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PART 1: Differential topology

The n-dimensional sphere
S = {XER”’_H | :c%—l—...:c%H_l: 1}
= boundary of the (n + 1)-dimensional ball

Bl i={xeR" |2+ .. .27, <1},
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Some surfaces > with 9 = S1:

OvVYSs

Definition
Suppose M c RY is a subset, &/ C M is open.

An n-dimensional coordinate chart on U/ is a
set of functions x1,...,zn : U — R such that
the mapping

(x1,...,7n) U - R"

is bijective onto some open subset of R"™.
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M is a (smooth, n-dimensional) manifold if:

e Every point p € M is contained in an open
subset U4 C M admitting an n-dimensional
coordinate chart;

e \Wherever two coordinate charts overlap,
the resulting coordinate transformation
maps are infinitely differentiable.

Two manifolds M and M’ are diffeomorphic
(M = M) if there exists a bijection

f:M— M
such that both f and f~—1 are everywhere in-

finitely differentiable when expressed in coor-
dinate charts.

M is compact if it is a closed and bounded
subset of RV, (Equivalently: every sequence
in M has a convergent subsequence!)

Proposition
If M =2 M’, then they have the same dimen-
sion, and M compact < M’ compact.
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Some examples of manifolds

e R" (dimension = n)
e C={z+iy| z,y e R} =ZR?
e C" = R2™ (dimension = 2n)

e Spheres S™ and balls B™ (dimension = n)
(compact)

e Surfaces of genus g (dimension = 2)
(compact)

e Various matrix groups (“Lie groups"):

— GL(n,R) = {A € R*"™*"™ | A invertible}
(dimension = n?)

— SL(n,R) ={A € GL(n,R) | detA =1}
(dimension = n?2 — 1)

— O(n) = {4 € GL(n,R) | ATA = 1}
(dimension = n(n + 1)/2) (compact)

e [ he universe?
(dimension = 47 107 117) (compact?)
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More precise question: What kinds of com-
pact (n4+1)-manifolds M can have OM = S™7?

Answer: Almost any!

Let M = any compact (n—4+1)-manifold with-
out boundary, pick a point p € M and a
coordinate chart on some open set U4 > p
such that p has coordinates (0,...,0) € R*»t1,
Then for e > 0 small, define

M := M \ Be(p),

where

Be(p) == {af+... 422, <ef CU

Now 8M={w%-|—...+x%_|_1=e}55n.

Conclusion: We asked the wrong question.
The answer was too easy!
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PART 2: Dynamics
Newton (18th century):

A system of particles moving with n degrees
of freedom is described by a path in R",

q(t) = (q1(?), ..., qn(t)) € R™.

If the system is conservative, its forces are
derived from a potential function V(q) by

F(q) = -VV(q).

Then Newton’'s second law gives
oV
_8—qj’
a system of n second-order ordinary differen-
tial equations (ODE). Its total energy

m;qj =
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Hamilton (19th century):

Pretend ¢; and p; := m;q; (momentum) are
independent variables moving in the “phase
space” R2™. The total energy defines the
Hamiltonian function:
n p2,
H:R*™ 5 R:(q,p)r— Y
j=1°m
and Newton's second-order system becomes
Hamilton’s (first-order!) equations:

__0OH . oOH
8pj’
Idea: To study motion of systems satisfy-

ing constraints, we can treat (q,p) as local
coordinates of a point moving in a manifold.

+ V(q),

qj

()
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Complication: A system that satisfies (x)
for one particular choice of coordinates might
not satisfy it for all other choices.

Definition

A 2n-dimensional manifold M has a symplec-
tic structure if it is covered by special coordi-
nate charts of the form (¢1,...,9n,P1,--.,Pn)
such that for any smooth function H : M —
R, all coordinate transformations preserve the
form of Hamilton’s equations (x).

Exercise: A transformation on R? preserves ()
& it is area and orientation preserving.

