# What can have a 3-sphere as its boundary, and why should you ask Isaac Newton?



Chris Wendl

#### University College London

Talk for the UCL AdM Maths Society, 3rd March, 2014

Slides available at:

http://www.homepages.ucl.ac.uk/~ucahcwe/publications.html#talks

# **PART 1: Differential topology**

The *n*-dimensional sphere

$$S^{n} := \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \dots x_{n+1}^{2} = 1 \right\}$$
  
= boundary of the (n + 1)-dimensional ball  
$$B^{n+1} := \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \dots x_{n+1}^{2} \le 1 \right\}.$$







$$S^2 = \partial B^3$$

1











Some surfaces  $\Sigma$  with  $\partial \Sigma = S^1$ :



#### Definition

Suppose  $M \subset \mathbb{R}^N$  is a subset,  $\mathcal{U} \subset M$  is open.

An *n*-dimensional coordinate chart on  $\mathcal{U}$  is a set of functions  $x_1, \ldots, x_n : \mathcal{U} \to \mathbb{R}$  such that the mapping

$$(x_1,\ldots,x_n):\mathcal{U}\to\mathbb{R}^n$$

is bijective onto some open subset of  $\mathbb{R}^n$ .

 Every point p ∈ M is contained in an open subset U ⊂ M admitting an n-dimensional coordinate chart;

- Every point  $p \in M$  is contained in an open subset  $U \subset M$  admitting an *n*-dimensional coordinate chart;
- Wherever two coordinate charts overlap, the resulting coordinate transformation maps are infinitely differentiable.

- Every point  $p \in M$  is contained in an open subset  $U \subset M$  admitting an *n*-dimensional coordinate chart;
- Wherever two coordinate charts overlap, the resulting coordinate transformation maps are infinitely differentiable.

Two manifolds M and M' are *diffeomorphic*  $(M \cong M')$  if there exists a bijection

$$f: M \to M'$$

such that both f and  $f^{-1}$  are everywhere infinitely differentiable when expressed in coordinate charts.

- Every point  $p \in M$  is contained in an open subset  $U \subset M$  admitting an *n*-dimensional coordinate chart;
- Wherever two coordinate charts overlap, the resulting coordinate transformation maps are infinitely differentiable.

Two manifolds M and M' are *diffeomorphic*  $(M \cong M')$  if there exists a bijection

$$f: M \to M'$$

such that both f and  $f^{-1}$  are everywhere infinitely differentiable when expressed in coordinate charts.

M is compact if it is a closed and bounded subset of  $\mathbb{R}^N.$ 

- Every point  $p \in M$  is contained in an open subset  $U \subset M$  admitting an *n*-dimensional coordinate chart;
- Wherever two coordinate charts overlap, the resulting coordinate transformation maps are infinitely differentiable.

Two manifolds M and M' are *diffeomorphic*  $(M \cong M')$  if there exists a bijection

$$f: M \to M'$$

such that both f and  $f^{-1}$  are everywhere infinitely differentiable when expressed in coordinate charts.

M is *compact* if it is a closed and bounded subset of  $\mathbb{R}^N$ . (Equivalently: every sequence in M has a convergent subsequence!)

- Every point  $p \in M$  is contained in an open subset  $U \subset M$  admitting an *n*-dimensional coordinate chart;
- Wherever two coordinate charts overlap, the resulting coordinate transformation maps are infinitely differentiable.

Two manifolds M and M' are *diffeomorphic*  $(M \cong M')$  if there exists a bijection

$$f: M \to M'$$

such that both f and  $f^{-1}$  are everywhere infinitely differentiable when expressed in coordinate charts.

M is *compact* if it is a closed and bounded subset of  $\mathbb{R}^N$ . (Equivalently: every sequence in M has a convergent subsequence!)

## Proposition

If  $M \cong M'$ , then they have the same dimension, and M compact  $\Leftrightarrow M'$  compact.

•  $\mathbb{R}^n$  (dimension = n)

- $\mathbb{R}^n$  (dimension = n)
- $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^2$

•  $\mathbb{R}^n$  (dimension = n)

• 
$$\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^2$$

•  $\mathbb{C}^n \cong \mathbb{R}^{2n}$  (dimension = 2n)

- $\mathbb{R}^n$  (dimension = n)
- $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^2$
- $\mathbb{C}^n \cong \mathbb{R}^{2n}$  (dimension = 2n)
- Spheres  $S^n$  and balls  $B^n$  (dimension = n) (compact)

