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PART 1: Differential topology

The n-dimensional sphere

Sn :=
{
x ∈ R

n+1 | x21 + . . . x2n+1 = 1
}

= boundary of the (n+1)-dimensional ball

Bn+1 :=
{
x ∈ R

n+1 | x21 + . . . x2n+1 ≤ 1
}
.

S1 = ∂B2x1

x2

S2 = ∂B3x1

x2

x3
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Question: What other (n + 1)-dimensional

objects can have Sn as boundary?Some surfa
es � with �� = S1:
PSfrag repla
ements� �= S3S2 = �B3S1 = �B2x1x2x3pB�(p)S1uwvw�B4MDe�nitionSuppose M � RN is a subset, U �M is open.An n-dimensional 
oordinate 
hart on U is aset of fun
tions x1; : : : ; xn : U ! R su
h thatthe mapping(x1; : : : ; xn) : U ! Rnis bije
tive onto some open subset of Rn.
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Question: What other (n + 1)-dimensional

objects can have Sn as boundary?

Some surfaces Σ with ∂Σ = S1:

replacements

Definition

Suppose M ⊂ RN is a subset, U ⊂ M is open.

An n-dimensional coordinate chart on U is a

set of functions x1, . . . , xn : U → R such that

the mapping

(x1, . . . , xn) : U → R
n

is bijective onto some open subset of Rn.
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M is a (smooth, n-dimensional) manifold if:

� Every point p 2M is 
ontained in an opensubset U �M admitting an n-dimensional
oordinate 
hart;� Wherever two 
oordinate 
harts overlap,the resulting 
oordinate transformationmaps are in�nitely di�erentiable.
Two manifolds M and M 0 are di�eomorphi
(M �=M 0) if there exists a bije
tionf :M !M 0su
h that both f and f�1 are everywhere in-�nitely di�erentiable when expressed in 
oor-dinate 
harts.M is 
ompa
t if it is a 
losed and boundedsubset of RN . (Equivalently: every sequen
ein M has a 
onvergent subsequen
e!)PropositionIf M �= M 0, then they have the same dimen-sion, and M 
ompa
t , M 0 
ompa
t.
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finitely differentiable when expressed in coor-
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M is compact if it is a closed and bounded

subset of RN . (Equivalently: every sequence

in M has a convergent subsequence!)

Proposition

If M ∼= M ′, then they have the same dimen-
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Some examples of manifolds

• Rn (dimension = n)� C = fx+ iy j x; y 2 Rg �= R2� Cn �= R2n (dimension = 2n)� Spheres Sn and balls Bn (dimension = n)(
ompa
t)� Surfa
es of genus g (dimension = 2)(
ompa
t)� Various matrix groups (\Lie groups"):{ GL(n;R) = fA 2 Rn�n j A invertibleg(dimension = n2){ SL(n;R) = fA 2 GL(n;R) j detA= 1g(dimension = n2 � 1){ O(n) = fA 2 GL(n;R) j ATA = Ig(dimension = n(n+1)=2) (
ompa
t)� The universe?(dimension = 4? 10? 11?) (
ompa
t?)
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More precise question: What kinds of com-

pact (n+1)-manifolds M can have ∂M ∼= Sn?Answer: Almost any!Let 
M = any 
ompa
t (n+1)-manifold with-out boundary, pi
k a point p 2 
M and a 
o-ordinate 
hart on some open set U 3 p su
hthat p has 
oordinates (0; : : : ;0) 2 Rn+1. Thenfor � > 0 small, de�neM := 
M nB�(p);whereB�(p) := nx21+ : : :+ x2n+1 � �o � U :

PSfrag repla
ements� �= S3S2 = �B3S1 = �B2x1x2x3pB�(p)S1uwvw�B4MNow �M = fx21+ : : :+ x2n+1 = �g �= Sn.Con
lusion: We asked the wrong question.The answer was too easy!
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PART 2: Dynamics

Newton (18th century):

A system of particles moving with n degrees

of freedom is described by a path in Rn,

q(t) := (q1(t), . . . , qn(t)) ∈ R
n.If the system is 
onservative, its for
es arederived from a potential fun
tion V (q) byF(q) = �rV (q).Then Newton's se
ond law givesmj�qj = ���V�qj�;a system of n se
ond-order ordinary di�eren-tial equations (ODE). Its total energyE = nXj=1 �12�mj _q2j + V (q)is 
onserved, i.e. �dEdt �= 0.

6
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Hamilton (19th century):

Pretend qi and pj := mj q̇j (momentum) are

independent variables moving in the “phase

space” R2n. The total energy de�nes theHamiltonian fun
tion:H : R2n ! R : (q; p) 7! nXj=1 � p2j2mj�+ V (q);and Newton's se
ond-order system be
omesHamilton's (�rst-order!) equations:_qj = ��H�pj�; _pj = ���H�qj�; j = 1; : : : ; n: (�)Idea: To study motion of systems satisfy-ing 
onstraints, we 
an treat (q; p) as lo
al
oordinates of a point moving in a manifold.