Simple examples

e Symplectic: RQ”, all orientable surfaces

e Not symplectic: S2" for n > 1
(can prove using de Rham cohomology)
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published a paper called
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in symplectic manifolds.
Among other remarkable
results, it proved:

Our main theorem
Suppose M is a compact 4-manifold with
an exact symplectic structure which, at its

boundary, looks like a star-shaped hypersur-
face in R*. Then M = B4,

A generalisation to all dimensions > 4 was
published in 1991, due to

N A s
. -4

Yasha Andreas Dusa

Eliashberg Floer McDuff
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A function f = u 4+ iv : C — C is analytic /
holomorphic if it satisfies the Cauchy-Riemann
equations:
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Oru(s + it) = —0sv(s + it).
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Unfortunately, symplectic manifolds are not
always complex, so one cannot generally make
sense of holomorphic curves in them.
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function

J 1 C™ = {real-linear maps C" — C"} & R2"*2"

such that for all p € C™, [J(p)]?2 = —1.

A map f: C — C" is then called a pseudo-
holomorphic curve if it satisfies the nonlinear
Cauchy-Riemann equation:

osf + J(f)of = 0] (* * %)

This is a nonlinear first-order elliptic partial
differential equation (PDE).

Fundamental lemma:
Every symplectic manifold admits a special
class of compatible almost complex struc-

tures.
13



A decomposition of the standard B* ¢ R?

Identify R* = C2 and define

Jo(p) ;=i for all p e R

We now see two obvious 2-dimensional fam-
ilies of pseudoholomorphic curves:

uw : C— C2: 2 (z,w) for weC,
vw: C—C?: 2 (w,z) forwecC.

They form two transverse foliations of C2:

U

— ™~

V)

14



Proof of the main theorem

Given OM = 3> C R% star-shaped, construct
a symplectic manifold W by surgery:

(1) Remove from R* = C? the interior of X;
(2) Attach M along its boundary to .
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Proof of the main theorem

Given OM = 3> C R% star-shaped, construct
a symplectic manifold W by surgery:

(1) Remove from R* = C? the interior of X;
(2) Attach M along its boundary to .

Choose J matching Jp outside a large ball.
Then for large |w|, the pseudoholomorphic
curves uq and vy also exist in W.
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Let M, and M, denote the families of pseu-
doholomorphic curves in W containing the
curves wuqy and vy respectively.
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Let M, and M, denote the families of pseu-
doholomorphic curves in W containing the
curves u, and vy respectively. Using func-
tional analysis and PDE theory, one can show:

Lemma 1 (smoothness):

One can choose J such that M, and M,
are each parametrized by smooth, oriented 2-
dimensional manifolds, and within each fam-
iy, any two distinct curves are disjoint. More-
over, every curve in M, intersects every curve
in M, exactly once, transversely.
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dimensional manifolds, and within each fam-
iy, any two distinct curves are disjoint. More-
over, every curve in M, intersects every curve
in M, exactly once, transversely.

Lemma 2 (compactness):
Any bounded sequence of curves in M, or
M, has a convergent subsequence.

16



Let M, and M, denote the families of pseu-
doholomorphic curves in W containing the
curves u, and vy respectively. Using func-
tional analysis and PDE theory, one can show:

Lemma 1 (smoothness):

One can choose J such that M, and M,
are each parametrized by smooth, oriented 2-
dimensional manifolds, and within each fam-
iy, any two distinct curves are disjoint. More-
over, every curve in M, intersects every curve
in M, exactly once, transversely.

Lemma 2 (compactness):
Any bounded sequence of curves in M, or
M, has a convergent subsequence.

These lemmas concern general properties of
solution spaces.

One can prove them without knowing how to
solve the PDE, and without knowing what M
actually is!
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Final step:

“turn on the machine. ..
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Final step: “turn on the machine...”
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Final step: “turn on the machine...”
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Final step: “turn on the machine...”
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Final step: “turn on the machine...”

))))%%4464////////

/////

4

\\\\ \ A\

L
L1
L

- 1 —1

//
//

T \\\\\\\




Final step: “turn on the machine...”

))))%%4464////////

/////

4

\\\\ \ A\

L
L1
L

- 1 —1

//
//

T \\\\\\\




Final step: “turn on the machine...”

))))%%4464////////

/////

4

\\\\ \ A\

L
L1
L

- 1 —1

//
//

T \\\\\\\
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Final step: “turn on the machine...”
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Final step: “turn on the machine. ..
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That was nearly 30 years ago.
Here is a more recent but similar result. ..

Theorem (W. 2010)
The only exact symplectic fillings of a 3-
dimensional torus

T3 =51 x 51 x s

are star-shaped domains in the cotangent bun-
dle of TZ.

Question:

For a surface > of genus g > 2, does the unit
cotangent bundle have more than one exact
symplectic filling?

No one has any idea.
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