- $\mathbb{R}^n$  (dimension = n)
- $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^2$
- $\mathbb{C}^n \cong \mathbb{R}^{2n}$  (dimension = 2n)
- Spheres S<sup>n</sup> and balls B<sup>n</sup> (dimension = n) (compact)
- Surfaces of genus g (dimension = 2) (compact)

- $\mathbb{R}^n$  (dimension = n)
- $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^2$
- $\mathbb{C}^n \cong \mathbb{R}^{2n}$  (dimension = 2n)
- Spheres S<sup>n</sup> and balls B<sup>n</sup> (dimension = n) (compact)
- Surfaces of genus g (dimension = 2) (compact)
- Various matrix groups ("Lie groups"):
  - $GL(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid A \text{ invertible}\}\$ (dimension =  $n^2$ )

- $\mathbb{R}^n$  (dimension = n)
- $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^2$
- $\mathbb{C}^n \cong \mathbb{R}^{2n}$  (dimension = 2n)
- Spheres S<sup>n</sup> and balls B<sup>n</sup> (dimension = n) (compact)
- Surfaces of genus g (dimension = 2) (compact)
- Various matrix groups ("Lie groups"):
  - $GL(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid A \text{ invertible}\}\$ (dimension =  $n^2$ )
  - $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) \mid \det A = 1\}$ (dimension =  $n^2 - 1$ )

- $\mathbb{R}^n$  (dimension = n)
- $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^2$
- $\mathbb{C}^n \cong \mathbb{R}^{2n}$  (dimension = 2n)
- Spheres S<sup>n</sup> and balls B<sup>n</sup> (dimension = n) (compact)
- Surfaces of genus g (dimension = 2) (compact)
- Various matrix groups ("Lie groups"):
  - $GL(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid A \text{ invertible}\}\$ (dimension =  $n^2$ )
  - $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) \mid \det A = 1\}$ (dimension =  $n^2 - 1$ )
  - $O(n) = \{A \in GL(n, \mathbb{R}) \mid A^T A = 1\}$ (dimension = n(n+1)/2) (compact)

- $\mathbb{R}^n$  (dimension = n)
- $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^2$
- $\mathbb{C}^n \cong \mathbb{R}^{2n}$  (dimension = 2n)
- Spheres S<sup>n</sup> and balls B<sup>n</sup> (dimension = n) (compact)
- Surfaces of genus g (dimension = 2) (compact)
- Various matrix groups ("Lie groups"):
  - $GL(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid A \text{ invertible}\}\$ (dimension =  $n^2$ )
  - $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) \mid \det A = 1\}$ (dimension =  $n^2 - 1$ )
  - $O(n) = \{A \in GL(n, \mathbb{R}) \mid A^T A = 1\}$ (dimension = n(n+1)/2) (compact)
- The universe? (dimension = 4? 10? 11?) (compact?)

Answer: Almost any!

Answer: Almost any!

Let  $\widehat{M} =$  any compact (n+1)-manifold without boundary,



Answer: Almost any!

Let  $\widehat{M}$  = any compact (n+1)-manifold without boundary, pick a point  $p \in \widehat{M}$ 



#### Answer: Almost any!

Let  $\widehat{M}$  = any compact (n+1)-manifold without boundary, pick a point  $p \in \widehat{M}$  and a coordinate chart on some open set  $\mathcal{U} \ni p$ such that p has coordinates  $(0, \ldots, 0) \in \mathbb{R}^{n+1}$ .



#### Answer: Almost any!

Let  $\widehat{M}$  = any compact (n+1)-manifold without boundary, pick a point  $p \in \widehat{M}$  and a coordinate chart on some open set  $\mathcal{U} \ni p$ such that p has coordinates  $(0, \ldots, 0) \in \mathbb{R}^{n+1}$ . Then for  $\epsilon > 0$  small, define

$$M := \widehat{M} \setminus B_{\epsilon}(p),$$

where

$$B_{\epsilon}(p) := \left\{ x_1^2 + \ldots + x_{n+1}^2 \le \epsilon \right\} \subset \mathcal{U}.$$



#### Answer: Almost any!

Let  $\widehat{M} =$  any compact (n+1)-manifold without boundary, pick a point  $p \in \widehat{M}$  and a coordinate chart on some open set  $\mathcal{U} \ni p$ such that p has coordinates  $(0, \ldots, 0) \in \mathbb{R}^{n+1}$ . Then for  $\epsilon > 0$  small, define

$$M := \widehat{M} \setminus B_{\epsilon}(p),$$

where

$$B_{\epsilon}(p) := \left\{ x_1^2 + \ldots + x_{n+1}^2 \le \epsilon \right\} \subset \mathcal{U}.$$