PSfrag repla
ements� �= S3S2 = �B3S1 = �B2x1x2x3pB�(p)S1uwvw�B4M
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Assume M is symplectic, H : M → R a smooth
function. Then any path γ : R → M satisfying
Hamilton’s equations “conserves energy”:

d

dt
H(γ(t)) = 0,) orbits are 
on�ned to level sets H�1(
).Question: Given H : M ! R and 
, mustthere exist a periodi
 orbit in H�1(
)?Theorem (Rabinowitz-Weinstein '78)Given H : R2n ! R, any star-shaped levelset H�1(
) � R2n admits a periodi
 orbit.PSfrag repla
ements� �= S3S2 = �B3S1 = �B2x1x2x3pB�(p)S1uwvw�B4M
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Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.A hypersurfa
e N �M is a submanifold withdimN = dimM � 1.A hypersurfa
e N � R2n is star-shaped if itinterse
ts every ray from the origin exa
tlyon
e, transversely.Exer
iseAny star-shaped hypersurfa
e in R2n is dif-feomorphi
 to S2n�1.
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PART 3: Symplectic topology

In 1985, Mikhail Gromov

published a paper called

Pseudoholomorphic curves

in symplectic manifolds.Among other remarkableresults, it proved:Our main theoremSuppose M is a 
ompa
t 4-manifold withan exa
t symple
ti
 stru
ture whi
h, at itsboundary, looks like a star-shaped hypersur-fa
e in R4. Then M �= B4.A generalisation to all dimensions � 4 waspublished in 1991, due to
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Some preparation from complex analysis

A function f = u + iv : C → C is analytic /

holomorphic if it satisfies the Cauchy-Riemann

equations:

∂su(s+ it) = ∂tv(s+ it),

∂tu(s+ it) = −∂sv(s+ it).

Equivalently: �sf + i �tf = 0 : (��)A map f : C ! Cn satisfying this equation is
alled a holomorphi
 
urve in Cn.A 2n-dimensional manifold M has a 
omplexstru
ture if it is 
overed by spe
ial (
omplex)
oordinate 
harts of the form (z1; : : : ; zn) :U ! Cn su
h that all 
oordinate transfor-mations preserve the form of the Cau
hy-Riemann equation (��).Thus one 
an speak of holomorphi
 
urvesin any 
omplex manifold.Examples: Cn, SL(n;C), C [ f1g �= S2
12
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Unfortunately, symplectic manifolds are not

always complex, so one cannot generally make

sense of holomorphic curves in them.The next best thing. . .An almost 
omplex stru
ture on Cn is a smoothfun
tionJ : Cn ! freal-linear maps Cn ! Cng �= R2n�2nsu
h that for all p 2 Cn, [J(p)℄2 = �1.A map f : C ! Cn is then 
alled a pseudo-holomorphi
 
urve if it satis�es the nonlinearCau
hy-Riemann equation:�sf + J(f) �tf = 0 : (� � �)This is a nonlinear �rst-order ellipti
 partialdi�erential equation (PDE).Fundamental lemma:Every symple
ti
 manifold admits a spe
ial
lass of 
ompatible almost 
omplex stru
-tures.
13
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A decomposition of the standard B4 ⊂ R4

Identify R4 = C2 and define

J0(p) := i for all p ∈ R
4.

We now see two obvious 2-dimensional fam-

ilies of pseudoholomorphic curves:

uw : C → C
2 : z 7→ (z, w) for w ∈ C,

vw : C → C
2 : z 7→ (w, z) for w ∈ C.

They form two transverse foliations of C2:

uw

vw

∂B4

14



Proof of the main theorem

Given ∂M = Σ ⊂ R4 star-shaped, construct

a symplectic manifold W by surgery :

(1) Remove from R4 = C2 the interior of Σ;

(2) Attach M along its boundary to Σ.

Σ ∼= S3

uw

vw

∂B4

M

Choose J mat
hing J0 outside a large ball.Then for large jwj, the pseudoholomorphi

urves uw and vw also exist in W .
15
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Let Mu and Mv denote the families of pseu-

doholomorphic curves in W containing the

curves uw and vw respectively. Using fun
-tional analysis and PDE theory, one 
an show:Lemma 1 (smoothness):One 
an 
hoose J su
h that Mu and Mvare ea
h parametrized by smooth, oriented 2-dimensional manifolds, and within ea
h fam-ily, any two distin
t 
urves are disjoint. More-over, every 
urve inMu interse
ts every 
urvein Mv exa
tly on
e, transversely.Lemma 2 (
ompa
tness):Any bounded sequen
e of 
urves in Mu orMv has a 
onvergent subsequen
e.These lemmas 
on
ern general properties ofsolution spa
es.One 
an prove them without knowing how tosolve the PDE, and without knowing whatMa
tually is!
16
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Final step: “turn on the machine. . . ”

uw

vw

∂B4

⇒ W ∼= C2.
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That was nearly 30 years ago.

Here is a more recent but similar result. . .

Theorem (W. 2010)

The only exact symplectic fillings of a 3-

dimensional torus

T
3 := S1 × S1 × S1

are star-shaped domains in the cotangent bun-

dle of T2.

Question:

For a surface Σ of genus g ≥ 2, does the unit

cotangent bundle have more than one exact

symplectic filling?

No one has any idea.
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