and also the form

∑n
j=1 e

∗
j∧

f ∗j , so these two forms must be equal.
We call the basis {e1, . . . , en, f1, . . . , fn} a symplectic basis for (V, ω).

Note that this proof also explicitly constructs a Lagrangian subspace of
V , namely span{e1, . . . , en}. Note also that the standard symplectic form on
R2n with co-ordinates (x1, . . . , xn, y1, . . . , yn) is of this form, since

ω0 =
n∑
j=1

dxj ∧ dyj =
n∑
j=1

e∗j ∧ e∗j+n,

where {e1, . . . , e2n} is the standard basis for R2n, so the standard basis is also
a symplectic basis for (R2n, ω0).

Proposition 2.2.9. A skew-symmetric bilinear form ω on a real vector space
V of dimension 2n is a symplectic form if and only if ωn 6= 0.

Proof. Suppose that ω is a symplectic form on V . Let (e1, . . . , en, f1, . . . , fn)
be a symplectic basis for (V, ω). Then

ωn =

(
n∑
j=1

e∗j ∧ f ∗j

)n

= n!e∗1 ∧ f ∗1 ∧ . . . ∧ e∗n ∧ f ∗n
6= 0.

Conversely, suppose that ωn 6= 0, and fix u 6= 0 in V . If ω(u, v) = 0 for all
v ∈ V , then ωn(u, . . .) = 0, which is a contradiction. So there exists some
w ∈ V such that ω(v, w) 6= 0, so ω is nondegenerate and so is a symplectic
form.
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Symplectic bases also enable us to describe the space W2n of symplectic
forms on (R2n, ω).

Proposition 2.2.10. The space W2n
∼= {Ω ∈ GL(2n,R) : ΩT = −Ω} of

symplectic structures on V ∼= R2n is homeomorphic to GL(2n,R)/Sp(2n,R)
with the quotient topology.

Proof. The group GL(n,R) acts on the space of symplectic structures W2n

by the action GL(2n,R)×W2n →W2n, (A, ω)(u, v)→ ω(Au,Av). Since we
can define a symplectic basis with respect to any given symplectic form, this
action is also transitive, so that W2n is a homogeneous space. The stabliser
group of this action is the set of matrices A such that ω(Au,Av) = ω(u, v)
for all u, v ∈ R2n, which is, by definition, homeomorphic to Sp(2n,R). Hence
W2n is homeomorphic to GL(2n,R)/Sp(2n,R).

We now move on to complex structures on symplectic vector spaces.

Definition 2.2.11. Let (V, ω) be a symplectic vector space, J a complex
structure on V . We say that J tames ω if ω(v, Jv) > 0 for all nonzero v ∈ V .

We say that J is compatible with ω if J tames ω, and ω(Ju, Jv) = (u, v)
for all u, v ∈ V .

Proposition 2.2.12. Let (V, ω) be a (2n)-dimensional symplectic vector
space with a compatible complex structure J . Then there exists a symplectic
basis that is also a complex basis, that is, a basis {e1, . . . , en, f1, . . . , fn} such
that Jej = fj, and ω =

∑n
j=1 e

∗
j ∧ f ∗j .

Proof. Let {b1, . . . , bn, c1, . . . , cn} be a symplectic basis. The span of the first
n vectors is a Lagrangian subspace, which we call L. Since J is compatible
with ω, ω(v, Jv) > 0 for all v ∈ V , so that for all v ∈ L, Jv /∈ Lω, so Jv /∈ L,
since L is a Lagrangian subspace. Hence L∩JL = 0, and since J is invertible,
we have dim JL = dimL = n, so that L ⊕ JL = V . In particular, since J
is invertible, we have {Jb1, . . . , Jbn} as a basis for JL. Now ω(bj, Jbj) > 0,
so let ej = 1

ω(bj ,Jbj)1/2
bj, fj = Jej, then we have ω(ej, fj) = 1, while all other

possible pairs give ω = 0, so we have a basis of the required form. We call
such a basis a complex symplectic basis.

Proposition 2.2.13. Let (V, ω) be a symplectic vector space. The space Jω
of complex structures compatible with ω is homeomorphic to Sp(2n,R)/U(n).
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Proof. The group Sp(2n,R) acts on Jω via conjugation, so for a matrix
A ∈ Sp(2n,R) and a compatible complex structure J ∈ Jω, we have (A, J) 7→
AJA−1. Since we can define a complex symplectic basis for (V, ω) with any
compatible complex structure J , this action is transitive. The stabiliser group
of this action is the set of matrices A ∈ Sp(2n,R) such that AJA−1 = J , so
A ∈ GL(n,C), so this is the set Sp(2n,R) ∩GL(n,C) = U(n). Hence Jω is
homeomorphic to Sp(2n,R)/U(n).

2.3 Vector bundles

We give a brief description of fibre bundles, which we will be using extensively.
For a fuller treatment, see Steenrod.

Definition 2.3.1. Let p : E → B be a continuous surjective map, F another
topological space. Suppose that for every x ∈ E, there exists an open neigh-
bourhood U of p(x) ∈ B and a homeomorphism φ : p−1(U) → U × F such
that p is equivalent to φ composed with the projection onto the first factor,
π1 : U × F → U , equivalently, such that the diagram

p−1(U) U × F

U

p

φ

π1

commutes. In this way, p−1(y) is homeomorphic to F for all y ∈ B. We
call U a local co-ordinate neighbourhood, and (U, φ) a local trivialisation, of
p : E → B at p(x). A set {(Ui, φi)}i∈J of local trivialisations such that
{Ui}i∈J covers B is called a local trivialisation of the bundle. The quadruple
(E,B, p, F ) is called a fibre bundle.

The definition often given for a fibre bundle stops here, but we will need
another important notion.

Suppose we have a topological group G acting on F , and the group action
is compatible with local trivialisations. Formally, let {(Ui, φi)} be a local
trivialisation of the bundle such that the maps

φi ◦ φ−1
j : Ui ∩ Uj × F → Ui ∩ Uj × F

(x, ζ) 7→ 0(x, ψij(x)(ζ))

define continuous maps ψij : Ui ∩ Uj → G, called transition maps, satisfying
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1. ψii(x) = 1G for all x ∈ Ui,

2. ψji(x) = tij(x)−1 for all x ∈ Ui ∩ Uj,

3. ψij(x)ψjk(x) = ψik(x) for all x ∈ Ui ∩ Uj ∩ Uk.

We call the quintuple (E,B, p, F,G) a fibre bundle with structure group
G, or G-bundle, with B the base space, E the total space, F the fibre, and G
the structure group of the bundle.

We can define smooth fibre bundles in a similar way by specifying that
all continuous maps must be smooth. For example, we have the notion of
smooth fibre bundles over a smooth manifold.

We will often refer to the fibre bundle {E,B, p, F,G} as p : E → B, or
F → E → B.

Definition 2.3.2. Let p1 : E1 → B1, p2 : E2 → B2 be fibre bundles. A pair
of continuous maps φ : E1 → E2, f : B1 → B2 is called a bundle map or
bundle morphism if the diagram

E1 E2

B1 B2

φ

p1 p2

f

commutes.
If the bundles have the same base space B = B1 = B2, we require f to

be the identity, so a bundle morphism φ : E1 → E2 is a map such that the
diagram

E1 E2

B

φ

p1
p2

commutes. If φ is also a homeomorphism, so that it has an inverse that is
also a bundle map, we say that φ is a bundle isomorphism.

Suppose in addition, these bundles have structure group G. If φ is G-
equivariant, that is, φ(ge) = gφ(e) for all g ∈ G, e ∈ E1, then φ is a morphism
of G-bundles, and we can define isomorphisms of G-bundles in a similar way.
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Definition 2.3.3. A section s of a fibre bundle p : E → B is a map s : B →
E such that p ◦ s = idB, in other words, a right inverse of p.

There is a construction of fibre bundles that will be useful later.

Definition 2.3.4. Let p : E → B be a fibre bundle, f : X → B a continuous
map. We can define the pullback bundle f ∗E → X, with the same fibre, as
follows. Let

f ∗E = {(x, e) ∈ X × E : f(x) = p(e)},

with the projection of the bundle p′ : f ∗E → X defined by projection onto
the first factor, p′(x, e) = x. Projection onto the second factor gives a map
π2 : f ∗E → E, π2(x, e) = e, such that the diagram

f ∗E E

X B

π2

p′ p

f

commutes. In particular, the fibre of f ∗E over x is just the fibre of E over
f(x).

We define some special cases of fibre bundles.

Definition 2.3.5. The simplest example of a fibre bundle is when E = B×F .
This is called the trivial bundle over B with fibre F .

Definition 2.3.6. A fibre bundle where the structure group is the same as
the fibre, and acts on the fibre by the usual action of a group on itself, is
called a principal bundle.

There is an important construction involving principal bundles.

Definition 2.3.7. Let {E,B, p, F,G} be a fibre bundle. We define its as-
sociated principal bundle, to be the bundle with the same local co-ordinate
neighbourhoods Ui ⊂ B and the same transition maps ψij : Ui ∩ Uj → G,
and replace the fibre F by G and G acts on itself via these transition maps.

It is proven in [11] that two bundles with the same fibre are equivalent,
that is, bundle isomorphic, if and only if their associated principal bundles
are equivalent. The next special case of fibre bundles is one we will be using
extensively.
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Definition 2.3.8. A fibre bundle where the fibre is a vector space V , with
the group of the bundle its general linear group GL(V ), is called a vector
bundle. We can have vector bundles over different fields; the ones we will be
most interested in are real and complex vector bundles.

The dimension of the fibre V is called the rank of the vector bundle. In
particular, a vector bundle of rank 1 is called a line bundle.

Trivial vector bundles will be of significance later on, so, for a space B,
we will denote the trivial vector bundle of real rank n, B × Rn, by Rn. We
can perform some operations on vector bundles in the same way as we can
perform them on vector spaces.

Definition 2.3.9. Let E1, E2 → X be vector bundles of rank n1, n2 respec-
tively. We form the Whitney sum E1 ⊕ E2 of these bundles by taking the
direct sum of their fibres as vector spaces.

We can form the dual of a vector bundle by taking the fibres of the dual
bundle to be the dual of the fibres of the vector bundle.

Example 2.3.10. An important example of a smooth vector bundle is the
tangent bundle TM of a smooth manifold M ,

TM =
⋃
p∈M

TpM, where TpM is the tangent space to M at p.

The local trivialisations of the tangent bundle are given via the local charts
of M .

The dual bundle T ∗M of the tangent bundle is called the cotangent bun-
dle.

Note that by definition, sections of the tangent bundle are vector fields,
and sections of the cotangent bundles are differential 1-forms.

We can define additional structures on real vector spaces, such as a metric
or inner product, an orientation, a complex structure or symplectic structure.
If we can define a structure on the fibres of a vector space for each point of
the base space, such that the structures vary smoothly over the whole base
space, we say that we have defined the structure on the vector bundle. In
this way, we can define metrics, symplectic structures, or complex structures
on vector bundles.

We know that imposing a metric on Rn reduces its automorphism group
from GL(n,R) to O(n), and imposing an orientation reduces the automor-
phism group fromGL(n,R) toGL+(n,R), the group of matrices with positive
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determinant. We know from Section 2.1 that imposing a complex structure
on R2n reduces the automorphism group from GL(2n,R) to GL(n,C) and,
from Section 2.2, that defining a symplectic form on R2n reduces the au-
tomorphism group from GL(2n,R) to Sp(2n,R). We have an analogous
construction for fibre bundles.

Definition 2.3.11. Let p : E → B be a G-bundle, and suppose that H is
another topological group, and we have a group monomorphism H → G.
We compose the map H → G with the transition maps into H to define a
G-bundle structure on H-bundles. A reduction of the structure group from
G to H along the H → G is an isomorphism between the original G-bundle
and a G bundle formed from an H-bundle via the map H → G. If, instead
of being a monomorphism, the map H → G is an epimorphism, we obtain a
lift of the structure group in the same way.

Since H → G is a group monomorphism, H is isomorphic to its image,
so the map is an inclusion H ↪→ G. A reduction of the structure group from
G to H along the inclusion H ↪→ G is simply a choice of trivialisation such
that the transition maps take values in H ⊂ G.

Example 2.3.12. Suppose we have a vector bundle p : E → B of rank 2n.
A reduction of the structure group from GL(2n,R) to GL(n,C) is equivalent
to imposing a complex structure on this bundle.

There are certain properties of Lie groups that we are going to need.

Lemma 2.3.13. 1. GL(n,R) deformation retracts onto O(n),

2. GL(n,C) deformation retracts onto U(n),

3. Sp(2n,R) deformation retracts onto U(n).

Proof. 1. Let A ∈ GL(n,R). Since A is invertible, we can use the Gram-
Schmidt process to find an orthonormal basis {e1, . . . en} from the
columns {a1, . . . , an} of A as follows:

bi = ai −
∑
j<i

〈ai, bj〉
〈bj, bj〉

bj, ei =
1

〈bi, bi〉
bi.

By expressing the columns ai in terms of this orthonormal basis, we
have

ai =
∑
j≤i

〈aj, ej〉ej.
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In matrix form, this gives

A =
(
e1 . . . en

)
×


〈a1, e1〉 〈a2, e1〉 . . . 〈an, e1〉

0 〈a2, e2〉 . . . 〈an, e2〉
...

...
0 . . . 0 〈an, en〉

 .

Hence we can find Q,R such that A = QR, where Q is an orthogonal
matrix, and R is an upper triangular matrix. For simplicity, let rij =
〈aj, ei〉, so that R = (rij). We construct a deformation retraction of
GL(n,R) onto O(n) by homotoping R to the identity matrix:

Ft(A) = Q×


t+ (1− t)r11 (1− t)r12 . . . (1− t)rn1

0 t+ (1− t)r22 . . . (1− t)rn2
...

...
0 . . . 0 t+ (1− t)rnn

 .

Clearly F0(A) = A,F1(A) = Q, and Ft preserves orthogonal matrices,
since if A ∈ O(n), then R is the identity. Moreover, the Gram-Schmidt
process is a rational function of the entries of A, so that Ft is continuous.
Hence Ft is a deformation retraction from GL(n,R) onto O(n).

2. This is exactly the same as above, except that in constructing Q and
R, we use the Gram-Schmidt process with a Hermitian inner product,
so that Q is unitary and R is upper triangular.

3. We have that GL(2n,R) retracts onto O(2n), so that Sp(2n,R) retracts
onto Sp(2n,R) ∩O(2n) = U(n).

We finish off with a lemma that we will be able to prove more easily once
we have introduced classifying spaces.

Lemma 2.3.14. A G-bundle admits a reduction of its structure group to
H ⊂ G if H is a deformation retract of G.

For example, a real vector bundle may be viewed as having structure
group O(n), and a symplectic vector bundle may be viewed as having struc-
ture group U(n), from Lemma 2.3.13.
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Chapter 3

Contact manifolds

3.1 Contact manifolds

We begin with some basic definitions that will allow us to define contact
manifolds.

Definition 3.1.1. Let M be a smooth real manifold of dimension n. Let p
be a point in M , with TpM the tangent space of M at p. A contact element
ξp of M with contact point p is an (n− 1)-dimensional subspace of TpM .

