Some Tight Contact Manifolds
Are Tighter Than Others

‘91>< R : (Aflagl)

y
Slxé DQOC> (M2, &2)

Chris Wend|
University College London

(includes joint work with J. Latschev, P. Massot and

K. Niederkriiger)

Slides available at:

http://www.homepages.ucl.ac.uk/“ucahcwe/publications.html#talks



Warmup: Hamiltonian dynamics
(W2n ) symplectic: w" > 0 and dw = 0

H: M — R ~ Hamiltonian vector field:

Flow of X preserves level sets . := H~1(¢).



Warmup: Hamiltonian dynamics
(W2n ) symplectic: w" > 0 and dw = 0

H: M — R ~ Hamiltonian vector field:

Flow of X preserves level sets . := H~1(¢).

Question:
Given ¢ € R, is there a periodic orbit in >.7



Warmup: Hamiltonian dynamics
(W2n ) symplectic: w" > 0 and dw = 0

H: M — R ~ Hamiltonian vector field:
Flow of X preserves level sets . := H~1(¢).

Question:
Given ¢ € R, is there a periodic orbit in >.7

Theorem (Rabinowitz-Weinstein '78).
In (R?" wetyq), every star-shaped hypersur-
face admits a periodic orbit.
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Convexity and contact structures

Assume (W,w) compact, OW =: M % .
The boundary is convex if it is transverse to
an outward pointing Liouville vector field Z:

What structure does w induce on OW?

ZMM = a:=w(Z )|y is a contact form:
aA (da)™ 1 > 0.
Up to isotopy, the contact structure defined
by & .= ker«a is independent of choices.
We say (W, w) is a symplectic filling of (M, £):
"O(W,w) = (M, )"
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(M?27—1 ¢) contact manifold =
the hyperplane field &€ C T'M is “maximally
nonintegrable”

and transverse to a Reeb (i.e. Hamiltonian)
vector field.

Examples: T3 = 51 x 81 x S1 5 (s,¢,0). For
k €N, let & := ker [cos(27ks) df + sin(27ks) d¢]

4
\J

'

Then (T3,61) = 8 (D(T*T2), wsta).
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phism ¢ : M — M with @& = &7

2. Weinstein conjecture:
Every Reeb vector field on every closed
contact manifold has a periodic orbit?

3. Partial orders: say (M_,§{-) < (My,&4)
if there is a (symplectic/Liouville/Stein)
cobordism between them.

(My,&4)

(M—,&-)

When is (M_,§{_) < (M4,£4)7
When is ) < (M, £)? (Is it fillable?)
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Dimension 3: Overtwisted vs. Tight

(M3,¢) is overtwisted if there exists a disk
D — M with T(0D) C £ and T D th & at 9D.

Non-overtwisted contact structures are called
“tight” .

They are harder to understand.
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The remarkable properties of &qt:

isotopic

1. Flexibility: (M,&ot) = (M,ggt) & ot
and ggt are homotopicC. (Eliashberg '89)

2. Vanishing: All “interesting’ contact in-
variants vanish for &a¢.

3. Weinstein conjecture: &5t always admits
a contractible Reeb orbit. (Hofer '93)

4. Not fillable: 0 4 (M, &q¢).
(Gromov '85 -+ Eliashberg '89)
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Contrast: the tight 3-tori (T3,¢.):

1. Not flexible: All &. are homotopic for all
k€N, but (T3,&,) = (T3,¢,) for k £ .

2. Nonvanishing: Contact homology distin-
guishes &;. for different k£ € N.

3. Hypertight: &, always has a closed Reeb
orbit, but sometimes none are contractible.

4. Usually not fillable: ¢ < (T3,&.) iff k= 1.

We say (M3,¢) has Giroux torsion if
([0,1] x T?,&1) < (M, ).
S

v T

e Overtwisted = Giroux torsion
o (T3,£.) has Giroux torsion for k > 2

e Giroux torsion = not fillable (Gay '06)
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Conjecture.
Suppose (M, ¢) contact surgery> (M’,S’).
Then (M, €) tight = (M',¢") tight.