#### Answer: Almost any!

Let  $\widehat{M}$  = any compact (n+1)-manifold without boundary, pick a point  $p \in \widehat{M}$  and a coordinate chart on some open set  $\mathcal{U} \ni p$ such that p has coordinates  $(0, \ldots, 0) \in \mathbb{R}^{n+1}$ . Then for  $\epsilon > 0$  small, define

$$M := \widehat{M} \setminus B_{\epsilon}(p),$$

where

$$B_{\epsilon}(p) := \left\{ x_1^2 + \ldots + x_{n+1}^2 \le \epsilon \right\} \subset \mathcal{U}.$$



Now  $\partial M = \{x_1^2 + \ldots + x_{n+1}^2 = \epsilon\} \cong S^n$ .

#### Answer: Almost any!

Let  $\widehat{M} =$  any compact (n+1)-manifold without boundary, pick a point  $p \in \widehat{M}$  and a coordinate chart on some open set  $\mathcal{U} \ni p$ such that p has coordinates  $(0, \ldots, 0) \in \mathbb{R}^{n+1}$ . Then for  $\epsilon > 0$  small, define

$$M := \widehat{M} \setminus B_{\epsilon}(p),$$

where

$$B_{\epsilon}(p) := \left\{ x_1^2 + \ldots + x_{n+1}^2 \le \epsilon \right\} \subset \mathcal{U}.$$



Now  $\partial M = \{x_1^2 + \ldots + x_{n+1}^2 = \epsilon\} \cong S^n$ .

**Conclusion**: We asked the wrong question. The answer was too easy!

## **PART 2: Dynamics**

Newton (18th century):

A system of particles moving with n degrees of freedom is described by a path in  $\mathbb{R}^n$ ,

 $\mathbf{q}(t) := (q_1(t), \ldots, q_n(t)) \in \mathbb{R}^n.$ 

#### **PART 2: Dynamics**

Newton (18th century):

A system of particles moving with n degrees of freedom is described by a path in  $\mathbb{R}^n$ ,

$$\mathbf{q}(t) := (q_1(t), \dots, q_n(t)) \in \mathbb{R}^n.$$

If the system is *conservative*, its forces are derived from a potential function  $V(\mathbf{q})$  by  $F(\mathbf{q}) = -\nabla V(\mathbf{q})$ .

Then Newton's second law gives

$$m_j \ddot{q}_j = -\frac{\partial V}{\partial q_j},$$
#### **PART 2: Dynamics**

Newton (18th century):

A system of particles moving with n degrees of freedom is described by a path in  $\mathbb{R}^n$ ,

$$\mathbf{q}(t) := (q_1(t), \dots, q_n(t)) \in \mathbb{R}^n.$$

If the system is *conservative*, its forces are derived from a potential function  $V(\mathbf{q})$  by  $F(\mathbf{q}) = -\nabla V(\mathbf{q})$ .

Then Newton's second law gives

$$m_j \ddot{q}_j = -\frac{\partial V}{\partial q_j},$$

a system of n second-order ordinary differential equations (ODE).

### **PART 2: Dynamics**

Newton (18th century):

A system of particles moving with n degrees of freedom is described by a path in  $\mathbb{R}^n$ ,

$$\mathbf{q}(t) := (q_1(t), \dots, q_n(t)) \in \mathbb{R}^n.$$

If the system is *conservative*, its forces are derived from a potential function  $V(\mathbf{q})$  by  $F(\mathbf{q}) = -\nabla V(\mathbf{q})$ .

Then Newton's second law gives

$$m_j \ddot{q}_j = -\frac{\partial V}{\partial q_j},$$

a system of n second-order ordinary differential equations (ODE). Its total energy

$$E = \sum_{j=1}^{n} \frac{1}{2} m_j \dot{q}_j^2 + V(\mathbf{q})$$

is conserved, i.e.  $\frac{dE}{dt} = 0$ .

6

Hamilton (19th century):

Pretend  $q_i$  and  $p_j := m_j \dot{q}_j$  (momentum) are independent variables moving in the "phase space"  $\mathbb{R}^{2n}$ .

