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Warmup: Hamiltonian dynamics

(W2n, ω) symplectic: ωn > 0 and dω = 0

H : M → R ; Hamiltonian vector field:

ω(XH , ·) = −dH

Flow of XH preserves level sets Σc := H−1(c).

Question:

Given c ∈ R, is there a periodic orbit in Σc?

Theorem (Rabinowitz-Weinstein ’78).

In (R2n, ωstd), every star-shaped hypersur-

face admits a periodic orbit.

-dimensional
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Convexity and contact structures

Assume (W,ω) compact, ∂W =: M 6= ∅.
The boundary is convex if it is transverse to

an outward pointing Liouville vector field Z:

LZω = ω

What structure does ω induce on ∂W?

Z ⋔ M ⇒ α := ω(Z, ·)|TM is a contact form:

α ∧ (dα)n−1 > 0.

Up to isotopy, the contact structure defined

by ξ := kerα is independent of choices.

We say (W,ω) is a symplectic filling of (M, ξ):

“∂(W,ω) = (M, ξ)”
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(M2n−1, ξ) contact manifold ⇒
the hyperplane field ξ ⊂ TM is “maximally
nonintegrable”

and transverse to a Reeb (i.e. Hamiltonian)
vector field.

Examples: T3 = S1 × S1 × S1 ∋ (s, φ, θ). For
k ∈ N, let ξk := ker [cos(2πks) dθ + sin(2πks) dφ]

D2

Then (T3, ξ1) = ∂
(

D(T ∗T2), ωstd

)

.
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Some hard problems in contact topology

1. Classification of contact structures:

given ξ1, ξ2 on M , is there a diffeomor-

phism ϕ : M → M with ϕ∗ξ1 = ξ2?

2. Weinstein conjecture:

Every Reeb vector field on every closed

contact manifold has a periodic orbit?

3. Partial orders: say (M−, ξ−) ≺ (M+, ξ+)

if there is a (symplectic/Liouville/Stein)

cobordism between them.

(M+, ξ+)

(M−, ξ−)

1]×

When is (M−, ξ−) ≺ (M+, ξ+)?

When is ∅ ≺ (M, ξ)? (Is it fillable?)
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Dimension 3: Overtwisted vs. Tight

(M3, ξ) is overtwisted if there exists a disk

D →֒ M with T(∂D) ⊂ ξ and TD ⋔ ξ at ∂D.

ξ−

Non-overtwisted contact structures are called

“tight”.

They are harder to understand.
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The remarkable properties of ξot:

A

1. Flexibility: (M, ξot)
isotopic
∼= (M, ξ′ot) ⇔ ξot

and ξ′ot are homotopic. (Eliashberg ’89)

2. Vanishing: All “interesting” contact in-

variants vanish for ξot.

3. Weinstein conjecture: ξot always admits

a contractible Reeb orbit. (Hofer ’93)

4. Not fillable: ∅ ⊀ (M, ξot).

(Gromov ’85 + Eliashberg ’89)
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Contrast: the tight 3-tori (T3, ξk):

1. Not flexible: All ξk are homotopic for all

k ∈ N, but (T3, ξk) ≇ (T3, ξℓ) for k 6= ℓ.

2. Nonvanishing: Contact homology distin-

guishes ξk for different k ∈ N.

3. Hypertight: ξk always has a closed Reeb

orbit, but sometimes none are contractible.

4. Usually not fillable: ∅ ≺ (T3, ξk) iff k = 1.

We say (M3, ξ) has Giroux torsion if

([0,1]× T2, ξ1) →֒ (M, ξ).

• Overtwisted ⇒ Giroux torsion

• (T3, ξk) has Giroux torsion for k ≥ 2

• Giroux torsion ⇒ not fillable (Gay ’06)
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Conjecture.

Suppose (M, ξ)
contact surgery
−−−−−−−−−−−→ (M ′, ξ′).

Then (M, ξ) tight ⇒ (M ′, ξ′) tight.

Surgery ; handle attaching cobordism:

M

M ′

4-dimensional
2-handle

D2 × D2

[0,1]×M

=

∂(([0,1]×M) ∪ (D2 × D2)) = −M ⊔M ′

Cobordism is exact symplectic: (M, ξ) ≺ (M ′, ξ′).

Conjecture.

Overtwistedness is minimal with respect to

the relation “≺” (exact symplectic cobordisms).
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“There are degrees of tightness”

Theorem (Latschev-W. ’10).
There exists a numerical contact invariant
AT(M, ξ) ∈ N ∪ {0,∞} such that:

• (M−, ξ−) ≺ (M+, ξ+) ⇒
AT(M−, ξ−) ≤ AT(M+, ξ+)

• AT(∅) = ∞
Hence: AT(M, ξ) < ∞ ⇒ non-fillable

• Overtwisted ⇒ AT(M, ξ) = 0

• Giroux torsion ⇒ AT(M, ξ) ≤ 1

• ∀k, ∃(M3
k , ξk) with AT(Mk, ξk) = k.

Corollary:
(Mk, ξk)

contact surgery
−−−−−−−−−−−→ (Mℓ, ξℓ) ⇒ ℓ ≥ k.

!

S1×

S1×

(M1, ξ1)

(M2, ξ2)

-dimensional
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Symplectic Field Theory

(Eliashberg-Givental-Hofer ’00)

SFT is a (still partly conjectural) Floer-type

theory for contact manifolds and symplectic

cobordisms.