Since ξp is an (n − 1)-dimensional subspace of TpM , which is itself an
n-dimensional real vector space, ξp is the kernel of a linear functional αp :
TpM → R, which is unique up to multiplication by a nonzero scalar. By
definition, αp is a 1-form on TpM .

Definition 3.1.2. Let M be a smooth real manifold of dimension n with
tangent bundle TM . A field of hyperplanes or hyperplane field ξ on M is a
smooth subbundle of TM of rank n− 1, equivalently, of corank 1.

For every p ∈M , the fibre ξp of the hyperplane field ξ is a contact element.
Using the local triviality of the bundle TM/ξ, we can see that ξ is locally
the kernel of a 1-form α on TM .

Definition 3.1.3. Let E →M be a vector bundle of rank n, E ′ a subbundle
of rank m ≤ n. We say that E ′ is co-orientable if E/E ′ is orientable.

A hyperplane field ξ ⊂ TM is therefore co-orientable if the line bundle
TM/ξ is orientable, equivalently, if TM/ξ is trivial.
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Proposition 3.1.4. A hyperplane field ξ over a manifold M is co-orientable
if an only if it can be described globally as the kernel of some 1-form α on
M .

Proof. If ξ is co-orientable, then TM/ξ is a trivial line bundle, so that the
dual bundle (TM/ξ)∗ is trivial, and hence admits a global nonzero section
α, which is by definition a 1-form. We can pull this back to the tangent
bundle TM via the projection TM → TM/ξ to obtain a global 1-form α
such that ξ = kerα. Conversely, if a hyperplane field ξ = kerα globally, for
some 1-form α, then α defines a nonzero section of the line bundle (TM/ξ)∗,
so that (TM/ξ)∗, and hence TM/ξ, are trivial, so ξ is co-orientable.

We are now in a position to define contact manifolds.

Definition 3.1.5. Let M be a manifold of dimension 2n + 1. A contact
structure on M is a co-orientable hyperplane field ξ = kerα, such that α has
the property that the (2n+ 1)-form α ∧ (dα)n is nonzero everywhere on M .
Here (dα)n is used to mean dα ∧ . . . ∧ dα︸ ︷︷ ︸

n times

.

We need to check that this is well defined, since the defining 1-form α
is not unique. Since the locally defined 1-forms αp are only unique up to
multiplication by a nonzero scalar constant, the smooth 1-form α on M is
only unique up to multiplication by a smooth function f : M → R\{0}.

Proposition 3.1.6. Let α be a smooth 1-form on a manifold M of dimension
2n+ 1 with the property that α∧ (dα)n is nonzero everywhere on M , and let
f : M → R\{0} be a smooth function. Then the (2n+1)-form fα∧ (d(fα))n

is also nonzero everywhere on M .

Proof. We know that, if ω is a n-form and η is an l-form,
d(ω ∧ η) = dω ∧ η + (−1)nω ∧ dη.

Since f is a smooth function, it is a 0-form, and α is a 1-form, we have
d(fα) = d(f ∧α) = df ∧α+ f ∧ dα = df ∧α+ fdα. Hence fα∧ (d(fα))n =
fα ∧ (df ∧ α + fdα)n. This is just fα ∧ (fdα)n, since all other terms in the
expansion will contain an α ∧ α term, which is zero because α is a 1-form.
This is equal to fn+1α ∧ (dα)n.

Since f and α ∧ (dα)n are nonzero everywhere on M , we have that fα ∧
(d(fα))n = fn+1α ∧ (dα)n nonzero everywhere on M .
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Hence, if there exists a defining 1-form of the hyperplane field ξ that is
nonzero on M , every defining 1-form of ξ is nonzero on M . In other words,
the notion of a contact structure on a manifold M is well defined.

Definition 3.1.7. Let M be an odd-dimensional real manifold equipped
with a contact structure ξ on M . We call the pair (M, ξ) a manifold with
contact structure, or more concisely a contact manifold.

A form α such that ξ = kerα is called a contact form. Let M be an
odd-dimensional manifold equipped with a contact form α. We call the pair
(M,α) a strict contact manifold.

Recall that contact forms on (M, ξ) are not unique; they are only unique
up to multiplication by a smooth function f : M → R/{0}. A strict contact
manifold is a contact manifold (M, ξ = kerα) with a specific choice of contact
form α. A contact form α induces a volume form α ∧ (dα)n, and so an
orientation of M . We can use the co-orientability of ξ to define the induced
orientation of a contact structure.

Definition 3.1.8. Let (M, ξ) be a contact structure, with a contact form α
such that α > 0 on TM/ξ. The orientation induced on M by the volume
form α ∧ (dα)n is called the orientation induced by ξ.

This is well defined, since the condition α > 0 on TM/ξ means that α
is only unique up to multiplication by a strictly positive smooth function,
which will not alter the orientation induced by the volume form α ∧ (dα)n.

We give some examples of contact manifolds.

Example 3.1.9. The simplest contact manifold is R2n+1, with co-ordinates
(x1 . . . , xn, y1, . . . , yn, z), equipped with the form

α0 = dz −
n∑
i=1

yidxi.

We compute

α0 ∧ (dα0)n = n!dz ∧ dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn,

which is a volume form on R2n+1, so that α is a contact form, and its kernel
is a contact structure. We call this the standard contact structure on R2n+1.
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Example 3.1.10. We can also define a contact structure on the sphere S2n+1.
Consider R2n+2 with co-ordinates (x1, . . . , xn+1, y1, . . . , yn+1) and the form

α0 =
n+1∑
j=1

(xjdyj − yjdxj).

Let r be the radial co-ordinate of R2n+2. We compute

rdr ∧ α0 ∧ (dα0)n = dr ∧
n+1∑
j=1

(xjdyj − yjdxj) ∧

(
d

(
n+1∑
j=1

(xjdyj − yjdxj)

))n

= rdr ∧
n+1∑
j=1

(xjdyj − yjdxj) ∧

(
n+1∑
j=1

(dxjdyj − dyjdxj)

)n

= rdr ∧
n+1∑
j=1

(xjdyj − yjdxj) ∧

(
n+1∑
j=1

(dxj ∧ dyj)

)n

=
n+1∑
j=1

(xjdxj + yjdyj) ∧
n+1∑
j=1

(xjdyj − yjdxj)∧

n!
n+1∑
j=1

dx1 ∧ dy1 ∧ . . . ∧ d̂xj ∧ d̂yj ∧ . . . ∧ dxn+1 ∧ dyn+1

= n!
n+1∑
j=1

(x2
j + y2

j )dx1 ∧ dy1 ∧ . . . ∧ dxn+1 ∧ dyn+1

= n!r2dx1 ∧ dy1 ∧ . . . ∧ dxn+1 ∧ dyn+1,

which is nonzero for r 6= 0. So α0 is a contact form on the nonzero level sets
of dr, and so on S2n+1 ⊂ R2n+2, so its kernel is a contact structure on S2n+1.
We call this the standard contact structure on S2n+1.

We define a notion of equivalence for contact manifolds.

Definition 3.1.11. Let (M1, ξ1), (M2, ξ2) be contact manifolds. A contac-
tomorphism is a diffeomorphism φ : M1 → M2 such that the differential
φ∗ : TM1 → TM2 satisfies φ∗(ξ1) = ξ2.

Let (M1, α1), (M2, α2) be strict contact manifolds. A strict contactomor-
phism is a diffeomorphism φ : M1 →M2 such that the pullback φ∗ : T ∗M2 →
T ∗M1 satisfies φ∗α2 = α1.
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Note that a strict contactomorphism is a contactomorphism, but the con-
verse is not true, due to the fact that contact forms defining a given contact
structure are not unique.

Proposition 3.1.12. Let (M, ξ = kerα) be a contact manifold. The form
dα is a symplectic form on the contact structure ξ, that is, a closed 2-form
such that its restriction to the fibres of ξ defines symplectic forms on those
fibres.

Proof. By definition, dα is a differential 2-form; since it is exact, it is closed.
Because ξ is a co-orientable hyperplane field, TM/ξ is trivial, so the tangent
bundle TM splits into the Whitney sum ξ ⊕ R. Since ξ = kerα, we must
have (dα)n 6= 0 on ξ, since α∧ (dα)n 6= 0. Hence, by Proposition 2.2.9, dα is
a symplectic form on the fibres of ξ, and so on ξ.

Lemma 3.1.13. Let (M, ξ) be a (2n+1)-dimensional contact manifold. Then
M admits a reduction of the structure group of its tangent bundle TM to
U(n)⊕ 1, where 1 is the trivial group.

Proof. Since TM/ξ is co-orientable, the tangent bundle splits into ξ ⊕ R,
and, by Proposition 3.1.12,, ξ is a symplectic bundle. The structure group
can therefore be reduced to Sp(2n,R)⊕1, where 1 is the trivial group, specif-
ically, the identity subgroup of GL(1,R). By Lemma 2.3.13, we know that
Sp(2n,R) retracts to U(n), so that TM admits a reduction of its structure
group to U(n)⊕ 1.

This motivates the following definition.

Definition 3.1.14. Let M be a (2n + 1)-dimensional manifold. An almost
contact structure on M is a reduction of the structure group of its tangent
bundle TM to U(n)⊕ 1.

Lemma 3.1.13 tells us that every contact manifold admits an almost con-
tact structure.

3.2 Submanifolds of contact manifolds

Definition 3.2.1. Let (M, ξ) be a contact manifold, L ⊂M a submanifold.
We say that L is a contact submanifold if it admits a contact structure ξ′

such that TL ∩ ξ|L = ξ′.
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Suppose that ξ = kerα. This condition is equivalent to ξ′ = ker(i∗α),
where i : L → M is inclusion. In particular, ξ′ is a symplectic subbundle of
ξ|L, with symplectic structure given by dα on ξ.

Definition 3.2.2. Le(M, ξ) be a contact manifold, L ⊂ M a submanifold.
We say that L is an isotropic submanifold if TL ⊂ ξ.

We need to justify the term isotropic in the definition.

Proposition 3.2.3. Let L be an isotropic submanifold of (M, ξ). Then TpL
is an isotropic subspace of (ξp, dαp) for all p ∈ L.

Proof. Since TL ⊂ ξ, TpL is a subspace of the symplectic vector space ξp for
all p ∈ L. Let α be a contact form defining ξ. Then TL ⊂ ξ is equivalent
to i∗α = 0, where i : L → M is inclusion. We then have i∗dα = d(i∗α) = 0.
This means that for all x, y ∈ TpL, we have dα(x, y) = 0. By fixing x, we
have, by definition, y ∈ (TpL)dα, using the notation of Section 2.2. Hence
TpL ⊂ (TpL)dα, so that TpL is an isotropic subspace of (ξp, dαp) for all p ∈
L.

Recall that for a subspace U of a symplectic vector space (V, ω), that
dimU + dimUω = dimV ; in particular, this means that if U ⊂ Uω, then
dimU ≤ 1

2
dimV . Hence if L is an isotropic submanifold of a (2n + 1)-

dimensional contact manifold (M, ξ), the rank of TL must be at most half
the rank of ξ, which is n, so we have dimL ≤ n.

Definition 3.2.4. Let L be an isotropic submanifold of a contact manifold
(M, ξ). If M has dimension 2n+ 1, and L has dimension n, we say that L is
a Legendrian submanifold.

Proposition 3.2.5. Let L be a Legendrian submanifold of a contact manifold
(M, ξ). Then TpL is a Legendrian subspace of (ξp, dαp) for all p ∈ L.

Proof. Let dimM = 2n + 1. Since L is an isotropic submanifold, we have
TpL is an isotropic subspace of (ξp, αp) for all p ∈ L. We therefore have
TpL ⊂ (TpL)dα. We also know that dimTpL+ dim(TpL)dα = dim ξp = 2n, so
that dim(TpL)dα = 2n− dimTpL = n, since L is a Legendrian submanifold.
Hence we actually have TpL = (TpL)dα, so that TpL is a Legendrian subspace
of (ξp, αp) for all p ∈ L.

We will be using isotropic submanifolds later on, when we introduce con-
tact surgery in Chapter 7.
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3.3 Complex, almost complex, and stably

complex manifolds

Definition 3.3.1. A complex structure on a manifold M is an atlas of charts
A = {(Uα, φα)} for M into open subsets of Cn whose transition maps are
holomorphic. We call the pair (M,A) a complex manifold.

This definition is equivalent to saying that M is a manifold over C as well
as R. Since C is a 2-dimensional real manifold, this implies that a complex
manifold must have even real dimension. We can define a less restrictive
structure on a manifold via its tangent bundle.

Definition 3.3.2. An almost complex structure on a manifold M is a col-
lection J of linear maps Jp : TpM → TpM that vary smoothly with p, with
the property that for all p ∈ M , Jp : TpM → TpM satisfies J2

p = −I, in
other words, a collection of linear complex structures Jp on TpM that vary
smoothly with p. We call the pair (M,J) a manifold with almost complex
structure, or, more concisely, an almost complex manifold.

An almost complex manifold must be of even dimension, since the tangent
spaces must be of even dimension. We can make the definition more concise
by using tensor fields, so an almost complex structure on a manifold is a
smooth tensor field J of type (1, 1) such that J2 = −I.

As in the case with symplectic vector spaces, we can say that a such a
complex structure on a symplectic vector bundle is compatible with the sym-
plectic structure if the complex structure is compatible with the symplectic
form on the fibres of the bundle. In particular, if M is a symplectic manifold,
that is, a manifold equipped with a global symplectic form, we can refer to
complex structures that are compatible with the symplectic structure of the
manifold.

Proposition 3.3.3. Every complex manifold is also an almost complex man-
ifold. Moreover, for a complex manifold (M,A) of dimension 2n, given local
complex co-ordinates (z1, . . . , zn), where zj = xj + iyj, an explicit almost

complex structure J is given by J
(

∂
∂xj

)
= ∂

∂yj
, J
(

∂
∂yj

)
= − ∂

∂xj
.

Proof. LetM be a complex manifold of dimension 2n. SinceM has a complex
structure, it is a manifold over C, so its tangent bundle TM must be a
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complex vector bundle. Hence TM admits a reduction of the structure group
from GL(2n,R) to GL(n,C), so that M admits an almost complex structure.

Let (z1, . . . , zn) be local complex co-ordinates at p ∈ M , where zj =
xj + iyj. We have a basis for the tangent space TpM , namely{

∂

∂x1

,
∂

∂y1

, . . . ,
∂

∂xn
,
∂

∂yn

}
.

We define the tensor field J on M by the equations

J

(
∂

∂xj

)
=

∂

∂yj
, J

(
∂

∂yj

)
= − ∂

∂xj
.

Since the vector fields ∂
∂xj

vary smoothly over M , J is a smooth tensor field;

clearly, J2 = −I.
We need to verify that J is well defined, so J must be compatible with

transition maps of the complex structure A. Let f be a transition map at p,
so that f is a diffeomorphism, and holomorphic with a holomorphic inverse,
from an open neighbourhood of (z1, . . . , zn) to another open set of Cn. Since
f is continuous, by Osgood’s lemma, this is equivalent to being holomorphic
in each variable, so the fk satisfy the Cauchy-Riemann equations in each
variable. We have, for j = 1, . . . , n,

J

(
∂

∂xj

)
= J

(
n∑
k=1

∂uk
∂xj
· ∂

∂uk

)
,

by the chain rule. In the same way,

J

(
∂

∂yj

)
= J

(
n∑
k=1

∂vk
∂yj
· ∂

∂vk

)
.