Surgery ~» handle attaching cobordism:

4-dimensional

2-handle
_—_\D* x D
M >
\ /
[0,1] x M
— M S
\ /

(([0,1] x M) U (D? x D?)) = —M U M’
Cobordism is exact symplectic: (M, &) < (M, ¢).

Conjecture.
Overtwistedness is minimal with respect to
the relation “<" (exact symplectic cobordisms).
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“There are degrees of tightness”

Theorem (Latschev-W. '10).
T here exists a numerical contact invariant
AT(M,¢) e NU{0,00} such that:

¢ (M_,f_) = (M—|—7£—|—) =

o AT(0) = o
Hence: AT(M,£) < oo = non-fillable

e Overtwisted = AT(M,£) =0
e Giroux torsion = AT(M,¢) <1

o Vk, I(MP, &) with AT (Mg, &) = k.

Coronar)c/::ontact surgery
(Mk,fk) > (Mg,fg) = ¢ > k.




“There are degrees of tightness”

Theorem (Latschev-W. '10).

algebraically overtwisted

Corollary: eact
contact surgery
(Mp, &)

’ (Mﬁagﬁ) = {>k.




Svymplectic Field Theory
(Eliashberg-Givental-Hofer '00)

SFT is a (still partly conjectural) Floer-type

theory for contact manifolds and symplectic
cobordisms.
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Svymplectic Field Theory
(Eliashberg-Givental-Hofer '00)

SFT is a (still partly conjectural) Floer-type
theory for contact manifolds and symplectic
cobordisms.

Data: (M27—1 ¢) with choice of

e Contact form a (~ Reeb vector field)

e Admissible R-invariant almost complex struc-
ture J on the symplectisation (Rx M, d(eta))

To each Reeb orbit ~, associate a formal vari-
able gy with degree

¢y =1 =3+ pucz(y) € Zo.

0
and a formal differential operator p := h(‘?—'

e
A = graded commutative unital R-algebra

with generators gy.
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We define an operator
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We define an operator

H : A[[n]] — A[[n]

by counting rigid J-holomorphic curves in R x

M of arbitrary genus g > 0 with positive/negative
cylindrical ends asymptotic to sets of Reeb
orbits M+ = (fyil:, . ,fyki)

_ _ - r+
Hi= Y # (Mg, r)/R)rs g pr
g, t,r=
_|_
i
/ \ R x M
EE R
R x M
=

Compactness/gluing theory = H2 = 0, and

HZT (M, &) := Hi(A[[R]], H)

is a contact invariant.
11



Symplectic cobordism (M_,&_) < (My,&4)
= natural map

HRF T (Mg, e4) — HP T (M-, ¢0)

preserving elements of R[[A]].
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Symplectic cobordism (M_,&_) < (My,&4)
= natural map

HRF T (Mg, e4) — HP T (M-, ¢0)

preserving elements of R[[A]].

=

ﬂ - R x My
T

R x M_

= =
7‘T\~////RxML

R x M_
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Example 1
If no periodic orbits, then H2F T (M, &) = R[[A]].

Example 2
Suppose Rx M has exactly one rigid J-holomorphic
curve, with genus 0, no negative ends, and

positive ends at orbits ~q,...,v.
T2 0k

N

Rx M
L — T
— I

T hen

0
Substituting py, = h—— gives
Oy,

H gy - ) = B

= [W* 11 =0e H2FT(M,¢)
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Definition.
We say (M, €) has algebraic k-torsion if
(%] =0 € HRF T (M, ¢).

=R

R x M
L — T
— I

AT(M, &) :=sup{k | [F" 1] #0e HPFT(M &)}

Theorem. Algebraic k-torsion = not fillable.