#### Hamilton (19th century):

Pretend  $q_i$  and  $p_j := m_j \dot{q}_j$  (momentum) are independent variables moving in the "phase space"  $\mathbb{R}^{2n}$ . The total energy defines the Hamiltonian function:

$$H: \mathbb{R}^{2n} \to \mathbb{R}: (\mathbf{q}, \mathbf{p}) \mapsto \sum_{j=1}^{n} \frac{p_j^2}{2m_j} + V(\mathbf{q}),$$

and Newton's second-order system becomes **Hamilton's** (first-order!) **equations**:

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \qquad \dot{p}_j = -\frac{\partial H}{\partial q_j}, \quad j = 1, \dots, n.$$
 (\*)

### Hamilton (19th century):

Pretend  $q_i$  and  $p_j := m_j \dot{q}_j$  (momentum) are independent variables moving in the "phase space"  $\mathbb{R}^{2n}$ . The total energy defines the Hamiltonian function:

$$H: \mathbb{R}^{2n} \to \mathbb{R}: (\mathbf{q}, \mathbf{p}) \mapsto \sum_{j=1}^{n} \frac{p_j^2}{2m_j} + V(\mathbf{q}),$$

and Newton's second-order system becomes **Hamilton's** (first-order!) **equations**:

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \qquad \dot{p}_j = -\frac{\partial H}{\partial q_j}, \quad j = 1, \dots, n.$$
 (\*)

Idea: To study motion of systems satisfying constraints, we can treat (q, p) as local coordinates of a point moving in a manifold.



$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \qquad \dot{p}_j = -\frac{\partial H}{\partial q_j}$$
 (\*)

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \qquad \dot{p}_j = -\frac{\partial H}{\partial q_j}$$
 (\*)

# Definition

A 2*n*-dimensional manifold M has a symplectic structure if it is covered by special coordinate charts of the form  $(q_1, \ldots, q_n, p_1, \ldots, p_n)$ such that for any smooth function  $H : M \rightarrow \mathbb{R}$ , all coordinate transformations preserve the form of Hamilton's equations (\*).

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \qquad \dot{p}_j = -\frac{\partial H}{\partial q_j}$$
 (\*)

# Definition

A 2*n*-dimensional manifold *M* has a *symplectic structure* if it is covered by special coordinate charts of the form  $(q_1, \ldots, q_n, p_1, \ldots, p_n)$ such that for any smooth function  $H : M \rightarrow \mathbb{R}$ , all coordinate transformations preserve the form of Hamilton's equations (\*).

**Exercise**: A transformation on  $\mathbb{R}^2$  preserves (\*)  $\Leftrightarrow$  it is area and orientation preserving.

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \qquad \dot{p}_j = -\frac{\partial H}{\partial q_j}$$
 (\*)

# Definition

A 2*n*-dimensional manifold M has a symplectic structure if it is covered by special coordinate charts of the form  $(q_1, \ldots, q_n, p_1, \ldots, p_n)$ such that for any smooth function  $H : M \rightarrow \mathbb{R}$ , all coordinate transformations preserve the form of Hamilton's equations (\*).

**Exercise**: A transformation on  $\mathbb{R}^2$  preserves (\*)  $\Leftrightarrow$  it is area and orientation preserving.

# Simple examples

• Symplectic:  $\mathbb{R}^{2n}$ , all orientable surfaces

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \qquad \dot{p}_j = -\frac{\partial H}{\partial q_j}$$
 (\*)

# Definition

A 2*n*-dimensional manifold *M* has a *symplectic structure* if it is covered by special coordinate charts of the form  $(q_1, \ldots, q_n, p_1, \ldots, p_n)$ such that for any smooth function  $H : M \rightarrow \mathbb{R}$ , all coordinate transformations preserve the form of Hamilton's equations (\*).

**Exercise**: A transformation on  $\mathbb{R}^2$  preserves (\*)  $\Leftrightarrow$  it is area and orientation preserving.

# Simple examples

- Symplectic:  $\mathbb{R}^{2n}$ , all orientable surfaces
- Not symplectic:  $S^{2n}$  for n > 1(can prove using *de Rham cohomology*)

$$\frac{d}{dt}H(\gamma(t)) = 0,$$

$$\frac{d}{dt}H(\gamma(t)) = 0,$$

 $\Rightarrow$  orbits are confined to level sets  $H^{-1}(c)$ .

$$\frac{d}{dt}H(\gamma(t)) = 0,$$

 $\Rightarrow$  orbits are confined to level sets  $H^{-1}(c)$ .

**Question**: Given  $H : M \to \mathbb{R}$  and c, must there exist a *periodic* orbit in  $H^{-1}(c)$ ?

$$\frac{d}{dt}H(\gamma(t)) = 0,$$

 $\Rightarrow$  orbits are confined to level sets  $H^{-1}(c)$ .

