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AUTOMATIC TRANSVERSALITY AND ORBIFOLDS OFPUNCTURED HOLOMORPHIC CURVES IN DIMENSIONFOURCHRIS WENDLAbstra
t. We derive a numeri
al 
riterion for J{holomorphi
 
urvesin 4{dimensional symple
ti
 
obordisms to a
hieve transversality with-out any generi
ity assumption. This generalizes results of Hofer-Lizan-Sikorav [HLS97℄ and Ivashkovi
h-Shev
hishin [IS99℄ to allow pun
tured
urves with boundary that generally need not be somewhere inje
tiveor immersed. As an appli
ation, we 
ombine this with the interse
tiontheory of pun
tured holomorphi
 
urves to prove that 
ertain geomet-ri
ally natural moduli spa
es are globally smooth orbifolds, 
onsistinggeneri
ally of embedded 
urves, plus unbran
hed multiple 
overs thatform isolated orbifold singularities.Contents1. Introdu
tion 21.1. The setting 31.2. Lo
al and global transversality results 71.3. Outline of the proofs 102. Cau
hy-Riemann type operators on bundles 122.1. Generalities 122.2. The line bundle 
ase 153. The normal operator for a holomorphi
 
urve 183.1. Tei
hm�uller sli
es and Cau
hy-Riemann operators 183.2. Fun
tional analyti
 setup 233.3. The generalized normal bundle 303.4. Splitting the linearization 333.5. The transversality 
riterion in dimension four 384. Appli
ation to spa
es of embedded 
urves 384.1. Interse
tion theory for pun
tured holomorphi
 
urves 394.2. Some 
overing relations 434.3. Multiply 
overed limits are immersed 47Appendix A. Counting boundary zeros 55Referen
es 572000 Mathemati
s Subje
t Classi�
ation. Primary 32Q65; Se
ondary 57R17.Resear
h partially supported by an NSF Postdo
toral Fellowship (DMS-0603500) anda DFG grant (CI 45/2-1). 1

2 CHRIS WENDL1. Introdu
tionAppli
ations of pseudoholomorphi
 
urves in symple
ti
 4{manifolds and
onta
t 3{manifolds often depend on the rather spe
ial transversality prop-erties that exist in this low-dimensional setting. Unlike the general situa-tion, where the moduli spa
e is smooth only at somewhere inje
tive 
urvesand only for generi
 data, 
ertain moduli spa
es in dimension 4 are smoothfor all data as long as the right numeri
al 
riteria are satis�ed. For exam-ple, suppose (W;J) is any almost 
omplex 4{manifold, (�; j) is a 
losedRiemann surfa
e of genus g and u : (�; j) ! (W;J) is a pseudoholomor-phi
 
urve. The following result was �rst mentioned by Gromov [Gro85℄,and later given a 
omplete proof by Hofer-Lizan-Sikorav:Theorem ([HLS97℄). If u is embedded and 
1(u�TW; J) > 0, then the mod-uli spa
e of unparametrized pseudoholomorphi
 
urves near u is a smoothmanifold of dimension 2
1(u�TW; J) + 2g � 2.Observe that the assumptions in the theorem do not require any datato be generi
: rather, the 
riterion 
1(u�TW ) > 0 implies regularity foruniquely 4{dimensional reasons that are loosely related to positivity ofinterse
tions. The dimension of the moduli spa
e is then equal to its so-
alled virtual dimension, also 
alled the index of u, de�ned as ind(u) =2
1(u�TW ) + 2g � 2. Thus 
1(u�TW ) > 0 is equivalent to the 
onditionind(u) > 2g � 2, whi
h leads one to summarize results of this type withthe motto, \the moduli spa
e is smooth if the index is suÆ
iently large."Exa
tly how large the index needs to be depends on the genus: this is thereason why almost all appli
ations of su
h results (in
luding the one in thispaper) prin
ipally involve 
urves of genus zero.Versions of the theorem above for 
ompa
t immersed holomorphi
 
urveswith boundary were proved in [HLS97℄, and similar results for immersedpun
tured 
urves in symple
tizations of 
onta
t 3{manifolds also appearedin [HWZ99,Wen05℄. The reason for dealing with immersed 
urves in par-ti
ular was that one 
ould then des
ribe a neighborhood of u in the modulispa
e using se
tions of its normal bundle and thus redu
e the linearizationto the so-
alled normal Cau
hy-Riemann operator. The key fa
t aboutthis operator is that its domain is a spa
e of se
tions on a 
omplex linebundle, thus the zeroes of these se
tions 
an be 
ounted and related tothe same topologi
al invariants that appear in the index formula, givingrise to 
onstraints on the kernel and 
okernel. A generalization for 
losedholomorphi
 
urves with 
riti
al points was 
arried out in [IS99℄, where thenormal bundle was repla
ed by a normal sheaf.In this paper, we establish a transversality 
riterion that generalizesall of the above results, applying to arbitrary J{holomorphi
 
urves withtotally real boundary and 
ylindri
al ends in 4{dimensional symple
ti

obordisms.
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TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 3One of the advantages of this approa
h to transversality is that it ap-plies to more than just somewhere inje
tive 
urves: in x4, we will des
ribea setting in whi
h our 
riterion, 
ombined with some nontrivial interse
-tion theory, implies that 
ertain moduli spa
es are smooth orbifolds, whi
h
onsist mostly of embedded holomorphi
 
urves but also have isolated sin-gularities 
onsisting of unbran
hed multiple 
overs over embedded 
urves.These moduli spa
es arise quite naturally in a geometri
 setting: they arethe building blo
ks of J{holomorphi
 foliations, 
f. [HWZ03,Wen08℄.1.1. The setting. Let n � 2. In all of what follows, (W;J) will denotea 2n{dimensional almost 
omplex manifold with non
ompa
t 
ylindri
alends, whi
h approa
h (2n� 1){manifoldsM� equipped with stable Hamil-tonian stru
tures. We now re
all the pre
ise de�nitions.We use the term stable Hamiltonian stru
ture to mean the 
olle
tion ofdata that were introdu
ed in [BEH+03℄ as the appropriate setting for pseu-doholomorphi
 
urves in 
ylindri
al manifolds. Namely, su
h a stru
tureH = (�;X; !; J) on a (2n� 1){manifoldM 
onsists of the following data:1� � is a smooth 
ooriented hyperplane distribution on M� ! is a smooth 
losed 2{form on M whi
h restri
ts to a symple
ti
stru
ture on the ve
tor bundle � !M� X is a smooth ve
tor �eld whi
h is transverse to �, satis�es !(X; �) �0, and whose 
ow preserves �� J is a smooth 
omplex stru
ture on the bundle � !M , 
ompatiblewith ! in the sense that !(�; J �) de�nes a bundle metri
Note that, as a 
onsequen
e of these de�nitions, the 
ow 'tX : M ! Mof X also preserves the symple
ti
 stru
ture !j�, and the spe
ial 1{form �asso
iated to � and X by the 
onditions�(X) � 1; ker� � �;satis�es d�(X; �) � 0. The symple
tization R �M now admits a naturalR{invariant almost 
omplex stru
ture ~J , de�ned by the 
onditions~J�a = X; ~J j� = Jwhere a denotes the 
oordinate on the R{fa
tor and �a 2 T (R �M) is the
orresponding unit ve
tor �eld.Re
all that a T{periodi
 orbit x : R ! M is nondegenerate if the lin-earized return map d'TX(x(0))j�x(0) does not have 1 as an eigenvalue. Moregenerally, a Morse-Bott manifold of T{periodi
 orbits is a submanifoldN �M tangent to X su
h that 'TX jN is the identity, and for all p 2 N ,TpN = ker �d'TX(p)� 1

� :1The in
lusion of J in the data is somewhat nonstandard but 
onvenient for ourpurposes. The data (�;X; !) are equivalent to the de�nition of a framed Hamiltonianstru
ture stated in [EKP06℄, with the ex
eption that the latter requires ! to be exa
t;here it need only be 
losed.

4 CHRIS WENDLWe will say that an orbit with period T is Morse-Bott if it is 
ontainedin a Morse-Bott manifold of T{periodi
 orbits; note that this manifold
ould be a 
ir
le, meaning the orbit is nondegenerate. Moreover, X itselfis said to be Morse-Bott (or nondegenerate) if every periodi
 orbit of X isMorse-Bott (or nondegenerate).We now �x two 
losed (2n� 1){manifolds M� with stable Hamiltonianstru
tures H� = (��; X�; !�; J�) and asso
iated data �� and ~J�, as wellas an almost 
omplex 2n{manifold (W;J) whi
h de
omposesW = E� [M� W0 [M+ E+so that� W0 is a 
ompa
t 2n{manifold with boundary �W0 =M� tM+� (E�; J) �= ((�1; 0℄�M�; ~J�) and (E+; J) �= ([0;1)�M+; ~J+)Fix also a totally real submanifold L � W .Near �E� � E�, the data H� de�ne natural symple
ti
 forms !� +d(a��) whi
h 
an be extended (non-uniquely) over E�. Then given anysymple
ti
 form ! on W0 that atta
hes smoothly to !� + d(a��) at �W0,we denote by J!(W;H+;H�) the spa
e of almost 
omplex stru
tures J onW that are 
ompatible with ! on W0 and satisfy the 
onditions above.2We will 
onsider pseudoholomorphi
 (or J{holomorphi
) 
urvesu : ( _�; j)! (W;J);where _� = � n �, (�; j) is a 
ompa
t 
onne
ted Riemann surfa
e withboundary, � � int� is a �nite set of interior pun
tures,3 and by de�ni-tion u satis�es the nonlinear Cau
hy-Riemann equation Tu Æ j = J Æ Tuand boundary 
ondition u(��) � L. We also will assume u is asymptoti-
ally 
ylindri
al, whi
h means the following. Partition the pun
tures intopositive and negative subsets � = �+ [ ��;and at ea
h z 2 ��, 
hoose a biholomorphi
 identi�
ation of a pun
turedneighborhood of z with the half-
ylinder Z�, whereZ+ = [0;1)� S1 and Z� = (�1; 0℄� S1:Then writing u near the pun
ture in 
ylindri
al 
oordinates (s; t), for jsjsuÆ
iently large, it satis�es an asymptoti
 formula of the formu Æ '(s; t) = exp(Ts;x(T t)) h(s; t) 2 E�:Here T > 0 is a 
onstant, x : R ! M� is a T{periodi
 orbit of X�,the exponential map is de�ned with respe
t to any R{invariant metri
2The symple
ti
 form ! will play almost no role in anything that follows, but be
omesimportant in appli
ations, e.g. it yields 
ompa
tness results as in [BEH+03℄.3For brevity we're leaving out the 
ase of pun
tures on the boundary, though this
an presumably be handled by similar methods.



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 5on R � M�, h(s; t) 2 �x(T t) goes to 0 uniformly in t as s ! �1 and' : Z� ! Z� is a smooth embedding su
h that'(s; t)� (s+ s0; t+ t0)! 0as s! �1 for some 
onstants s0 2 R, t0 2 S1. We will denote by 
z theT{periodi
 orbit parametrized by x, and 
all it the asymptoti
 orbit of uat the pun
ture z. With this asymptoti
 behavior in mind, it is 
onvenientto think of ( _�; j) as a Riemann surfa
e with 
ylindri
al ends, and we willsometimes refer to neighborhoods of the pun
tures as ends of _�. As is wellknown (
f. [Hof93, HWZ96℄), the asymptoti
ally 
ylindri
al holomorphi

urves in (W;J) are pre
isely those whi
h satisfy a 
ertain �nite energy
ondition, though we will not need this fa
t here.Denote by M := M(J; L) the moduli spa
e of equivalen
e 
lasses ofasymptoti
ally 
ylindri
al J{holomorphi
 
urves inW with boundary on L;here an equivalen
e 
lass is de�ned by the data (�; j;�; u) where � is
onsidered to be an ordered set, and we de�ne (�; j;�; u) � (�0; j 0;�0; u0) ifthere exists a biholomorphi
 map ' : (�; j) ! (�0; j 0) taking � to �0 withthe ordering preserved, su
h that u = u0 Æ'. We shall often abuse notationand write u 2 M or (�; j;�; u) 2 M when we mean [(�; j;�; u)℄ 2 M.The moduli spa
e has a natural topology de�ned by C1lo
{
onvergen
e on_� and uniform 
onvergen
e up to the ends. For any u 2 M, denote byMu the 
onne
ted 
omponent of M 
ontaining u.It is often interesting to 
onsider subspa
es of M de�ned by imposing
onstraints on the asymptoti
 behavior at some of the pun
tures.De�nition 1.1. For a given pun
tured surfa
e _� = � n (�+ [ ��), let 
denote a 
hoi
e of periodi
 orbit 

z in M� for some subset of pun
turesz 2 ��. We 
all 
 a 
hoi
e of asymptoti
 
onstraints,4 and refer to ea
hpun
ture z for whi
h 
 spe
i�es an orbit 

z as a 
onstrained pun
ture.For any 
hoi
e of domain _� and asymptoti
 
onstraints 
, we 
an 
onsiderthe 
onstrained moduli spa
e M
 �M
onsisting of 
urves u : _� ! W that approa
h the spe
i�ed orbit 

z atea
h of the 
onstrained pun
tures z 2 �, and arbitrary orbits at the un-
onstrained pun
tures. The 
onstraints de�ne another partition of �,� = �C [ �U4One 
an impose more stringent 
onstraints as well, e.g. on the rate at whi
h u 
on-verges to its asymptoti
 orbits; su
h 
onstraints are treated in [Wenb,Wena℄. Anotherpossibility is to allow marked points that map to spe
i�ed points in the image, perhapswith 
usps of pres
ribed order, as in [Bar00,Fra05℄. We omit all these possibilities herefor the sake of brevity.

6 CHRIS WENDLinto the sets of 
onstrained and un
onstrained pun
tures respe
tively. Thepositive and negative subsets within ea
h of these will be denoted by ��Cand ��U .If the asymptoti
 orbits of u are all Morse-Bott, then the so-
alled virtualdimension of M
u is given by the Fredholm index(1.1) ind(u; 
) = (n� 3)�( _�) + 2
�1 (u�TW ) + ��(u; 
)where 
�1 (u�TW ) is the relative �rst Chern number of (u�TW; J)! _� withrespe
t to a suitable 
hoi
e of trivialization � along the ends and boundary,and ��(u; 
) is a sum of Conley-Zehnder indi
es of the asymptoti
 orbitsand a Maslov index at the boundary with respe
t to �; a pre
ise de�nitionwill be given in x3.2.As we shall review in more detail in x3, the nonlinear Cau
hy-Riemannequation 
an be expressed as a smooth se
tion of a Bana
h spa
e bundle��J : B ! E : (j; u) 7! Tu+ J Æ Tu Æ j;su
h that a neighborhood of any non-
onstant (�; j;�; u) inM
 is in one-to-one 
orresponden
e with ���1J (0)=Aut( _�; j), where the group Aut( _�; j)of biholomorphi
 maps (�; j) ! (�; j) �xing � a
ts on pairs (j 0; u0) 2���1J (0) by ' � (j 0; u0) = ('�j 0; u0 Æ '):It is then standard to say that (�; j;�; u) 2 M is regular if it represents atransverse interse
tion with the zero-se
tion, i.e. the linearizationD ��J(j; u) : T(j;u)B ! E(j;u)is surje
tive. We will give a pre
ise de�nition in x3.2 on
e the fun
tionalanalyti
 setup is in pla
e. Observe that if u : _� ! W is not 
onstant,then the a
tion of Aut( _�; j) indu
es a natural in
lusion of its Lie algebraaut( _�; j) into kerD ��J(j; u). For the sake of 
ompleteness, we will presentin x3.2 a proof of the following standard folk theorem:Theorem 0. Assume u : ( _�; j) ! (W;J) is a non-
onstant 
urve in M
with only Morse-Bott asymptoti
 orbits. If u is regular, then a neighborhoodof u inM
 naturally admits the stru
ture of a smooth orbifold of dimensionind(u; 
), whose isotropy group at u isAut(u) := f' 2 Aut( _�; j)j u = u Æ 'g;and there is a natural isomorphismTuM
 = kerD ��J(j; u)=aut( _�; j):In parti
ular, regularity implies that M
 is a manifold near u if u issomewhere inje
tive, and in general the isotropy group for an orbifold sin-gularity has order bounded by the 
overing number of u. Note that in
ontrast to the standard theory of J{holomorphi
 
urves (
f. [MS04℄), we



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 7shall in this paper be espe
ially interested in 
ases where u a
hieves reg-ularity despite being multiply 
overed, so the moduli spa
e is smooth butmay be an orbifold rather than a manifold.In the 
ase dimW = 4, another number that turns out to play an impor-tant role is the so-
alled normal �rst Chern number 
N (u; 
) 2 12Z, whi
h
an be de�ned most simply via the formula(1.2) 2
N(u; 
) = ind(u; 
)� 2 + 2g +#�0(
) + #�0(��):Here g is the genus of � and �0(
) � � is the subset of pun
tures for whi
hthe asymptoti
 orbit has even Conley-Zehnder index (this is the 
orre
tde�nition if all orbits are nondegenerate; in the Morse-Bott 
ase the de�-nition is more 
ompli
ated and may depend on the asymptoti
 
onstraints,see x3.2). We will be able to give a better motivated de�nition in x3.5 usingthe linear theory in x2, but for now, the signi�
an
e of 
N(u; 
) 
an be illus-trated by 
onsidering the 
ase where � is 
losed and � = ;. Then a 
ombi-nation of (1.1) and (1.2) yields the relation 
N (u; 
) = 
1(u�TW )� �(�),so 
N (u; 
) is the �rst Chern number of the normal bundle if u is immersed.This is the appropriate philosophi
al interpretation of 
N (u; 
) in general,as will be
ome obvious from further 
onsiderations.As a �nal pie
e of preparation, note that sin
e a non-
onstant holomor-phi
 
urve u : _� ! W is ne
essarily immersed near the ends, it 
an haveat most �nitely many 
riti
al points. Indeed, as we will review in x3.3, thebundle u�TW ! _� admits a natural holomorphi
 stru
ture su
h that these
tion du 2 �(HomC (T _�; u�TW ))is holomorphi
; its 
riti
al points are thus isolated and have positive order,whi
h we denote by ord(du; z) for any z 2 Crit(u). The quantity(1.3) Z(du) := Xz2du�1(0)\int _� ord(du; z) + 12 Xz2du�1(0)\�� ord(du; z)is therefore a �nite nonnegative half-integer (or integer if �� = ;), and itequals zero if and only if u is immersed.1.2. Lo
al and global transversality results. We now state the mainresult of this paper. The following will be a 
onvenient pie
e of shorthandnotation: if �� 6= ;, then for given 
onstants 
 2 R and G � 0, de�ne thenonnegative integerK(
; G) = minfk + ` j k; ` nonnegative integers,k � G and 2k + ` > 2
g:(1.4)If �� = ; we modify this de�nition slightly by requiring the integer ` tobe even. Note that in most appli
ations known to the author, it will turnout that 
 < 0, so K(
; G) = 0.