By applying the definition J , the linearity of J , and the Cauchy-Riemann
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equations, this gives

J

(
n∑
k=1

∂uk
∂xj
· ∂

∂uk

)
= J

(
n∑
k=1

∂vk
∂yj
· ∂

∂vk

)

⇒
n∑
k=1

∂uk
∂xj

J

(
∂

∂uk

)
=

n∑
k=1

∂vk
∂yj

J

(
∂

∂vk

)
⇒

n∑
k=1

∂uk
∂xj

J

(
∂

∂uk

)
=

n∑
k=1

∂uk
∂xj

J

(
∂

∂vk

)
⇒

n∑
k=1

∂uk
∂xj

(
J

(
∂

∂uk

)
− J

(
∂

∂vk

))
= 0 for j = 1, . . . , n.

We can rewrite this as a matrix equation,

(
J
(

∂
∂u1

)
− J

(
∂
∂v1

)
· · · J

(
∂
∂un

)
− J

(
∂
∂vn

))
∂u1
∂x1

· · · ∂u1
∂xn

...
...

∂un
∂x1

· · · ∂un
∂xn

 = 0.

Since f is holomorphic with a holomorphic inverse, the function Re f =
(u1, ..., uk) must be (real) differentiable with a differentiable inverse. This
means the second matrix is invertible, so the first matrix must be zero. Hence
we have

J

(
∂

∂uk

)
=

∂

∂vk
.

In the same way, applying the other Cauchy-Riemann equation gives

J

(
∂

∂vk

)
= − ∂

∂uk
.

Hence J is compatible with transition maps and so is well defined, and J2 =
−I. So J is an almost complex structure on M . We call J the almost complex
structure induced by the complex structure A.

Every complex manifold is almost complex. However, the converse is not
true; see [13].

Proposition 3.3.4. A manifold M of dimension 2n admits an almost com-
plex structure if and only if its tangent bundle TM admits a reduction of the
structure group from GL(2n,R) to U(n).
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Proof. By definition, an almost complex structure gives the tangent bundle
TM the structure of a complex vector bundle. Hence an almost complex
structure is equivalent to a reduction of the structure group of the tangent
bundle from GL(2n,R) to GL(n,C). By Lemma 2.3.13, U(n) is a deforma-
tion retract of GL(n,C), so this a equivalent to a reduction of the structure
group from GL(2n,R) to U(n).

We can generalise almost complex structures further.

Definition 3.3.5. A stable complex structure on a real vector bundle E with
base B is a complex structure c on the Whitney sum E⊕Rk of E with some
trivial bundle over B. A stable complex structure on a manifold M is a stable
complex structure c on its tangent bundle TM .

We call the pair (M, c) a stably complex manifold.

Note that a stable complex manifold can be of any dimension; we only
require n+ k even, since a complex vector bundle must have even real rank.
An almost complex manifold is a stably complex manifold where k can be
chosen to be 0.

Proposition 3.3.6. A manifold M of dimension n admits a stable complex
structure if and only if there exists a k ∈ N such that the vector bundle
TM ⊕ Rk admits a reduction of its structure group from GL(n + k,R) to
U
(

1
2
(n+ k)

)
.

Proof. By definition, a stable complex structure is a complex vector bundle
structure on TM ⊕ Rk, which is equivalent to a reduction of the structure
group from GL(n+k,R) to GL

(
1
2
(n+ k),C

)
. Since U

(
1
2
(n+ k)

)
is a defor-

mation retract of GL
(

1
2
(n+ k),C

)
, this is equivalent to a reduction of the

structure group to U
(

1
2
(n+ k)

)
.

We can now deduce the result that will allow us to use contact manifolds
in complex cobordism.

Lemma 3.3.7. Let M be a manifold of dimension 2n + 1 that admits a
contact structure. Then M admits a stable complex structure.

Proof. We know, from Lemma 3.1.13, that if M is a contact manifold of
dimension 2n+ 1, its tangent bundle TM admits a reduction of its structure
group from GL(2n+ 1,R) to U(n)⊕ 1. This means that the bundle TM ⊕R
admits a reduction of the structure group U(n) ⊕ 1 ⊕ 1, since R is a trivial
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line bundle over M . Now we can view U(n)⊕ 1⊕ 1 which we can view as a
subset of U(n+ 1) via the obvious inclusion over R:

U(n)⊕ 1⊕ 1 ↪→ U(n+ 1)

(I2, A) 7→
(
A 0
0 I2

)
.

Hence TM ⊕ R admits a reduction of the structure group to U(n + 1), so,
by Proposition 3.3.4, M admits a stable complex structure.
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Chapter 4

Universal bundles and
classifying spaces

For the results of the next few chapters, we need to understand classifying
spaces of topological groups.

4.1 Universal bundles

Definition 4.1.1. Let G be a topological group, EG→ BG a principal G-
bundle. Let X be a CW-complex, with [X,BG] the set of homotopy classes
of maps X → BG and PGX the set of equivalence classes of principal G-
bundles over X.

We say that EG → BG is a universal bundle for CW-complexes, if, for
every CW-complex X, the map

[X,BG]→ PGX
[f ] 7→ f ∗EG,

where f ∗EG is the pullback bundle of EG by f (for any f representing the
homotopy class [f ]), is bijective.

We call BG a classifying space of G, and the map X → BG a classifying
map.

The bijective correspondence between G-bundles with a particular base
space and fibre and their associated principal G-bundles, allows us to classify
other G-bundles as well. We need one more definition before we can state an
important theorem.
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Definition 4.1.2. A topological space X is called contractible if it is ho-
motopy equivalent to a point, and weakly contractible if all of its homotopy
groups vanish.

Clearly a contractible space is weakly contractible. Moreover, a weakly
contractible CW-complex is contractible, by Whitehead’s Theorem.

Theorem 4.1.3. A principal G-bundle is universal if and only if its total
space is weakly contractible.

Proof. This was proven by Steenrod in [11], although he used a slightly dif-
ferent characterisation of universality.

Theorem 4.1.4. Every topological group G has a universal bundle. More-
over, the classifying space BG is unique up to homotopy type.

Proof. This theorem was proven by Milnor in [8]. We prove the uniqueness
statement here.

Suppose that E1G→ B1G, E2G→ B2G are universal bundles for G. Us-
ing the definitions, and the fact that universal bundles are principal bundles,
we have a classifying map f : B1G → B2G that induces an isomorphism
E1G → f ∗E2G. Similarly, we have a classifying map g : B2G → B1G that
induces an isomorphism E2G→ g∗E1G.

Consider the map g ◦ f : B1G→ B1G. We compute the pullback:

(g ◦ f)∗E1 = f ∗(g∗E1G)
∼= f ∗(E2)
∼= E1G,

using the isomorphisms that result from the definition of f, g as classifying
maps. Hence (g◦f)∗E1G ∼= id∗E1G, so that the maps (f◦g) and id induce the
same pullback bundles. Using the bijection in the definition of the universal
bundle, this means that g◦f ' idB1G. In the same way, f ◦g ' idB2G. Hence
B1G is homotopy equivalent to B2G.

In this way, the associated principal O(n)-bundle of the tangent bundle of
a manifolds M can be classified by a map M → BO(n). In a similar way, the
associated principal U(n)-bundle of the tangent bundle of an almost complex
manifold M of dimension 2n can be classified by a map M → BU(n). We
can use the above theorems to define fibrations of classifying spaces, which
will relate the two.

31



Theorem 4.1.5. If H is a closed subgroup of G, there exist classifying spaces
BG,BH for G and H respectively, and a fibration

G/H → BH → BG.

Proof. By Theorem 4.1.4, we have a universal bundle EG → BG = EG/G
for G, with EG contractible. Since EG→ BG is a principal G-bundle, G acts
freely on EG. Since H is a closed subgroup of G, H also acts freely on EG,
so we have a principal H-bundle EG → EG/H; since EG is contractible,
this is a universal bundle for H, by Theorem 4.1.3, so we let BH = EG/H.

We define the map p : BH → BG, p([x]H) = [x]G, where x ∈ EG, and
[x]G, [x]H are the equivalence classes represented by x, under G- and H-action
respectively. The fibre is the set of equivalence classes [x̃]H mod H, such that
g(x̃) = x for some g ∈ G. Clearly g(x̃) = g′(x̃) if and only if gH = g′H, so
that the fibre is just the coset space G/H.

This gives us an another way to describe the reduction of the structure
group G of a principal G-bundle over X to a closed subgroup H of G. It is a
lift of the classifying map X → BG to a map X → BH. We can define the
homotopy class of a reduction, namely, the homotopy class of the map into
G/H that gives the lift from BG to BH.

We can now prove Lemma 2.3.14.

Lemma 4.1.6. Suppose G is a topological group, H ⊂ G a subgroup, and G
deformation retracts onto H. Then any G-bundle admits a reduction of its
structure group from G to H.

Proof. Suppose a principal bundle is classified by a map f : X → BG.
We need to find a lift of a map f : X → BH, but since the fibre of the
projection is contractible, the projection is a homotopy equivalence. We know
that homotopy equivalence is a bijective correspondence between homotopy
classes of maps into BG and BH, so the lift exists.

Applying the bijective correspondence between G-bundles with particular
fibre and their associated principal G-bundles gives the result.

Lemma 2.3.14 follows immediately, so, as already noted, real vector bun-
dles have structure group O(n), and complex vector bundles have structure
group U(n). A real vector bundle admits a complex structure if and only
if its classifying map into BO(2n) admits a lift to BU(n). In particular, a
(2n)-dimensional manifold admits an almost complex structure if and only
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if the classifying map of its tangent bundle admits a lift from BO(2n) to
BU(n), and a (2n−1)-dimensional manifold admits an almost contact struc-
ture if and only if the classifying map of its tangent bundle admits a lift from
BO(2n+ 1) to BU(n).

4.2 Universal bundles for O(n) and U(n)

We can explicitly construct universal bundles for O(n) and U(n). We will
focus on constructing a universal bundle for O(n), as the construction for
U(n) follows immediately by replacing the real numbers with the complex
numbers. Note that the classifying spaces from this construction will only
be unique up to homotopy type.

Definition 4.2.1. Let k ≥ n. Define the Stiefel manifold, Vn(Rk), as the set
of all n-frames in Rk, where an n-frame is an n-tuple of orthonormal vectors.

Analogously, we define complex and quaternionic Stiefel manifolds by
replacing R by C or H respectively.

Definition 4.2.2. Let k ≥ n. Define the Grassmann manifold or Grass-
mannian, Gn(Rk), as the set of all n-dimensional subspaces of Rk.

As for the Stiefel manifolds, we define complex and quaternionic Grass-
mann manifolds by replacing R by C or H respectively.

We need to justify the use of the term manifold in the above definitions.

Proposition 4.2.3. Let k ≥ n. The Stiefel manifold Vn(Rk) is a smooth
manifold of dimension nk − 1

2
n(n+ 1).

Proof. We can view the Stiefel manifold as a subset of Mk×n(R) ∼= Rnk,
by letting the elements of an n-frame be the columns of a k × n matrix.
The orthogonality condition on the n-frames is equivalent to the condition
that for A ∈ Vn(Rk) ⊂ Mk×n(R), we require ATA = 1, so that we can
view Vn(Rk) as the preimage of a smooth function in the entries of A. To
compute its dimension, we add the vectors in the n-frame one by one: the
ith vector must have norm 1, which is one equation that is smooth in the
entries of the vector, and must be orthogonal to the first i − 1 equations,
giving i smooth equations, in total, independent from all the previous ones,
for the ith vector in the frame. Hence the orthogonality condition on the
frame is equivalent to satisfying an irreducible system of 1 + 2 + 3 + ...+n =
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1
2
n(n+1) smooth equations, so that Vn(Rk) is a smooth manifold of dimension
nk − 1

2
n(n+ 1).

Proposition 4.2.4. There is a principal O(n)-bundle

O(n)→ Vn(Rk)→ Gn(Rk).

Proof. There is a natural projection p : Vn(Rk) → Gn(Rk), which sends an
n-frame in Rk to the n-dimensional subspace of Rk it spans. By definition,
the fibre of this projection is the set of all orthonormal n-frames contained
in that n-dimensional subspace, which is isomorphic to Rn. We can view an
orthonormal n-frame in Rn as a matrix in O(n) by identifying the vectors in
the n-frames with columns of the matrix, so the fibre is O(n).

This is a principal O(n)-bundle as follows. There is a natural action
of O(n) on Vn(Rk) by applying a transformation in O(n) to an n-frame in
Vn(Rk). The orbits of this action are the set of n-frames in a particular
n-dimensional subspace of Rk, which is O(n), the fibre of the bundle.

Proposition 4.2.5. The Grassmann manifold Gn(Rk) is a smooth manifold
of dimension n(k − n).

Proof. We can view the principal O(n)-bundle in Proposition 4.2.4 as the
action of O(n) on Vn(Rk), with quotient Gn(Rk). The action of O(n) is
free, since only the identity in O(n) preserves any n-frame in Vn(Rk). The
action is also proper, since O(n) is compact. The dimension of O(n) is
1
2
n(n− 1). We can now apply the quotient manifold theorem to deduce that
Gn(Rk) is a smooth manifold of dimension

[
nk − 1

2
n(n+ 1)

]
−
[

1
2
n(n− 1)

]
=

n(k − n).

Note that by replacing R by C, we obtain a principal U(n)-bundle

U(n)→ Vn(Ck)→ Gn(Ck).

We can view Rk as a subspace of Rk+1. By applying this repeatedly, we
obtain sequences of inclusions

Vn(Rk) ↪→ Vn(Rk+1) ↪→ . . .

Gn(Rk) ↪→ Gn(Rk+1) ↪→ . . . .

Taking the direct limit as k →∞ gives the spaces Vn(R∞), Gn(R∞), and sim-
ilarly for C,H. Since the finite-dimensional Stiefel and Grassmann manifolds
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are smooth manifolds, they are CW-complexes. Taking the direct limit in
the sequences of inclusions as above gives an infinite CW-complex structure
on Vn(R∞), Gn(R∞).

We now obtain bundles

O(n)→ Vn(R∞)→ Gn(R∞)

U(n)→ Vn(C∞)→ Gn(R∞).

We want to prove that these are universal bundles, but first we need to prove
a lemma.

Definition 4.2.6. Let X be a topological space, A a subspace. A weak
deformation retraction of X to A is a homotopy ft : X → X such that
f0 = idX , f1(X) ⊂ A, and ft(A) ⊂ A for all t ∈ [0, 1].

Lemma 4.2.7. If there exists a weak deformation retraction ft from X to
A ⊂ X, then the inclusion i : A ↪→ X is a homotopy equivalence.

Proof. We have f1(x) ⊂ A. We claim that the map f1 : X → A is a homotopy
inverse of the inclusion i. By definition, i◦ f1 = f1 is homotopic in X to idX .
f1 ◦ i = f1 : A → A is homotopic to idA, since the homotopy ft : X → X
satisfies ft(A) ⊂ A, so we can view it as a homotopy in A.

Theorem 4.2.8. The space Vn(R∞) is contractible.

Proof. Define a linear map

ht : R∞ → R∞, ht(x1, x2, . . .) = (1− t)(x1, x2, . . .) + t(0, x1, x2, . . .).

