Some Tight Contact Manifolds Are Tighter Than Others

Chris Wendl University College London

(includes joint work with J. Latschev, P. Massot and K. Niederkrüger)

Slides available at:

http://www.homepages.ucl.ac.uk/~ucahcwe/publications.html#talks

Warmup: Hamiltonian dynamics

 (W^{2n},ω) symplectic: $\omega^n > 0$ and $d\omega = 0$

 $H: M \to \mathbb{R} \rightsquigarrow$ Hamiltonian vector field:

 $\omega(X_H, \cdot) = -dH$

Flow of X_H preserves level sets $\Sigma_c := H^{-1}(c)$.

Question:

Given $c \in \mathbb{R}$, is there a periodic orbit in Σ_c ?

Theorem (Rabinowitz-Weinstein '78). In $(\mathbb{R}^{2n}, \omega_{std})$, every **star-shaped** hypersurface admits a periodic orbit.

Convexity and contact structures

Assume (W, ω) compact, $\partial W =: M \neq \emptyset$. The boundary is **convex** if it is transverse to an outward pointing *Liouville vector field Z*:

What structure does ω induce on ∂W ?

 $Z \pitchfork M \Rightarrow \alpha := \omega(Z, \cdot)|_{TM}$ is a contact form: $\alpha \wedge (d\alpha)^{n-1} > 0.$

Up to isotopy, the **contact structure** defined by $\xi := \ker \alpha$ is *independent of choices*.

We say (W, ω) is a **symplectic filling** of (M, ξ) : " $\partial(W, \omega) = (M, \xi)$ " (M^{2n-1},ξ) contact manifold \Rightarrow the hyperplane field $\xi \subset TM$ is *"maximally nonintegrable"*

and transverse to a **Reeb** (i.e. Hamiltonian) vector field.

Examples: $\mathbb{T}^3 = S^1 \times S^1 \times S^1 \ni (s, \phi, \theta)$. For $k \in \mathbb{N}$, let $\xi_k := \ker [\cos(2\pi ks) d\theta + \sin(2\pi ks) d\phi]$

Then $(\mathbb{T}^3,\xi_1) = \partial \left(\mathbb{D}(T^*T^2), \omega_{std} \right).$

Some hard problems in contact topology

- 1. Classification of contact structures: given ξ_1, ξ_2 on M, is there a diffeomorphism $\varphi : M \to M$ with $\varphi_* \xi_1 = \xi_2$?
- Weinstein conjecture: Every Reeb vector field on every closed contact manifold has a periodic orbit?
- 3. *Partial orders:* say $(M_-, \xi_-) \prec (M_+, \xi_+)$ if there is a (symplectic/Liouville/Stein) cobordism between them.

When is $(M_-, \xi_-) \prec (M_+, \xi_+)$? When is $\emptyset \prec (M, \xi)$? (Is it *fillable*?)

Dimension 3: Overtwisted vs. Tight

 (M^3,ξ) is **overtwisted** if there exists a disk $D \hookrightarrow M$ with $T(\partial D) \subset \xi$ and $TD \pitchfork \xi$ at ∂D .

Non-overtwisted contact structures are called **"tight"**.

They are harder to understand.

The remarkable properties of ξ_{ot} :

- 1. Flexibility: $(M, \xi_{ot}) \stackrel{\text{isotopic}}{\cong} (M, \xi'_{ot}) \Leftrightarrow \xi_{ot}$ and ξ'_{ot} are homotopic. (Eliashberg '89)
- 2. Vanishing: All "interesting" contact invariants vanish for ξ_{ot} .
- 3. Weinstein conjecture: ξ_{ot} always admits a *contractible* Reeb orbit. (Hofer '93)
- 4. Not fillable: $\emptyset \not\prec (M, \xi_{ot})$. (Gromov '85 + Eliashberg '89)

Contrast: the tight 3-tori (\mathbb{T}^3, ξ_k) :

- 1. Not flexible: All ξ_k are homotopic for all $k \in \mathbb{N}$, but $(\mathbb{T}^3, \xi_k) \ncong (\mathbb{T}^3, \xi_\ell)$ for $k \neq \ell$.
- 2. Nonvanishing: Contact homology distinguishes ξ_k for different $k \in \mathbb{N}$.
- 3. Hypertight: ξ_k always has a closed Reeb orbit, but sometimes none are contractible.
- 4. Usually not fillable: $\emptyset \prec (\mathbb{T}^3, \xi_k)$ iff k = 1.

We say (M^3, ξ) has **Giroux torsion** if $([0, 1] \times \mathbb{T}^2, \xi_1) \hookrightarrow (M, \xi)$.