8 CHRIS WENDLTheorem 1. Suppose dimW = 4 and (�; j;�; u) 2 M
 is a non-
onstant
urve with only Morse-Bott asymptoti
 orbits. If(1.5) ind(u; 
) > 
N (u; 
) + Z(du);then u is regular. Moreover when this 
ondition is not satis�ed, we have thefollowing bounds on the dimension of kerD ��J(j; u): if ind(u; 
) � 2Z(du)then2Z(du) � dim�kerD ��J(j; u)=aut( _�; j)�� 2Z(du) +K(
N(u; 
)� Z(du);#�0(
))and if 2Z(du) � ind(u; 
), thenind(u; 
) � dim�kerD ��J(j; u)=aut( _�; j)�� ind(u; 
) +K(
N (u; 
) + Z(du)� ind(u; 
);#�0(
)):Remark 1.2. Plugging in the de�nition of 
N (u; 
) and the index formula,the 
ondition (1.5) is equivalent toind(u; 
) > 2g +#�0(
) + #�0(��) � 2 + 2Z(du);or 2
�1 (u�TW ) + ��(u; 
) + #�1(
) > 2Z(du);where �1(
) := � n �0(
). These are dire
t generalizations of the 
riteriain [HLS97,Wen05, IS99℄.Remark 1.3. An important spe
ial 
ase of the dimension bound, whi
hwe will use in the appli
ation, appears when 
N(u; 
) < Z(du): thenK(
N(u; 
) � Z(du);#�0(
)) = 0, so dimker �D ��J(j; u)� = 2Z(du), itssmallest possible value.Results of this type have been used previously for a variety of appli-
ations, in
luding disk �lling and deformation arguments in 
onta
t 3{manifolds [Hof93, HWZ95b,Wen08℄, and the symple
ti
 isotopy problem[She01,Sik03℄. In the last se
tion of this paper, we will use our generaliza-tion to prove a somewhat surprising global stru
ture theorem for 
ertain ge-ometri
ally natural moduli spa
es of holomorphi
 
urves in 4{dimensionalsymple
ti
 
obordisms.To motivate this, 
onsider for a moment the 
ase of a 
losed holomorphi

urve u : � ! W that satis�es the 
riterion ind(u) > 
N(u) + Z(du). Weknow then that M is smooth in some neighborhood of u, but ideally onewould like to know that the entire 
onne
ted 
omponentMu is smooth. Ingeneral this will not be true, as other 
urves inMu may have more 
riti
alpoints and thus fail to satisfy the 
riterion. One favorite way to evadethis issue is by assuming that u is embedded : then the adjun
tion formula(
f. [MS04℄) guarantees that all somewhere inje
tive 
urves u0 2 Mu arealso embedded, hen
e Z(du0) = 0 and the 
riterion is satis�ed. The 
at
h is



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 9that unless one imposes additional restri
tive 
onditions on the homology
lass [u℄ 2 H2(W ), not every 
urve in Mu need be somewhere inje
tive:a sequen
e of embedded 
urves may 
onverge to a bran
hed 
over, whi
hwill not always be regular sin
e its bran
h points are 
riti
al. Thus Mumay fail to be globally smooth if it 
ontains bran
hed 
overs, and there isno way to avoid this in general.5The surprising fa
t is that if we impose an additional, rather naturalinterse
tion-theoreti
 
ondition on u, then the multiple 
overs that ariseturn out to be \harmless": even the multiple 
overs are regular, and Muis thus globally smooth. The 
ondition in question arises from the studyof J{holomorphi
 foliations: in parti
ular, we fo
us on pun
tured embed-ded 
urves u : _� ! W that exist in 1{ or 2{dimensional families (withrespe
t to some 
onstraints 
) and have the property of never interse
tingtheir neighbors, i.e. these families foliate either an open set or a hyper-surfa
e 
ontaining u( _�) � W . A 
omplete 
hara
terization of su
h 
urvesis given in [Wenb℄ and will be reviewed in x4; we refer to them as stable,ni
ely embedded 
urves. If u is su
h a 
urve, then it automati
ally satis�esthe 
riterion of Theorem 1, thus the lo
al stru
ture of M
u near u is wellunderstood, but one still has the global question:Question. Can a sequen
e of stable, ni
ely embedded 
urves 
onverge to amultiple 
over?If the answer is no, then M
u is a smooth manifold, and we'll show thatthis is indeed the 
ase whenever W is an R{invariant symple
tization (withgeneri
 J) or a 
losed symple
ti
 manifold. In general, it turns out thatmultiple 
overs 
an appear, but only if they are immersed, in whi
h 
asethe regularity 
riterion is still satis�ed. The proof of this fa
t will make useof our transversality arguments for non-immersed 
urves, establishing ine�e
t that any 
omponent ofM
 
ontaining su
h a non-immersed multiple
over 
an 
onsist only of multiple 
overs. The result is:Theorem 2. For generi
 J, if u 2 M
 is a stable, ni
ely embedded 
urve,then every 
urve in M
u is regular: in parti
ular M
u naturally admits thestru
ture of a smooth orbifold of dimension ind(u; 
) 2 f1; 2g, with onlyisolated singularities. Moreover, all 
urves in M
u are embedded ex
eptfor a dis
rete subset, 
onsisting of unbran
hed multiple 
overs over stable,ni
ely embedded index 0 
urves, and the images of any two 
urves in M
uare either identi
al or disjoint.This will follow from a more general result (Theorem 4) proved in x4,whi
h applies also to parametrized moduli spa
es under a generi
 homotopyof almost 
omplex stru
tures. As a simple 
orollary, we observe the twoaforementioned 
ases where the answer to the question posed above is no:5Note that multiply 
overed 
urves also pose a problem in the standard transversalitytheory, but for 
ompletely di�erent reasons.

10 CHRIS WENDLCorollary 1.4. For the 
urve u : _� ! W in Theorem 2, suppose thateither� _� is a 
losed Riemann surfa
e (without pun
tures), or� (W;J) = (R � M; ~J) is the symple
tization of a 3{manifold withstable Hamiltonian stru
ture H = (X; �; !; J), where J is generi
.Then every 
urve in M
u is embedded, thus M
u is a manifold.Proof. For the R{invariant symple
tization (R �M; ~J), a multiple 
overu = v Æ ' would require a somewhere inje
tive 
urve v of index 0, whi
hdoesn't exist if J is generi
. The reasoning in the 
losed 
ase is di�erent:it depends on the fa
t that, as we'll show in x4.3, stable ni
ely embedded
urves always have genus zero. Then ' must be a holomorphi
 map S2 !S2 with no bran
h points, 
ontradi
ting the Riemann-Hurwitz formula. �Unbran
hed multiple 
overs 
an and do appear in general if _� has pun
-tures and (W;J) is a non-
ylindri
al manifold, e.g. a nontrivial symple
ti

obordism. We will show an example at the end of x4, where the resulting
olle
tion of 
urves a
tually foliates W .The phenomenon illustrated by Theorem 2 
ontrasts with the more gen-eral study of holomorphi
 
urves, e.g. in Symple
ti
 Field Theory, wheretransversality 
an only be a
hieved in general by abstra
t perturbations.Su
h perturbations usually destroy many of the ni
e geometri
 propertiesof holomorphi
 
urves|su
h as positivity of interse
tions|but the philoso-phy here is that for 
urves that are espe
ially ni
e in some geometri
 sense,pre
isely these ni
e properties make abstra
t perturbations unne
essary.In parti
ular, the theorem is part of a larger program outlined in [Wena℄,to prove that the 
ompa
ti�ed moduli spa
es of 
urves that 
an o

ur infoliations always have a ni
e global stru
ture: in prin
iple, after provinga suitable 
ompa
tness theorem for this \ni
e" 
lass of 
urves, transver-sality should always follow \for free". Su
h results are ne
essary tools inthe general theory of J{holomorphi
 foliations, as one would like to provethat these foliations 
an always be 
arried through under various types ofhomotopies and stret
hing arguments. The situation is already well un-derstood in the R{invariant 
ase due to [Wena℄, and Theorem 2 may beseen as a partial result in the dire
tion of generalizing that 
ompa
tnesstheorem to symple
ti
 
obordisms. (See Example 4.22 and Remark 4.23for an idea of what su
h a generalization might look like.)1.3. Outline of the proofs. The te
hni
al ba
kbone of Theorem 1 is theanalysis of the normal Cau
hy-Riemann operator DNu asso
iated to anyholomorphi
 
urve u : _�! W . As we will re
all, this is well de�ned evenif u has 
riti
al points, be
ause there always exists a splittingu�TW = Tu �Nu
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h that (Tu)z is the image of Tz _� under du at all regular points z. Thedomain of DNu is then a spa
e of se
tions of Nu, a 
omplex line bundle. Wedes
ribe the required linear theory of su
h operators in x2, giving 
riteriathat guarantee surje
tivity of DNu as well as bounds on the dimension ofits kernel.The next step is then to relate the operatorDNu to the nonlinear problem.In the immersed 
ase, the traditional approa
h (
f. [HLS97, HWZ99℄) isto set up the nonlinear problem to dete
t J{invariant maps that 
an beexpressed as se
tions of the normal bundle of a given solution u, in whi
h
ase the linearization is equivalent to DNu . This is no longer possible whenu has 
riti
al points; Ivashkovi
h and Shev
hishin in [IS99℄ dealt with thisdiÆ
ulty by repla
ing the normal bundle with a normal sheaf and provingthat u is regular if and only if DNu is surje
tive. Our approa
h takes someinspiration from theirs but is less algebrai
 and more analyti
al in 
avor, aswe avoid any referen
e to sheaves and exa
t sequen
es in favor of Bana
hspa
e splittings and Fredholm operators. Unlike [HLS97,HWZ99℄, we treatthe nonlinear problem in the way that is standard for arbitrary dimensions,as a se
tion ��J : T � B ! Eof a suitable Bana
h spa
e bundle, where B is a (globally de�ned) Bana
hmanifold of maps _� ! W (in
luding reparametrizations) and T is a (lo-
ally de�ned) �nite dimensional spa
e of 
omplex stru
tures parametrizingon open subset in the Tei
hm�uller spa
e of _�. We will use the splittingu�TW = Tu � Nu and some properties of the standard Cau
hy-Riemannoperator on �(T _�) to give a pre
ise relation (Theorem 3) between thekernels and images of D ��J(j; u) and DNu in arbitrary dimensions. A 
on-sequen
e is the fa
t that ea
h of these operators is surje
tive if and only ifthe other is.As for the proof of Theorem 2: assume un is a sequen
e of stable, ni
elyembedded 
urves 
onverging to a multiple 
over u = vÆ', where v is some-where inje
tive. We observe �rst that the embedded 
urves un ne
essarilysatisfy the 
riterion of Theorem 1, so this will remain true for the limit uunless it a
quires 
riti
al points. The main task then is to show that u isimmersed, and the kernel bounds in Theorem 1 for non-immersed 
urvesturn out to be a useful tool in proving this. The �rst step is to show thatthe underlying simple 
urve v is embedded and has index 0: this follows bya 
areful appli
ation of the interse
tion theory of pun
tured holomorphi

urves, whi
h we review at the beginning of x4. Note that this is the onlypoint in the argument at whi
h we assume J to be generi
: it's ne
essary toobtain a lower bound on the index of v and thus on its related interse
tioninvariants, but it will not be required in proving transversality for u. Withthis established, 
riti
al points of u arise only from bran
h points of the
over ', hen
e Z(du) = Z(d'), i.e. the rami�
ation number of '. Now the

12 CHRIS WENDLdimension bound in Theorem 1 turns out to imply that a neighborhoodof u in M
u \lives inside a spa
e of dimension at most 2Z(du)"; we willmake this statement pre
ise later using the impli
it fun
tion theorem. Butif Z(du) > 0, then the spa
e of holomorphi
 bran
hed 
overs homotopi
to ' is nontrivial and has pre
isely this dimension, whi
h yields a 2Z(du){dimensional smooth submanifold of M
u 
ontaining u. It follows that thisdes
ribes a neighborhood of u inM
u, so any sequen
e of 
urves 
onvergingto u must then have the form un = v Æ 'n, i.e. they are all multiple 
overswith the same image, and this is a 
ontradi
tion.A
knowledgments. Many thanks to Denis Auroux, Kai Cieliebak, OliverFabert, Helmut Hofer, Sam Lisi, Klaus Mohnke, Sewa Shev
hishin andRi
hard Siefring for useful 
onversations.2. Cau
hy-Riemann type operators on bundles2.1. Generalities. Let (�; j) be a 
ompa
t Riemann surfa
e with genus g,m � 0 boundary 
omponents, and a �nite set of positive/negative interiorpun
tures � = �+ [ �� � int�, with the 
orresponding pun
tured sur-fa
e denoted by _� = � n �. Regarding _� as a surfa
e with 
ylindri
alends fUzgz2�� biholomorphi
 to the half-
ylinders Z�, it admits a natu-ral 
ompa
ti�
ation � obtained by repla
ing [0;1) � S1 by [0;1℄ � S1and (�1; 0℄� S1 by [�1; 0℄� S1. The 
ompa
ti�ed spa
e is naturally atopologi
al 2{manifold with boundary�� = �� t[z2� Æz;where for ea
h z 2 ��, Æz �= f�1g� S1 denotes the 
orresponding \
ir
leat in�nity". Note that in making this de�nition we've 
hosen 
ylindri
al
oordinates (s; t) 2 Z� over ea
h end fUzgz2��, and we will 
ontinue touse these 
oordinates whenever 
onvenient. The de�nitions of � and Æz donot depend on this 
hoi
e, and in fa
t the resulting identi�
ation of ea
hÆz with S1 = R=Z is unique up to a 
onstant shift.Let E ! � be a 
omplex ve
tor bundle of rank n whose restri
tion to _�and ea
h of the 
ir
les Æz has a smooth stru
ture. Assume moreover that Eis given a Hermitian stru
ture over ea
h end Uz. By an admissible trivial-ization of E near z 2 ��, we mean a smooth unitary bundle isomorphism� : EjUz ! Z� � R2n (where R2n is identi�ed with C n), whi
h 
overs the
oordinate map Uz ! Z� and extends 
ontinuously to a smooth unitarytrivialization EjÆz ! S1 � R2n . An asymptoti
 operator at z 2 � is then abounded real linear operatorAz : H1(EjÆz)! L2(EÆz)
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t to any admissible trivialization takes theform H1(S1;R2n)! L2(S1;R2n) : � 7! �J0 _� � S�;here J0 = i is the standard 
omplex stru
ture on R2n = C n and S =S(t) is any smooth loop of symmetri
 2n{by{2n matri
es. This de�nes anunbounded self-adjoint operator on the 
omplexi�
ation of L2(EjÆz). Wesay that Az is nondegenerate if its spe
trum �(Az) does not 
ontain 0.De�ne the standard ��{operator for smooth fun
tions on _� by�� : C1( _�; C ) ! 
0;1( _�) : f 7! df + i df Æ j:For any two 
omplex ve
tor bundles E and E 0 over the same base, wedenote by HomC (E;E 0) and HomC (E;E 0) the 
orresponding bundles of
omplex linear and antilinear maps E ! E 0 respe
tively. There are alsothe 
orresponding endomorphism bundles EndC (E) := HomC (E;E) andEndC (E) := HomC (E;E).De�nition 2.1. A (smooth, real linear) Cau
hy-Riemann type operatoron E is a �rst-order linear di�erential operatorD : � (Ej _�)! ��HomC (T _�; Ej _�)�su
h that for every smooth se
tion v : _� ! E and smooth fun
tion f :_�! R, D(fv) = (��f)v + f(Dv):Given an asymptoti
 operator Az at z 2 ��, we will say that D is asymp-toti
 to Az if its expression in an admissible trivialization � near z takesthe form (Dv)(s; t) = �sv(s; t) + J0�tv(s; t) + S(s; t)v(s; t);where S(s; t) is a smooth family of real-linear transformations on R2n whi
h
onverges uniformly as s ! �1 to a smooth loop of symmetri
 matri
esS(t), su
h that �J0 ddt � S(t)is the 
oordinate expression for Az with respe
t to �.De�ne the Bana
h spa
e W k;p(E) to 
onsist of se
tions v : _� ! E of
lass W k;plo
 su
h that in any 
hoi
e of admissible trivialization near ea
hpun
ture z 2 ��, the 
orresponding map Z� ! R2n is of 
lass W k;p. If` � Ej�� is a smooth totally real submanifold, de�ne the subspa
eW k;p` (E) = fv 2 W k;p(E) j v(��) � `g:Observe that HomC (T _�; E) also admits a natural extension over �, and the
ombination of the 
oordinates (s; t) with the trivialization � near z 2 �also gives rise to a trivialization of HomC (T _�; E). Using this we 
an de�ne