(W] =0e HPF T (M,¢)

AN

(A% = 0 € HPF T (D)
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Theorem. M < M' = AT(M) < AT(M").
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What does this mean geometrically?

Example: (Ms,&2) A (Mq,£1)

Sl

~ >

N

(M1,&1)

i
slx%% (M, £5)

N
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o (M,E) "PS-overtwisted” = AT(M,£) =0
(Bourgeois-Niederkriiger '07)

e Examples with 1 < AT(M,§) < 00?77

Recall: (T3,¢,) = ((R/ka%) x T2, kerozgt>,

1 _1
ogt 1= COS‘;J“ d9+cosz (—d6)+(sin s) do.

(T3,¢&1) = O(a trivial symplectic fibration):
T*T? =R? x T2 = (R x S1) x (R x 1)

where R x Sl carries the exact symplectic
structure d (68 do + e_S(—dH)).
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What about dim > 37

o (M,E) "PS-overtwisted” = AT(M,£) =0
(Bourgeois-Niederkriiger '07)

e Examples with 1 < AT(M,§) < 00?77

Recall: (T3,¢,) = ((R/ka%) x T2, keragt),

1 _1
ogt 1= COS‘;J“ d9+cosz (—d6)+(sin s) do.

(T3,¢1) = d(a trivial symplectic fibration):
T*T? =R? x T2 = (R x S1) x (R x 1)

where R x Sl carries the exact symplectic
structure d (68 do + e_S(—dH)).

— can foliate T*T2 by holomorphic cylinders.
16



= Symplectisation of (T3,&;) is foliated by
two families of holomorphic cylinders, each
with a “twin” that cancels it in SFT.
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= Symplectisation of (T3,&;) is foliated by
two families of holomorphic cylinders, each
with a “twin” that cancels it in SFT.

However, (T3,&;) = a k-fold cover of (T3,&1):

k > 1 = non-cancelling cylinders!
= [n] = 0 € HRPF T(T3,&,).

17



Idea: Symplectic in dimension 2n
~» contact in dimension 2n + 1
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Idea: Symplectic in dimension 2n
~» contact in dimension 2n + 1

Consider a trivial symplectic cylinder bundle
(Rx M) x (Rx S - R x M,

where R x M is exact convex symplectic with
boundary (M,&4) U (—M,&-).
(3 examplesin dim = 4,6 by McDuff '91, Geiges, Mitsumatsu '95)
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Idea: Symplectic in dimension 2n
~» contact in dimension 2n + 1

Consider a trivial symplectic cylinder bundle

(Rx M) x (RxSY) - R x M,

where R x M is exact convex symplectic with
boundary (M,&4) U (—M,&-).
(3 examplesin dim = 4,6 by McDuff '91, Geiges, Mitsumatsu '95)

The bundle has boundary = T2 x M.

Theorem (Massot-Niederkriiger-W. '11).
For all n € N, there exist closed manifolds
M?2"—1 with positive/negative pairs of con-
tact forms (o4, a—) such that

(R X M,d(e’ay + e_sa_))
iIs symplectic.

18



Theorem (Massot-Niederkriiger-W. '11).
In all odd dimensions, one can choose (M, a4 )
as above such that

COS 1 coss —1
‘;”L ay + ; a_ 4 (sins) do

defines a contact form on R x S x M with
no contractible Reeb orbits.
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structures but not diffeomorphic for dif-
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Theorem (Massot-Niederkriiger-W. '11).
In all odd dimensions, one can choose (M, a4 )
as above such that

COS 1 coss —1
agt = ‘;”L ay + ; a_ 4 (sins) do

defines a contact form on R x S x M with
no contractible Reeb orbits. Moreover,

(T? x M, &) = ((R/kaZ) x ST x M, keragt)

then have the following properties:

1. All &. are homotopic as almost contact
structures but not diffeomorphic for dif-
ferent k € N.

2. (T2 x M, &) is fillable iff k = 1.

Theorem (in progress).
Fork>2, AT(T? x M,&.) = 1.
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