- Overtwisted \Rightarrow Giroux torsion
- (\mathbb{T}^3,ξ_k) has Giroux torsion for $k\geq 2$
- Giroux torsion \Rightarrow not fillable (Gay '06)

Conjecture. Suppose $(M,\xi) \xrightarrow{contact surgery} (M',\xi')$. Then (M,ξ) tight $\Rightarrow (M',\xi')$ tight.

Surgery \rightsquigarrow handle attaching cobordism:

4-dimensional 2-handle $\mathbb{D}^2 \times \mathbb{D}^2$ M' $[0,1] \times M$

 $\partial(([0,1] \times M) \cup (\mathbb{D}^2 \times \mathbb{D}^2)) = -M \sqcup M'$ Cobordism is exact symplectic: $(M,\xi) \prec (M',\xi')$.

Conjecture.

Overtwistedness is minimal with respect to the relation " \prec " (exact symplectic cobordisms).

"There are degrees of tightness"

Theorem (Latschev-W. '10). There exists a numerical contact invariant $AT(M,\xi) \in \mathbb{N} \cup \{0,\infty\}$ such that:

- $(M_-, \xi_-) \prec (M_+, \xi_+) \Rightarrow$ $\mathsf{AT}(M_-, \xi_-) \leq \mathsf{AT}(M_+, \xi_+)$
- $AT(\emptyset) = \infty$ Hence: $AT(M,\xi) < \infty \Rightarrow$ non-fillable
- Overtwisted $\Rightarrow AT(M,\xi) = 0$
- Giroux torsion $\Rightarrow AT(M,\xi) \leq 1$
- $\forall k, \exists (M_k^3, \xi_k) \text{ with } \mathsf{AT}(M_k, \xi_k) = k.$

Corollary: $(M_k, \xi_k) \xrightarrow{\text{contact surgery}} (M_\ell, \xi_\ell) \Rightarrow \ell \ge k.$

Symplectic Field Theory

(Eliashberg-Givental-Hofer '00)

SFT is a (still partly conjectural) Floer-type theory for contact manifolds and symplectic cobordisms.

Data: (M^{2n-1},ξ) with choice of

- Contact form α (\rightsquigarrow Reeb vector field)
- Admissible \mathbb{R} -invariant almost complex structure J on the symplectisation $(\mathbb{R} \times M, d(e^t \alpha))$

To each Reeb orbit γ , associate a formal variable q_{γ} with degree

$$|q_{\gamma}| := n - 3 + \mu_{\mathsf{CZ}}(\gamma) \in \mathbb{Z}_2.$$

and a formal differential operator $p_{\gamma} := \hbar \frac{\partial}{\partial q_{\gamma}}$.

 $\mathcal{A} :=$ graded commutative unital \mathbb{R} -algebra with generators q_{γ} .

We define an operator

$$\mathcal{H}:\mathcal{A}[[\hbar]]
ightarrow \mathcal{A}[[\hbar]]$$

by counting rigid *J*-holomorphic curves in $\mathbb{R} \times M$ of arbitrary genus $g \ge 0$ with positive/negative cylindrical ends asymptotic to sets of Reeb orbits $\Gamma^{\pm} = (\gamma_1^{\pm}, \dots, \gamma_{k_{\pm}}^{\pm})$:

$$\mathcal{H} := \sum_{g, \Gamma^+, \Gamma^-} \# \left(\mathcal{M}_g(\Gamma^+, \Gamma^-) / \mathbb{R} \right) \hbar^{g-1} q^{\Gamma^-} p^{\Gamma^+}$$

Compactness/gluing theory $\Rightarrow \mathcal{H}^2 = 0$, and

$$H^{\mathsf{SFT}}_*(M,\xi) := H_*(\mathcal{A}[[\hbar]],\mathcal{H})$$

is a contact invariant.

Symplectic cobordism $(M_{-}, \xi_{-}) \prec (M_{+}, \xi_{+})$ \Rightarrow natural map

$$H^{\mathsf{SFT}}_*(M_+,\xi_+) \to H^{\mathsf{SFT}}_*(M_-,\xi_-)$$

preserving elements of $\mathbb{R}[[\hbar]]$.

Example 1

If no periodic orbits, then $H_*^{\mathsf{SFT}}(M,\xi) = \mathbb{R}[[\hbar]].$

Example 2

Suppose $\mathbb{R} \times M$ has exactly one rigid *J*-holomorphic curve, with genus 0, no negative ends, and positive ends at orbits $\gamma_1, \ldots, \gamma_k$.