14 CHRIS WENDLthe Bana
h spa
es W k;p(HomC (T _�; E)). We will generally write W 0;p asLp.Now �x a smooth totally real subbundle ` � Ej��, and asymptoti
operators Az for ea
h z 2 �, denoting the 
olle
tion of all these operatorsby A�. Let D be a Cau
hy-Riemann type operator that is asymptoti
to Az for ea
h z 2 �. We will then be interested in the bounded linearoperator D : W 1;p` (E)! Lp(HomC (T _�; E)):This is a Fredholm operator if all the Az are nondegenerate, and its indexis determined by a variety of topologi
al quantities whi
h we shall re
allnext.Fix a set of admissible trivializations near ea
h pun
ture z 2 � as wellas smooth 
omplex trivializations of Ej��, denoting the 
olle
tion of allthese 
hoi
es by �. One 
an then de�ne the relative �rst Chern number
�1 (E) 2 Z. If E is a line bundle, then 
�1 (E) is de�ned simply by 
ountingzeroes of a generi
 smooth se
tion _� ! E that extends 
ontinuously over� and is a nonzero 
onstant with respe
t to � on ��. For higher rankbundles, 
�1 (E) 
an be de�ned axiomati
ally via the dire
t sum propertyand the assumption that it mat
hes the ordinary �rst Chern number if _�is 
losed.For ea
h 
onne
ted 
omponent C � ��, the totally real subbundle `jC �EjC has aMaslov index �� (EjC ; `jC), and we shall denote the sum of theseby ��(E; `).Finally for ea
h pun
ture z 2 ��, the asymptoti
 operatorAz, expressedas �J0�t � S(t) with respe
t to �, gives rise to a linear Hamiltonian 
owin R2n via the equation _�(t) = J0S(t)�(t):If Az is nondegenerate, then the resulting path of symple
ti
 matri
es	(t) 2 Sp(n) ends at a matrix 	(1) whi
h does not have 1 as an eigenvalue,so it has a well de�ned Conley-Zehnder index whi
h we denote by ��CZ(Az).All of this together allows us to de�ne the total Maslov index��(E; `;A�) := ��(E; `) + Xz2�+ ��CZ(Az)� Xz2�� ��CZ(Az):The Fredholm index of D is then given by the following generalization ofthe Riemann-Ro
h formula:(2.1) ind(D) = n�( _�) + 2
�1 (E) + ��(E; `;A�):This follows from the formula for the 
ase �� = ; proved in [S
h95℄,together with a gluing/doubling argument; 
f. [Wen05℄. Note that all de-penden
e on � in the right hand side of (2.1) 
an
els out.Let us brie
y review the useful generalization of the above that arises by
onsidering Bana
h spa
es with exponential weights. Pi
k numbers Æz 2 R
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h z 2 � and denote the 
olle
tion of these by Æ� = fÆzgz2�. Thenwe de�ne W k;p;Æ�(E)to be the spa
e ofW k;plo
 se
tions v : _�! E su
h that in an admissible trivi-alization near ea
h z 2 ��, the fun
tion Z� ! R2n : (s; t) 7! e�Æzsv(s; t) isof 
lass W k;p. This imposes an exponential de
ay 
ondition at ea
h pun
-ture where Æz > 0, or a bound on exponential growth if Æz < 0. There arenow obvious de�nitions for the spa
esW 1;p;Æ�` (E) and Lp;Æ�(HomC (T _�; E)),so that the Cau
hy-Riemann type operatorD de�nes a bounded linear mapD :W 1;p;Æ�` (E)! Lp;Æ�(HomC (T _�; E)):It is simple to show (
f. [HWZ99,Wenb℄) that this map is 
onjugate toanother Cau
hy-Riemann operator DÆ� : W 1;p` (E) ! Lp(HomC (T _�; E)),whi
h is asymptoti
 at z 2 �� to Az � Æz; denote the latter 
olle
tion ofoperators byA��Æ�. The operator on the weighted spa
e is thus Fredholmif and only if �Æz 62 �(Az) for all z 2 ��, and its index 
an then be reado� again from (2.1), but with A� � Æ� repla
ing A�. Note in parti
ularthat if all Az are nondegenerate and all Æz are suÆ
iently 
lose to 0, thenthe weighting does not 
hange the index of D.2.2. The line bundle 
ase. For the rest of this se
tion we assume n = 1,so ea
h asymptoti
 operator is equivalent to an unbounded self-adjointoperator on L2(S1;R2) of the formA = �J0 ddt�S(t), whose eigenfun
tions
an be assigned winding numbers. For � 2 �(A) de�ne w(�) 2 Z to bethe winding number of any nontrivial se
tion in the �{eigenspa
e of A;this number depends only on �, by a result in [HWZ95a℄. Moreover, it isshown in the same paper that w(�) is an in
reasing fun
tion of � whi
htakes every integer value exa
tly twi
e (
ounting multipli
ity). We de�ne��(A) = maxfw(�) j � 2 �(A), � < 0g;�+(A) = minfw(�) j � 2 �(A), � > 0g;p(A) = �+(A)� ��(A);(2.2)so if A is nondegenerate, p(A) 2 f0; 1g. By another result in [HWZ95a℄,these winding numbers are related to the Conley-Zehnder index by(2.3) �CZ(A) = 2��(A) + p(A) = 2�+(A)� p(A):This entire dis
ussion applies also to the operators Az on
e trivializations� are spe
i�ed; we thus denote these winding numbers by ���(Az), andobserve that p(Az) 2 f0; 1g does not depend on �. The latter is the parityof the pun
ture z 2 �, de�ning a partition of � into sets of even and oddpun
tures, denoted �0 and �1 respe
tively.

16 CHRIS WENDLDe�ne the 12Z{valued adjusted �rst Chern number of (E; `;A�) by(2.4) 
1(E; `;A�) = 
�1 (E) + 12��(E; `) + Xz2�+ ���(Az)� Xz2�� ��+(Az);and observe that this does not depend on �. Using (2.3) and the indexformula, it is easy to show that(2.5) 2
1(E; `;A�) = ind(D)� 2 + 2g +#�0 +m:Note that 
1(E; `;A�) is ne
essarily an integer if �� = ;.The adjusted �rst Chern number has the following interpretation whi
hjusti�es its name. If v 2 kerD is a nontrivial se
tion, then the equationDv = 0 together with the similarity prin
iple implies that v has onlyisolated zeroes, all of positive order. Moreover, by arguments in [HWZ96,Sie08℄, v satis�es an asymptoti
 formula of the form(2.6) v(s; t) = e�s(e�(t) + r(s; t))in admissible trivializations near ea
h pun
ture z 2 ��, where � 2 �(Az)satis�es �� < 0, e� 2 �(EjÆz) is a se
tion in the 
orresponding eigenspa
eand the remainder r(s; t) goes to zero as s! �1. It follows that v(s; t) hasonly �nitely many zeroes, and near z 2 �� it has a well de�ned asymptoti
winding number wind�z (v) 2 Z, whi
h is bounded from above by ���(Az)if z 2 �+, or from below by ��+(Az) if z 2 ��. We use this to de�ne theasymptoti
 vanishing of v:Z1(v) = Xz2�+ ����(Az)� wind�z (v)�+ Xz2�� �wind�z (v)� ��+(Az)� :De�ne also the 12Z{valued 
ount of zeroes,Z(v) = Xz2v�1(0)\int _� ord(v; z) + 12 Xz2v�1(0)\�� ord(v; z);where the order of a zero on the boundary is de�ned by a doubling argu-ment des
ribed in the appendix. Now a simple 
omputation using thesede�nitions and Prop. A.2 yields the relation(2.7) Z(v) + Z1(v) = 
1(E; `;A�):Observe that both terms on the left hand side are manifestly nonnegative.The next result is the main obje
tive of this se
tion. Re
all from (1.4)the nonnegative integer K(
; G).Proposition 2.2.(1) In the 
ase ind(D) � 0, D is inje
tive if 
1(E; `;A�) < 0, andotherwise dimkerD � K (
1(E; `;A�);#�0) :
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ase ind(D) � 0, D is surje
tive if ind(D) > 
1(E; `;A�),and otherwiseind(D) � dimkerD � ind(D) +K (
1(E; `;A�)� ind(D);#�0) :Proof. The argument rests 
ru
ially on (2.7), together with the observationthat if z 2 �0, then the spa
e of eigenfun
tions with negative eigenvalue andwinding ���(Az) is 1{dimensional, as is the spa
e with positive eigenvalueand winding ��+(Az).We prove the result �rst for the 
ase ind(D) � 0. If 
1(E; `;A�) < 0,then D is 
learly inje
tive, else (2.7) would for
e any nontrivial se
tionv 2 kerD to have either Z(v) < 0 or Z1(v) < 0. To establish the di-mension bound for kerD when 
1(E; `;A�) � 0, 
hoose any nonnegativeintegers k and n su
h that k � #�0 and 2k+n > 2
1(E; `;A�). In this sit-uation we 
an 
onstru
t an inje
tive homomorphism from kerD into a realve
tor spa
e of dimension n+ k. Indeed, if �� 6= ;, pi
k n distin
t points�1; : : : ; �n 2 ��, and 
hoose also k distin
t even pun
tures z1; : : : ; zk 2 �0.For ea
h of the zj, the 
orresponden
e v 7! e� 
oming from the asymp-toti
 formula (2.6) de�nes a linear map from kerD into the 1{dimensionalve
tor spa
e Vzj 
onsisting of eigenfun
tions of Azj with winding equal to���(Azj). We 
an de�ne this map so that it takes the value 0 2 Vzj if andonly if the eigenfun
tion in (2.6) has a di�erent winding number. Usingthese maps and the evaluation of v at the points �j 2 ��, we obtain ahomomorphism	 : kerD! `�1 � : : :� `�n � Vz1 � : : :� Vzk :The 
laim is that 	 is inje
tive, and thus dimkerD � n+ k. Indeed, sup-pose v 2 kerD is a nontrivial se
tion with 	(v) = 0. Then the asymptoti
winding of v di�ers from ���(Azj) at ea
h of the pun
tures zj, implyingZ1(v) � k. Similarly, v has boundary zeroes at �1; : : : ; �n, 
ontributing atleast n=2 to Z(v), hen
e
1(E; `;A�) = Z(v) + Z1(v) � n2 + k;whi
h 
ontradi
ts our assumptions on n and k.A minor modi�
ation to this argument is needed if �� = ;. We mustnow assume n is even, and 
hoose distin
t interior points �1; : : : ; �n=2 2 _�,using evaluation at these points to de�ne the homomorphism	 : kerD! E�1 � : : :� E�n=2 � Vz1 � : : :� Vzk :The right hand side is again a ve
tor spa
e of real dimension n + k, andthe same argument as above shows that 	 is inje
tive.To deal with the 
ase ind(D) � 0, we 
onsider the formal adjoint D�(
f. [S
h95℄). This 
an be regarded as a Cau
hy-Riemann type operatoron the bundle F := HomC (T _�; E) ! _� with an appropriate totally real

18 CHRIS WENDLboundary 
ondition `� and asymptoti
 operators A�z, whi
h have the sameparity as Az. It satis�es(2.8) ind(D�) = � ind(D); dimkerD� = dim
okerD;and applying (2.5) to D and D� together, we �nd
1(E; `;A�)� 
1(F; `�;A��) = 12 [ind(D)� ind(D�)℄ = ind(D):Then the 
ondition 
1(F; `�;A��) < 0 is satis�ed if and only if ind(D) >
1(E; `;A�), and this implies D is surje
tive. If ind(D) � 
1(E; `;A�),then 
1(F; `�;A��) � 0 and we 
an apply the above estimate to dimkerD�,giving dimkerD = ind(D) + dim 
okerD = ind(D) + dimkerD�� ind(D) +K (
1(F; `�;A��);#�0)= ind(D) +K (
1(E; `;A�)� ind(D);#�0) : �Remark 2.3. The proof of Theorem 2 requires only the very simplest 
ase ofthis dimension bound, namely that kerD is trivial when 
1(E; `;A�) < 0.As that proof will demonstrate, however, su
h bounds 
an sometimes beuseful in 
ases where D is not surje
tive, so perhaps the more generaldimension bound will eventually �nd similar appli
ation.3. The normal operator for a holomorphi
 
urveIn this se
tion we will give the pre
ise de�nition of regularity and showthat it is equivalent to the surje
tivity of a 
ertain Cau
hy-Riemann op-erator on a generalized normal bundle. The pre
ise relation between thisoperator and the 
on
ept of regularity is stated in x3.4 as Theorem 3, andin x3.5 we apply the linear transversality theory from x2.2 to show thatTheorem 1 follows as an easy 
orollary.Throughout the following, we �x a 
ompa
t, 
onne
ted and orientedsurfa
e � of genus g � 0 with m � 0 boundary 
omponents, and a �niteset � � int�, writing _� = � n �.3.1. Tei
hm�uller sli
es and Cau
hy-Riemann operators. We beginby 
olle
ting some 
lassi
al fa
ts about moduli spa
es of Riemann surfa
eswhi
h 
an be related to the analysis of Cau
hy-Riemann type operators.Let J (�) denote the spa
e of smooth 
omplex stru
tures on � thatindu
e the given orientation, and denote by Di�+(�;�) the group of ori-entation preserving di�eomorphisms on � that �x �, and Di�0(�;�) �Di�+(�;�) those whi
h are homotopi
 to the identity. Both of these groupsa
t on J (�) by ('; j) 7! '�j, and the Tei
hm�uller spa
e of _� is a smooth�nite-dimensional manifold de�ned asT ( _�) = J (�)=Di�0(�;�):
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lass group M( _�) = Di�+(�;�)=Di�0(�;�)gives the moduli spa
e of Riemann surfa
es (with genus g, m boundary
omponents and #� interior marked points)M( _�) = T ( _�)=M( _�) = J (�)=Di�+(�;�);whi
h is in general an orbifold of the same dimension. We say _� is stableif �( _�) < 0, in whi
h 
asedimM( _�) = 6g � 6 + 3m + 2#� = �3�( _�)�#�;and the automorphism groupAut( _�; j) = f' 2 Di�+(�;�) j '�j = jgis �nite for any 
hoi
e of j 2 J (�) (though its order may depend on j).Let D � C denote the 
losed unit disk, A = [0; 1℄�S1 the 
ompa
t annulusand T2 = R2=Z2 the 2{dimensional torus. For our purposes, the non-stable
ases to be 
onsidered are the following:(1) M(S2) = f[i℄g and dimAut(S2; i) = 6.(2) M(C ) = f[i℄g and dimAut(C ; i) = 4.(3) M(D ) = f[i℄g and dimAut(D ; i) = 3.(4) M(R � S1) = f[i℄g and dimAut(R � S1; i) = 2.(5) M(D n f0g) = f[i℄g and dimAut(D n f0g; i) = 1.(6) dimM(A ) = 1 and dimAut(A ; j) = 1.(7) dimM(T2) = 2 and dimAut(T2; j) = 2.For all but the last 
ase, the mapping 
lass group M( _�) is trivial and thusM( _�) = T ( _�) is a manifold. Observe also that if _� is not stable,(3.1) dimAut( _�; j)� dimM( _�) = 3�( _�) + #�:Fixing p > 2, the latter is the Fredholm index of the standard linearCau
hy-Riemann operatorD�� : W 1;pT (��)(T�; �)! Lp(EndC (T�));whereW 1;pT (��)(T�; �) is the spa
e ofW 1;p{smooth ve
tor �elds Y : �! T�satisfying Y (��) � T (��) and Y j� = 0.Lemma 3.1. For all 
hoi
es of (�; j;�), dim
oker(D��) = dimM( _�).Proof. This may be regarded as a standard pie
e of Tei
hm�uller theory inthe stable 
ase (
f. [Tro92℄), and also follows by using a simpli�ed versionof the argument in the proof of Prop. 2.2 to show thatD�� is inje
tive. Hereone must a

ount also for the 
ondition Y j� = 0, whi
h ensures Z(Y ) �#�, thus it suÆ
es to observe that the adjusted �rst Chern number isstri
tly less than #�. In the non-stable 
ase, a similar argument shows thatdimker(D��) � dimAut( _�; j), and by interpreting D�� as the linearization

20 CHRIS WENDLof a nonlinear operator ��j' = T' + j Æ T' Æ j, one sees that ker(D��)
ontains aut( _�; j), giving an inequality in the other dire
tion, hen
edimker(D��) = dimAut( _�; j):The result then follows from (3.1). �Given j 2 J (�) and the 
orresponding Cau
hy-Riemann operator D�� ,pi
k a 
omplement of im(D��), i.e. a subspa
e C � Lp(EndC (T�)) su
hthat im(D��)� C = Lp(EndC (T�)):By approximation, we may assume every se
tion in C is smooth and van-ishes on a neighborhood of �. We 
an then 
hoose a small neighborhoodO � C of 0 and de�ne the map(3.2) � : O ! J (�) : y 7! �
1+ 12jy� j �1+ 12jy��1 ;whi
h has the properties �(0) = j and��t�(ty)����t=0 = y;thus it is inje
tive if O is suÆ
iently small. The imageT := �(O) � J (�)is thus a smooth manifold of dimension dimC = dimT ( _�), with TjT = Cand 
onsisting of smooth 
omplex stru
tures 
lose to j that are identi
alto j on some �xed neighborhood of �. It parametrizes a neighborhood of[j℄ in T ( _�), i.e. the proje
tion J (�)! T ( _�) restri
ts to a di�eomorphismfrom T onto a neighborhood of [j℄. This provides an expli
it 
onstru
tionof the following general obje
t:De�nition 3.2. Given j 2 J (�), we de�ne a Tei
hm�uller sli
e throughj to be any smooth family T � J (�) parametrized by an inje
tive mapU ! J (�), where U is an open subset of Rdim T ( _�), su
h that all j 0 2T are identi
al on some �xed neighborhood of �, and im(D��) � TjT =Lp(EndC (T�)).Lemma 3.3. If ( _�; j) is stable, then there exists a Tei
hm�uller sli
e Tthrough j that is invariant under the group a
tion Aut( _�; j) � J (�) !J (�) : ('; j 0) 7! '�j 0.Proof. The automorphism group G := Aut( _�) is �nite and 
onsists ofbiholomorphi
 maps on (�; j) that �x �. Ea
h point in � then has a G{invariant neighborhood biholomorphi
ally equivalent to the standard unitdisk, on whi
h G a
ts by rational rotations. Let g denote a metri
 on �that is invariant under the a
tion of G; su
h a metri
 
an be 
onstru
tedby starting from the Poin
ar�e metri
 on _� and interpolating this with 
at
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s on disk-like neighborhoods of ea
h point in �.Then g indu
es a bundle metri
 on EndC (T�) ! � and a 
orrespondingG{invariant L2{inner produ
t h ; iL2 on the spa
e of se
tions of this bundle.To prove the lemma, it suÆ
es to 
onstru
t a G{invariant 
omplementC � Lp(EndC (T�)) of im(D��) that 
onsists of smooth se
tions vanishingnear �: then an appropriate Tei
hm�uller sli
e 
an be de�ned via (3.2) sin
e'�j = j implies �('�y) = '��(y) for any ' 2 G. Observe that im(D��)itself isG{invariant, sin
e '�j = j also impliesD��('�Y ) = '�(D��Y ) for allY 2 W 1;pT (��)(T�; �). Now using the G{invariant L2{produ
t 
hosen above,de�ne a 
omplement C0 as the L2{orthogonal 
omplement of im(D��), i.e.C0 = ny 2 Lp(EndC (T�)) �� 
D��Y; y�L2 = 0 for all Y 2 W 1;pT (��)(T�; �)o :This spa
e is G{invariant due to the G{invarian
e of im(D��) and h ; iL2 ,and by ellipti
 regularity for weak solutions of the formal adjoint equation,it 
onsists only of smooth se
tions. Now 
hoosing G{invariant disk-likeneighborhoods of the points in �, we 
an obtain the desired 
omplementC by multiplying the se
tions in C0 by G{invariant 
uto� fun
tions thatvanish near G and equal 1 outside a suÆ
iently small neighborhood of �.�For the two non-stable 
ases in whi
h T ( _�) is nontrivial, it will be 
on-venient to have expli
it global Tei
hm�uller sli
es. If _� = A = [0; 1℄�S1, forea
h � > 0 de�ne the di�eomorphism '� : A ! [0; � ℄� S1 : (s; t) 7! (�s; t)and let TA denote the 
olle
tion of 
omplex stru
tures f'�� ig�>0. Thisparametrizes the entirety of T (A ) (whi
h equals M(A ) sin
e the map-ping 
lass group is trivial), and also gives a natural identi�
ation of everyAut(A ; '�� i) with S1, a
ting on A by translation of the se
ond fa
tor. If_� = T2 = R2=Z2, we de�ne TT2 to be the spa
e of all 
onstant 
om-plex stru
tures on R2 = C that are 
ompatible with the standard orienta-tion; 
learly these des
end to T2, and they also parametrize the entirety ofT (T2). Then for ea
h j 2 TT2, the subgroupAut0(T2; j) := Aut(T2; j) \ Di�0(T2)
an be identi�ed naturally with T2, a
ting by translations. Choosing abase point p = [(0; 0)℄ 2 T2, the stabilizer of [j℄ 2 T (T2) under the a
tionof M(T2) = SL(2;Z) is meanwhile the �nite subgroupAut(T2; j; p) := f' 2 Aut(T2; j) j '(p) = pg = fA 2 SL(2;Z) j Aj = jAg;and Aut(T2; j) is the semidire
t produ
t of Aut(T2; j; p) with Aut0(T2; j) =T2. Note in parti
ular that for any j 2 TT2, this group a
ts by aÆnetransformations on R2 (des
ending to T2), and the a
tion ('; j 0) 7! '�j 0therefore preserves TT2.The following will be useful for te
hni
al reasons in our analysis of therelationship between Du and its normal 
omponent.