The kernel of this map is obviously trivial, so when applied to each vector
in an n-frame, it yields a n-tuple of linearly independent vectors. We can
obtain another n-frame from this by the Gram-Schmidt process, so ht, with
the Gram-Schmidt process for each t, defines a weak deformation retraction
on Vn(R∞) to the subspace of n-frames where the first co-ordinate in each
vector in the n-frame is 0. By applying this repeatedly, we have a weak
deformation retract to the subspace of n-frames with first n co-ordinates 0.

We can now define a homotopy on this subspace, (v1, . . . , vn) 7→ (1 −
t)(v1, . . . , vn) + t(e1, . . . , en), where ei is the standard basis vector with ith
co-ordinate 1 and all other co-ordinates 0. Since the first n co-ordinates
of the vi are 0, while all but the first n co-ordinates of the ei are zero,
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this homotopy preserves the linear independence, so we can again apply the
Gram-Schmidt process to obtain a weak deformation through n-frames to the
single point (e1, . . . , en). Hence Vn(R∞) admits a weak deformation retraction
to a point, and so, by Lemma 4.2.7, the inclusion of that point into Vn(R∞)
is a homotopy equivalence, so that Vn(R∞) is contractible.

Corollary 4.2.8.1. The bundle

O(n)→ Vn(R∞)→ Gn(R∞)

is a universal bundle for O(n).

Proof. Because Vn(R∞) is contractible, it is weakly contractible and we can
apply Theorem 4.1.3.

In the same way, we have the universal bundle for U(n), namely

U(n)→ Vn(C∞)→ Gn(C∞).

There is one final construction we make for these classifying spaces, which
is the associated vector bundle of the universal O(n)-bundle.

Definition 4.2.9. Let Gn(Rk) be the Grassmannian of n-planes in Rk. De-
fine γkn = {(V, v) : V ∈ Gn(Rk), v ∈ V }, that is, the set of pairs consisting of
an n-plane in Rk with a point in that space. Define the tautological bundle
as p : γkn → Gn(Rk), p(V, v) = V .

Proposition 4.2.10. The tautological bundle p : γkn → Gn(Rk) is a vector
bundle, and its associated O(n)-bundle is Vn(Rk)→ Gn(Rk).

Proof. Let V ∈ Gn(Rk). The fibre of p is {(V, v) : v ∈ V }, and we can
give this the structure of a vector space isomorphic to V via the operations
a(V, v) + b(V,w) = (V, av + bw). Hence p : γkn → Gn(Rk) is a vector bundle
of rank n.

Its associated G bundle is formed from the set of n-frames in each fibre
with the action ofO(n), which, by definition, is the bundle Vn(Rk)→ Gn(Rk).

Using the inclusion of Rk in Rk+1, we have a sequence of inclusions

γkn ↪→ γk+1
n ↪→ . . . ,
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so we can take the direct limit and define γn = limk→∞ γ
k
n, the universal

tautological bundle of rank n.
Since we used the same construction to define EO(n) → BO(n), this

is the vector bundle whose associated principal O(n)-bundle is EO(n) →
BO(n), so that every vector bundle over X is a pullback f ∗γn of a map
f : X → BO(n). In this way, we can classify vector bundles directly and
avoid using their associated principal bundles.

4.3 Stable vector bundles

In this section we discuss the notion of stable vector bundles and their relation
to classifying spaces.

Definition 4.3.1. We say that two vector bundles are stably equivalent if
summing each vector bundle with a trivial vector bundle produces isomorphic
vector bundles.

This is an equivalence relation as follows. Reflexivity and symmetry follow
from the properties of bundle isomorphisms, and if E1 ⊕ Ri ∼= E2 ⊕ Rj and
E2 ⊕ Rk ∼= E3 ⊕ Rl, where j ≤ k without loss of generality, we simply add
k − j trivial line bundles to E1 ⊕ Ri ∼= E2 ⊕ Rj, then transitivity follows.
Hence we can define equivalence classes.

Definition 4.3.2. The equivalence classes of vector bundles with respect to
stable equivalence are called stable vector bundles.

Definition 4.3.3. The equivalence class of the tangent bundle of a manifold
with respect to stable equivalence is called the stable tangent bundle.

We want to classify these objects in the same way we classify vector
bundles. We will focus on the orthogonal groups and real vector bundles,
but the case for complex vector bundles and the unitary groups is analogous.

We can define an inclusion of orthogonal groups as follows:

O(n) ↪→ O(n+ 1)

A 7→
(
A 0
0 1

)
(4.1)
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This induces a corresponding inclusion of classifying spaces:

BO(n) = Gn(R∞) ↪→ Gn+1(R∞) = BO(n+ 1)

V 7→ V ⊕ C.

By applying this inclusion repeatedly, we obtain a sequence of inclusions of
orthogonal groups

O(n) ↪→ O(n+ 1) ↪→ O(n+ 2) ↪→ . . . ,

and a corresponding sequence of inclusions of classifying spaces

BO(n) ↪→ BO(n+ 1) ↪→ BO(n+ 2) ↪→ . . . .

By applying the direct limit, we arrive at the following definition.

Definition 4.3.4. The stable orthogonal group, denotedO, is the direct limit,
as n→∞, of the orthogonal group O(n).

So we have

O(0) ↪→ O(1) ↪→ O(2) ↪→ . . . ↪→ O =
∞⋃
n=0

O(n)

Applying this direct limit to the inclusions of classifying spaces correspond-
ing to these inclusions, we arrive at the classifying space BO for the stable
orthogonal group.

Suppose a vector bundle E over a complex X is classified by a map
f0 : X → BO(n). We can then classify E ⊕ R by composing f with the
inclusion in 4.1, since the added bundle is trivial. In this way, we have a series
of maps fi : X → BO(n + i) classifying the bundles E ⊕ Ri. In particular,
we can compose the classifying map with the inclusion BO(n) ↪→ BO. We
want to show that stable vector bundles are classified by this map. First we
need a fact about CW-complexes.

Lemma 4.3.5. Let X be a compact space, Y a CW-complex, f : X → Y a
continuous map. Then the image f(X) is in a finite subcomplex of Y .

Proof. We know that every compact set in a CW-complex is contained within
a finite subcomplex, and we know that continuous maps preserve compact-
ness. Hence f(X) ⊂ Y is compact, and so is contained in a finite subcomplex
of Y .
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Theorem 4.3.6. Let X be a finite CW-complex. Let E0, E1 → X be vec-
tor bundles over X. Then E0, E1 are stably equivalent if and only if the
composition of their classifying maps with the inclusion BO(n) ↪→ BO are
homotopic.

Proof. Suppose the vector bundles E0, E1 → X of rank r0, r1 are stably
equivalent. Then E0⊕Ri0 ∼= E1⊕Ri1 for some i0, i1 ∈ N. Suppose this bundle
has rank r = r0 + i0 = r1 + i1. Composing the classifying maps of E0, E1

with the inclusions O(i0) ↪→ O(r), O(i0) ↪→ O(r) gives us classifying maps
X → BO(r) for the vector bundles E0⊕Ri0 , E1⊕Ri1 . Since these two bundles
are isomorphic, by definition of classifying spaces, their classifying maps are
homotopic. Composing with the natural inclusion into BO completes one
direction of implication.

Suppose the vector bundles E0, E1 → X have classifying maps f0 : X →
BO(r0), f1 : X → BO(r1). Let the composition of these maps with the
inclusion into BO be f̃0, f̃1 and suppose these maps are homotopic. Since
X is finite, it is compact. From the results of Section 4.2, we know that
BO(n) is a CW-complex, so BO =

⋃∞
n=0BO(n) is also a CW-complex.

Hence the homotopy f̃t between f̃0 and f̃1 is a map from a compact space
X × [0, 1] into an infinite CW-complex BO and so, by Lemma 4.3.5, must
have its image in a finite subcomplex of BO, and so in BO(r) for some
suitably large r. Hence f̃0, f̃1 are just the composition of the classifying maps
f0, f1 with the inclusions into BO(r) for some r ≥ r0, r1, which classify the
bundles E0 ⊕ Rr−r0 , E1 ⊕ Rr−r1 , and are homotopic in BO(r). By definition
of classifying maps, this gives E0 ⊕ Rr−r0 ∼= E1 ⊕ Rr−r1 , so that E0, E1 are
stably equivalent.

We therefore have a bijection between homotopy classes of maps X → BO
and stable vector bundles over X, so we can classify stable vector bundles
as we classify vector bundles. In particular, the stable tangent bundle of a
manifold M can be classified by a map M → BO. We can define the stable
unitary group U and its classifying space BU in an analogous fashion, and
similar arguments allow us to classify vector bundles with stable complex
structure by a map into BU , so a vector bundle over X admits a stable
complex structure if and only if its stable classifying map X → BO admits
a lift to BU .
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Chapter 5

Cobordism and the
Thom-Pontrjagin Theorem

This treatment broadly follows the treatment of Stong in [12]; however, we
have avoided using category theory in developing cobordism theory.

5.1 Manifolds with (B, f ) structure

We want to talk about manifolds with a specific structure on their stable
normal bundles. We need to construct the tools to make this notion precise.

Definition 5.1.1. Let fn : Bn → BO(n) be a fibration. Let ξ be a vector
bundle over a space X classified by a map ξ : X → BO(n).

A (Bn, fn)-structure on ξ is a homotopy class of lifts of the classifying
map to Bn.

The bijective correspondence between homotopy classes of classifying
maps and equivalence classes of pullback bundles means that classifying maps
of a particular bundle are only unique up to homotopy, and, using the ho-
motopy lifting property of fibrations, so are the lifts in the definition above.
This is why the definition uses homotopy classes of maps.

Definition 5.1.2. Suppose i : L → M is an embedding of manifolds. We
define the normal bundle of L in M , with respect to i, as i∗TM/TL, equiv-
alently, as TM |L/TL.
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There are two examples of this that we will be using in this chapter. For a
manifold M with boundary, we have the normal bundle of the boundary ∂M
in M , which is a line bundle. For every manifold M , we have, by the Whitney
embedding theorem, the existence of embeddings in Euclidean space, which
we can use to define the normal bundle of a manifold.

Definition 5.1.3. Let M be a manifold of dimension n with tangent bundle
TM . Let i : M → Rn+r be an embedding, with by i∗TRn+r the pullback of
the tangent bundle of Rn+r by i. The normal bundle NM of M with respect
to i is the quotient i∗TRn+r/TM .

Note that if we give TRn+r the Riemannian metric corresponding to the
usual inner product on Rn+r, the total space of the normal bundle NM is
the orthogonal complement of TM in i∗TRn+m; equivalently, the fibre NpM
of NM at p ∈ M is the orthogonal complements of i∗TpM in Rn+r. Note
as well that the normal bundle is a vector bundle of rank r and so admits a
classifying map ν(i) : M → BO(r).

We now consider (Br, fr)-structures on the normal bundles of a manifold.
We need to ensure that these structures do not depend on the choice of
embedding for suitably large r.

Definition 5.1.4. Let i1, i2 : M → N be two immersions. A regular ho-
motopy between i1, i2 is a homotopy it : M × [0, 1] → N such that it is an
immersion for all t ∈ [0, 1], and the induced map it∗ : TM → TN is also a
homotopy.

Theorem 5.1.5. Let M be an n-dimensional manifold. Any two i1, i2 : M →
Rn+r are regularly homotopic, for r sufficiently large, depending only on n.

Proof. This was proven by Hirsch in [6].

Theorem 5.1.6. Let M be an n-dimensional manifold. For r sufficiently
large, depending only on n, there is a bijective correspondence between Br, fr
structures for the normal bundles corresponding to any two embeddings i1, i2 :
M → Rn+r.

Proof. By Theorem 5.1.5, i1 and i2 are regularly homotopic. Composing this
regular homotopy with the classifying map Rn+r → BO(n + r) for TRn+r

gives a homotopy between the classifying maps of i∗1TRn+r, i∗2Rn+r, so that
these bundles, and hence the corresponding normal bundles, are isomorphic,
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so their classifying maps ν1, ν2 : M → BO(r) are homotopic. Then the
homotopy lifting property of the fibration fr : Br → BO(r) associates each
(Br, fr)-structure on ν1 to a unique (Br, fr)-structure on ν2, and vice versa.

Note that this also implies that normal bundles of embeddings M → Rn+r

are isomorphic for sufficiently large r, so that the normal bundle is unique, up
to isomorphism, for sufficiently large r. Hence the notion of a stable normal
bundle is well defined, and is, by definition, the stable inverse of the stable
tangent bundle.

Let (B, f) be a sequence of fibrations fr : Br → BO(r) and maps gr :
Br → Br+1 such that the diagram

Br Br+1

BO(r) BO(r + 1)

fr

gr

fr+1

ir

commutes, where ir : BO(r) ↪→ BO(r+ 1) is the inclusion defined in Section
4.3. In this way, a (Br, fr)-structure on the normal bundle of an embedding
of M in Rn+r defines a unique (Br+1, fr+1)-structure on the normal bundle
of the embedding of M in Rn+r+1 via the inclusion Rn+r ↪→ Rn+r+1. This
lead us to the following definition.

Definition 5.1.7. A (B, f) structure on an n-dimensional manifold M is
an equivalence class of (B, f) sequences of (Br, fr) structures on the nor-
mal bundle of M , where two structure are equivalent if they agree for some
sufficiently large r.

A manifold with such a structure is called a (B, f) manifold.

We can take the direct limit as r → ∞, and hence describe a (B, f)
structure as a structure on the stable normal bundle.

Proposition 5.1.8. Let M be an n-dimensional (B, f) manifold. Then the
(B, f) structure on M induces a (B, f) structure on the boundary ∂M .

Proof. Let i : M → Rn+r be an embedding, with normal bundle classified
by ν(i) : M → BO(r), and suppose r sufficiently large that any normal
bundle of another embedding into Rn+r is isomorphic to the normal bundle
of i. Consider the embedding of ∂M → M ; its normal bundle is a trivial
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line bundle, with two choices of global trivialisation, namely, the inner and
outer normal vector fields. A choice of trivialisation allows us to view M
as embedded in Rn+r−1, with normal bundle classified by ν(i)|∂M . Hence if
ν̃(i) : M → Br is a lift of ν(i), we have a corresponding lift for the normal
bundle of the boundary ∂M , namely ν̃(i)|∂M : ∂M → Br. This defines a
(B, f) structure on the boundary ∂M .

We give a few examples of (B, f) manifolds.

Example 5.1.9. The simplest example of a (B, f) structure is where the
fibration is the trivial fibration fr : BO(r) → BO(r). Hence (BO, f) mani-
folds are just smooth unoriented manifolds.

The fibration defined in Theorem 4.1.5 gives us more interesting examples.

Example 5.1.10. Consider the fibration BSO(r)→ BO(r), where SO(r) ⊂
O(r) is the special orthogonal group. This characterises manifolds with an
orientation on their stable normal bundles. Since an unoriented bundle plus
an oriented bundle is an unoriented bundle, and trivial bundles are orientable,
the stable tangent bundle is oriented if and only if the tangent bundle is
oriented. Hence (BSO, f) manifolds are oriented manifolds.