**Question**: Given  $H : M \to \mathbb{R}$  and c, must there exist a *periodic* orbit in  $H^{-1}(c)$ ?

**Theorem** (Rabinowitz-Weinstein '78) Given  $H : \mathbb{R}^{2n} \to \mathbb{R}$ , any **star-shaped** level set  $H^{-1}(c) \subset \mathbb{R}^{2n}$  admits a periodic orbit.



$$\frac{d}{dt}H(\gamma(t)) = 0,$$

 $\Rightarrow$  orbits are confined to level sets  $H^{-1}(c)$ .

**Question**: Given  $H : M \to \mathbb{R}$  and c, must there exist a *periodic* orbit in  $H^{-1}(c)$ ?

**Theorem** (Rabinowitz-Weinstein '78) Given  $H : \mathbb{R}^{2n} \to \mathbb{R}$ , any **star-shaped** level set  $H^{-1}(c) \subset \mathbb{R}^{2n}$  admits a periodic orbit.



$$\frac{d}{dt}H(\gamma(t)) = 0,$$

 $\Rightarrow$  orbits are confined to level sets  $H^{-1}(c)$ .

**Question**: Given  $H : M \to \mathbb{R}$  and c, must there exist a *periodic* orbit in  $H^{-1}(c)$ ?

**Theorem** (Rabinowitz-Weinstein '78) Given  $H : \mathbb{R}^{2n} \to \mathbb{R}$ , any **star-shaped** level set  $H^{-1}(c) \subset \mathbb{R}^{2n}$  admits a periodic orbit.





A submanifold N of a manifold M is a subset  $N \subset M$  such that the natural *inclusion map*  $N \hookrightarrow M$  is infinitely differentiable.



A submanifold N of a manifold M is a subset  $N \subset M$  such that the natural *inclusion map*  $N \hookrightarrow M$  is infinitely differentiable.

A hypersurface  $N \subset M$  is a submanifold with dim  $N = \dim M - 1$ .



A submanifold N of a manifold M is a subset  $N \subset M$  such that the natural *inclusion map*  $N \hookrightarrow M$  is infinitely differentiable.

A hypersurface  $N \subset M$  is a submanifold with dim  $N = \dim M - 1$ .

A hypersurface  $N \subset \mathbb{R}^{2n}$  is *star-shaped* if it intersects every ray from the origin exactly once, transversely.



A submanifold N of a manifold M is a subset  $N \subset M$  such that the natural *inclusion map*  $N \hookrightarrow M$  is infinitely differentiable.

A hypersurface  $N \subset M$  is a submanifold with dim  $N = \dim M - 1$ .

A hypersurface  $N \subset \mathbb{R}^{2n}$  is *star-shaped* if it intersects every ray from the origin exactly once, transversely.

#### Exercise



A submanifold N of a manifold M is a subset  $N \subset M$  such that the natural *inclusion map*  $N \hookrightarrow M$  is infinitely differentiable.

A hypersurface  $N \subset M$  is a submanifold with dim  $N = \dim M - 1$ .

A hypersurface  $N \subset \mathbb{R}^{2n}$  is *star-shaped* if it intersects every ray from the origin exactly once, transversely.

#### Exercise



A submanifold N of a manifold M is a subset  $N \subset M$  such that the natural *inclusion map*  $N \hookrightarrow M$  is infinitely differentiable.

A hypersurface  $N \subset M$  is a submanifold with dim  $N = \dim M - 1$ .

A hypersurface  $N \subset \mathbb{R}^{2n}$  is *star-shaped* if it intersects every ray from the origin exactly once, transversely.

#### Exercise



A submanifold N of a manifold M is a subset  $N \subset M$  such that the natural *inclusion map*  $N \hookrightarrow M$  is infinitely differentiable.

A hypersurface  $N \subset M$  is a submanifold with dim  $N = \dim M - 1$ .

A hypersurface  $N \subset \mathbb{R}^{2n}$  is *star-shaped* if it intersects every ray from the origin exactly once, transversely.

#### Exercise



A submanifold N of a manifold M is a subset  $N \subset M$  such that the natural *inclusion map*  $N \hookrightarrow M$  is infinitely differentiable.

A hypersurface  $N \subset M$  is a submanifold with dim  $N = \dim M - 1$ .

A hypersurface  $N \subset \mathbb{R}^{2n}$  is *star-shaped* if it intersects every ray from the origin exactly once, transversely.

#### Exercise



A submanifold N of a manifold M is a subset  $N \subset M$  such that the natural *inclusion map*  $N \hookrightarrow M$  is infinitely differentiable.

A hypersurface  $N \subset M$  is a submanifold with dim  $N = \dim M - 1$ .

A hypersurface  $N \subset \mathbb{R}^{2n}$  is *star-shaped* if it intersects every ray from the origin exactly once, transversely.