22 CHRIS WENDLLemma 3.4. For any j 2 J (�) and �nite set K � _�, there exists aTei
hm�uller sli
e T through j su
h that every j 0 2 T is identi
al to j onsome �xed neighborhood of K [ �.Proof. It suÆ
es to 
onstru
t C = TjT so that every y 2 C vanishes nearK [ �. This 
an be done using 
uto� fun
tions to repla
e a basis of anygiven 
omplement with one that vanishes in su
h a neighborhood; the newbasis 
an be made Lp{
lose to the old one if the neighborhood is suÆ
ientlysmall. �For any Tei
hm�uller sli
e T through j, the operatorL� : TjT �W 1;p(T�; �)! Lp(EndC (T�)) : (y; Y ) 7! jy +D��Yis 
learly surje
tive; indeed, sin
e D�� is 
omplex linear, L�(y; jY ) =j �y +D��Y �, and the target spa
e is spanned by TjT and im(D��). For theanalysis in the following se
tions it will be useful to derive a 
orrespondingstatement for the standard Cau
hy-Riemann operator on a Riemann sur-fa
e with ends. We will re
all in the next se
tion the 
onstru
tion of 
ertainBana
h manifolds 
ontaining asymptoti
ally 
ylindri
al maps _�! W . Inthe simple 
ase W = _�, the tangent spa
e to su
h a Bana
h manifold B�at the identity map 1 : _�! _� 
an be written asT1B� = W 1;p;ÆT (��)(T _�)� V �� ;where Æ > 0 is a small weight applying at every end and V �� � �(T _�) is a2#�{dimensional spa
e of smooth se
tions that are supported near in�nityand 
onstant in some �xed 
hoi
e of 
ylindri
al 
oordinates near ea
h end.The natural nonlinear Cau
hy-Riemann operator de�nes a se
tion of aBana
h spa
e bundle over B�, whose linearization at 1 is the usual linearCau
hy-Riemann operator given by the holomorphi
 stru
ture of T _�! _�,denoted here byD� : W 1;p;ÆT (��)(T _�)� V �� ! Lp;Æ(EndC (T _�)):Now sin
e every y 2 TjT is smooth and vanishes near �, there is a natu-ral in
lusion of TjT � Lp;Æ(EndC (T _�)), as well as a bounded linear mapTjT ! Lp;Æ(EndC (T _�)) : y 7! jy.Lemma 3.5. The operatorL : TjT � �W 1;p;ÆT (��)(T _�)� V �� �! Lp;Æ(EndC (T _�))(y; �) 7! jy +D��is surje
tive.Proof. Applying the linear theory in x2, we �nd that ind(D�) = ind(D��)and hen
e ind(L) = ind(L�). Now in light of the natural in
lusionW 1;p;ÆT (��)(T _�)� V �� ,! W 1;pT (��)(T�; �);
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e dimker(L) � ind(L) in general anddimker(L�) = ind(L�) by the remarks above, it follows thatdimker(L) � dimker(L�) = ind(L�) = ind(L);implying L is surje
tive. �Corollary 3.6. For any Tei
hm�uller sli
e T through j, Lp;Æ(EndC (T _�)) =im(D�)� TjT .3.2. Fun
tional analyti
 setup. To state the de�nition of regularity, webegin by reviewing the nonlinear fun
tional analyti
 setup used in [Dra04,Bou02℄ for asymptoti
ally 
ylindri
al maps u : _�! W with nondegenerateor Morse-Bott asymptoti
 orbits. Fix the surfa
e �, pun
tures � = �+ [�� � int�, and asymptoti
 
onstraints 
. Re
all that the latter 
hoi
epartitions � into a set of 
onstrained and un
onstrained pun
tures � =�C[�U , and assigns to ea
h z 2 ��C an orbit Pz ofX�, whi
h we will assumeis Morse-Bott, and we will denote its period by Tz. For ea
h z 2 ��U , weinstead 
hoose an arbitrary Morse-Bott manifold of periodi
 orbits in M�,denoted again by Pz, with period Tz > 0. By a slight abuse of notation,ea
h Pz may be regarded both as a submanifold Pz � M� and as a set ofTz{periodi
 orbits 
 2 Pz (sometimes with only one element). Denote this
olle
tion of 
hoi
es for all pun
tures z 2 � by P�. We shall then 
onsider aBana
h manifold 
onsisting of asymptoti
ally 
ylindri
al maps u : _�!Wwhose asymptoti
 orbits 
z for z 2 � satisfy 
z 2 Pz.Before explaining the Bana
h manifold, we digress for a moment to de�nesome important invariants that enter into the index formula. Re
all thatany T{periodi
 orbit 
 of X� has an asso
iated asymptoti
 operator A
,de�ned on se
tions of the bundle �� along 
. One 
an write it down by
hoosing a parametrization x : S1 !M� of 
 with �( _x) � T , and de�ningA
 : �(x���)! �(x���) byA
v = �J�(rtv � TrX�)for any symmetri
 
onne
tion r on M�. This gives an unbounded self-adjoint operator on L2(x���) of the form 
onsidered in x2, and it is nonde-generate if and only if the orbit is nondegenerate, in whi
h 
ase we de�nethe Conley-Zehnder index ��CZ(
) = ��CZ(A
) for any 
hoi
e of trivialization� on x���. If 
 is degenerate, then A
 
an be perturbed to a nondegen-erate asymptoti
 operator by adding any number � 2 R n ��(A), and wethus de�ne the perturbed Conley-Zehnder index��CZ(
 + �) := ��CZ(A
 + �);and its parity p(
 + �) = (0 if ��CZ(
 + �) is even,1 if ��CZ(
 + �) is odd,

24 CHRIS WENDLwhi
h does not depend on �. Observe that if 
 is nondegenerate and� is suÆ
iently 
lose to zero, then ��CZ(
 + �) = ��CZ(
) sin
e �(A
) isdis
rete. More generally, one 
an see from the relationship between theConley-Zehnder index and spe
tral 
ow (
f. [RS95℄) that for suÆ
ientlysmall � > 0,(3.3) ��CZ(
 � �)� ��CZ(
 + �) = dimker(A
):In parti
ular if 
 belongs to a Morse-Bott family P , then the right handside of (3.3) is dimP � 1, and ��CZ(
 � �) remains un
hanged if we move
 to a di�erent orbit in the same family.If M� are 3{dimensional, then �� have 
omplex rank one, so re
allingthe de�nitions in x2.2, we 
an asso
iate to any T{periodi
 orbit 
 of X�and real number � the so-
alled extremal winding numbers���(
 + �) := ���(A
 + �);or for the 
ase � = 0, simply ���(
) = ���(A
). We will refer to theeigenfun
tions of A
 involved in this de�nition as extremal eigenfun
tionsat 
 if � = 0, or more generally extremal eigenfun
tions with respe
t to �.Now if � 62 ��(A
), (2.3) gives��CZ(
 + �) = 2���(
 + �)� p(
 + �)p(
 + �) = ��+(
 + �)� ���(
 + �) 2 f0; 1g:Choosing Æ > 0 arbitrarily small, it will also be 
onvenient to de�ne(3.4) ��(
) = ���(
 � Æ)� ���(
 + Æ);whi
h equals 0 whenever 
 is nondegenerate, and is otherwise either 0 or 1.6Notation. Fix a number Æ > 0, whi
h we will generally assume to be assmall as may be needed. Suppose � = �+ [ �� is a set of pun
tures and 
is a set of asymptoti
 
onstraints, de�ning 
onstrained and un
onstrainedsubsets �C ;�U � � respe
tively. We then asso
iate to ea
h pun
ture z 2 �a real number(3.5) 
z := (Æ if z 2 �C ,�Æ if z 2 �U .For asymptoti
ally 
ylindri
al maps u : _�! W subje
t to 
onstraints 
,we will use the following notational 
onventions throughout. The asymp-toti
 orbit of u at a pun
ture z 2 �� will be 
alled 
z, with asymptoti
operator Az := A
z , and the 
olle
tion of these for all pun
tures will bedenoted by 
� and A� respe
tively. Denote the 
orresponding 
olle
tion of6For orbits in two-dimensional families, the numbers ��(
) are 
losely related to thesign of a Morse-Bott surfa
e, as de�ned in [Wenb℄.
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 operators fAz�
zgz2�� by A��
�, noting that thesign 
hoi
e must always mat
h the sign of the pun
ture. For i 2 f0; 1g, let��i (
) = fz 2 �� j p(
z � 
z) = igand �i(
) = �+i (
)[��i (
). This de�nes a partition of � into so-
alled evenand odd pun
tures with respe
t to the 
onstraints. Note that when 
z isnondegenerate, the parity of z is simply the even/odd parity of ��CZ(
z);in general however this distin
tion depends on not just the orbit and 
on-straints, but also the sign of the pun
ture.Choose p > 2 and de�ne the Bana
h manifoldB := B1;p;Æ( _�;W ;L; P�)to 
onsist of maps _� ! W of 
lass W 1;plo
 whi
h satisfy u(��) � L andhave asymptoti
ally 
ylindri
al behavior approa
hing the orbits fPzgz2�at the 
orresponding pun
tures: the latter means in parti
ular that using
ylindri
al 
oordinates (s; t) 2 Z� near z 2 ��, there exists an orbit 
z 2Pz with parametrization x : R ! M� and a 
onstant s0 su
h that forsuÆ
iently large jsj, u(s+ s0; t) = exp~x(s;t) h(s; t);where ~x(s; t) := (Tzs; x(Tzt)) 2 E� � R �M� and h 2 �(~x�TE�) is ofweighted Sobolev 
lass W 1;p;Æ on Z�. The tangent spa
e TuB 
an then bewritten as TuB =W 1;p;Æ� (u�TW )� V� �X�;where the summands are de�ned as follows. The subs
ript � refers to thetotally real subbundle(3.6) � := (uj��)� TL! ��;so that se
tions v 2 W 1;p;Æ� (u�TW ) are required to satisfy the boundary
ondition v(��) � �, as well as de
aying in a

ordan
e with the smallexponential weight Æ > 0 at ea
h end. The other two summands are both�nite dimensional ve
tor spa
es 
onsisting of se
tions _�! u�TW that aresupported near in�nity and asymptoti
ally equal to 
onstant ve
tors insome 
hoi
e of R{invariant 
oordinates near the asymptoti
 orbit. In par-ti
ular, V� has dimension 2#� and 
ontains ve
tor �elds that are parallelto the orbit 
ylinders ~x(s; t) = (Ts; x(T t)) near in�nity, while the ve
tor�elds in X� are trivial whenever Pz is a �xed orbit and otherwise parallelto the Morse-Bott manifolds Pz, thus(3.7) dimX� =Xz2�(dimPz � 1) = Xz2�U dimker(Az):Fixing a 
omplex stru
ture j on �, there is a Bana
h spa
e bundle E ! Bwhose �bers are spa
es of 
omplex antilinear bundle mapsEu = Lp;Æ(HomC (T _�; u�TW ));

26 CHRIS WENDLand the nonlinear Cau
hy-Riemann operator de�nes a smooth se
tion��J : B ! E : u 7! Tu+ J Æ Tu Æ j;whose zeroes are parametrizations of asymptoti
ally 
ylindri
al pseudo-holomorphi
 
urves u : ( _�; j) ! (W;J). The linearization of ��J at a zerou de�nes a linear Cau
hy-Riemann type operator,Du : �(u�TW )! �(HomC (T _�; u�TW ))v 7! rv + J Æ rv Æ j + (rvJ) Æ Tu Æ j;(3.8)where r is any symmetri
 
onne
tion onW . As a bounded linear operatorTuB ! Eu, Du is Fredholm. To write down its index, let � be an arbitrary
hoi
e of trivialization for u�TW along �� and for �� along the orbits 
z,and de�ne the total Maslov index��(u; 
) = ��(u�TW;�) + Xz2�+ ��CZ(
z + 
z)� Xz2�� ��CZ(
z � 
z):The trivializations of �� extend naturally to trivializations of TW = T (R�M�) along the orbits via the splitting(3.9) T (R �M�) = (R � RX�)� ��;so that one 
an also de�ne the relative Chern number 
�1 (u�TW ).Proposition 3.7.ind(Du) = n�( _�) + 2
�1 (u�TW ) + ��(u; 
) + #�:Proof. Denote by D0 the restri
tion of Du to W 1;p;Æ� (u�TW ), soind(Du) = ind(D0) + dimV� + dimX�= ind(D0) + 2#� + Xz2�U dimker(Az):Then D0 is a Cau
hy-Riemann type operator asymptoti
 at z 2 � to theoperators Bz := C�Az;where we use the splitting (3.9) and de�ne on the �rst summand the \triv-ial" asymptoti
 operator C = �J0 ddt . The latter is degenerate, but wehave(3.10) �CZ(C� Æ) = �1if Æ > 0 is suÆ
iently small. By the dis
ussion of exponential weights inx2.1, D0 is now 
onjugate to a Cau
hy-Riemann operator W 1;p� (u�TW )!
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s, so by (2.1):ind(D0) = n�( _�) + 2
�1 (u�TW ) + ��(u�TW;�)+ Xz2�+ ��CZ(Bz + Æ)� Xz2�� ��CZ(Bz � Æ)= n�( _�) + 2
�1 (u�TW ) + ��(u�TW;�)+ Xz2�+ ��CZ(Az + Æ)� Xz2�� ��CZ(Az � Æ)�#�;where in the last line we've used the splitting Bz = C � Az and (3.10).Now using (3.3), we haveXz2�+��CZ(Az + Æ)� Xz2�� ��CZ(Az � Æ)�#�+ 2#� + Xz2�U dimker(Az)= Xz2�+U ��CZ(Az � Æ) + Xz2�+C ��CZ(Az + Æ)� Xz2��U ��CZ(Az + Æ)� Xz2��C ��CZ(Az � Æ) + #�= Xz2�+ ��CZ(Az + 
z)� Xz2�� ��CZ(Az � 
z) + #�;

(3.11)
and the result follows. �For the following lemma, re
all that D� : �(T _�) ! �(EndC (T _�)) de-notes the natural linear Cau
hy-Riemann operator on �(T _�) determinedby the holomorphi
 stru
ture of T _�; it is the linearization at the identityof the operator ���j ' = T'+ j Æ T' Æ j a
ting on maps ' : _�! _�. We usethe bundle map du : T _�! u�TW to de�ne linear maps�(T _�) du�! �(u�TW );�(EndC (T _�)) du�! �(HomC (T _�; u�TW ):(3.12)Lemma 3.8. For any smooth ve
tor �eld v 2 �(T _�),Du(du(v)) = du(D�v):Proof. Choose any open subset U � _� with 
ompa
t support. On thisneighborhood, the 
ow '� of v is well de�ned for � suÆ
iently 
lose to 0,and by de�nition, if z 2 U and Y 2 Tz _�,(D�v)Y = r� ����j '� (Y )����=0 ;

28 CHRIS WENDLwhere r is any 
onne
tion on _�. Similarly, using the fa
t that u : ( _�; j)!(W;J) and 1 : ( _�; j)! ( _�; j) are both holomorphi
,Du(du(v))(Y ) = r� ���J(u Æ '� )(Y )����=0= r� [T (u Æ '� )(Y ) + J Æ T (u Æ '� ) Æ j(Y )℄j�=0= r� [Tu Æ T'� (Y ) + J Æ Tu Æ T'� Æ j(Y )℄j�=0= r� [Tu Æ T'� (Y ) + Tu Æ j Æ T'� Æ j(Y )℄j�=0= r� �du('�(z)) � ���j '� (Y )����=0= rv(z)(du) � ���j (1)(Y ) + du�r� ����j '� (Y )����=0�= du(D�v(Y )): �Varying 
omplex stru
tures on the domain 
an be in
orporated into thepi
ture by �xing j0 2 J (�) and 
hoosing a Tei
hm�uller sli
e T through j0(see Def. 3.2). We 
an now rede�ne the Bana
h spa
e bundle E over T �Bso that E(j;u) = Lp;Æ �HomC ((T _�; j); (u�TW; J))� ;and extend the se
tion ��J over this bundle by��J : T � B ! E : (j; u) 7! Tu+ J Æ Tu Æ j:The linearization at (j; u) 2 ���1J (0) 
an now be expressed via its \partialderivatives,"D ��J(j; u) : TjT � TuB ! E(j;u) : (y; v) 7! Guy +Duvwhere Gu : TjT � �(EndC (T _�))! �(HomC ((T _�; j); (u�TW; J)))y 7! J Æ Tu Æ y:We 
an now present the pre
ise de�nition of regularity.De�nition 3.9. The 
urve (�; j;�; u) 2 M
 is 
alled regular if thereexists a Tei
hm�uller sli
e T through j su
h that the operator D ��J(j; u) :TjT � TuB ! E(j;u) is surje
tive.Remark 3.10. This 
ondition 
learly doesn't depend on the 
hoi
e of mapu : ( _�; j) ! (W;J) representing a given equivalen
e 
lass in M
; if ' :(�0; j 0) ! (�; j) is a biholomorphi
 map and u0 = u Æ ', one 
an usethe pullba
k '� to 
onstru
t a Tei
hm�uller sli
e T 0 through j 0 so that theoperators D ��J(j 0; u0) and D ��J(j; u) are 
onjugate. The next lemma showsalso that the surje
tivity of D ��J(j; u)|and in fa
t the 
odimension of itsimage|does not depend on the 
hoi
e of Tei
hm�uller sli
e.
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 and any two Tei
hm�uller sli
es T andT 0 through j, denote by L : TjT �TuB ! E(j;u) and L0 : TjT 0�TuB ! E(j;u)the 
orresponding linearizations of ��J at (j; u). Then im(L) = im(L0).Proof. Using the in
lusion TjT � Lp;Æ(EndC (T _�)), extend L toL : Lp;Æ(EndC (T _�))� TuB ! E(j;u)(y; v) 7! J Æ Tu Æ y +Duv:For y = D�Y 2 im(D�) � Lp;Æ(EndC (T _�)), we use the fa
t that u isJ{holomorphi
 and writeL(y; 0) = J Æ Tu Æ y = du(jy) = du(D�(jY )):Then by Lemma 3.8, this equals Du(du(jY )) if Y is smooth, and thesame holds for general Y in the domain of D� by a density argument,thus the restri
tion of L to im(D�) has image 
ontained in im(Du). Sin
eLp;Æ(EndC (T _�)) = im(D�)�TjT by Cor. 3.6, this implies im(L) = im(L).Now using the same argument for T 0, we have im(L) = im(L) = im(L0).�Sin
e Du is Fredholm and T is �nite dimensional, D ��J(j; u) is also Fred-holm. Re
alling (3.1) and the de�nition of ind(u; 
) = vir-dimM
u in (1.1),we haveindD ��J(j; u) = dimT + ind(Du) = ind(u; 
) + dimAut( _�; j):For 
ompleteness, we now prove the fa
t that regularity gives M
 thestru
ture of a smooth orbifold of dimension ind(u; 
) near u.Proof of Theorem 0. Assume (j0; u0) 2 ���1J (0) is regular and let G =Aut( _�; j0). By Lemma 3.11, the regularity 
ondition is independent ofthe 
hoi
e of Tei
hm�uller sli
e, so if _� is stable, then using Lemma 3.3we 
an pi
k a sli
e T through j0 that is invariant under the natural G{a
tion. Similarly if _� is A or T2, then without loss of generality we 
an
ompose with a di�eomorphism su
h that j0 belongs to one of the spe
ialTei
hm�uller sli
es TA or TT 
onstru
ted in x3.1 (whi
h also admit a natu-ral G{a
tion), and 
hoose this for T . There is now a G{a
tion on T � Bde�ned by ' � (j; u) = ('�j; u Æ '):This 
learly preserves ���1J (0), and the stabilizer of any (j; u) 2 ���1J (0) isthe �nite subgroup f' 2 Aut( _�; j0)j '�j = j, u Æ ' = ug � Aut(u). Sin
eD ��J(j0; u0) is surje
tive, Remark 3.10 implies that the same is true for all(j; u) in the G{orbit of (j0; u0), thus by the impli
it fun
tion theorem, aneighborhood U � ���1J (0) of this orbit admits a natural smooth manifoldstru
ture, with dimension ind(u0; 
)+dimAut( _�; j0). Starting from a smallneighborhood of (j0; u0) in ���1J (0) and extending this under the G{a
tion,we may assume U to be G{invariant. The quotient U=G then inherits the
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ture of a smooth orbifold of dimension ind(u0; 
), with isotropy groupAut(u0) at (j0; u0) and a natural isormorphismT(j0;u0) (U=G) = kerD ��J(j0; u0)=aut( _�; j0):One 
an adapt the argument in [Dra04℄ to show that 
harts 
onstru
ted inthis way are always smoothly 
ompatible.To 
omplete the proof, we show that U=G is homeomorphi
 to a neigh-borhood of (�; j0;�; u0) in M. Clearly U 
ontains a representative ofevery J-holomorphi
 