Example 5.1.11. Consider the fibrations BU(r) → BO(2r), BU(r) →
BU(2r + 1), where U(r) ⊂ O(2r) ⊂ O(2r + 1) is the unitary group. This
characterises manifolds with a complex structure on their stable normal bun-
dles, which gives a complex structure on their stable tangent bundles. Hence
(BU, f) manifolds are stably complex manifolds, and these are the manifolds
we are working with.

5.2 Cobordism groups

We motivate the definition of the cobordism relation using the definition in
the simplest case, that of unoriented manifolds.

Definition 5.2.1. Two compact manifolds M1,M2 of dimension n are said
to be unoriented cobordant, or simply cobordant, if there exists an (n + 1)-
dimensional manifold W and embeddings i1 : M1 → W ,i2 : M2 → W such
that ∂W = i1(M1) t i2(M2).

We call the quintuple (W,M1,M2, i1, i2) a cobordism between M1 and M2.
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This is often stated less formally by saying that the boundary of W is the
disjoint unions of M1 and M2, and written ∂W = M1 tM2.

Proposition 5.2.2. The cobordism relation is an equivalence relation.

Proof. We write ∼ for the cobordism relation, to simplify notation.
The manifold M × [0, 1] has boundary M tM , so that M ∼ M and the

relation is reflexive.

Figure 5.1: Reflexivity of ∼

If M1 ∼M2, then, for some manifold W , ∂W = M1 tM2 = M2 tM1, so
that M2 ∼M1 and the relation is reflexive.

Figure 5.2: Symmetry of ∼

If M1 ∼M2, and M2 ∼M3, let W1,W2 be the cobordisms between them.
Glue W1,W2 together along M2, using collar neighbourhoods of M2 in W1,W2

to ensure the join is smooth, to obtain a third manifold W3, whose boundary
is M1 tM2. Hence M1 ∼M3 and the relation is transitive.
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Figure 5.3: Transitivity of ∼

Hence cobordism is an equivalence relation.

The difficulty for a general (B, f) manifold M is that when we construct
a (B, f) structure on M × [0, 1], the (B, f) structures induced on the two
boundary components, M = M × 0 and M = M × 1, do not necessarily
match. We need to be able to define an opposite structure of a given (B, f)
structure, which we construct as follows.

Let i be an embedding of M in Rn+r, for some sufficiently large r, with
ν(i) : M → Br the lift to Br of the classifying map of the normal bundle of the
embedding i. We can extend this to an embedding j of M × [0, 1] in Rn+r+1

through the usual embedding of [0, 1] in R, which will not change the normal
bundle, since [0, 1] has zero normal bundle in R. Then ν(j) is M × [0, 1] is
then ν(i) composed with the the projection M× [0, 1]→M . Hence the lift of
ν(i) to Br gives a lift of ν(j), which induces a (B, f) structure on M × [0, 1],
which in turn, via the inner normal trivialisation on each component of the
boundary induces the given (B, f) structure on M = M × 0 and another,
possibly different, on M = M × 1. Since we use the inner normal on both
components of the boundary, we can view M×1 as having an opposite (B, f)
structure from M × 0. Let M be the manifold M = M × 1 with this second
(B, f) structure. Note that reversing the interval [0, 1] gives us M = M .

In the case of unoriented manifolds, we simply have M = M . In the case
of oriented manifolds, B = BSO, M is M with the reverse orientation. In
the case of stably complex manifolds, B = BU , M is M with the conjugate
stable complex structure.

We can now define the cobordism relation for all (B, f) manifolds.

Definition 5.2.3. Two compact (B, f) manifolds M1,M2 of dimension n are
said to be (B, f) cobordant if there exists an (n + 1)-dimensional manifold
W and embeddings i1 : M1 → W such that ∂W = i(M1) t (M2), where the
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(B, f) structure on W induces the (B, f) structures M1,M2 at the boundary
via the inner normal trivialisation.

We call the quintuple (W,M1,M2, i1, i2) a (B, f) cobordism between M1

and M2.

This is often expressed less formally as ∂W = M1 tM2, similarly to the
unoriented case.

Proposition 5.2.4. The (B, f) cobordism relation is an equivalence relation.

Proof. By definition, ∂(M×[0, 1]) = MtM , so that M ∼M and the relation
is reflexive.

Suppose M1 ∼ M2. Let W be the (B, f) cobordism between them. so

that ∂W = M1tM2. Then ∂W = M1tM2 = M1tM2 = M2tM1. So W is
a (B, f) cobordism between M2 and M1, so that M2 ∼ M1 and the relation
is reflexive.

Suppose M1 ∼ M2 and M2 ∼ M3. Let W1,W2 be the (B, f) cobordisms
between M1,M2 and M2,M3 respectively. We can glue W1,W2 together along
M2 to obtain a manifold W3 as in the unoriented case. We can also glue the
(B, f) structures together, since if W1 induces the structure M2 via the inner
normal trivialisation of M2 ⊂ W1, it will induce the given structure M2 via
the outer normal trivialisation of M2 ⊂ W1, which is the same as the inner
normal trivialisation of M2 ⊂ W2, so the (B, f) structure can be smoothly
joined at the boundary M2 of W1 and W2. The resulting manifold W3 satisfies
∂W3 = M1 tM3, so that M1 ∼M3 and the relation is transitive.

Hence (B, f) cobordism is an equivalence relation.

If [M ] = [∅], we say that M is nullcobordant. If M is nullcobordant,
it is the boundary of a (B, f)-manifold, of 1 dimension higher than M ,
that induces the given (B, f) structure on M . We call such a manifold
a (B, f) filling. We call the equivalence classes under the cobordism rela-
tion cobordism classes. The set of (B, f) cobordism classes in dimension n
is denoted Ωn(B, f), and the set of all (B, f) cobordism classes is denoted
Ω(B, f) =

⊕∞
n=0 Ωn(B, f). Often, Br is a sequence of classifying spaces for a

sequence of topological groups Gr, with a sequence of inclusions Gr ⊂ Gr+1,
leading to a stable group G = lim r →∞. In this case, Ωn(BG, f) is denoted
ΩG
n , and Ω(B, f) is denoted ΩG.

Proposition 5.2.5. The set Ωn(B, f) of (B, f) cobordism classes in dimen-
sion n is an abelian group under the operation [M1]+ [M2] = [M1tM2], with
identity [∅], the class of the empty manifold.
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Proof. Clearly the disjoint union of two n-dimensional (B, f) manifolds is
another n-dimensional (B, f) manifold, so that Ωn(B, f) is closed under this
operation.

The operation is associative and commutative, since the disjoint union is
associative and commutative.

Clearly [M ] + [∅] = [M t ∅] = [M ], so there is a well defined identity
element, [∅]. In particular, if M = ∂W for some (B, f) manifold W that
induces the given (B, f) structure on M , then [M ] = [∅].

We have, by definition, ∂(M × [0, 1]) = M t M . Hence [M ] + [M ] =
[M tM ] = [∅], so we have a well defined inverse [M ] for [M ].

Hence Ωn(B, f) is an abelian group.

We return to the examples of (B, f) structures discussed in Section 5.1.

Example 5.2.6. The simplest example of (B, f) cobordism, where fr : Br =
BO(r) → BO(r) is trivial, gives us cobordisms between smooth manifolds
with no additional structure. The cobordism groups are called the unoriented
cobordism groups, and are denoted ΩO

n , or, more often, Nn.
Note that in the unoriented case, since there is no additional structure,

the fact that ∂(M × [0, 1]) = M tM gives [M ] + [M ] = [∅], so that all the
cobordism groups Nn are 2-torsion.

Example 5.2.7. The second example we gave was the fibration BSO(r)→
BO(r), which gives us cobordism groups of oriented manifolds, denoted ΩSO

n .

Example 5.2.8. The third example we gave was the fibration BU(r) →
BO(2r), BO(2r + 1), which gives us cobordism groups of stably complex
manifolds, denoted ΩU

n . These are the groups we are interested in.

As an aside, we note that we can also define a product of cobordism
classes, × : Ωn1(B, f)×Ωn2(B, f)→ Ωn1+n2(B, f), [M1]× [M2] = [M1×M2].
Under this definition, Ω(B, f) becomes a graded commutative ring, which
is denoted Ω∗(B, f), ΩG

∗ , or N∗, depending on context. However, this extra
structure is unnecessary for our purpose.

5.3 Thom spaces

Definition 5.3.1. A compactification of a topological space X is a compact
space that contains an embedding of X as a dense subset.
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Definition 5.3.2. Let X be a topological space. We define the one-point
compactification Y of X as follows. Take the disjoint union of X with a single
point, which we call∞. Define a topology on Xt{∞}, consisting of all open
set of X and the disjoint union of every complement of every compact set of
X with {∞}, that is, the topology τY on Y is given by

τY = {U ⊂ X : Uopen} ∪ {X\K t∞ : Kcompact}.

Proposition 5.3.3. The one-point compactification of X is a compactifica-
tion.

Proof. Clearly X is a dense subset of its one-point compactification Y , since
the only point in Y \X is ∞.

Let {Ui} be an open cover of Y . One of the Ui must cover ∞ ∈ Y ,
which, by definition of the topology on Y , is X\K t {∞} for some compact
K ⊂ K; call this set U0. We now have to find a finite subcover for K =
Y \(X\K t {∞}). Since K ⊂ X ⊂ Y is compact in X, we can cover K by
finitely many of the Ui, call these U1, . . . , Un. Hence we have a finite subcover
{U0, U1, . . . , Un} for U0 ∪K = (K t {∞}) ∪K = X t∞ = Y , so that Y is
compact.

Definition 5.3.4. Let E → B be a vector bundle. We define a new bundle
by taking the one-point compactification of each fibre. We define the Thom
Space of E by identifying all of the new points of this new bundle to a single
point, which we call ∞, and denote this space with basepoint (TE,∞), or
TE.

An equivalent formulation takes the set of all vectors in the total space of
norm ≤ 1, which is the closed disc bundle D(E) associated with the vector
bundle, and identifies the boundaries of all of the fibres, which is the sphere
bundle Sph(E), to a single point, so that TE = D(E)/Sph(E). That this
is equivalent follows from introducing an intermediate step, identifying the
boundary of each fibre of the disc bundle to a point, to obtain the one-point
compactification of the open discs, or, equivalently, of the original spaces,
and identifying all of these points to a single point.

If we have a bundle map g : X → Y such that E → X is the pullback g∗E
of a bundle E ′ → Y , we see that g induces a map Tg via the construction of
Thom spaces, Tg : (TE,∞)→ (TE ′,∞).

Now suppose we have a vector bundle E → B of rank n, with Thom space
TE, and we add a trivial line bundle R. We will use the product norm on
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E⊕R, as this will be simpler and it does not change the spaces topologically.
Let D denote the unit disc in E, which is the total space of the disc bundle
D(E). We form the disc bundle, which is D× [−1, 1], and take the quotient
by identifying the boundary (∂D× [−1, 1]) ∪D× {−1, 1}to a point, so that

T (E ⊕ R) = (D × [−1, 1])/((∂D × [−1, 1]) ∪ (D × {−1, 1})).

Equivalently, by first identifying ∂D to a point, and then identifying
∂[−1, 1] to a point, we see that

T (E ⊕ R) = (D/∂D × [−1, 1])/(D/∂D × {−1, 1})
= (T (E)× [−1, 1])/(T (E)× {0, 1}).

To understand this space, we need the following definition.

Definition 5.3.5. Let X be a topological space. Define the suspension of
X,

SX = (X × [0, 1])/(X × {0, 1})

If, in addition, X has a basepoint x0, define the reduced suspension of X,

ΣX = (X × [0, 1])/(X × {0, 1} ∪ x0 × [0, 1]).

We can therefore identify T (E ⊕ R) as ST (E). We will need two facts
concerning these constructions. The first is that if X is a CW-complex, SX
and ΣX are homotopy equivalent, so without loss of generality, since all
the spaces we are working with are CW-complexes, we will use the reduced
suspension Σ, so T (E ⊕ R) = ΣT (E). The second is a well-known theorem.

Theorem 5.3.6. Let X be an n-connected CW-complex. Then πkX ∼=
πk+1ΣX for k ≤ 2n.

This is a consequence of the Freudenthal suspension theorem, which is
stated and proven in [5].

Recall we had a commutative diagram for (B, f) structures,

Br Br+1

BO(r) BO(r + 1).

fr

gr

fr+1

ir
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Using the results above, we can apply the Thom construction to this
diagram, writing TBO(r) for Tγr, and TBr for Tf ∗γr. Then we have the
commutative diagram

ΣTBr TBr+1

ΣTBO(r) TBO(r + 1),

ΣTfr

Tgr

Tfr+1

ir

since the inclusion BO(r) ↪→ BO(r + 1) induces the bundle γn ⊕ R over
BO(r). In particular, we have an inclusion map Tgr : ΣTBr → TBr+1,
which means that the sequence TB1, TB2, . . . has a special property.

Definition 5.3.7. A spectrum is a sequence X = {Xn}n∈N of spaces with
basepoint, with an inclusion map ΣXn → Xn+1.

If the spaces Xn are CW-complexes, and the inclusion maps are inclusions
of subcomplexes, this is called a CW-spectrum.

The only property we need, as a corollary of the Freudenthal suspen-
sion theorem, is that the homotopy groups stabilise, so we can define πkX =
limn→∞ πk+nXn. We can therefore define the Thom spectrum TB from the se-
quence TBr, with stable homotopy groups πnTB = limr→∞πn+rTBr. When
B = BG, we normally denote the Thom spaces by MG(r) rather than by
TBG(r), and the Thom spectrum by MG.

We can now state the central theorem of (B, f) cobordism.

Theorem 5.3.8 (Thom-Pontryagin theorem). There is an isomorphism

Ωn(B, f) ∼= πnTB ∼= lim
r→∞

πn+r(TBr,∞).

Proof. The theorem is proven in [12].

We have reduced the cobordism problem to a homotopy problem. It is
possible to define a multiplicative structure on TB, making it a ring spectrum
with Ω∗(B, f) ∼= π∗TB. However, this additional structure is unnecessary for
our purpose.

We can now apply the Thom-Pontryagin theorem to complex cobordism.

Theorem 5.3.9. The cobordism groups ΩU
n are trivial for n odd.

50



Proof. By Theorem 5.3.8, ΩU
n
∼= πnMU . Milnor proved in [9] that the groups

πnMU are trivial for n odd.

Corollary 5.3.9.1. Let M be a (2n−1)-dimensional contact manifold. Then
M is the boundary of a (2n)-dimensional stably complex manifold W .

Proof. By Theorem 5.3.9, the complex cobordism groups are trivial in odd
dimension. This gives [M ] = [∅] in ΩU

2n−1, so that there exists a (2n)-
dimensional stably complex manifold W with ∂W = M t∅ = M .
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Chapter 6

Obstruction theory

6.1 Problems of obstruction theory

Here we give a brief overview of the problems and obstructions that ob-
struction theory deals with, which we will use to show that the manifold W
admits not just a stably complex structure, but an almost complex structure.
A fuller treatment is given in Chapter 7 of [7].

The main problem of obstruction theory can be described as follows. Let
X be a CW-complex, A ⊂ X a subcomplex, i : A→ X inclusion, p : E → B
a fibration, f : X → B a continuous map, and f̃A : A → E such that the
diagram

A E

X B

i

f̃A

p

f

commutes. The problem, known as the relative lifting problem, is to find a
map f̃ : X → E such that the diagram

A E

X B

i

f̃A

p

f

f̃

commutes.
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The problems dealt with in obstruction theory are special cases of the
relative lifting problem.