#### Exercise



A submanifold N of a manifold M is a subset  $N \subset M$  such that the natural *inclusion map*  $N \hookrightarrow M$  is infinitely differentiable.

A hypersurface  $N \subset M$  is a submanifold with dim  $N = \dim M - 1$ .

A hypersurface  $N \subset \mathbb{R}^{2n}$  is *star-shaped* if it intersects every ray from the origin exactly once, transversely.

#### Exercise

In 1985, Mikhail Gromov published a paper called *Pseudoholomorphic curves in symplectic manifolds*.



In 1985, Mikhail Gromov published a paper called *Pseudoholomorphic curves in symplectic manifolds*. Among other remarkable results, it proved:



#### Our main theorem

Suppose M is a compact 4-manifold with an exact symplectic structure which, at its boundary, looks like a star-shaped hypersurface in  $\mathbb{R}^4$ . Then  $M \cong B^4$ .

In 1985, Mikhail Gromov published a paper called *Pseudoholomorphic curves in symplectic manifolds*. Among other remarkable results, it proved:



### Our main theorem

Suppose M is a compact 4-manifold with an exact symplectic structure which, at its boundary, looks like a star-shaped hypersurface in  $\mathbb{R}^4$ . Then  $M \cong B^4$ .

A generalisation to all dimensions  $\geq$  4 was published in 1991, due to



Yasha Eliashberg

In 1985, Mikhail Gromov published a paper called Pseudoholomorphic curves in symplectic manifolds. Among other remarkable results, it proved:



### Our main theorem

Suppose M is a compact 4-manifold with an exact symplectic structure which, at its boundary, looks like a star-shaped hypersurface in  $\mathbb{R}^4$ . Then  $M \cong B^4$ .

A generalisation to all dimensions > 4 was published in 1991, due to



Yasha Eliashberg Floer



Andreas

1985, Mikhail Gromov In published a paper called Pseudoholomorphic curves symplectic manifolds. in Among other remarkable results, it proved:



#### Our main theorem

Suppose M is a compact 4-manifold with an exact symplectic structure which, at its boundary, looks like a star-shaped hypersurface in  $\mathbb{R}^4$ . Then  $M \cong B^4$ .

A generalisation to all dimensions > 4 was published in 1991, due to



Yasha Eliashberg Floer



Andreas



Dusa **McDuff** 11

A function  $f = u + iv : \mathbb{C} \to \mathbb{C}$  is analytic / holomorphic if it satisfies the *Cauchy-Riemann* equations:

$$\partial_s u(s+it) = \partial_t v(s+it),$$
  
 $\partial_t u(s+it) = -\partial_s v(s+it).$ 

A function  $f = u + iv : \mathbb{C} \to \mathbb{C}$  is analytic / holomorphic if it satisfies the *Cauchy-Riemann* equations:

$$\partial_s u(s+it) = \partial_t v(s+it),$$
  
$$\partial_t u(s+it) = -\partial_s v(s+it).$$

Equivalently:  $\partial_s f + i \partial_t f = 0$ . (\*\*)

A map  $f : \mathbb{C} \to \mathbb{C}^n$  satisfying this equation is called a **holomorphic curve** in  $\mathbb{C}^n$ .

A function  $f = u + iv : \mathbb{C} \to \mathbb{C}$  is analytic / holomorphic if it satisfies the *Cauchy-Riemann* equations:

$$\partial_s u(s+it) = \partial_t v(s+it),$$
  
$$\partial_t u(s+it) = -\partial_s v(s+it),$$

Equivalently: 
$$\partial_s f + i \partial_t f = 0$$
. (\*\*)

A map  $f : \mathbb{C} \to \mathbb{C}^n$  satisfying this equation is called a **holomorphic curve** in  $\mathbb{C}^n$ .

A 2*n*-dimensional manifold *M* has a complex structure if it is covered by special (*complex*) coordinate charts of the form  $(z_1, \ldots, z_n)$ :  $\mathcal{U} \to \mathbb{C}^n$  such that all coordinate transformations preserve the form of the Cauchy-Riemann equation (\*\*).

Thus one can speak of holomorphic curves in any complex manifold.

A function  $f = u + iv : \mathbb{C} \to \mathbb{C}$  is analytic / holomorphic if it satisfies the *Cauchy-Riemann* equations:

$$\partial_s u(s+it) = \partial_t v(s+it),$$
  
$$\partial_t u(s+it) = -\partial_s v(s+it),$$

Equivalently: 
$$\partial_s f + i \partial_t f = 0$$
. (\*\*)

A map  $f : \mathbb{C} \to \mathbb{C}^n$  satisfying this equation is called a **holomorphic curve** in  $\mathbb{C}^n$ .