urve near (j0; u0), so the point is to show that anytwo su
h 
urves (j; u) and (j 0; u0) that are equivalent inM
 are related bythe G{a
tion.Suppose �rst that _� is non-stable and is not A or T2: then T 
ontainsonly j0, and (j0; u) � (j0; u0) if and only if u0 = u Æ ' for some ' 2Aut( _�; j0) = G, so we are done. The 
ase A is hardly more 
ompli
ated:now T is 1{dimensional andM( _�) is trivial, soM( _�) = T ( _�) and j; j 0 2 Tare equivalent in M( _�) if and only if j = j 0. Thus (j; u) � (j 0; u0) impliesj = j 0 and u0 = u Æ ' for some ' 2 Aut( _�; j). But our 
onstru
tion of TAidenti�es Aut( _�; j) with Aut( _�; j0) = G, so again we are done.Consider now the stable 
ases and T2, for whi
h M( _�) is nontrivial. Forthese, the groups Aut0( _�; j) := Aut( _�; j)\Di�0(�;�) for every j 2 T areidenti�ed with Aut0( _�; j0); this is a nontrivial statement only for _� = T2,where our expli
it 
onstru
tion of T = TT2 identi�es every Aut0(T2; j)with T2, a
ting by translations. Meanwhile, for ea
h j 2 T there is a �nitesubgroup Gj � Aut( _�; j) (Gj = Aut( _�; j) in the stable 
ases) naturallyisomorphi
 to the stabilizer of [j℄ 2 T ( _�) under the M( _�){a
tion, su
hthat Aut( _�; j) is the semidire
t produ
t of Gj with Aut0( _�; j0). Now if(j; u) and (j 0; u0) are two elements of U that represent equivalent 
urves,so j 0 =  �j and u0 = u Æ  for some  2 Di�+(�;�), we need to showthat  2 G. In terms of the M( _�){a
tion on T ( _�), [ ℄ � [j℄ = [j 0℄ impliesthat if j and j 0 are both suÆ
iently 
lose to j0, then [ ℄ belongs to thestabilizer of [j0℄, i.e. [ ℄ � [j0℄ = [j0℄. Thus there is a unique ' 2 Gj0 su
hthat ['℄ = [ ℄ 2 M( _�), and by 
onstru
tion, '�j = j 0. It follows that( Æ '�1)�j = j, so  Æ '�1 2 Aut0( _�; j) = Aut0( _�; j0), and  is thus aprodu
t of two maps in Aut( _�; j0). �3.3. The generalized normal bundle. For the remainder of this se
tion,we shall 
onsider a �xed non-
onstant holomorphi
 
urve (j; u) 2 ���1J (0) �T �B and examine the operator D ��J(j; u) = Gu+Du more 
losely. Whenwe refer to _� or � as a Riemann surfa
e, we will always mean with 
omplexstru
ture j.As was observed in [IS99℄, the operatorDu de�nes a natural holomorphi
stru
ture on the bundle u�TW ! _�: indeed, the 
omplex linear part of
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hy-Riemann type operator, so there is a unique holomor-phi
 stru
ture whose lo
al holomorphi
 se
tions vanish under this operator.This indu
es a holomorphi
 stru
ture on HomC (T _�; u�TW ), and one 
anthen show (
f. [IS99℄) thatdu 2 �(HomC (T _�; u�TW ))is a holomorphi
 se
tion. Thus if z0 is an interior 
riti
al point of u, we
an 
hoose a holomorphi
 trivialization of HomC (T _�; u�TW ) near z0 andexpress du as a C n{valued fun
tion of the form(3.13) (z � z0)kF (z)for some k 2 N and C n{valued holomorphi
 fun
tion F with F (z0) 6= 0. Inthis 
ase we de�ne the order of the 
riti
al point byord(du; z0) = k:A similar de�nition is possible for z0 2 Crit(u) \ �� sin
e du satis�es thetotally real boundary 
ondition du(��) � L, whereL = fA 2 HomC (T _�; u�TW )j�� j A(T (��)) � �g:Indeed, one 
an then 
hoose a trivialization near z0 su
h that du satis�esthe S
hwartz re
e
tion prin
ipal, and de�ne ord(du; z0) again via (3.13)after re
e
tion. De�ne the 12Z{valued algebrai
 
ount of 
riti
al points by(3.14) Z(du) = Xz2du�1(0)\int _� ord(du; z) + 12 Xz2du�1(0)\�� ord(du; z):The expression (3.13) has a se
ond important purpose: the 
omplexsubspa
e of Tu(z)W spanned in the trivialization by F (z) 2 C n nf0g allowsus to de�ne a smooth rank 1 subbundleTu � u�TWsu
h that for any z 2 _� n Crit(u), (Tu)z = imdu(z). We will 
all this thegeneralized tangent bundle to u.Lemma 3.12. The interse
tion (Tu)z\�z is 1{dimensional for all z 2 ��.Proof. It 
an never be 2{dimensional sin
e (Tu)z is a 
omplex subspa
e and�z is totally real. Moreover it is 
learly at least 1{dimensional wheneverdu(z) 6= 0, as then Tu(Y ) 2 Tu(z)L = �z for any Y 2 Tz��. Sin
e 
riti
alpoints are isolated and the 
ondition dim(Tu)z \�z = 0 is open, the resultfollows. �By the lemma, we 
an de�ne a totally real subbundle`T = � \ Tuj�� � Tuj��;and by 
onstru
tion du now de�nes a se
tion of the 
omplex line bundleHomC (T _�; Tu)! _�

32 CHRIS WENDLwith totally real boundary 
ondition du(��) � LT , whereLT = fA 2 HomC (T _�; Tu)j�� j A(T (��)) � `Tg:As de�ned in the appendix, the algebrai
 
ount of zeroes for this se
tionis pre
isely Z(du).Observe that both T _� and Tu admit natural extensions over the 
om-pa
ti�ed surfa
e �; we de�ne this extension for Tu via its natural iden-ti�
ation with T _� under du sin
e u is immersed near in�nity. There isalso a natural trivialization � of T _� at in�nity de�ned by the 
ylindri
al
oordinates (s; t) 2 Z�, and we 
an de�ne � also over �� su
h that theMaslov index ��(T _�; T (��)) vanishes. Then
�1(T _�) = �( _�):Now 
hoose any trivialization � of Tu over �� and de�ne it at in�nity tobe the same as � . The 
ombination of � and � indu
es a trivializationof HomC (T _�; Tu) over �� and at in�nity, whi
h we will also denote by �.Then we 
an apply Prop. A.2, noting that the winding terms are zero by
onstru
tion, and obtain(3.15) Z(du) = 
�1 (HomC (T _�; Tu)) + 12��(HomC (T _�; Tu);LT ):To break this down further, note that the natural bundle isomorphismT _�
 HomC (T _�; Tu)! Tu : v 
 A 7! Av sends T (��)
 LT to `T , thus
�1 (Tu) = 
�1(T _�) + 
�1 (HomC (T _�; Tu)) = �( _�) + 
�1 (HomC (T _�; Tu));and ��(Tu; `T ) = �� (T _�; T (��)) + ��(HomC (T _�; Tu);LT )= ��(HomC (T _�; Tu);LT );so (3.15) implies(3.16) 
�1 (Tu) = �( _�)� 12��(Tu; `T ) + Z(du):We next 
hoose a generalized normal bundle Nu ! _�, whi
h we de�neto be any rank n� 1 subbundle of u�TW su
h thatu�TW = Tu �Nu;and the following 
onditions are satis�ed:(1) On the 
ylindri
al neighborhoods Uz for z 2 ��, Nu mat
hes thehyperplane distributions ��, and thus extends to in�nity as NujÆz =��j
z .(2) For z 2 ��, there is always a real (n� 1){dimensional interse
tion`Nz := (Nu)z \ �z, thus de�ning a totally real subbundle`N � Nuj��su
h that `T � `N = �.



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 333.4. Splitting the linearization. The splitting u�TW = Tu�Nu de�nesproje
tion maps �T 2 �(HomC (u�TW; Tu)) and �N 2 �(HomC (u�TW;Nu)),both of whi
h are smooth and satisfy exponential de
ay 
onditions due tothe asymptoti
 behavior of u. It follows that these de�ne bounded linearproje
tion operatorsW 1;p;Æ� (u�TW )� V� �X� �T�!W 1;p;Æ`T (Tu)� V T� ;W 1;p;Æ� (u�TW )� V� �X� �N�!W 1;p;Æ`N (Nu)�X�;where V T� � �(Tu) is the isomorphi
 image of V �� � �(T _�) under themap du : �(T _�) ! �(Tu) : v 7! Tu Æ v, and without loss of generalityX� 2 �(Nu). There is thus a Bana
h spa
e splittingW 1;p;Æ� (u�TW )� V� �X� = �W 1;p;Æ`T (Tu)� V T� �� �W 1;p;Æ`N (Nu)�X�� ;and a similar splittingLp;Æ(HomC (T _�; u�TW )) = Lp;Æ(HomC (T _�; Tu))� Lp;Æ(HomC (T _�; Nu));so that with respe
t to these splittings, the operatorDu : W 1;p;Æ� (u�TW )� V� �X� ! Lp;Æ(HomC (T _�; u�TW ))
an be written in matrix form asDu = � DTu DNTuDTNu DNu � :It is trivial to show thatDTu :W 1;p;Æ`T (Tu)� V T� ! Lp;Æ(HomC (T _�; Tu))and DNu : W 1;p;Æ`N (Nu)�X� ! Lp;Æ(HomC (T _�; Nu))ea
h satisfy the appropriate Leibnitz rule for a Cau
hy-Riemann type op-erator. The former is asymptoti
 at ea
h pun
ture z 2 �� to the degener-ate asymptoti
 operator �J0 ddt on a trivial 
omplex line bundle; removingthe exponential weight as in x2.1, this operator be
omes �J0 ddt � Æ, giv-ing Conley-Zehnder index �1 with respe
t to the natural trivialization � .Thus the restri
tion of DTu to W 1;p;Æ`T (Tu) has index�( _�) + 2
�1 (Tu) + ��(Tu; `T )�#�and adding the dimension of V T� we �ndind(DTu ) = �( _�) + 2
�1 (Tu) + ��(Tu; `T ) + #�= 3�( _�) + #� + 2Z(du)= dimAut( _�; j)� dimT ( _�) + 2Z(du);(3.17)where the se
ond line follows from (3.16).

34 CHRIS WENDLWe 
all DNu the normal Cau
hy-Riemann operator at u. It is alsoFredholm; from the asymptoti
 identi�
ation of Nu with �� along orbits,we see that DNu is asymptoti
 to Az at ea
h pun
ture z 2 �. We 
anuse (3.16) to relate its index to ind(u; 
). Abbreviate ��CZ(
� � 
�) =Pz2�+ ��CZ(
z+ 
z)�Pz2�� ��CZ(
z� 
z). Then removing the exponentialweights as in x2.1, we apply the Riemann-Ro
h formula (2.1) and repeatthe 
al
ulation in (3.11) to �ndind(DNu ) = (n� 1)�( _�) + 2
�1 (Nu) + ��(Nu; `N)+ Xz2�+ ��CZ(Az + Æ)� Xz2�� ��CZ(Az � Æ) + dimX�= (n� 1)�( _�) + 2
�1 (Nu) + ��(Nu; `N) + ��CZ(
� � 
z)= (n� 1)�( _�) + 2 �
�1 (u�TW )� 
�1 (Tu)�+ ���(u�TW;�)� ��(Tu; `T )�+ ��CZ(
� � 
�)= (n� 1)�( _�) + 2
�1 (u�TW )� 2�( _�)� 2Z(du) + ��(u; 
)= ind(u; 
)� 2Z(du):

(3.18)
The main goal for this se
tion is the following:Theorem 3. Assume (�; j;�; u) 2 M
 is a non-
onstant 
urve with Morse-Bott asymptoti
 orbits and T is any Tei
hm�uller sli
e through j. ThenkerD ��J(j; u) 
ontains a subspa
e ker(Gu +DTu ) � TjT �W 1;p;Æ`T (Tu)� V T�of dimension 2Z(du) + dimAut( _�; j) su
h that the normal proje
tion in-du
es a natural isomorphismkerD ��J(j; u)= ker(Gu +DTu ) = kerDNu ;and imD ��J(j; u) = Lp;Æ(HomC (T _�; Tu))� imDNu :In parti
ular, we havedimkerD ��J(j; u) = 2Z(du) + dimAut( _�; j) + dimkerDNu ;dim
okerD ��J(j; u) = dim
okerDNu :Corollary 3.13. (�; j;�; u) 2 M
 is regular if and only if DNu is surje
-tive.The reason for this result is essentially that the analysis of the map(y; v) 7! Guy +Duv when v is a se
tion of Tu 
an be redu
ed to Lemma3.5, whi
h one 
an regard as an analyti
al statement about the smooth-ness of Tei
hm�uller spa
e. To a
hieve this redu
tion, we introdu
e 
ertainspe
ial Bana
h spa
es of se
tions: for ea
h z0 2 Crit(u), 
hoose holomor-phi
 
oordinates and 
orresponding trivializations of T _� and Tu near z0 sothat the bundle map du : T _� ! Tu lo
ally takes the form z 7! zk, where
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tion d : Crit(u)! Z, de�ne the Bana
hspa
e W k;p;Æ;d(T _�)to 
onsist of se
tions v that are of 
lass W k;plo
 on _� n Crit(u), 
lass W k;p;Ænear in�nity, and su
h that near ea
h z0 2 Crit(u), using the 
oordinatesand trivialization 
hosen above, the mapzd(z0)v(z)is of 
lassW k;p. Note that v(z0) may or may not be well de�ned: if d(z0) >0 then v is allowed to blow up at z0, e.g. it 
ould be meromorphi
 with apole of order � d(z0). A suitable Bana
h spa
e norm 
an be de�ned usingweighting fun
tions supported near Crit(u), and the subspa
e W k;p;Æ;dT (��) (T _�)is de�ned by adding the usual boundary 
ondition; similarly we 
an de�nesu
h spa
es on the bundles Tu, EndC (T _�) and HomC (T _�; Tu). These arenaturally isomorphi
 to our original Bana
h spa
es if d(z) = 0 for allz 2 Crit(u).The usefulness of this notion lies in the fa
t that if we 
hoose d(z) :=ord(du; z), then the 
orresponden
e v 7! Tu Æ v de�nes Bana
h spa
e iso-morphisms W 1;p;Æ;dT (��) (T _�) du�!W 1;p;Æ`T (Tu);V �� du�! V T� ;Lp;Æ;d(EndC (T _�)) du�! Lp;Æ(HomC (T _�; Tu)):We will sti
k with this 
hoi
e of d hen
eforward.Using the fa
t that zk is holomorphi
 on the pun
tured disk for anyk 2 Z, it's easy to show that the natural linear Cau
hy-Riemann operatoron �(T _�) de�nes a bounded linear mapD�d : W 1;p;Æ;dT (��) (T _�)� V �� ! Lp;Æ;d(EndC (T _�)):The next result then follows from Lemma 3.8 by a density argument.Lemma 3.14. For any v 2 W 1;p;Æ;dT (��) (T _�)� V �� , Du(du(v)) = du(D�d v).Lemma 3.15. The operatorLd : TjT � �W 1;p;Æ;dT (��) (T _�)� V �� �! Lp;Æ;d(EndC (T _�))(y; v) 7! jy +D�d vis surje
tive and has kernel of dimensiondimker(Ld) = 2Z(du) + dimAut( _�; j):Proof. We 
laim �rst that the result doesn't depend on the 
hoi
e of Te-i
hm�uller sli
e T . Indeed, in light of the splitting Lp;Æ(EndC (T _�)) =im(D�)�TjT and the natural in
lusion of this spa
e in Lp;Æ;d(EndC (T _�)),