The first is the extension problem. This is where B is trivial. We want
to find f̃ : X → E such that the diagram

A E

X

f

f̃

commutes.
An important special case of the extension problem is the homotopy prob-

lem. This is the problem of extending a homotopy ft on A between two maps
f0, f1 : X → Y to a homotopy f̃t on X; equivalently, of finding f̃t such that
the diagram

X × {0, 1} ∪ A× [0, 1] E

X × [0, 1]

ft

f̃t

commutes.
The second problem is the lifting problem. This is where A is trivial. This

is the problem of find f̃ such that the diagram

E

X B

p

f

f̃

commutes.
A special case of the lifting problem is the cross-section problem, where

p : E → B is a fibre bundle, X = B and f is the identity map. This is just
the problem of finding cross-sections of a bundle p : E → B.

The method of obstruction theory is to solve the problem inductively cell-
by-cell, skeleton-by-skeleton. Suppose the extension problem is solved over
the n-skeleton of X, and let en+1 be an (n + 1)-cell in X. We have some
map defined on ∂en+1 that solves the problem, so we can solve the problem
for en+1 if we can extend this map over the cell. If we compose the map f
with the embedding Sn → ∂en+1 → Xn, where Xn is the n-skeleton of X, we
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obtain an element of πn(E). If this homotopy group is trivial, then we can
extend the map over the (n + 1)-cell en+1, since the map Sn → ∂en+1 → E
is homotopic to the constant map.

For the lifting problem, we have a similar situation. For a fibration E →
B with fibre F , a lift from B to E is equivalent to a map into the fibre F .
If the homotopy groups πkF of F are trivial for k < dimX, then the lifting
problem can be solved, as in the extension problem. It turns out that all
the homotopy groups involved in the problems we will look at will be trivial,
so that the problems can be solved easily. For the sake of completeness, we
state the main theorems of obstruction theory here; these can be found, with
proofs, in [7].

Theorem 6.1.1. Let X be a CW-complex, A ⊂ X a subcomplex. Suppose
that f : A → E is a continuous map, where E is n-simple, and f has been
extended to the n-skeleton X(n) of X. Then

1. There exists a cellular cocycle θ(f) ∈ Cn+1(X,A, πnE) which vanishes
if and only if the map can be extended to a map X(n+1) → E.

2. The cohomology class [θ(f)] ∈ Hn+1(X,A, πnE) vanishes if and only
if the restriction f |X(n−1) : X(n−1) → E can be extended to the a map
X(n+1) → E.

Theorem 6.1.2. Let X be a CW-complex, p : E → B a fibration with fibre
F that is n-simple. Let f : X → B be a continuous map with a lift of f to
the n-skeleton. Then there is a local coefficient system ρ such that we can
define an obstruction class [θ(f)] ∈ Hn+1(X, πnFρ). Moreover, if [θ(f)] is
trivial, then f can be redefined on X(n−1) and then lifted to X(n+1).

In the cases we will work with, F has trivial homotopy groups up to n,
so we will be able to conclude that the lifts we are looking for exist without
having to compute cohomology groups.

6.2 Applying obstruction theory

Recall that we have proven that if M is a (2n − 1)-dimensional contact
manifold, it is the boundary of a (2n)-dimensional stably complex manifold
W , so there exists a lift of the classifying mapW → BO for the stable tangent
bundle to BU . We now show that this map can be lifted to BU(n), so that
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the stable complex structure on W induces a complex bundle of complex
rank n and so of real rank 2n, and show that this is in equivalent to the
tangent bundle in the sense of real vector bundles.

By Theorem 4.1.5, we have a fibration U/U(n) → BU(n) → BU . The
stable complex structure induces a complex bundle of rank n if and only if
the classifying map of the stable tangent bundle, W → BU , admits a lift to
BU(n). Obstruction theory tells us that if the homotopy groups πkU/U(n)
are trivial for k ≤ 2n−1, a lift will exist. We turn our attention to computing
these groups.

Lemma 6.2.1. There exists a fibre bundle

U(n)
in→ U(n+ 1)

pn→ S2n+1. (6.1)

Proof. Fix a point x0 ∈ S2n+1 ⊂ Cn+1. Define pn : U(n+1)→ S2n+1, p(A) =
Ax0. Since A is unitary, it is orthogonal in the real sense, so we have Ax0 ∈
S2n+1, so that pn is well defined. Let x be a point in S2n+1 and suppose that
Ax0 = x and Bx0 = x for two matrices A,B ∈ U(n+1); since A is invertible,
we have B = (BA−1)A, so that BA−1(x) = x. So p−1

n (x), the set of matrices
that map x0 to x, is then the set of matrices CA such that C is a matrix in
U(n+ 1) that preserves x, which is homeomorphic to U(n), seen as a subset
of U(n+ 1).

This induces a long exact sequence

. . .→ πk+1S
2n+1 → πkU(n)

in∗→ πkU(n+ 1)
pn∗→ πkS

2n+1 → . . .→ π0S
2n+1.

(6.2)
We know that πkS

j = 0 for all k < j, so, for k < 2n this gives the exact
sequence

0→ πkU(n)
in∗→ πkU(n+ 1)→ 0. (6.3)

Hence the map in∗ : πkU(n) → πkU(n + 1) induced by the inclusion map is
an isomorphism for k < 2n, so we have, for n > k/2,

πkU(n) ∼= πkU(n+ 1) ∼= πkU(n+ 2) ∼= . . . ∼= πkU. (6.4)

In particular, by composing the inclusion maps, we also see that the inclusion
i : U(n) ↪→ U induces isomorphisms i∗ : πkU(n)→ πkU for k < 2n.

We can now define a second fibre bundle. Let p : U → U/U(n) be
projection. Let x ∈ U/U(n), x′ ∈ U such that p(x′) = x. Then the fibre
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p−1(x) is a coset xU(n), which is homeomorphic to U(n). So we have a fibre

bundle U(n)
i→ U

p→ U/U(n) where i is inclusion. This induces a long exact
sequence of homotopy groups as usual, so we have the exact sequence

. . . πk+1U → πk+1U/U(n)→ πkU(n)
i∗→ πkU → πkU/U(n)→ πk−1U(n) . . . .

(6.5)

We know from (6.4) that, for k < 2n, i∗ induces an isomorphism πkU(n) ∼=
πkU . We then have, for k < 2n, the exact sequences

πkU(n)
i∗→∼= πkU → πkU/U(n)→ πk−1U(n)

i∗→∼= πk−1U. (6.6)

This easily gives us πkU/U(n) = 0 for k < 2n. Hence there exists a lift
of the classifying map of the stable tangent bundle W → BU to a map
W → BU(n), which means that the stable complex structure induces a
complex vector bundle, which we will call E, of rank n over W , as required.
We still need to prove that this is, in fact, the tangent bundle TW . We
have two vector bundles, E, TW over W , both of rank 2n. Both have the
same stable classifying map W → BU , and composing with the projection
BU → BO gives us the same stable classifying map W → BO, so that the
two bundles are stably equivalent.

We claim that two stably equivalent vector bundles of rank r over an
n-dimensional CW-complex X are equivalent if r > n. Since the bundles are
stably equivalent, they have homotopic stable classifying maps X → BO. By
Theorem 4.1.5, we have a fibration O/O(r) → BO(r) → BO. Obstruction
theory tells us that the obstructions to lifting the homotopy X× [0, 1]→ BO
from BO to BO(r) lie in the homotopy groups πkO/O(r) for 0 ≤ k ≤ n. We
now compute these homotopy groups.

Lemma 6.2.2. There exists a fibre bundle

O(r)
ir→ O(r + 1)

pr→ Sr. (6.7)

Proof. Fix a point x0 ∈ Sr ⊂ Rr+1. Define pr : O(r + 1)→ Sr, p(A) = Ax0.
Since A is orthogonal, we have Ax0 ∈ Sr, so that pr is well defined. Let x
be a point in Sr and suppose that Ax0 = x and Bx0 = x for two matrices
A,B ∈ O(r + 1); since A is invertible, we have B = (BA−1)A, so that
BA−1(x) = x. So p−1

r (x), the set of matrices that map x0 to x, is then the
set of matrices CA such that C is a matrix in O(r + 1) that preserves x,
which is homeomorphic to O(r), seen as a subset of O(r + 1).
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This induces a long exact sequence

. . .→ πk+1S
r → πkO(r)

ir∗→ πkO(r + 1)
pr∗→ πkS

r → . . .→ π0S
r. (6.8)

We know that πkS
j = 0 for all k < j, so, for k < r − 1 this gives the exact

sequence

0→ πkO(r)
ir∗→ πkO(r + 1)→ 0, (6.9)

and the exact sequence

πr−1O(r)
ir∗→ πkO(r + 1)→ 0. (6.10)

Hence the map ir∗ : πkO(r) → πkO(r + 1) induced by the inclusion map is
an isomorphism for k < r− 1, and a surjection for k = r− 1, so we have, for
r > k + 1,

πkO(r) ∼= πkO(r + 1) ∼= πkO(n+ 2) ∼= . . . ∼= πkO. (6.11)

In particular, by composing the inclusion maps, we also see that the inclusion
i : O(r) ↪→ O induces isomorphisms i∗ : πkO(r)→ πkO for k < r − 1, and a
surjection for k = r − 1.

We can now define a second fibre bundle. Let p : O → O/O(r) be
projection. Let x ∈ O/O(r), x′ ∈ O such that p(x′) = x. Then the fibre
p−1(x) is a coset xO(r), which is homeomorphic to O(r). So we have a fibre

bundle O(r)
i→ O

p→ O/O(r) where i is inclusion. This induces a long exact
sequence of homotopy groups as usual, so we have the exact sequence

. . . πk+1O → πk+1O/O(r)→ πkO(r)
i∗→ πkO → πkO/O(r)→ πk−1O(r) . . . .

(6.12)

We know from (6.11) that, for k < r − 1, i∗ induces an isomorphism
πkO(r) ∼= πkO. We then have, for k < r − 1, the exact sequences

πkO(r)
i∗→∼= πkO → πkO/O(r)→ πk−1O(r)

i∗→∼= πk−1O. (6.13)

This easily gives us πkO/O(r) = 0 for k < r − 1. Moreover, we have the
exact sequence

πr−1O(r)
i∗→∼= πr−1O → πr−1O/O(r)→ πr−2O(r)

i∗→∼= πr−2O. (6.14)
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The first i∗ is surjective, and the second is an isomorphism, so that we have
πr−1O/O(r) = 0 as well.

Hence, if dimX = n < r, we have πkO/O(r) = 0 for k ≤ n − 1, so the
homotopy of the classifying maps in BO can be lifted to BO(r), so the two
bundles are equivalent. This proves our claim.

A manifold is called open if none of its connected components are closed.
From 4.3.1 in [2], for every open manifold V , there exists a polyhedron K of
codimension at least 1 such that there is an isotopy compressing the open
manifold into an arbitrarily small neighbourhood of K. Hence every open
manifold of dimension n admits a deformation retraction onto a subset of its
(n−1)-skeleton. Now W , as a manifold with boundary, is an open manifold,
and so deformation retracts to a (2n − 1)-complex. Applying the claim to
the bundles TW,E over W , which have rank 2n, we deduce that TW ∼= E.
The homotopy lifting property of the fibration U(n) → O(2n) then implies
that TW is also a complex vector bundle, so that W is an almost complex
manifold.

The almost complex structure on W induces an almost contact structure
on the boundary M as follows. Since TM is a subbundle of rank 2n − 1 of
TW on M , which is a complex bundle, its structure group can be reduced to
U(n) ∩ O(2n− 1) = U(n− 1). We have the almost contact structure on M
that we started with, and the almost contact structure induced by the almost
complex structure on W . These two structures are stably equivalent to the
stably complex tangent bundle, since both have the same stably complex
filling. Hence, by the same argument as above, the two bundles, and hence
the two almost contact structures, must be equivalent on the (2n−2)-skeleton
of M . Now M is a closed manifold, so it does not retract in the same way as
W . However, if we remove the interior of an open disc D2n−1 in M , we obtain
a manifold with boundary, which is an open manifold and so deformation
retracts onto a (2n− 2)-complex. Hence up to homotopy, the almost contact
structure on M and the almost contact structure induced by the W are the
same, outside the interior of some disc D2n−1 ⊂M .

In the next chapter, we will develop a method for changing the almost
contact structure on the interior of a suitably chosen disc in M so that it
is homotopic to the original almost contact structure, so that the manifold
M admits an almost complex filling, that is, an almost complex manifold
with boundary M such that the almost complex structure induces the given
almost contact structure on M up to homotopy.
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Chapter 7

Contact Surgery

7.1 Surgery

Recall that for the product of topological manifolds X × Y , we have the
boundary ∂(X × Y ) = (∂X × Y )∪ (X × ∂Y ). In particular, we have ∂(Si ×
Dj+1) = ∂(Di+1 × Sj) = Si × Sj.

Definition 7.1.1. Let M be an n-dimensional manifold, and suppose that
Sk is embedded in M , with the normal bundle of the embedding trivialised,
so that there is an embedding of Sk ×Dn−k in M .

We form a new manifold M ′ of the same dimension by removing Sk ×
intDn−k and attaching Dk+1×Sn−k−1 by gluing along the resulting common
boundary Sk × Sn−k−1, so that

M ′ = (M\Sk × intDn−k) ∪Sk×Sn−k−1 (Dk+1 × Sn−k−1).

We call this process a surgery of M along Sk, and call the new manifold M ′

the surgered manifold.

We can do this smoothly by taking collar neighbourhoods of the boundary
Sk×Sn−k−1 in bothM\Sk×intDn−1 andDk+1×Sn−k−1, and identifying these
neighbourhoods via a diffeomorphism. By definition, the surgered manifold
M ′ is determined by the choice of embedding Sk ×Dn−k →M , equivalently,
by the choice of trivialisation of the normal bundle of Sk ⊂ M . To make
explicit reference to the embedding, we can write, for an embedding φ :
Sk ×Dn−k →M

M ′ = (M\ intφ(Sk ×Dn−k)) ∪φ|
Sk×Sn−k

(Dk+1 × Sn−k−1).
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Note that we can reverse the process using a surgery of M ′ along Sn−k−1.
We now define the related process of handle attachment.

Definition 7.1.2. Let (W,∂W ) be an (n+ 1) manifold with boundary, and
suppose there is an embedding of Sk in ∂W with trivialised normal bundle,
so that there is an embedding of Sk ×Dn−k in ∂W .

We form a new manifold with boundary (W ′, ∂W ′) of the same dimension
by gluing Dk+1 ×Dn−k along Sk ×Dn−k, so that

(W,∂W ) = (W ∪Sk×Dn−k (Dk+1 ×Dn−k),

(∂W\Sk × intDn−k) ∪Sk×Sn−k−1 (Dk+1 × Sn−k−1)).

The space W is not a smooth manifold, due to the corners where the handle
meets the manifold at Sk × Sn−k−1. Smoothing these corners completes the
process.

We call this process attaching a (k + 1)-handle to (W,∂W ), where the
(k + 1)-handle is Dk+1 ×Dn−k−1, and call k + 1 the index of the handle.