Data: (M2n−1, ξ) with choice of

• Contact form α (; Reeb vector field)

• Admissible R-invariant almost complex struc-

ture J on the symplectisation (R×M,d(etα))

To each Reeb orbit γ, associate a formal vari-

able qγ with degree

|qγ| := n− 3+ µCZ(γ) ∈ Z2.

and a formal differential operator pγ := ~
∂

∂qγ
.

A := graded commutative unital R-algebra

with generators qγ.
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We define an operator

H : A[[~]] → A[[~]]

by counting rigid J-holomorphic curves in R×

M of arbitrary genus g ≥ 0 with positive/negative

cylindrical ends asymptotic to sets of Reeb

orbits Γ± = (γ±1 , . . . , γ±k±
):

H :=
∑

g,Γ+,Γ−

#
(

Mg(Γ
+,Γ−)/R

)

~g−1qΓ
−
pΓ

+

∈

R×M

R×M

Γ+

Γ−

Γ0

Compactness/gluing theory ⇒ H2 = 0, and

HSFT
∗ (M, ξ) := H∗(A[[~]],H)

is a contact invariant.
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Symplectic cobordism (M−, ξ−) ≺ (M+, ξ+)

⇒ natural map

HSFT
∗ (M+, ξ+) → HSFT

∗ (M−, ξ−)

preserving elements of R[[~]].

-handle

W

R×M−

R×M−

R×M−

R×M+
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Example 1

If no periodic orbits, then HSFT
∗ (M, ξ) = R[[~]].

Example 2

Suppose R×M has exactly one rigid J-holomorphic

curve, with genus 0, no negative ends, and

positive ends at orbits γ1, . . . , γk.

...

...

R×M

γ1 γ2 γk

Then

H = ~−1pγ1 . . . pγk.

Substituting pγi = ~
∂

∂qγi
gives

H
(

qγ1 . . . qγk
)

= ~k−1

⇒ [~k−1] = 0 ∈ HSFT
∗ (M, ξ)
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Definition.

We say (M, ξ) has algebraic k-torsion if

[~k] = 0 ∈ HSFT
∗ (M, ξ).

...

...

R×M

γ1 γ2 γk+1

AT(M, ξ) := sup
{

k
∣

∣

∣ [~k−1] 6= 0 ∈ HSFT
∗ (M, ξ)

}

Theorem.Algebraic k-torsion ⇒ not fillable.

!

S1×

-dimensional

[~k] = 0 ∈ HSFT
∗ (M, ξ)

[~k] 6= 0 ∈ HSFT
∗ (∅)
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Similarly:

Theorem.M ≺ M ′ ⇒ AT(M) ≤ AT(M ′).

What does this mean geometrically?

Example: (M2, ξ2) ⊀ (M1, ξ1)

!

S1×

S1×

(M1, ξ1)

(M2, ξ2)

D2
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What about dim > 3?

• (M, ξ) “PS-overtwisted” ⇒ AT(M, ξ) = 0

(Bourgeois-Niederkrüger ’07)

• Examples with 1 ≤ AT(M, ξ) < ∞???

Recall: (T3, ξk)
∼=

(

(R/2πkZ)× T2,kerαgt

)

,

αgt :=
cos s+1

2
dθ+

cos s− 1

2
(−dθ)+(sin s) dφ.

(T3, ξ1) = ∂(a trivial symplectic fibration):

T ∗T2 = R2 × T2 ∼= (R× S1)× (R× S1)

where R × S1 carries the exact symplectic

structure d
(

es dθ + e−s(−dθ)
)

.

⇒ can foliate T ∗T2 by holomorphic cylinders.
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⇒ Symplectisation of (T3, ξ1) is foliated by

two families of holomorphic cylinders, each

with a “twin” that cancels it in SFT.

However, (T3, ξk) = a k-fold cover of (T3, ξ1):

0

k > 1 ⇒ non-cancelling cylinders!

⇒ [~] = 0 ∈ HSFT
∗ (T3, ξk).
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Idea: Symplectic in dimension 2n
; contact in dimension 2n+1

Consider a trivial symplectic cylinder bundle

(R×M)× (R× S1) → R×M,

where R×M is exact convex symplectic with

boundary (M, ξ+) ⊔ (−M, ξ−).
(∃ examples in dim = 4,6 by McDuff ’91, Geiges, Mitsumatsu ’95)

(−M, ξ−) (M, ξ+)

(R×M,dλ)

=

The bundle has boundary ∼= T2 ×M .

Theorem (Massot-Niederkrüger-W. ’11).

For all n ∈ N, there exist closed manifolds

M2n−1 with positive/negative pairs of con-

tact forms (α+, α−) such that
(

R×M,d(esα+ + e−sα−)
)

is symplectic.
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Theorem (Massot-Niederkrüger-W. ’11).

In all odd dimensions, one can choose (M,α±)

as above such that

αgt :=
cos s+1

2
α++

cos s− 1

2
α−+(sin s) dφ

defines a contact form on R × S1 × M with

no contractible Reeb orbits. Moreover,

(T2 ×M, ξk) :=
(

(R/2πkZ)× S1 ×M,kerαgt

)

then have the following properties:

1. All ξk are homotopic as almost contact

structures but not diffeomorphic for dif-

ferent k ∈ N.

2. (T2 ×M, ξk) is fillable iff k = 1.

Theorem (in progress).

For k ≥ 2, AT(T2 ×M, ξk) = 1.
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