36 CHRIS WENDLan argument analogous to that in the proof of Lemma 3.11 shows thatLd has the same image as its natural extension to Lp;Æ(EndC (T _�)) ��W 1;p;Æ;dT (��) (T _�)� V �� �. We are thus free to 
hange T : in parti
ular, weshall use Lemma 3.4 to assume in the following that all y 2 TjT vanish onsome �xed neighborhood of Crit(u) [ �.The subs
ript d is meant to distinguish Ld and D�d from the operatorsthat appeared in Lemma 3.5; we'll 
ontinue to denote the latter simply byL : TjT � �W 1;p;ÆT (��)(T _�)� V �� �! Lp;Æ(EndC (T _�));withD� denoting the restri
tion toW 1;p;ÆT (��)(T _�)�V �� . The latter has indexind(D�) = dimAut( _�; j) � dimT , whereas Lemma 3.14 implies that D�dis 
onjugate to DTu , hen
eind(D�d ) = ind(DTu ) = dimAut( _�; j)� dimT + 2Z(du)= ind(D�) + 2Z(du)and ind(Ld) = ind(L) + 2Z(du) = 2Z(du)+ dimAut( _�; j). The result willfollow if we 
an show that dimker(Ld) � ind(L) + 2Z(du).To this end, de�ne a 2Z(du){dimensional subspa
e P � W 1;p;Æ;dT (��) (T _�) asfollows: P shall 
onsist of smooth se
tions on _� n Crit(u), supported nearCrit(u), whi
h in our 
hosen holomorphi
 trivializations near any givenz0 2 Crit(u) take the form(3.19) 
1z + 
2z2 + : : :+ 
d(z0)zd(z0)for 
i 2 C if z0 2 int�, or 
i 2 R if z0 2 ��. Sin
e every se
tion in P isholomorphi
 near Crit(u), there is an obvious extension of L,L0 : TjT � �W 1;p;ÆT (��)(T _�)� V �� � P�! Lp;Æ(EndC (T _�));whi
h has ind(L0) = ind(L) + dimP = ind(L) + 2Z(du) = ind(Ld). Nowsin
e L is surje
tive by Lemma 3.5, so is L0, and thus dimker(L0) = ind(L)+2Z(du).To �nish, we 
laim that ker(Ld) � ker(L0). Indeed, suppose y 2 TjTand v 2 W 1;p;Æ;d(T _�)� V �� su
h thatD�v = �j Æ y:Then by our assumption on T , y vanishes near Crit(u) and v is thereforea holomorphi
 se
tion in this neighborhood, ex
ept possibly at points ofCrit(u). Near z0 2 Crit(u), the prin
ipal part of v in our holomorphi
trivialization must have the form of (3.19): in parti
ular there 
annot bean essential singularity or pole of order higher than d(z0) sin
e zd(z0)v(z)is of 
lass W 1;p. There is thus a unique se
tion in P that equals the
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ipal part near Crit(u), and subtra
ting this o� we obtain a se
tion inW 1;p;ÆT (��)(T _�)� V �� , showing that v belongs to the domain of L0. �Proof of Theorem 3. Any v 2 TuB 
an be de
omposed uniquely as v =du(v�) + vN where v� 2 W 1;p;Æ;dT (��) (T _�) � V �� and vN 2 W 1;p;Æ`N (Nu) � X�.Then for y 2 TjT , Lemma 3.14 impliesD ��J(j; u)(y; v) = J Æ Tu Æ y + du(D�d v�) +DNTu vN +DNu vN= du �j Æ y +D�d v��+DNTu vN +DNu vN :The �rst term is Guy + DTudu(v�), and by Lemma 3.15 this maps ontoLp;Æ(HomC (T _�; Tu)) with dimker(Gu + DTu ) = 2Z(du) + dimAut( _�; j).The desired des
ription of kerD ��J(j; u) and imD ��J(j; u) now follows easilyfrom this expression sin
e DNTu vN 2 Lp;Æ(HomC (T _�; Tu)). �Example 3.16. Though we've generally assumed n � 2, Theorem 3 alsoapplies to the 
ase n = 1: then the normal bundle has rank zero andD ��J(j; u) = Gu +DTu , so the theorem says that D ��J(j; u) is a surje
tiveoperator of index 2Z(du)+dimAut( _�; j). One 
an apply this to understandthe moduli spa
eM( _�; _�0) of asymptoti
ally 
ylindri
al holomorphi
 maps' : ( _�; j)! ( _�0; j 0)between two pun
tured Riemann surfa
es � n � and �0 n �0, up to equiv-alen
e by automorphisms on the domain. Su
h maps are equivalent toholomorphi
 maps (�; j) ! (�0; j 0) that send � to �0. Combining Theo-rem 3 and Theorem 0, we see that for any ' 2 M( _�; _�0), the 
onne
ted
omponent M'( _�; _�0) 
ontaining ' is a smooth orbifold withdimM'( _�; _�0) = 2Z(d');where of 
ourse the right hand side 
an be 
omputed from the Riemann-Hurwitz formula. This fa
t is 
lassi
al, but it will be useful in the proof ofTheorem 2 to view it in our parti
ular analyti
al setup.Before restri
ting to the four-dimensional 
ase, we mention one moresimple appli
ation of Theorem 3. It gives namely an upper bound on thealgebrai
 number of 
riti
al points in terms of the dimension of the kernel.For somewhere inje
tive 
urves in the generi
 
ase this is simply the index,and we obtain:Corollary 3.17. For generi
 J, all somewhere inje
tive 
urves u 2 Msatisfy 2Z(du) � ind(u; 
):So for instan
e, if �� = ; then somewhere inje
tive 
urves of index 0or 1 are ne
essarily immersed for generi
 J . This is a simple version ofthe folk theorem that generi
ally, spa
es of 
urves with at least a 
ertainnumber of 
riti
al points have positive 
odimension.

38 CHRIS WENDL3.5. The transversality 
riterion in dimension four. We will nowshow that Theorem 3 implies Theorem 1 in the 
ase dimW = 4. Thekey is the fa
t that Nu ! _� is now a 
omplex line bundle, so DNu will besubje
t to the 
onstraints of Prop. 2.2.Re
all from (1.2) the de�nition of the normal �rst Chern number 
N(u; 
).An easy exer
ise 
ombining the index formula with the relations (2.3) be-tween winding numbers and Conley-Zehnder indi
es yields the followingalternative de�nition, reminis
ent of (2.4):(3.20) 
N (u; 
) = 
�1 (u�TW )� �( _�) + 12��(u�TW;�)+ Xz2�+ ���(
z + 
z)� Xz2�� ��+(
z � 
z):Proposition 3.18. If u 2 M
 is not 
onstant, then
1(Nu; `N ;A� � 
�) = 
N (u; 
)� Z(du):Proof. Choosing appropriate trivializations �, the relation follows by asimple 
al
ulation using the de�nitions (3.20) and
1(Nu; `N ;A� � 
�) = 
�1 (Nu) + 12��(Nu; `N)+ Xz2�+ ���(Az + 
z)� Xz2�� ��+(Az � 
z)and plugging in (3.16). �To �nish the proof of Theorem 1, we relate DNu to a similar operator ona larger weighted domain: for z 2 �, regard the numbers 
z = �Æ nowas exponential weights and, re
alling the notation for weighted Sobolevspa
es from x2, extend DNu to a new operatoreDNu : W 1;p;
�(Nu)! Lp;
�(HomC (T _�; Nu)):The extended operator is 
onjugate to an operator on non-weighted spa
esasymptoti
 to A� � 
�, so (2.1) gives ind(eDNu ) = ind(DNu ). MoreoverProp. 2.2 together with Prop. 3.18 above implies for eDNu pre
isely thetransversality 
riterion and kernel bound that we would desire for DNu .The result then follows be
ause the domain of eDNu 
ontains that of DNu ,hen
e kerDNu � ker eDNu .4. Appli
ation to spa
es of embedded 
urvesAs an appli
ation of the transversality theory, we shall in this se
tionstate and prove a stronger version of Theorem 2. For preparation, we re-view in x4.1 some basi
 fa
ts from the interse
tion theory of asymptoti
ally
ylindri
al holomorphi
 
urves in four dimensions. This theory has been
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urves with �xed asymptoti
 orbits, andis generalized to the Morse-Bott 
ase in [SW℄. We expand on this in x4.2 byproving some useful formulas involving the interse
tion theory for multiple
overs of orbits and holomorphi
 
urves. The proof of Theorem 2 thenappears in x4.3.For the remainder of this paper we 
onsider only pseudoholomorphi

urves without boundary.Notation. In the following, we will often abbreviate the notation by print-ing summations with �{signs in their index sets, e.g.X(z1;z2)2��1 ���2 F�(z1; z2):The intended meaning is then literally,X(z1;z2)2�+1 ��+2 F+(z1; z2) + X(z1;z2)2��1 ���2 F�(z1; z2):Several variations on this s
heme will appear.4.1. Interse
tion theory for pun
tured holomorphi
 
urves. Thisse
tion will 
onsist only of de�nitions and statements; we refer to [Sie,SW℄for all proofs.Throughout the following, (W;J) is a 4{dimensional almost 
omplexmanifold with 
ylindri
al ends (M�;H�), whose ve
tor �eldsX� are Morse-Bott. Suppose u : _�! W and u0 : _�0 ! W are asymptoti
ally 
ylindri
alholomorphi
 
urves belonging to moduli spa
es M
 and M
0 respe
tivelyfor some 
hoi
es 
, 
0 of asymptoti
 
onstraints. One of the goals of theinterse
tion theory is to de�ne an integer i(u; 
 j u0; 
0) that is invariantas u and u0 move 
ontinuously through M
 and M
0 respe
tively, and
an be interpreted as an algebrai
 interse
tion 
ount for the two 
urves.One 
an show (see [Sie08℄) that if u and u0 are geometri
ally distin
t,meaning they do not both 
over the same somewhere inje
tive 
urve, thentheir interse
tions o

ur only within some 
ompa
t subset, so the algebrai
interse
tion 
ount u �u0 is indeed �nite and nonnegative. It is not howeverhomotopy invariant in general, as interse
tions 
an run out to in�nity underhomotopies. There is nonetheless a well de�ned notion of an asymptoti
interse
tion number i1(u; 
 j u0; 
0) 2 Zwhi
h is also nonnegative, su
h that the sum(4.1) i(u; 
 j u0; 
0) := u � u0 + i1(u; 
 j u0; 
0)depends only on the respe
tive 
onne
ted 
omponentsM
u andM
0u0. Withsome additional e�ort and (as yet unpublished) analysis, one 
an show thati1(u; 
 j u0; 
0) = 0 for generi
 somewhere inje
tive 
urves and generi
 J :more pre
isely, the spa
es of 
urves for whi
h i1(u; 
 j u0; 
0) > 0 have

40 CHRIS WENDLpositive 
odimension, and so u � u0 attains the maximal possible valuei(u; 
 j u0; 
0) generi
ally.It is useful to phrase the de�nition of i(u; 
 j u0; 
0) in terms of the relativeinterse
tion number u�� u0, where � is an arbitrary 
hoi
e of trivializationfor �� along the asymptoti
 orbits of u and u0. One 
omputes u �� u0 by
ounting the interse
tions of u0 with a small perturbation of u that is o�setin the �{dire
tion at in�nity: the resulting integer is homotopy invariantand depends on � up to homotopy. Then as shown in [Sie, SW℄, for ea
hpair of orbits 
; 
0 and numbers �; �0 2 R, there are integers 
��(
+�; 
0+�0)su
h that(4.2) i(u; 
 j u0; 
0) = u �� u0 � X(z;z0)2���(�0)� 
��(
z � 
z; 
z0 � 
0z0);with the dependen
e on � 
an
eling out on the right hand side. The a
tualde�nitions of 
��(
+�; 
0+�0) are as follows. We set 
��(
+�; 
0+�0) = 0if 
 and 
0 are geometri
ally distin
t orbits, and for any simply 
overedorbit 
 and m;n 2 N , if 
m and 
n denote the 
orresponding 
overs of 
,let(4.3) 
��(
m + �; 
n + �0) = mn �min�����(
m + �)m ; ����(
n + �0)n � :We'll use the abbreviated notation 
��(
; 
0) when � = �0 = 0. Observethat the right hand side of (4.2) makes sense even when u and u0 are notgeometri
ally distin
t; in parti
ular, we 
an use it to de�ne i(u; 
 j u; 
),whi
h is the appropriate generalization of a \self-interse
tion number" forpun
tured holomorphi
 
urves.If u and u0 are geometri
ally distin
t, then the asymptoti
 
ontributioni1(u; 
 j u0; 
0) 
an be de�ned dire
tly, thus giving a more 
on
eptuallyrevealing de�nition of i(u; 
 j u0; 
0) via (4.1). Indeed, any pair of pun
turesfor u and u0 that have the same sign and indistin
t orbits o�ers a potentialfor interse
tions to be \hidden at in�nity". For two su
h pun
tures z 2 ��and z0 2 (�0)�, denote by i�1(uz; u0z0)the relative asymptoti
 interse
tion: this is 
omputed by restri
ting both
urves to suitably small 
ylindri
al neighborhoods of the respe
tive pun
-tures and 
ounting any interse
tions that appear near in�nity after per-turbing u in the �{dire
tion. It turns out that whenever both 
urves areJ{holomorphi
, i�1(uz; u0z0) is a priori bounded from below by 
��(
z; 
z0):thus the integer i1(uz; u0z0) := i�1(uz; u0z0)� 
��(
z; 
z0)is nonnegative and independent of �. Intuitively, it 
ounts the poten-tial interse
tions of these two ends that 
an \emerge from in�nity" under
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 orbits. Additional inter-se
tions may appear if either orbit is un
onstrained and allowed to movein a Morse-Bott family: the number of these is also nonnegative and turnsout to depend only on the orbits and their 
onstraints. Thus for any orbits
; 
0 and numbers �; �0 2 R, de�nei�MB(
 + �; 
0 + �0) = 
��(
; 
0)� 
��(
 + �; 
0 + �0):We will interpret i�MB(
z � 
z; 
z0 � 
0z0) as the number of \extra" hid-den interse
tions not 
ounted by i1(uz; u0z0) that 
an emerge as these twoends move generi
ally a

ording to their respe
tive 
onstraints, potentiallyshifting the asymptoti
 orbits. The total asymptoti
 interse
tion numberis then(4.4)i1(u; 
 j u0; 
0) := X(z;z0)2���(�0)� �i1(uz; u0z0) + i�MB(
z � 
z; 
z0 � 
0z0)� :Ea
h individual term in this sum is nonnegative, and 
an be expe
ted tovanish under generi
 perturbations of u and u0 as \potential" interse
tionsbe
ome real.If u : _� ! W is somewhere inje
tive, we re
all from [MW95℄ that uadmits a lo
al des
ription near any 
riti
al point allowing one to de�nea nonnegative singularity index Æ(u): it gives an algebrai
 
ount of self-interse
tions u(z) = u(z0) for z 6= z0 after making lo
al perturbations sothat u be
omes immersed. As shown in [Sie08℄, this still makes sense in thepun
tured 
ase be
ause u is ne
essarily embedded outside of some 
ompa
tsubset: then Æ(u) � 0, with equality if and only if u is embedded. It is how-ever possible for self-interse
tions to es
ape to in�nity under homotopies,thus Æ(u) is not homotopy invariant, but as with the interse
tion number,one 
an add a nonnegative asymptoti
 singularity index Æ1(u; 
) so thatthe sum(4.5) sing(u; 
) := Æ(u) + Æ1(u; 
)depends only on the 
onne
ted 
omponentM
u, and equals Æ(u) generi
allybut not always. The 
ondition sing(u; 
) = 0 is then ne
essary and suÆ-
ient so that all somewhere inje
tive 
urves inM
u should be embedded forgeneri
 J ; note that one still may have u embedded if sing(u; 
) > 0, butthen generi
 
urves 
lose to u will not be. The asymptoti
 
ontribution isa sum of the form(4.6) 2Æ1(u; 
) = Xz 6=z02�� �i1(uz; uz0) + i�MB(
z � 
z; 
z0 � 
z0)�+ Xz2�� �2Æ1(uz) + 2Æ�MB(
z � 
z)� ;

42 CHRIS WENDLin whi
h every term is nonnegative if u is J{holomorphi
. We interpretÆ1(uz) as the number of self-interse
tions near the pun
ture z that mayemerge from in�nity under generi
 homotopies �xing the orbit 
z; this
an happen if 
z is multiply 
overed, as distin
t bran
hes of the 
ylinderapproa
hing 
z run into ea
h other under perturbation. De�ne2Æ1(uz) = i�1(uz; uz)� 
��(
z);where 
��(
) 2 Z is the \self-interse
tion analogue" of 
��(
; 
0), giving adi�erent theoreti
al minimum for i�1(uz; uz) sin
e the two ends are iden-ti
al. To write it down expli
itly for the k{fold 
over of a simple orbit
, 
hoose any nontrivial eigenfun
tion e� of A
k whose winding about 
kequals ���(
k), and note that its 
overing number 
ov(e�) 2 N depends onk and ���(
k) but not on the 
hoi
e e� (
f. Lemma 4.2). Thus we denote
ov�(
k) := 
ov(e�);and then de�ne(4.7) 
��(
k) = �(k � 1)���(
k) + �
ov�(
k)� 1� :Similarly, Æ�MB(
z�
z) 
ounts further self-interse
tions that may emergeif 
z is allowed to move in a Morse-Bott family. This doesn't happen ifevery orbit in the family has the same minimal period, but if 
z 
onvergesto an orbit with smaller minimal period (and thus higher 
overing number),the existen
e of additional bran
hes 
an hide extra interse
tions at in�nity.The following 
hara
terization of Morse-Bott manifolds will be useful.Proposition 4.1. If M is a 3{manifold with a Morse-Bott ve
tor �eld X,then every Morse-Bott submanifold P � M 
an be des
ribed as follows.There exists a number � > 0 su
h that all but a dis
rete set of orbits in Phave minimal period � ; we shall 
all these generi
 orbits. The other orbitswill be 
alled ex
eptional: any su
h orbit with period � is an m{fold 
overof a simply 
overed orbit 
 for some m � 2 (
alled the isotropy), and 
k isnondegenerate for all k 2 f1; : : : ; m � 1g. The isotropy of an ex
eptionalorbit is always 2 if dimP = 2.Now, de�ne Æ�MB(
 � Æ) = 0 if Æ > 0; re
all this 
ase is asso
iated witha 
onstraint that �xes 
z, thus there 
an be no \extra" self-interse
tionsappearing due to Morse-Bott 
onsiderations. The de�nition is as follows ifÆ < 0: given an orbit 
, set 
� = 
 if it's nondegenerate, otherwise let 
�denote any nearby generi
 orbit in the same Morse-Bott family as 
. If 
�is simply 
overed, k 2 N , and 
 has isotropy m 2 N , then set(4.8) 2Æ�MB(
k � Æ) = k(m� 1)��(
k) + 
ov�(
k)� 
ov�(
k� );where ��(
) 2 f0; 1g is de�ned in (3.4). Observe that the two 
overingterms refer to homotopi
 eigenfun
tions e ofA
k and e� ofA
k� , so if e� is ann{fold 
over then e is as well, hen
e 
ov�(
k) � 
ov�(
k� ). The inequalitymay sometimes be stri
t, be
ause e is atta
hed to a km{
overed orbit,
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overed. In any 
ase, 
learly Æ�MB(
k�Æ) � 0in general, and it vanishes whenever 
 is a generi
 orbit.For the 
urve u 2 M
, 
hoose for ea
h z 2 � a generi
 perturbation 
�zof the orbit 
z, setting 
�z = 
z if either 
z is nondegenerate or z 2 �C .Then let 
ov1(
�; 
) = Xz2�� [
ov�(
�z)� 1℄ ;and 
ovMB(
�; 
) = Xz2��U [
ov(
�z)� 1℄ � ��(
z);with 
ov(
�z) denoting the 
overing number of 
�z.Theorem (Adjun
tion formula [Sie, SW℄). For any somewhere inje
tive
urve u 2 M
,i(u; 
 j u; 
) = 2 sing(u; 
) + 
N(u; 
) + 
ov1(
�; 
) + 
ovMB(
�; 
):4.2. Some 
overing relations. It will be useful to have formulas relatingthe interse
tion invariants of holomorphi
 
urves and their multiple 
ov-ers. A prerequisite for this is to have 
orresponding 
overing formulas forperiodi
 orbits, so to start with, assume M is a 3{manifold with stableHamiltonian stru
ture H = (X; �; !; J). Given an orbit 
, we shall denotethe 
orresponding asymptoti
 operator by A
 and the k{fold 
over of 
by 
k. Then if A
e = �e, the eigenfun
tion has a k{fold 
over ek su
hthat A
kek = k�ek. In general, we say that an eigenfun
tion f of A
k is ak{fold 
over if there exists an eigenfun
tion e of A
 su
h that f = ek.In the following, whenever a trivialization � along an orbit 
 appears, wewill use the same notation � to denote the resulting indu
ed trivializationsalong all 
overs of 
.Lemma 4.2 ([Wena, Lemma 3.5℄). Suppose � is a trivialization along 
.Then a nontrivial eigenfun
tion e of A
k is a k{fold 
over if and only ifwind�(e) 2 kZ.Lemma 4.3. Suppose 
 is a periodi
 orbit of X and � 2 R. If A
 + �is nondegenerate and p(
 + �) = 0, then A
k + k� is nondegenerate andp(
k + k�) = 0 for all k 2 N.Proof. If p(
 + �) = 0, then �(A
 + �) 
ontains a pair of neighboringeigenvalues with opposite signs and eigenfun
tions of the same windingnumber. The k{fold 
overs of these are eigenfun
tions of A
k+k� with thesame properties, thus A
k + k� is nondegenerate and has even parity. �Remark 4.4. If � 2 R is suÆ
iently 
lose but not equal to zero, then wemay always assume that for all k 2 N up to some arbitrarily large (but�nite) bound, A
k+� is nondegenerate and ���(
k+k�) = ���(
k+�). We
an thus repla
e k� with � in the statement above whenever � is assumed
lose to zero, and the same applies to several statements below.