Then

$$\mathcal{H} = \hbar^{-1} p_{\gamma_1} \dots p_{\gamma_k}.$$

Substituting $p_{\gamma_i} = \hbar \frac{\partial}{\partial q_{\gamma_i}}$ gives

$$\mathcal{H}(q_{\gamma_1} \dots q_{\gamma_k}) = \hbar^{k-1}$$
$$\Rightarrow [\hbar^{k-1}] = 0 \in H_*^{\mathsf{SFT}}(M,\xi)$$

Definition.

We say (M, ξ) has algebraic *k*-torsion if $[\hbar^k] = 0 \in H^{\mathsf{SFT}}_*(M, \xi).$

$$\mathsf{AT}(M,\xi) := \sup\left\{k \mid [\hbar^{k-1}] \neq 0 \in H^{\mathsf{SFT}}_*(M,\xi)\right\}$$

Theorem. Algebraic k-torsion \Rightarrow not fillable.

Similarly:

Theorem. $M \prec M' \Rightarrow \mathsf{AT}(M) \leq \mathsf{AT}(M').$

What does this mean geometrically?

Example: $(M_2, \xi_2) \not\prec (M_1, \xi_1)$

What about dim > 3?

- (M,ξ) "PS-overtwisted" $\Rightarrow AT(M,\xi) = 0$ (Bourgeois-Niederkrüger '07)
- Examples with $1 \leq AT(M,\xi) < \infty$???

Recall:
$$(\mathbb{T}^3, \xi_k) \cong ((\mathbb{R}/2\pi k\mathbb{Z}) \times \mathbb{T}^2, \ker \alpha_{gt}),$$

$$\alpha_{gt} := \frac{\cos s + 1}{2} d\theta + \frac{\cos s - 1}{2} (-d\theta) + (\sin s) d\phi.$$

 $(\mathbb{T}^3,\xi_1) = \partial$ (a trivial symplectic fibration):

 $T^*\mathbb{T}^2 = \mathbb{R}^2 \times \mathbb{T}^2 \cong (\mathbb{R} \times S^1) \times (\mathbb{R} \times S^1)$ where $\mathbb{R} \times S^1$ carries the exact symplectic structure $d\left(e^s d\theta + e^{-s}(-d\theta)\right)$.

 \Rightarrow can foliate $T^*\mathbb{T}^2$ by holomorphic cylinders.

⇒ Symplectisation of (\mathbb{T}^3, ξ_1) is foliated by *two* families of holomorphic cylinders, each with a "twin" that cancels it in SFT.

However, $(\mathbb{T}^3, \xi_k) = a k$ -fold cover of (\mathbb{T}^3, ξ_1) :

 $k > 1 \Rightarrow$ non-cancelling cylinders! $\Rightarrow [\hbar] = 0 \in H_*^{\mathsf{SFT}}(\mathbb{T}^3, \xi_k).$ **Idea:** Symplectic in dimension $2n \rightarrow contact$ in dimension 2n + 1

Consider a trivial symplectic cylinder bundle

 $(\mathbb{R} \times M) \times (\mathbb{R} \times S^1) \to \mathbb{R} \times M,$

where $\mathbb{R} \times M$ is *exact convex symplectic* with boundary $(M, \xi_+) \sqcup (-M, \xi_-)$.

 $(\exists \text{ examples in dim} = 4, 6 \text{ by McDuff '91, Geiges, Mitsumatsu '95})$

The bundle has boundary $\cong \mathbb{T}^2 \times M$.

Theorem (Massot-Niederkrüger-W. '11). For all $n \in \mathbb{N}$, there exist closed manifolds M^{2n-1} with positive/negative pairs of contact forms (α_+, α_-) such that

$$\left(\mathbb{R} \times M, d(e^{s}\alpha_{+} + e^{-s}\alpha_{-})\right)$$

is symplectic.

Theorem (Massot-Niederkrüger-W. '11). In all odd dimensions, one can choose (M, α_{\pm}) as above such that

 $\alpha_{gt} := \frac{\cos s + 1}{2} \alpha_{+} + \frac{\cos s - 1}{2} \alpha_{-} + (\sin s) d\phi$ defines a contact form on $\mathbb{R} \times S^{1} \times M$ with no contractible Reeb orbits. Moreover, $(\mathbb{T}^{2} \times M, \xi_{k}) := ((\mathbb{R}/2\pi k\mathbb{Z}) \times S^{1} \times M, \ker \alpha_{gt})$ then have the following properties:

- 1. All ξ_k are homotopic as almost contact structures but not diffeomorphic for different $k \in \mathbb{N}$.
- 2. $(\mathbb{T}^2 \times M, \xi_k)$ is fillable iff k = 1.

Theorem (in progress). For $k \ge 2$, $AT(\mathbb{T}^2 \times M, \xi_k) = 1$.

Acknowledgment

Contact structure illustrations by Patrick Massot: http://www.math.u-psud.fr/~pmassot/