A 2*n*-dimensional manifold *M* has a complex structure if it is covered by special (*complex*) coordinate charts of the form  $(z_1, \ldots, z_n)$ :  $\mathcal{U} \to \mathbb{C}^n$  such that all coordinate transformations preserve the form of the Cauchy-Riemann equation (\*\*).

Thus one can speak of holomorphic curves in any complex manifold.

#### **Examples**: $\mathbb{C}^n$

A function  $f = u + iv : \mathbb{C} \to \mathbb{C}$  is analytic / holomorphic if it satisfies the *Cauchy-Riemann* equations:

$$\partial_s u(s+it) = \partial_t v(s+it),$$
  
$$\partial_t u(s+it) = -\partial_s v(s+it),$$

Equivalently: 
$$\partial_s f + i \partial_t f = 0$$
. (\*\*)

A map  $f : \mathbb{C} \to \mathbb{C}^n$  satisfying this equation is called a **holomorphic curve** in  $\mathbb{C}^n$ .

A 2*n*-dimensional manifold *M* has a complex structure if it is covered by special (*complex*) coordinate charts of the form  $(z_1, \ldots, z_n)$ :  $\mathcal{U} \to \mathbb{C}^n$  such that all coordinate transformations preserve the form of the Cauchy-Riemann equation (\*\*).

Thus one can speak of holomorphic curves in any complex manifold.

**Examples**:  $\mathbb{C}^n$ ,  $SL(n,\mathbb{C})$
#### Some preparation from complex analysis

A function  $f = u + iv : \mathbb{C} \to \mathbb{C}$  is analytic / holomorphic if it satisfies the *Cauchy-Riemann* equations:

$$\partial_s u(s+it) = \partial_t v(s+it),$$
  
$$\partial_t u(s+it) = -\partial_s v(s+it)$$

Equivalently: 
$$\partial_s f + i \partial_t f = 0$$
. (\*\*)

A map  $f : \mathbb{C} \to \mathbb{C}^n$  satisfying this equation is called a **holomorphic curve** in  $\mathbb{C}^n$ .

A 2*n*-dimensional manifold *M* has a complex structure if it is covered by special (*complex*) coordinate charts of the form  $(z_1, \ldots, z_n)$ :  $\mathcal{U} \to \mathbb{C}^n$  such that all coordinate transformations preserve the form of the Cauchy-Riemann equation (\*\*).

Thus one can speak of holomorphic curves in any complex manifold.

**Examples**:  $\mathbb{C}^n$ ,  $SL(n,\mathbb{C})$ ,  $\mathbb{C} \cup \{\infty\} \cong S^2$ 

# The next best thing...

An almost complex structure on  $\mathbb{C}^n$  is a smooth function

 $J: \mathbb{C}^n \to \{\text{real-linear maps } \mathbb{C}^n \to \mathbb{C}^n\} \cong \mathbb{R}^{2n \times 2n}$ such that for all  $p \in \mathbb{C}^n$ ,  $[J(p)]^2 = -1$ .

# The next best thing...

An almost complex structure on  $\mathbb{C}^n$  is a smooth function

 $J: \mathbb{C}^n \to \{\text{real-linear maps } \mathbb{C}^n \to \mathbb{C}^n\} \cong \mathbb{R}^{2n \times 2n}$ such that for all  $p \in \mathbb{C}^n$ ,  $[J(p)]^2 = -1$ .

A map  $f : \mathbb{C} \to \mathbb{C}^n$  is then called a pseudoholomorphic curve if it satisfies the nonlinear Cauchy-Riemann equation:

$$\partial_s f + J(f) \partial_t f = 0$$
. (\*\*\*)

This is a nonlinear first-order *elliptic* partial differential equation (PDE).

# The next best thing...

An almost complex structure on  $\mathbb{C}^n$  is a smooth function

 $J: \mathbb{C}^n \to \{\text{real-linear maps } \mathbb{C}^n \to \mathbb{C}^n\} \cong \mathbb{R}^{2n \times 2n}$ such that for all  $p \in \mathbb{C}^n$ ,  $[J(p)]^2 = -1$ .

A map  $f : \mathbb{C} \to \mathbb{C}^n$  is then called a pseudoholomorphic curve if it satisfies the nonlinear Cauchy-Riemann equation:

$$\partial_s f + J(f) \partial_t f = 0$$
. (\*\*\*)

This is a nonlinear first-order *elliptic* partial differential equation (PDE).

## Fundamental lemma:

Every symplectic manifold admits a special class of *compatible* almost complex structures.