44 CHRIS WENDLCorollary 4.5. For any ex
eptional orbit in a Morse-Bott family, the un-derlying simple orbit and all of its nondegenerate 
overs are odd.Proposition 4.6. For any periodi
 orbit 
 of X, k 2 N and � 2 R, thereexist integers q�(
 + �; k) 2 f0; : : : ; k � 1g su
h that(4.9) ���(
k + k�) = k���(
 + �)� q�(
 + �; k):Proof. The integer q�(
 + �; k) := � ����(
k + �)� k���(
 + �)� is wellde�ned after observing that all dependen
e on � in the right hand side
an
els, so it remains only to show that this number is between 0 and k�1. Consider �rst the 
ase � = 0, and 
hoose a trivialization �0 along 
su
h that ��0� (
) = 0. Then there exists an eigenfun
tion e� of A
 withnegative eigenvalue and wind�0(e�) = 0, and another eigenfun
tion e+with nonnegative eigenvalue and wind�0(e+) = 1; moreover there are noeigenfun
tions with eigenvalue stri
tly between that of e� and 0. Movingto the k{fold 
over, we obtain eigenfun
tions ek� and ek+ of A
k withwind�0(ek�) = 0 eigenvalue < 0,wind�0(ek+) = k eigenvalue � 0,and there is no k{fold 
overed eigenfun
tion with eigenvalue stri
tly be-tween that of ek� and 0. Then by Lemma 4.2, this range of the spe
trum ofA
k 
ontains no eigenfun
tions with winding k. Sin
e the winding dependsmonotoni
ally on the eigenvalue, this implies ��0� (
k) 2 f0; : : : ; k� 1g. Ananalogous argument gives the 
orresponding result for �+. Finally if � 6= 0,the arguments above give the same relation between the eigenfun
tions ofA
 + � and A
k + k�. �In preparation for the next lemma, for any orbit 
, numbers m;n; k 2 Nand Æ; � 2 R, de�ne the nonnegative integers(4.10)~q�(
m + Æ; 
n + �; k) = kmn �min�����(
m + Æ)m ; ���(
n + �)n �� kmn �min�����(
m + Æ)m � q�(
m + Æ; k)km ; ���(
n + �)n � :Then a simple 
omputation using the de�nitions of 
��(
 + �; 
0 + �0) andq�(
 + �; k) implies:Lemma 4.7. For any simply 
overed orbit 
, m;n; k 2 N and Æ; � 2 R,
��(
km + kÆ; 
n + �) = k � 
��(
m + Æ; 
n + �)� ~q�(
m + Æ; 
n + �; k):Returning now to the 
ontext of a 4{manifoldW with Morse-Bott 
ylin-dri
al ends (M�;H�), let us �x the following notation: u 2 M
 is aholomorphi
 
urve with domain (� n�; j), (�; j) and (e�; ~|) are 
losed Rie-mann surfa
es, and ' : (e�; ~|) ! (�; j) is a holomorphi
 bran
hed 
over
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ts to a bran
hed 
over of pun
turedsurfa
es _' : e� n e�! � n �;where e� := '�1(�), and there is a resulting holomorphi
 
urve u Æ ' :e� n e�!W . Its asymptoti
 orbits are related to those of u by
z = 
kz'(z)at ea
h z 2 e�, where kz := ord(d'; z)+1, so that ' is kz{to{1 near z. The
onstraints 
 on � 
an then be pulled ba
k to 
onstraints '�
 on e� like so:for any � 2 � 
onstrained to the orbit 
�, de�ne '�
 by �xing the orbit 
kz�at ea
h z 2 '�1(�). Then u Æ ' 2 M'�
.Proposition 4.8. For u 2 M
 and the 
over u Æ' 2 M'�
 de�ned above,
N(u Æ ';'�
) = deg(') � 
N(u; 
) + Z(d _') +Qwhere Q is a nonnegative integer. Spe
i�
ally,Q = Xz2e�� q�(
'(z) � 
'(z); kz):Proof. Denote ~u := u Æ ', ~
 := '�
 and observe that for ea
h � 2 �,Pz2'�1(�) kz = k := deg('). Note also that by extending _' to the 
ir
le
ompa
ti�
ations of e� n e� and � n �, one 
an apply the Riemann-Hurwitzformula and obtain Z(d _') = ��(e� n e�) + k�(� n �):Then using (4.9) and Remark 4.4,
N(~u; ~
) = 
�1 ('�u�TW )� �(e� n e�) + X�2�� Xz2'�1(�)����(
kz� � ~
z)= k
�1 (u�TW )� k�(� n �) + Z(d _') + k X�2������(
� � 
�)+ X�2�� Xz2'�1(�)� ����(
kz� � ~
z)� kz���(
� � 
�)�= k � 
N(u; 
) + Z(d _') + Xz2e�� q�(
'(z) � 
'(z); kz): �Proposition 4.9. For the 
over u Æ ' 2 M'�
 as in Prop. 4.8 and anyother 
urve v 2 M
0,i(u Æ ';'�
 j v; 
0) � deg(') � i(u; 
 j v; 
0):

46 CHRIS WENDLProof. Again denote k := deg('), kz := ord(d'; z) + 1 2 N for ea
h z 2 e�,~u := uÆ' and ~
 := '�
. The relative interse
tion number satis�es ~u�� v =k(u �� v). Writing the pun
ture set of v as �0, we apply Lemma 4.7 withRemark 4.4 in mind and �ndi(~u; ~
 j v; 
0) = ~u �� v � X(z;z0)2e���(�0)� 
��(
z � ~
z; 
z0 � 
0z0)= k � (u �� v)� X(�;z0)2���(�0)�0� Xz2'�1(�)
��(
kz� � ~
z; 
z0 � 
0z0)1A= k � (u �� v)� X(�;z0)2���(�0)� Xz2'�1(�) hkz
��(
� � 
� ; 
z0 � 
0z0)� ~q�(
� � 
�; 
z0 � 
0z0; kz)i!= k � (u �� v)� k X(�;z0)2���(�0)� 
��(
� � 
� j 
z0 � 
0z0)+ X(z;z0)2e���(�0)� ~q�(
'(z) � 
'(z) j 
z0 � 
0z0 j kz)= k � i(u; 
 j v; 
0) + X(z;z0)2e���(�0)� ~q�(
'(z) � ~
'(z) j 
z0 � 
0z0 j kz):The last term is nonnegative. �De�nition 4.10. For a given set of pun
tures �, the set of all 
hoi
esof asymptoti
 
onstraints on � admits a partial order de�ned as follows.We say 
� � 
+ if for every z 2 � at whi
h the asymptoti
 orbit 
z is
onstrained by 
�, it is also 
onstrained by 
+ to the same orbit.Observe that if 
� � 
+, then M
+ � M
� and 
�z � 
+z for ea
hz 2 �. One expe
ts in general that weaker 
onstraints should lead tolarger interse
tion numbers, as interse
tions 
an more easily emerge fromin�nity under more general homotopies. Indeed, using 
�z � 
+z togetherwith the fa
t that ���(
 + �) always has monotone de
reasing dependen
eon �, we easily derive the following:Proposition 4.11. If 
� � 
+ and u 2 M
+, then
N(u; 
�) � 
N(u; 
+):Moreover for any other 
urve v 2 M
,i(u; 
� j v; 
) � i(u; 
+ j v; 
):
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overed limits are immersed. We shall now state andprove a parametrized version of Theorem 2.De�nition 4.12. We will say that u 2 M
 is a stable, ni
ely embedded
urve (with respe
t to the 
onstraints 
) if it is somewhere inje
tive andsatis�es the following relations:(1) i(u; 
 j u; 
) � 0,(2) ind(u; 
) � 0,(3) ind(u; 
) > 
N(u; 
).Before going further, let us 
onsider the properties of su
h 
urves andthe motivation for the de�nition. Observe �rst that the 
ombination ofind(u; 
) � 0 and the relation(4.11) 2
N(u; 
) = ind(u; 
)� 2 + 2g +#�0(
)gives the lower bound 
N(u; 
) � �1. Then the adjun
tion formula to-gether with i(u; 
 j u; 
) � 0 implies sing(u; 
) = 0, so every somewhereinje
tive 
urve in M
u is embedded. We 
an also dedu
e from the adjun
-tion formula that 
N (u; 
) � 0, and then (4.11) implies ind(u; 
) � 2. Theindex 1 and 2 
ases are of parti
ular interest: sin
e #�0(
) and ind(u; 
)always have the same parity due to the index formula, it follows from (4.11)that 
urves of index 1 or 2 satisfying our 
onditions have 
N(u; 
) = 0 andthus i(u; 
 j u; 
) = 0. The transversality 
riterion ind(u; 
) > 
N(u; 
) is
learly satis�ed, and thus u lives in a 1 or 2{dimensional family of embed-ded 
urves that never interse
t ea
h other. These are pre
isely the 
urvesthat appear in J{holomorphi
 foliations of W , or in the 
ase where W isa symple
tization R �M , the �nite energy foliations of Hofer, Wyso
kiand Zehnder [HWZ03℄. Isolated 
urves with ind(u; 
) = 0 
an also o

urin su
h foliations (surrounded by families of larger index): we'll show forinstan
e that stable, ni
ely embedded index 0 
urves appear as the under-lying somewhere inje
tive 
urves when families of larger index degenerateto multiple 
overs.It will be useful to note that due to (4.11), all stable ni
ely embedded
urves also have the following properties:(1) g = 0,(2) #�0(
) = 1 if ind(u; 
) = 1, and otherwise #�0(
) = 0.In the 
ases ind(u; 
) = 1 or 2, we've observed that 
N (u; 
) = 0 and thusthe adjun
tion formula also implies 
ov1(
�; 
) = 
ovMB(
�; 
) = 0. Wewill use this shortly to prove the following 
onsequen
e for the unique evenpun
ture z 2 �0(
) in the index 1 
ase:Proposition 4.13. If u 2 M
 is a stable, ni
ely embedded 
urve withind(u; 
) = 1, then the unique even pun
ture z 2 ��0 (
) satis�es one of thefollowing:(1) 
z is nondegenerate and even,
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z belongs to a 2{dimensional Morse-Bott manifold, and ��(
z) = 0if and only if z 2 �C.Moreover, 
z is either simply 
overed, or is doubly 
overed su
h that theunderlying simple orbit is nondegenerate and odd.De�nition 4.14. Adapting some terminology from Symple
ti
 Field The-ory [EGH00℄, we will 
all z 2 �� a bad pun
ture if z 2 �0(
) and 
z = 
2for some nondegenerate odd orbit 
.Remark 4.15. In this terminology, Prop. 4.13 says that the unique evenpun
ture has an orbit of 
overing number 1 or 2, and is bad in the latter
ase. In SFT of 
ourse, \bad" also means \to be ignored": moduli spa
esof 
urves with su
h pun
tures 
annot be oriented, but they also need notbe 
ounted in 
onstru
ting the algebra of the theory.This is enough preparation to state the strong version of Theorem 2.In the following, we use expressions su
h as \for generi
 J . . . " or \Jis generi
" to mean more pre
isely: \there exists a Baire subset J �J!(W;H+;H�) su
h that the following is true if J 2 J ." Similarly, \forgeneri
 homotopies. . . " means that there exists a Baire subset in the spa
eof smooth homotopies in J!(W;H+;H�) for whi
h the statement is true.Theorem 4. Assume fJ�g�2[0;1℄ is a smooth 1{parameter family of almost
omplex stru
tures in J!(W;H+;H�) su
h that either(1) the homotopy � 7! J� is generi
, or(2) J� = J is independent of � and is generi
.Suppose �n ! �1 2 [0; 1℄ and un : _� ! W is a sequen
e of asymp-toti
ally 
ylindri
al J�n{holomorphi
 
urves, whi
h are stable and ni
elyembedded with respe
t to some �xed asymptoti
 
onstraints 
 and 
onvergeto a smooth J�1{holomorphi
 
urve u : _�! W . Then:� If ind(u; 
) = 0 or ind(u; 
) = 1 with 
z simply 
overed for theunique even pun
ture z 2 �0(
), then u is a stable, ni
ely embedded
urve.� If ind(u; 
) = 1 and the unique even pun
ture z 2 �0(
) is bad (with
z doubly 
overed), or ind(u; 
) = 2, then u is either a stable, ni
elyembedded 
urve or an unbran
hed multiple 
over of a stable, ni
elyembedded index 0 
urve.In all 
ases, u is regular.Note that sin
e sing(u; 
) = 0 for all stable, ni
ely embedded 
urves, theMorse-Bott 
ontribution Æ�MB(
z) also vanishes at ea
h pun
ture. Pluggingin (4.8) leads immediately to the following 
onsequen
e:Lemma 4.16. For any stable, ni
ely embedded 
urve u, if z 2 ��U is anun
onstrained pun
ture with a degenerate orbit 
z whi
h is ex
eptional inthe sense of Prop. 4.1, then ��(
z) = 0 and 
ov�(
z) = 
ov�(
�z).
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z � 
z) = ��+(
z � 
z) � ���(
z � 
z) and the de�nition of ��(
z). Wehave also 
ov�(
�z) = 1 and [
ov(
�z)� 1℄ � ��(
z) = 0, implying the samestatements for 
z due to Lemma 4.16.If 
z is nondegenerate, we 
laim now that it 
annot be a multiple 
overof any even orbit 
0. Otherwise there are eigenfun
tions e� of A
0 withidenti
al winding numbers and eigenvalues of opposite sign, so the 
orre-sponding 
overs give a pair of neighboring eigenfun
tions in the spe
trumof A
z ; their eigenvalues are therefore the largest negative and smallestpositive elements of �(A
z), implying 
ov�(
z) > 1, a 
ontradi
tion. Thisleaves two possibilities for the simply 
overed orbit underlying 
z: it iseither even (and thus is 
z itself) or is odd but hyperboli
, in whi
h 
ase
z 
an only be its double 
over.In the Morse-Bott 
ase, suppose �rst that ��(
z) = 0. Then any se
tionwhose 
overing number is 
ounted by 
ov�(
�z) has the same winding andhen
e the same 
overing number as a se
tion in kerA
�z , thus also the same
overing number as 
�z itself. We 
on
lude that 
�z is simply 
overed, soeither 
z is as well or it is an ex
eptional orbit with isotropy 2 as des
ribedin Prop. 4.1. The same result follows if ��(
z) = 1 be
ause [
ov(
z)� 1℄ ���(
z). �In the proof of Theorem 4, we'll need the following small variation onthe usual impli
it fun
tion theorem:Lemma 4.17. Suppose f : X ! Y is a smooth Fredholm map betweenBana
h spa
es with f(0) = 0, and Q � X is a smooth �nite dimensionalsubmanifold of X that 
ontains 0, is 
ontained in f�1(0) and satis�esdimker df(0) = dimQ:Then Q also 
ontains a neighborhood of 0 in f�1(0); in parti
ular thisneighborhood is a smooth manifold of dimension dimker df(0).Proof. Let V = imdf(0) � Y and 
hoose a linear proje
tion map �V : Y !V along some 
losed 
omplement. Then �V Æ f : X ! V is also Fredholmand is regular at 0, so the impli
it fun
tion theorem gives (�V Æ f)�1(0)near 0 the stru
ture of a smooth manifold of dimension dimker df(0). NowQ � f�1(0) � (�V Æ f)�1(0);where the spa
es on the left and right are manifolds of the same dimension
ontaining 0; the result follows. �To every 
onne
ted 
omponent of the moduli spa
e M
, one 
an asso-
iate the data (�;�; P�), where � n � is the domain of any 
urve in the
omponent (well de�ned up to di�eomorphism) and P� is the 
olle
tion