Note that this defines a surgery of ∂W along Sk×Dn−k, which motivates
the following proposition.

Proposition 7.1.3. For any surgery on M along Sk ×Dn−k ⊂ M , we can
construct a handle attachment on a manifold (W,∂W ) whose corresponding
surgery on the boundary is the surgery on M .

Proof. Let W = M × [0, 1], and attach a (k + 1)-handle to M × 1 at Sk ×
Dn−k ⊂ M × 1 ⊂ ∂W . Then if the surgered manifold is M ′, we have
M × 1 = M ′, in other words, attaching the handle to W as described defines
the given surgery on M at the boundary M × 1.

Note that W is a cobordism between M and M ′, specifically an unoriented
cobordism.

We now give an explicit description of the process of smoothing corners
for this case, following Milnor in [10]. Let M be an n-dimensional manifold,
φ : Sk × Dn−k a smooth embedding, and let W = M × [−1, 1]. We could
equivalently let W = M × [0, 1] as above, and as in Section 5.2, but this will
simplify certain calculations later on.

Definition 7.1.4. We define the handle H as follows.

H := {(x, y) ∈ Rk+1 × Rn−k : −1 ≤ |x|2 − |y|2 ≤ 1, |x||y| < sinh 1 cosh 1}.
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This is diffeomorphic to Dk+1×Dn−k with the corners removed. The removal
of the corners corresponds to the second inequality, |x||y| < sinh 1 cosh 1.
This inequality is chosen to make the computation of certain diffeomorphisms
simpler.

We call the subset of H such that |x|2 − |y|2 = 1 the upper boundary,
and the subset of H such that |x|2 − |y|2 = −1 the lower boundary. We
denote these by ∂+H, ∂−H respectively. We call Dk+1 × 0 ⊂ H the core of
the handle, 0×Dn−k ⊂ H the cocore or belt disc, and 0× ∂Dn−k ∼= Sn−k−1

the belt sphere.

The handle H for the case n = 1, k = 0 is shown in Figure 7.1. In this
case, the upper boundary consists of the curves bounding H from the top
and bottom, and the lower boundary consists of the curves bounding H from
the left and right.

Figure 7.1: The handle H

Proposition 7.1.5. The upper boundary

∂+H = {(x, y) ∈ H : |x|2 − |y|2 = 1}

is diffeomorphic to Sk × intDn−k.

Proof. Since |x|2 − |y|2 = 1, |x||y| < 1 on the upper boundary, we can
parametrise by (u cosh r, v sinh r), where u ∈ Sk, v ∈ Sn−k−1, 0 ≤ r < 1.
Hence we can write down a diffeomorphism

∂+H ←→ Sk × intDn−k

(u cosh r, v sinh r)←→ (u, rv).
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Proposition 7.1.6. The lower boundary

∂−H = {(x, y) ∈ H : |x|2 − |y|2 = −1}

is diffeomorphic to intDk+1 × Sn−k−1.

Proof. Since |x|2 − |y|2 = −1, |x||y| < 1 on the lower boundary, we can
parametrise by (u sinh r, v cosh r), where u, v, r are as above. Hence we can
write down a diffeomorphism

∂−H ←→ intDk+1 × Sn−k−1

(u sinh r, v cosh r)←→ (ru, v).

The simple form of these diffeomorphisms is due to the choice of the
inequality |x||y| < sinh 1 cosh 1 in the definition of H.

We now define a family of curves that will enable us to attach the handle
smoothly. For (x0, y0) ∈ H, define the curve

γ : t 7→ (tx0, t
−1y0), t ∈ R+.

This is a family of hyperbolas that satisfy |x||y| constant, and intersect the
level sets of |x|2−|y|2 orthogonally. These curves will be important in smooth-
ing the join between H and M × [−1, 1] at φ(Sk ×Dn−k) ⊂M .

We now use H to describe a handle attachment to M × [−1, 1] smoothly,
and thereby describe the cobordism corresponding to a given surgery on M
along φ(Sk ×Dn−k). We begin with

(M\φ(Sk × 0)× [−1, 1]) tH.

We can parametrise (M\φ(Sk× 0))× [−1, 1] by (φ(u, rv), s) in a similar way
to the above propositions, with u ∈ Sk, v ∈ Sn−k−1, 0 < r < 1,−1 ≤ s ≤ 1.
We then form a quotient space W by identifying

(φ(u, rv), s) ∈ (M\φ(Sk × 0))× [−1, 1]

with (x, y) ∈ H such that

1. |y|2 − |x|2 = s
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2. (x, y) ∈ γ, where γ is the curve through (u cosh r, v sinh r) defined
above.

This correspondence defines a diffeomorphism

φ(Sk × intDn−k\0)× [−1, 1]←→ H\0,

so that W is a smooth manifold. The key to this process is that we have a
neighbourhood of Sk ⊂ M diffeomorphic to a neighbourhood of ∂+H ⊂ H,
which allows us to attach the handle smoothly.

The boundary of W has two components, corresponding to s = ±1,
equivalently, corresponding to the upper and lower boundaries ∂±H. We will
call them the upper and lower boundaries of W and denote them ∂+W,∂−W ,
as for H.

The upper boundary ∂+W of W is diffeomorphic to the original manifold
M , since ∂+H is diffeomorphic to Sk × intDn−k. Explicitly, we can define a
diffeomorphism

M ←→ ∂+W

p←→

{
(p, 1) ∈ (M\φ(Sk × 0))× 1 for p ∈M\φ(Sk × 0)

(u cosh r, v sinh r) ∈ ∂+H for p = φ(u, rv),

where u ∈ Sk, v ∈ Sn−k−1, 0 ≤ r < 1 as usual. Both of the cases in the func-
tion given above are diffeomorphisms; the first is essentially the identity, and
the second is the diffeomorphism between ∂+H and Sk× intDn−k composed
with the smooth embedding φ. Using the identification in the definition of
W , we see that both cases agree on φ(Sk × intDn−k\0), so that this is well
defined, and so defines a diffeomorphism between M and ∂−W .

The surgered manifold M ′ can be described as a quotient space of

(M\φ(Sk × 0)) tDk+1 × Sn−k−1,

by identifying (ru, v) ∈ Dk+1×Sn−k−1 with φ(u, rv) ∈ φ(Sk×intDn−k) ⊂M .
The lower boundary ∂−W of W is diffeomorphic to the surgered manifold,
M ′, since ∂−H is diffeomorphic to intDk+1 × Sn−k−1. Explicitly, we can
define a diffeomorphism

M ′ ←→ ∂−W

p←→

{
(p, 1) ∈ (M\φ(Sk × 0))×−1 for p ∈M\φ(Sk × 0)

(u sinh r, v cosh r) ∈ ∂−H for p = (ru, v) ∈M ′,
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where (ru, v) ∈ Dk+1 × Sn−k−1 is identified with φ(u, rv) ∈ M to form M ′,
as above. The fact that this is well defined is less obvious than the case for
the upper boundary ∂+W . Consider the following diagram,

M 3 φ(u, rv) (ru, v) ∈ Dk+1 × Sn−k−1

M ×−1 3 (φ(u, rv),−1) (u sinh r, v cosh r) ∈ ∂−H,

where the horizontal arrows represent identifications and the vertical arrows
represent diffeomorphisms. In particular, the arrow at the bottom represents
the identification in the definition of W , since (u sinh r, v cosh r) is the unique
point (x, y) satisfying |x|2−|y|2 = −1 that lies on the curve (t−1 cosh r, sinh r),
where t = cosh r

sinh r
. Clearly, this diagram commutes, so that the diffeomorphism

above is well defined.
Figures 7.2 and 7.3 show the results of this process in the n = 1, k =

0 case. In Figure 7.2, we have M × [−1, 1] on the right, with boundary
component M × 1 on the outside and boundary component M ×−1 on the
inside.

Figure 7.2: The manifolds M and M × [−1, 1]

In Figure 7.3, we have the manifold W , after the handle H has been
attached to M × [−1, 1], with upper boundary ∂+W = M on the outside,
and the lower boundary ∂−W = M ′ on the inside.

Figure 7.3: The manifold W
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7.2 Symplectic cobordism

We can extend this construction to contact manifolds, but first we must
define additional properties on the cobordism W defined in Section 7.1.

Definition 7.2.1. A symplectic manifold is a smooth manifold equipped
with a symplectic differential 2-form ω.

As for symplectic vector spaces, W must have even dimension. We have a
volume form ωn on W , which induces an orientation, and the form ω gives the
tangent bundle TW a symplectic structure, and therefore a complex struc-
ture, so that symplectic manifolds are almost complex. We define equivalence
of symplectic manifolds as follows.

Definition 7.2.2. Let (W1, ω1), (W2, ω2) be symplectic manifolds. A sym-
plectomorphism between W1 and W2 is a diffeomorphism f : W1 → W2 such
that f ∗ω2 = ω1.

Definition 7.2.3. Let (W,ω) be a symplectic manifold. A Liouville vector
field on (W,ω) is a vector field Y satisfying LY ω = ω, where L is the Lie
derivative.

Proposition 7.2.4. Let (W,ω) be a (2n)-dimensional symplectic manifold
with a Liouville vector field Y , and let M be a hypersurface in W , that is,
a submanifold of dimension 2n− 1, equivalently, of codimension 1. Suppose
that M is transverse to Y , that is, Y is nowhere tangent to M .

The 1-form α := iY ω = ω(Y,−) defines a contact form on M .

Proof. By Cartan’s formula, we have LY ω = d(iY ω)+iY dω; since ω is closed,
this means that since Y is a Liouville vector field, we have d(iY ω) = ω.

So

α ∧ (dα)n−1 = iY ω ∧ (d(iY ω))n−1

= iY ω ∧ ωn−1

=
1

n
iY (ωn),

where, to obtain the last line, we have repeatedly used the fact that iY (ω ∧
ω) = 2iY ω ∧ ω, since ω is a 2-form. Now ωn is a volume form on W , and M
is transverse to Y , so that α∧ (dα)n−1 = 1

n
iY (ωn) is a volume form on M , so

that α is a contact form on M .
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Formally, we can define α = i∗(iY ω), where i : M → W is inclusion, as
the contact form on M .

Proposition 7.2.5. Let M1,M2 be hypersurfaces in the symplectic mani-
folds (W1, ω1), (W2, ω2), transverse to Liouville vector fields Y1, Y2, and con-
tact forms α = i∗1(iY1ω1), i∗2(iY2ω2) on M1,M2, where i1, i2 are the inclusions
M1 → W1,M2 → W2.

Let φ : M1 → M2 be a strict contactomorphism. Extend it to a dif-
feomorphism φ̃ of some suitably small cylindrical meighbourhoods of M1 ⊂
W1,M2 ⊂ W2 by sending the flow lines of Y1 to the flow lines of Y2. Then φ̃
is a symplectomorphism.

Proof. First, we have φ̃∗ω2 a symplectic form on the chosen cylindrical neigh-
bourhood of M1, since d(φ̃∗ω2) = φ̃∗dω2 = 0, and φ̃∗ω2 is nondegenerate since
ω1 is nondegenerate and φ̃ is a diffeomorphism. We compute, using the defi-
nition of φ̃,

i∗1(iY1φ̃
∗ω2) = i∗1φ̃

∗(iY2ω2) = φ∗i∗2(iY2ω2) = φ∗α0.

Hence we can use φ̃ to identify the two strict contact manifolds, the two
cylindrical neighbourhoods, and the two Liouville vector fields as a single
strict contact manifold (M,α), with a cylindrical neighbourhood with the
two symplectic forms ω1, ω2, with a single Liouville vector field Y . It remains
to show that ω1 = ω2.

Let α̃j = iY ωj. We have α̃j(Y ) = ωj(Y, Y ) = 0, and so we can compute

LY α̃j = iY dα̃j + d(iY α̃j) = iY d(α̃j) = iY d(iY ωj) = iYLY ωj = iY ωj = α̃j.

Hence the behaviour of α̃j along the flow lines of Y is determined, and so α̃j is
determined completely by α on M and by Y on the cylindrical neighbourhood
of M . So α̃1 = α̃2 = α̃, and so ω1 = ω2 = ω = dα̃ is completely determined
by α and Y . This completes the proof.

Definition 7.2.6. Let (M1, ξ1), (M2, ξ2) be contact manifolds, with orienta-
tions induced by the contact structures.

A symplectic cobordism is a compact (2n)-dimensional symplectic mani-
fold (W,ω) with orientation induces by the volume form ωn such that

1. W is a oriented cobordism between M1,M2, that is, with respect to the
orientations of the manifolds, ∂W = M1 tM2.
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2. In a neighbourhood of the boundary ∂W , there exists a Liouville vector
field Y for ω that is transverse to the boundary and points outward
along M1, inward along M2.

3. The 1-form α = iY ω is a defining contact form for ξ1, ξ2.

The boundary component M1 is called the ω-convex boundary of the cobor-
dism, and M2 the ω-concave boundary, or simply the convex and concave
boundaries.

Note that symplectic cobordism is not an example of (B, f)-cobordism.
However, quaternionic cobordism, which is the quaternionic analogue of com-
plex cobordism, with the cobordism spectrum ΩSp, is an example of (B, f)-
cobordism, which is sometimes referred to as symplectic cobordism, for ex-
ample in [12]. We also have the related notion of symplectic fillings.

Definition 7.2.7. Let (M, ξ) be a contact manifold. A strong symplectic
filling of M is a symplectic manifold (W,ω) such that

1. ∂W = M .

2. In a neighbourhood of the boundary ∂W , there exists a Liouville vector
field Y for ω that points outward along ∂W = M , such that iY ω|TM is
a contact form for ξ.

We call (M, ξ) the ω-convex boundary of W , or simply the convex boundary.

Since the almost complex structure induced by ω on W is compatible with
the almost contact structure induced on M by ξ, we have that the homotopy
obstruction to a strong symplectic filling of a contact manifold is an almost
complex filling, which is what want to prove always exists. We also have the
notion of weak symplectic cobordisms, and weak symplectic fillings, with the
same homotopy obstruction, but we will not be using these directly.

Proposition 7.2.8. Let M be a closed (2n− 1)-dimensional contact mani-
fold, with contact form α such that α > 0 on TM/ξ, and orientation induced
by the contact structure. Define the manifold W = [0, 1]×M , with the form
ω = d(etα), for t ∈ [0, 1].

Then (W,ω) is a symplectic manifold, with Liouville vector field Y = ∂t,
and is a symplectic cobordism between M and itself.
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Proof. By definition, W is a trivial oriented cobordism between M and itself.
Since α is a 1-form and et is a smooth function, d(etα) is a 2-form; since

it is exact, it is closed. We compute

ωn = (d(etα))n

= (etdt ∧ α + etdα)n

= entdt ∧ α ∧ (dα)n−1,

since α ∧ α = 0, and (dα)n = 0, so all other terms vanish. Since α ∧ (dα)n−1

is a volume form on M , and entdt is a volume form on [0, 1], this is a volume
form on W = [0, 1]×M , so that ω is nondegenerate, and so is a symplectic
form.