## A decomposition of the standard $B^4 \subset \mathbb{R}^4$

Identify  $\mathbb{R}^4=\mathbb{C}^2$  and define

 $J_0(p) := i$  for all  $p \in \mathbb{R}^4$ .

We now see two obvious 2-dimensional families of pseudoholomorphic curves:

$$u_w : \mathbb{C} \to \mathbb{C}^2 : z \mapsto (z, w) \quad \text{for } w \in \mathbb{C},$$
  
 $v_w : \mathbb{C} \to \mathbb{C}^2 : z \mapsto (w, z) \quad \text{for } w \in \mathbb{C}.$ 

They form two transverse *foliations* of  $\mathbb{C}^2$ :



#### Proof of the main theorem

Given  $\partial M = \Sigma \subset \mathbb{R}^4$  star-shaped, construct a symplectic manifold W by *surgery*:

(1) Remove from  $\mathbb{R}^4 = \mathbb{C}^2$  the interior of  $\Sigma$ ; (2) Attach *M* along its boundary to  $\Sigma$ .



#### Proof of the main theorem

Given  $\partial M = \Sigma \subset \mathbb{R}^4$  star-shaped, construct a symplectic manifold W by *surgery*:

(1) Remove from  $\mathbb{R}^4 = \mathbb{C}^2$  the interior of  $\Sigma$ ; (2) Attach *M* along its boundary to  $\Sigma$ .



Choose J matching  $J_0$  outside a large ball. Then for large |w|, the pseudoholomorphic curves  $u_w$  and  $v_w$  also exist in W. Let  $\mathcal{M}_u$  and  $\mathcal{M}_v$  denote the families of pseudoholomorphic curves in W containing the curves  $u_w$  and  $v_w$  respectively.

Let  $\mathcal{M}_u$  and  $\mathcal{M}_v$  denote the families of pseudoholomorphic curves in W containing the curves  $u_w$  and  $v_w$  respectively. Using functional analysis and PDE theory, one can show:

Lemma 1 (smoothness):

One can choose J such that  $\mathcal{M}_u$  and  $\mathcal{M}_v$ are each parametrized by smooth, oriented 2dimensional manifolds, and within each family, any two distinct curves are disjoint. Moreover, every curve in  $\mathcal{M}_u$  intersects every curve in  $\mathcal{M}_v$  exactly once, transversely. Let  $\mathcal{M}_u$  and  $\mathcal{M}_v$  denote the families of pseudoholomorphic curves in W containing the curves  $u_w$  and  $v_w$  respectively. Using functional analysis and PDE theory, one can show:

Lemma 1 (smoothness):

One can choose J such that  $\mathcal{M}_u$  and  $\mathcal{M}_v$ are each parametrized by smooth, oriented 2dimensional manifolds, and within each family, any two distinct curves are disjoint. Moreover, every curve in  $\mathcal{M}_u$  intersects every curve in  $\mathcal{M}_v$  exactly once, transversely.

### Lemma 2 (compactness):

Any bounded sequence of curves in  $\mathcal{M}_u$  or  $\mathcal{M}_v$  has a convergent subsequence.

Let  $\mathcal{M}_u$  and  $\mathcal{M}_v$  denote the families of pseudoholomorphic curves in W containing the curves  $u_w$  and  $v_w$  respectively. Using functional analysis and PDE theory, one can show:

Lemma 1 (smoothness):

One can choose J such that  $\mathcal{M}_u$  and  $\mathcal{M}_v$ are each parametrized by smooth, oriented 2dimensional manifolds, and within each family, any two distinct curves are disjoint. Moreover, every curve in  $\mathcal{M}_u$  intersects every curve in  $\mathcal{M}_v$  exactly once, transversely.

#### Lemma 2 (compactness):

Any bounded sequence of curves in  $\mathcal{M}_u$  or  $\mathcal{M}_v$  has a convergent subsequence.

These lemmas concern general properties of solution spaces.

One can prove them without knowing how to solve the PDE, and without knowing what M actually is!









































































 $\Rightarrow \quad W \cong \mathbb{C}^2.$ 

17

## That was nearly 30 years ago.

Here is a more recent but similar result...

# **Theorem** (W. 2010)

The only exact symplectic fillings of a 3dimensional torus

$$\mathbb{T}^3 := S^1 \times S^1 \times S^1$$

are star-shaped domains in the cotangent bundle of  $\mathbb{T}^2.$ 

### Question:

For a surface  $\Sigma$  of genus  $g \ge 2$ , does the unit cotangent bundle have more than one exact symplectic filling?

No one has any idea.