We now check the Liouville condition on ∂t, that is, L∂tω = ω. Using
Cartan’s formula, and the fact that ω is closed, we have

L∂tω = d(i∂tω)

= d(i∂t(e
tdt ∧ α + etdα))

= d(et(dt ∧ α)(∂t,−) + etdα(∂t,−))

= d(etα)

= ω,

since α(∂t) = 0, dα(∂t,−) = 0. So the Liouville condition is satisfied. Since
∂t points in the direction of positive t, this means that it points outwards at
the 1×M boundary, and inwards at the 0×M boundary.

Now define the 1-form η = i∂tω. We have η = etα, as above, and this
restricts to the forms eα, α, which are contact forms for (M, ξ) compatible
with the orientations.

This is called the trivial symplectic cobordism.

Note that the volume form etdt∧α∧(dα)n−1 induces the same orientation
as the one induced by the product [0, 1] ×M , which is why we have taken
the product in that order. Figure 7.4 shows the trivial symplectic cobordism
[0, 1] ×M for a 1-dimensional manifold M , together with some of the flow
lines of its Liouville vector field.
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Figure 7.4: The trivial symplectic cobordism [0, 1]×M

7.3 Contact surgery

When we were performing surgery along a sphere Sk ⊂ M with trivial nor-
mal bundle, we were able to attach a handle H smoothly to the manifold
W = M × [0, 1] by identifying a neighbourhood of SkM ⊂ ∂W diffeomor-
phic to a neighbourhood of ∂+H ⊂ ∂H. We want to be able to perform
surgery on a contact manifold, such that the surgered manifold also has a
contact structure, that coincides with the original contact structure outside
the surgered neighbourhood.

We describe the process of contact surgery, following Weinstein in [14].
The handle we attach is a symplectic handle, often referred to as a Weinstein
handle, which we can use in a similar way to the topological case, except
that we identify neighbourhoods via a symplectomorphism, rather than a
diffeomorphism. We need some definitions before we state a theorem about
neighbourhoods in contact manifolds that will allow us to do this.

Definition 7.3.1. Let M be a contact manifold with contact form α com-
patible with the orientation induced by the contact structure. Let L ⊂ M
an isotropic submanifold, so that TL ⊂ (TL)α, where (TL)dα is the sym-
plectic complement of TL. The symplectic normal bundle of L in M is
SNM(L) = (TL)dα/TL.

This is well defined, since the contact form α is unique up to multiplication
by a positive function. Since M is isotropic, we can split the normal bundle
of L in M as

NML = (TM |L)/(TL) = (TM |L)/(ξ|L)⊕ (ξL)/(TL)dα ⊕ (TL)dα/(TL).

The first summand is the normal component of L not in ξ, which is a trivial
line bundle. The third is the symplectic normal bundle. For the second
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summand, define the map

(ξL)/(TL)dα 7→ T ∗L

[Y ] 7→ dα(Y,−)|TL = iY dα|TL.

By definition of symplectic complements, this vector bundle homomorphism
is well defined and injective. Let M have dimension 2n−1, L have dimension
k − 1, where k ≤ n since L is isotropic. The bundle (TL)dα has rank (2n−
2)− (k− 1), by Proposition 2.2.5, so (ξL)/(TL)dα has rank (k− 1), which is
the rank of T ∗L, so the map is actually an isomorphism.

Theorem 7.3.2. Let (M1, α1), (M2, α2) be strict contact manifolds, with
closed isotropic submanifolds L1, L2. Suppose there exists a smooth isomor-
phism (Φ : SNM1(L1) → SNM2(L2), φ : L1 :→ L2) of symplectic normal
bundles. Then the diffeomorphism φ extends to a strict contactomorphism
ψ : N (L1)→ N (L2) for some neighbourhoods N (L1),N (L2) of L1, L2, such
that Tψ|SNM1

(L1) = Φ.

Proof. This theorem is proven in Section 4 of [14], and in Theorems 2.5.8
and 6.2.2 of [4].

Let M be a (2n− 1)-dimensional contact manifold, Sk−1 ∈ M isotropic,
so that 0 ≤ k ≤ n, with trivial symplectic normal bundle. We know that the
normal bundle of Sk−1 in M is

(TM |Sk−1)/(TSk−1)

= (TM |Sk−1)/(ξ|Sk−1)⊕ (ξSk−1)/(TSk−1)dα ⊕ (TSk−1)dα/(TSk−1)

∼= R⊕ T ∗Sk−1 ⊕ SNM(Sk−1).

We claim that R ⊕ T ∗Sk−1 is trivial. Take the usual embedding of Sk−1 in
Rk. The normal bundle of this embedding is a trivial line bundle, and its
sum with the tangent bundle TSk−1 is the tangent bundle of Rk restricted
to Sk−1, which is trivial. Hence TSk−1 plus a trivial line bundle is trivial.
Taking duals, we have R ⊕ T ∗Sk−1 trivial, as required. Using the fact that
Sk−1 has trivial symplectic normal bundle, we deduce that the normal bundle
of Sk−1 in M is trivial, so we can perform a smooth surgery along Sk−1.

Let W = [−1, 1]×M be the trivial symplectic cobordism from M to itself.
We now define the symplectic model handle that we can attach at Sk−1.
Let R2n be equipped with the standard symplectic form ω0. Explicitly, let
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(p1, . . . , pk, pn, q1, . . . , qn) be the co-ordinates of R2n, then ω0 =
∑n

j=1 dpj ∧
dqj. For simplicity of notation, let p = (p1, . . . , pn), q = (q1, . . . , qn). Define
the vector field

Y =
k∑
j=1

(2pj∂pj − qj∂qj) +
1

2

n∑
j=k+1

(pj∂pj + qj∂qj) .

We compute

LY ω0 = d (iY ω0)

= dω0 (Y,−)

= d

(
k∑
j=1

(qjdpj + 2pjdqj) +
1

2

n∑
j=k+1

(−qjdpj + pjdqj)

)

=
k∑
j=1

(dqj ∧ dpj + 2dpj ∧ dqj) +
1

2

n∑
j=k+1

(−dqj ∧ dpj + dpj ∧ dqj)

=
k∑
j=1

(−dpj ∧ dqj + 2dpj ∧ dqj) +
1

2

n∑
j=k+1

(dpj ∧ dqj + dpj ∧ dqj)

=
n∑
j=1

dpj ∧ dqj

= ω0,

so that Y is a Liouville vector field. Now Y = df , where

f : R2n → R2n

(p, q) 7→
k∑
j=1

(
p2
j −

1

2
q2
j

)
+

1

4

n∑
j=k+1

(
p2
j + q2

j

)
,

so that Y is transverse to the level sets of f . Define the (k − 1)-sphere,

Sk−1
H = {(p, q) :

k∑
j=1

p2
j = 1, pk+1 = . . . = pn = q1 = . . . = 0} ⊂ f−1(1),

and let NH be an open neighbourhood of Sk−1
H in f−1(1), which is a hyper-

surface, so that NH is diffeomorphic to Sk−1 × intD2n−k.
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Define the symplectic handle H as the set of points in f−1[−1, 1] that lie on
gradient flow lines of f through NH . In a similar way to the topological case,
H is diffeomorphic to Dk × D2n−k. We have the upper boundary ∂−H =
{(p, q) ∈ H : f(p, q) = 1} and the lower boundary ∂+H = {(p, q) ∈ H :
f(p, q) = −1}. In particular, note that the upper boundary is precisely NH .
We also have the core Dk× 0, the cocore or belt disc 0×D2n−k, and the belt
sphere 0×∂D2n−1 ∼= S2n−k−1. As in the topological case, we call k the index
of the handle, and refer to H as a symplectic k-handle.

Figure 7.5 shows the symplectic handle H, shaded, for the case n = 1, k =
1, with some of the flow lines of the Liouville vector field on (R2, ω) ⊃ H.
The upper boundary ∂+H = NH consists of the two curves bounding H from
the top and bottom; the lower boundary ∂−H consists of the two curves
bounding H from the left and right. Since NH ∼= S0 × intD1, the corners
are not included, as in the topological case.

Figure 7.5: The symplectic handle H

Since the Liouville vector field Y = df , Y is transverse to the level sets
of f . In particular, Y is transverse to the lower and upper boundaries of H,
and so induces a contact form

α0 = iY ω0 =
k∑
j=1

(qjdpj + 2pjdqj) +
1

2

n∑
j=k+1

(−qjdpj + pjdqj)

on the boundaries ∂±H, by Proposition 7.2.4.
Consider the sphere Sk−1

H ⊂ NH = ∂+H. The tangent space to the sphere
at p′ = {(p1, . . . , pk, 0 . . . , 0)} is the hyperplane in Rk orthogonal to p′, so for
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any (x) ∈ Tp′Sk−1
H , we have

α0(x) =
k∑
j=1

(qj|p′dpj(x) + 2pj|p′dqj(x))

+
1

2

n∑
j=k+1

(−qj|p′dpj(x) + pj|p′dqj(x)) = 0,

since qj|p′ = 0 for all j, by definition, and dqj(x) = 0 for all j, since Sk−1
H ⊂

Rk × (0, . . . , 0) ⊂ R2n, so ∂qj is always normal to Sk−1
H . Hence α0 = 0 on the

tangent bundle of Sk−1
H , so Sk−1

H is an isotropic submanifold of ∂+H = NH .
We want to compute the symplectic normal bundle of Sk−1

H in NH . The
vector fields tangent to NH are the vector fields in TSk−1

H , as well as ∂pj for
j > k, and all the ∂qj. Since Sk−1

H is contained within Rk, with the first k co-
ordinates of R2n, we have dα0(X, pj) = ω0(X, ∂pj) = 0, and dα0(X, ∂qj) = 0,
for j = k + 1, . . . , n, for every X ∈ TSk−1

H , so span{∂pj, ∂qj}k+1≤j≤n ⊂
(TSk−1

H )dα0 . However, ∂qj, for j ≤ k, are not in (TSk−1
H )dα0 , since TSk−1

H ⊂
span{∂pj}j≤k. This gives us

(TSk−1
H )dα = TSk−1

H ⊕ span{∂pj, ∂qj}k+1≤j≤n,

so that
SNNH

Sk−1
H = span{∂pj, ∂qj}k+1≤j≤n = TR2n−2k

is trivial.
We can now apply Theorem 7.3.2 to Sk−1 ⊂ M,Sk−1 ⊂ NH ⊂ H, since

they are diffeomorphic, and both have trivial symplectic normal bundle, so
that the diffeomorphism defines a bundle isomorphism of trivial symplectic
normal bundles. Hence Sk−1 ⊂ M and Sk−1 ⊂ NH are equivalent via a
strict contactomorphism. Finally, by Proposition 7.2.5, we can identify a
neighbourhood of Sk−1 ⊂ M,Sk−1 ⊂ NH ⊂ H via a symplectomorphism,
and so smoothly attach the symplectic model handle to W = [−1, 1] ×M ,
using the Liouville vector fields on those neighbourhoods to smoothly join
the symplectic forms. The boundary of W is now M t M ′, where M ′ is
the surgered manifold. As in the topological case, M agrees with M ′, as
strict contact manifolds, outside the neighbourhood where the surgery is
performed. This process is called contact surgery.

Figure 7.6 shows the process of attaching a handle for the case n = 1, k =
1. As in the topological case, the outer boundary component is the original
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manifold M , and the inner boundary component is the surgered manifold
M ′.

Figure 7.6: Attaching a symplectic handle

7.4 Applying contact surgery

Recall from the end of Chapter 6 that if we have a (2n − 1)-dimensional
contact manifold (M, ξ), then there exists an almost complex manifold W
that is a filling of an almost contact structure on M , which is homotopic to
the original almost contact structure on (M, ξ) outside the interior intD2n−1

of some disc D2n−1. In addition, the almost contact structures are stably
equivalent, as they are both compatible with the stably complex filling found
in Chapter 5. We want to change the almost contact structure on the interior
of this disc so that it is homotopic to the original, while preserving the almost
complex filling, to obtain an almost complex filling of (M, ξ). To do this, we
will take the connected sum of M with S2n−1, attaching the sphere, with a
suitable almost contact structure, in this neighbourhood. Note that the new
manifold will be diffeomorphic to M .

We can choose an embedding of D2n−1 in the standard sphere S2n−1, so
we have an embedding of S0 ×D2n−1 in the disjoint union M t S2n−1. The
symplectic normal bundle of S0 has rank 0 and is therefore trivial, so, with a
choice of contact structure on S2n−1, we can perform a contact surgery along
S0 ∈ M t S2n−1. This is equivalent to taking the connected sum of M and
some contact sphere S2n−1.

We will use a slightly different setup from the one above. We choose
D2n−1 sufficiently small such that we can define a contact structure com-
patible with the almost contact structure on D2n−1. We take S2n−1 with a
contact form, and a strong symplectic filling X. We take a collar neighbour-
hood (−ε, 0]×D2n−1 ⊂ W of the small contact disc D2n−1 in W , and define
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the symplectic form as for the trivial cobordism on this collar neighbour-
hood. This symplectic form determines an almost complex structure up to
homotopy, which induces the given contact structure on D2n−1 ⊂ M up to
homotopy. We define a similar collar neighbourhood of D2n−1 ⊂ S2n−1 in
X, with the symplectic form of X; since X is a strong symplectic filling of
S2n−1, the almost complex structure on X induces the given almost contact
structure on ∂X = S2n−1 up to homotopy. We can now attach a symplectic
1-handle, via a symplectomorphism obtained using the flow lines of Liouville
vector fields, to W tX at x0 ×D2n−1 ⊂ M , and at x1 ×D2n−1 ⊂ S2n−1, as
in Section 7.3.

The surgered manifold M ′ is the connected sum of M and S2n−1, which
is diffeomorphic to M , and their almost contact structures are homotopic
outside the interior of D2n−1. The symplectomorphisms used in attaching the
handle also allows us to join the almost complex structures smoothly up to
homotopy, since the set of almost complex structures compatible with a given
symplectic form, Sp(2n,R)/U(n), is contractible. Hence attaching the handle
defines an almost complex filling W ′ up to homotopy. It remains to show
that there is a choice of contact structure on S2n−1, with a strong symplectic
filling X, such that the almost contact structure on S2n−1 is homotopic to
the original almost contact structure on D2n−1 ⊂ (M, ξ).

From the results in Section 5 of [3], and Theorem 2 of [1], there exists
a contact structure in every homotopy class of almost contact structures
on S2n−1, for 2n − 1 ≡ 1, 3, 5 mod 8, and every stably trivial homotopy
class of almost contact structures for 2n−1 ≡ 7 mod 8, which admit strong
symplectic fillings. The trivial homotopy class of almost contact structures is
the homotopy class of the standard contact structure on S2n−1. For 2n−1 ≡
1, 3, 5 mod 8, it is immediate that we can define a contact structure on S2n−1

so that the induced almost contact structure is homotopic to the original
almost contact structure on (M, ξ), so the surgered manifold has the same
almost contact structure as (M, ξ), and admits an almost complex filling.
For 2n− 1 ≡ 7 mod 8, we choose the embedded disc D2n−1 ⊂M so that we
can assume the contact structure on its interior is the same as the standard
contact structure on S2n−1. Since the original almost contact structure on
M is stably equivalent to the almost contact structure on intD2n−1, the fact
that we can construct contact structures in every homotopy class that is
stably equivalent to this one is sufficient for us to define the desired contact
structure on S2n−1. Hence, in all cases, M , with the almost contact structure
induced by its contact structure, admits an almost complex filling.
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