50 CHRIS WENDLof orbits and/or Morse-Bott submanifolds fPzgz2� that determine the as-ymptoti
 behavior of su
h a 
urve. Let us introdu
e the notationM(�;�; P�) �M
to indi
ate the union of all 
onne
ted 
omponents of M
 that have thisparti
ular domain and asymptoti
 behavior.Lemma 4.18. For any 
omponent M(�;�; P�) � M
, there exists a �-nite set C 
ontaining tuples (�0;�0; P�0; 
0) su
h that the following is true:if u = v Æ ' 2 M(�;�; P�) is a multiple 
over and v is the underlyingsomewhere inje
tive 
urve, then there exists (�0;�0; P�0; 
0) 2 C su
h thatv 2 M(�0;�0; P�0) �M
0 and 
 � '�
0 in the sense of Def. 4.10.Proof. The Riemann-Hurwitz formula 
onstrains the genus of �0 to be lessthan or equal to that of �, allowing only �nitely many di�erent 
losedsurfa
es. Having 
hosen �0, the relation 
z = 
kz'(z) for z 2 � and kz :=ord(d'; z)+ 1 allows kz to vary between 1 and 
ov(
z), thus giving a �niterange of 
hoi
es for ea
h pun
ture. After making this 
hoi
e, we 
an alsode
ide whi
h pun
tures z; z0 2 � might have the same image under ': this isallowed only when Pz and Pz0 belong to the same Morse-Bott manifold, andagain presents a �nite range of 
hoi
es. The number of pun
tures �0 andtheir asymptoti
 limits P�0 are uniquely determined by this 
hoi
e. Finally,the 
onstraints 
0 
an be de�ned as follows: for any 
onstrained z 2 �,de�ne � := '(z) to be a 
onstrained pun
ture, �xed at the unique orbit 
�su
h that 
z = 
kz� . Any pun
ture � 2 �0 not tou
hed by this algorithmwill be 
onsidered un
onstrained. By 
onstru
tion now, 
 � '�
0. �Proof of Theorem 4. We will 
arry out the proof in several steps assumingfJ�g�2[0;1℄ is a generi
 homotopy; the proof for a �xed generi
 J is the samebut slightly simpler in a few details.If u is somewhere inje
tive there's nothing to prove, so assume u = v Æ'for a somewhere inje
tive 
urve v : _�0 ! W and a holomorphi
 bran
hed
over ' : �! �0 of degree k � 2. By Lemma 4.18, the domain of v is oneout of a �nite set of 
hoi
es and satis�es 
onstraints 
0 with 
 � '�
0. Forea
h su
h 
hoi
e, there exists a generi
 set of homotopies fJ�g su
h that we
an assume ind(v; 
0) � �1, and the interse
tion of all these generi
 sets isalso generi
, hen
e the generi
ity assumption implies ind(v; 
0) � �1. By(4.11) then, 
N(v; 
0) � �1.Step 1: We show that 
N(v; 
0) = �1. Combining Prop. 4.8 andProp. 4.11 yields0 � 
N (u; 
) � 
N (u;'�
0) = k
N (v; 
0) + Z(d _') +Q;so the only other alternative is 
N(v; 
0) = 0, in whi
h 
ase 
N(u; 
) =Z(d _') = Q = 0. Then all 
riti
al points of ' : � ! �0 are at pun
-tures, and the Riemann-Hurwitz formula gives 2k � 2 of them (
ountingmultipli
ity) sin
e both � and �0 ne
essarily have genus zero. Denote
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h z 2 �. Now Q = 0 implies that for ea
hz 2 ��, if � = '(z),���(
z � ('�
0)z) = ���(
kz� � ('�
0)z) = kz���(
� � 
0�);so depending on the 
onstraints, we have either ���(
z) 2 kzZ or ���(
z �Æ) 2 kzZ, the latter only if � 2 �0U , whi
h implies z 2 �U . In either
ase, Lemma 4.2 then implies that a 
ertain eigenfun
tion e of A
z is akz{fold 
over. If it's the �rst 
ase, then 
ov�(
z) � kz, and this equals
ov�(
�z) by Lemma 4.16. In the se
ond 
ase, we have 
ov(
z) � kz ande 2 kerA
z . If ��(
z) = 0, then wind�(e) = ���(
z) 2 kzZ, so Lemmas 4.2and 4.16 again imply 
ov�(
�z) = 
ov�(
z) � kz. Otherwise ��(
z) = 1,so Lemma 4.16 implies that 
z is generi
 and thus ��(
z) � [
ov(
�z)� 1℄ =��(
z) � [
ov(
z)� 1℄ � kz � 1. Putting all of these 
ases together andsumming over z 2 �, we �nd
ov1(
�; 
) + 
ovMB(
�; 
) �Xz2�(kz � 1) = 2k � 2 � 2:Thus for large n, i(un; 
 j un; 
) = 2 sing(un; 
)+ 
N(un; 
)+ 
ov1(
�; 
)+
ovMB(
�; 
) � 2, a 
ontradi
tion.In light of this result and (4.11), we have either ind(v; 
0) = 0 with allpun
tures odd or ind(v; 
0) = �1 with exa
tly one even pun
ture.Step 2: Claim ind(v; 
0) = 0. If not, then ind(v; 
0) = �1 and #�00(
0) =1, and sin
e 
overs of even orbits are always even (Lemma 4.3), #�0(
) � 1,implying ind(u; 
) = 1. In this 
ase u also has exa
tly one even pun
turez 2 �0(
), so 
z = 
k� with � := '(z) 2 �00(
0). There are now three 
asesto 
onsider:(1) If 
� is nondegenerate, then so is 
z and its extremal eigenfun
tionsare the k{fold 
overs of those of 
� , giving 
ov�(
�z) � k.(2) If 
� is Morse-Bott with ��(
�) = 0, then the extremal eigenfun
tionof a generi
 perturbation 
�� has the same winding and thus same
overing number as a se
tion in kerA
�� , and the same is true forthe k{fold 
over. Moreover the Morse-Bott family 
ontaining 
�zis at least k{fold 
overed, whi
h implies the same for se
tions inkerA
�z . So again, 
ov�(
�z) = 
ov(
�z) � k.(3) If ��(
�) = 1, then Lemma 4.16 implies 
z is generi
, so we 
antake 
�z = 
z without loss of generality and 
on
lude [
ov(
�z)� 1℄ ���(
z) � k.The 
on
lusion from all of these 
ases is that 
ov1(
�; 
)+ 
ovMB(
�; 
) �k � 1 � 1, and sin
e 
N (u; 
) = 0 for the index 1 
ase, a 
ontradi
tionarises again from the adjun
tion formula: i(un; 
 j un; 
) = 2 sing(un; 
) +
N(un; 
) + 
ov1(
�; 
) + 
ovMB(
�; 
) � 1.Step 3: Sin
e 0 = ind(v; 
0) > 
N (v; 
0) = �1, it now follows immedi-ately from Prop. 4.9 and Prop. 4.11 that v is a stable, ni
ely embedded
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urve, as0 � i(u; 
 j u; 
) � i(u;'�
0 j u;'�
0) � k2 � i(v; 
0 j v; 
0):Step 4: If ind(u; 
) = 1, then its unique even orbit 
annot be simply
overed sin
e v has only odd orbits. Thus the even orbit must be a doubly
overed orbit at a bad pun
ture.Step 5: We 
laim u is immersed and has ind(u; 
) > 0. Suppose not,i.e. that either Z(du) > 0 or ind(u; 
) = 0. Then ind(u; 
) � 2Z(du), soTheorem 1 gives2Z(du) � dimker�D ��J�1 (j; u)=aut( _�; j)�� 2Z(du) +K(
N (u; 
)� Z(du);#�0(
)) = 2Z(du)(4.12)sin
e 
N(u; 
)�Z(du) < 0. Extending the usual bundle on T �B to allowparametrized J , we 
an now 
onsider a nonlinear operator�� : [0; 1℄� T � B ! E : (�; j 0; u0) 7! ��J� (j 0; u0):Sin
e v is embedded, every 
riti
al point of u arises as a bran
h point of_' : _�! _�0, thus Z(du) = Z(d _'), and (4.12) now implies(4.13) dimkerD ��(�1; j; u) � 2Z(d _') + dimAut( _�; j) + 1:To apply Lemma 4.17, we shall now �nd a smooth manifold of pre
iselythis dimension that is 
ontained in ���1(0). The key is to look at the spa
eof holomorphi
 bran
hed 
overs _� ! _�0 
lose to _'. Observe that sin
ev is embedded and satis�es the transversality 
riterion 0 = ind(v; 
0) >
N(v; 
0) = �1, for � 
lose to �1 we obtain from the impli
it fun
tiontheorem a smooth 1{parameter family of asymptoti
ally 
ylindri
al pseu-doholomorphi
 maps v� : ( _�0; j� )! (W;J� )satisfying the 
onstraints 
0, with v�1 = v. The holomorphi
 maps from _�to ( _�0; j� ) 
an then be identi�ed with the zero-set of a se
tion���0 : [0; 1℄� T � B�0 ! E�0 : (�; j 0; '0) 7! T'0 + j� Æ T'0 Æ j 0;and by the remarks in Example 3.16, a neighborhood of _' in ���1�0 (0) is asmooth manifold of dimension 2Z( _') +Aut( _�; j) + 1. Now for (�; j 0; '0) 2���1�0 (0), we have (�; j 0; v� Æ'0) 2 ���1(0), thus embedding ���1�0 (0) as a smoothsubmanifold of dimension 2Z(d _')+dimAut( _�; j)+ 1 in ���1(0). It followsthat (4.13) is an equality, and Lemma 4.17 now implies that every elementof ���1(0) near (�1; j; u) belongs to this submanifold; this is a 
ontradi
tion,as it implies that for large n, un must also be a multiple 
over.Step 6: Sin
e we now know that u is immersed, it is immediate fromTheorem 1 that u is regular. �



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 53Corollary 4.19. For generi
 J, if u 2 M
 is a stable, ni
ely embeddedJ{holomorphi
 
urve then M
u is a smooth orbifold of dimension ind(u; 
)with only isolated singularities. Moreover, the images of any two 
urves inM
u are either identi
al or disjoint, and they are all stable and ni
ely em-bedded ex
ept for a dis
rete set of unbran
hed multiple 
overs of embedded
urves.Proof. The statement about the images follows from positivity of interse
-tions and the 
ondition i(u; 
 j u; 
) � 0. The only remaining part notimmediate from Theorem 4 is that the multiple 
overs are isolated; thisis related to the fa
t that the orbifold singularities must be isolated fororientation reasons (see Remark 4.21 below), but doesn't follow from it.So, we 
laim that for any multiple 
over u = v Æ' arising as a limit in thetheorem, every other 
urve 
lose to u is somewhere inje
tive. Here we 
anassume ind(u; 
) is 1 or 2, so 
N(u; 
) = 
ov1(
�; 
) = 
ovMB(
�; 
) = 0.Now note that Theorem 3 and the impli
it fun
tion theorem give a naturalisomorphism TuM
 = kerDNu sin
e u is immersed, and it will thus suÆ
eto show that nontrivial se
tions � 2 kerDNu � �(Nu) are not multiply 
ov-ered. Otherwise, using the natural identi�
ation Nu = '�Nv, there existsa nonzero � 2 kerDNu and a se
tion �0 2 �(Nv) su
h that � = �0 Æ '. Weknow that � is zero free (also at in�nity), sin
e using (2.7), Prop. 3.18 andthe usual identi�
ation of DNu with an operator on non-weighted spa
es,Z(�) + Z1(�) = 
1(Nu; `N ;A� � 
�) = 
N (u; 
) = 0:This implies that the winding of � near ea
h pun
ture z 2 �� attains theextremal value ���(
z�
z). But this is impossible if � = �0 Æ': indeed, thefa
t that _' : _�! _�0 is immersed but both surfa
es have genus zero impliesthat there exists a pun
ture z 2 � at whi
h ' has nontrivial bran
hingorder kz := ord(d'; z) > 1, so the asymptoti
 winding wind�z (�) of � nearz satis�es�wind�z (�) � �kz���(
'(z) � 
0'(z))= ����(
z � ('�
0)'(z))� q�(
'(z) � 
0'(z); kz)� ����(
z � 
z)� q�(
'(z) � 
0'(z); kz);implying q�(
'(z) � 
0'(z); kz) = 0 and thus ���(
z � 
z) 2 kzZ. Thenrepeating an argument that is by now familiar from the proof of Theorem 4,we �nd a 
ontradi
tion in the form 
ov1(
�; 
) + 
ovMB(
�; 
) > 0. �Remark 4.20. It is shown in [Wenb℄ that if u : _� ! W is a stable ni
elyembedded index 2 
urve, then the nearby 
urves inM
u foliate a neighbor-hood of u( _�) in W . Now suppose u is a multiply 
overed index 2 
urvethat is a limit of stable ni
ely embedded 
urves. Then sin
e u is immersedand TuM
 
onsists of zero-free se
tions of its normal bundle, the same ar-gument shows that the nearby 
urves in M
u again foliate a neighborhood

54 CHRIS WENDLof u( _�). In this foliation, u( _�) is an ex
eptional leaf, being the embeddedimage of an isolated index 0 
urve. An expli
it example is 
onstru
tedbelow.Remark 4.21. The fa
t that singularities in a 1{dimensional orbifold areisolated is obvious, and in two dimensions it's true if the orbifold is oriented,as an oriented orbifold 
an only have singularities of 
odimension at leasttwo. By results in [BM04℄, Mu does admit an orientation if u is a stable,ni
ely embedded 
urve of index 2, and the same is true for index 1 if andonly if the unique even pun
ture is not a \bad" pun
ture. This ex
ludessingularities in the index 1 
ase entirely unless the even pun
ture is bad,and indeed, we've shown that multiple 
overs don't appear in this 
ase.These remarks are not quite enough to prove Cor. 4.19 however, as ingeneral there 
an be multiple 
overs with trivial automorphism groups,whi
h therefore do not 
ause singularities.Example 4.22. We now 
onsider a 
on
rete situation in whi
h ni
elyembedded 
urves of index 2 are seen to 
onverge to an isolated, unbran
hedmultiple 
over.Identify S2 with the extended 
omplex plane and let W = (S2 � S2) nf(0; 0); (1;1); (1; 1)g, 
hoosing the standard 
omplex stru
ture J = i� i.This 
an be regarded as a manifold with three negative 
ylindri
al endsasymptoti
 to the standard 
onta
t 3{sphere, whose Reeb orbits are the�bers of the Hopf �bration. The asymptoti
s are therefore Morse-Bott:there is a 2{dimensional family of 
losed orbits at ea
h end. Now for� 2 C n f0;�1; 1g, 
onsider the 2{dimensional family of J{holomorphi
four-pun
tured spheresu� : S2 n f0; 1;�1;1g!W : z 7! �z3 z + ��z + 1 ; z2� :These are all proper and embedded, with asymptoti
 behavior as follows:� At 0, u� is asymptoti
 to a �xed doubly 
overed orbit in the end(0; 0).� At 1, u� is asymptoti
 to a �xed doubly 
overed orbit in the end(1;1).� At 1 and �1, u� is asymptoti
 to an arbitrary (not �xed) simply
overed orbit in the end (1; 1).One 
an use the setup we've des
ribed to show that the moduli spa
e ofembedded holomorphi
 
urves satisfying pre
isely these asymptoti
 
on-straints and representing the same relative homology 
lass is indeed asmooth 2{dimensional manifold: indeed, ind(u; 
) = 2 and i(u; 
 j u; 
) =
N(u; 
) = 
ov1(
�; 
) = 
ovMB(
�; 
) = 0. Now as � ! 0, the family
onverges to the 
urve u0(z) = (z4; z2) =: v(z2), an unbran
hed double
over of the embedded 3{pun
tured spherev : S2 n f0; 1;1g! W : z 7! (z2; z);
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onstraints 
0 one 
an indeed showthat ind(v; 
0) = 0 and i(v; 
0 j v; 
0) = 
N(v; 
0) = �1. Observe thatthe images of u� for � near zero together with the image of v foliate aneighborhood of v in W . Due to the ordering of the pun
tures, Aut(u0) isthe trivial group, so the moduli spa
e remains a smooth manifold even withu0 in
luded. If we take the quotient of this spa
e by forgetting the orderof the pun
tures, it be
omes a smooth orbifold in whi
h u0 has isotropygroup Z2.Remark 4.23. It's also interesting to see what happens to the family u� as� ! �1 or � !1: here it turns out that u� breaks into a J{holomorphi
building (in the sense of the SFT 
ompa
tness theorem [BEH+03℄). At � !1 in parti
ular, the building in
ludes a 
omponent that is an unbran
hedmultiple 
over of index �2 over a ni
ely embedded index 0 
urve. It iswork in progress by the author to generalize Theorem 4 in light of SFT
ompa
tness and show that su
h behavior is quite general: indeed, thatonly unbran
hed multiple 
overs 
an arise in su
h limits, and that thereexists a well behaved gluing theory for buildings of this type.Appendix A. Counting boundary zerosIn this appendix we de�ne a 12Z{valued 
ount of zeroes for se
tions of a
omplex line bundle with totally real boundary 
ondition. Let (E; J)! Sbe a topologi
al 
omplex line bundle over a 
ompa
t, 
onne
ted and ori-ented surfa
e with boundary. Partition the boundary into disjoint subsets�S = �0S t �1S, either of whi
h may be empty. Now 
hoose a totallyreal subbundle ` � Ej�0S ! �0S, and 
onsider the spa
e of all 
ontinuousse
tions � : S ! E su
h that �(�0S) � ` and � 6= 0 on �1S. We will
all su
h se
tions admissible. Suppose � is an admissible se
tion with adis
rete zero set ��1(0) � S. If z0 2 ��1(0) \ intS, then it is standard tode�ne the order of the zero ord(�; z0) as the winding number of � over asmall loop around z0, 
omputed in any lo
al trivialization. The boundary
ondition makes it possible to extend this de�nition to isolated zeros on�0S as well: for z0 2 Z(�) \ �0S, 
hoose 
oordinates identifying a neigh-borhood U of z0 with D + = fz 2 C j jzj � 1 and Im z � 0g, su
h thatz0 = 0 and U \�S = D + \R. Choose also a lo
al trivialization over U thatidenti�es ` with (D + \ R) � R � D + � C . Then � is represented on thisneighborhood by a 
ontinuous fun
tion f : D + ! C , satisfying the bound-ary 
ondition f(D + \ R) � R. We 
an therefore extend f to a 
ontinuousfun
tion fD : D ! C on the full disk, satisfying fD(�z) = fD(z). The orderord(�; z0) is then the order of the isolated zero of fD at 0, i.e. the windingnumber of fD for a small 
ir
le about 0. This de�nition doesn't depend onthe 
hoi
es.

56 CHRIS WENDLFor an admissible se
tion � with dis
rete zero set ��1(0), we now de�nethe algebrai
 
ount of zeros byZ(�) = Xz2��1(0)\int S ord(�; z) + 12 Xz2��1(0)\�0S ord(�; z):Proposition A.1. Suppose �0 and �1 are admissible se
tions with isolatedzeros, and are homotopi
 through a family of admissible se
tions. ThenZ(�0) = Z(�1).Proof. This is 
lear if �0S = ;: then Z(�) is the Euler number of E if�1S = ;, or more generally the homotopy invariant winding number about�1S with respe
t to any global trivialization.We redu
e the general 
ase to this by a doubling argument: de�ne the
onjugate surfa
e SC := S with the opposite orientation, and the 
onjugatebundle (EC ; JC) := (E;�J)! SC . Then we 
an glue S to SC along �0S tode�ne the doubled surfa
e SD, and similarly form a bundle (ED; JD)! SDby gluing (E; J) to (EC ; JC) via the unique 
omplex bundle isomorphismEj�0S ! EC j�0S that restri
ts to the identity on `. Now �SD = �1SD =�1S [ �1SC . Any admissible se
tion � of E de�nes an admissible se
tion�D of ED, and the same statement applies to homotopies, thus it suÆ
esto prove the following formula relating Z(�) to Z(�D):Z(�D) = Xz2(�D)�1(0) ord(�D; z)= 2 Xz2��1(0)\int S ord(�; z) + Xz2��1(0)\�0S ord(�; z)= 2Z(�):This follows from two important fa
ts whi
h are easy to 
he
k: �rst, if zis a zero of � in intS, its order is the same as that of the 
orrespondingzero in SC. Se
ondly, if z is a boundary zero of �, then its order equals itsorder as an interior zero of �D. �The doubling formula Z(�D) = 2Z(�) whi
h emerged from this proof isa useful fa
t in itself; we shall apply it now to express Z(�) in terms of therelative �rst Chern number of E and the boundary Maslov index of thepair (Ej�0S; `).Proposition A.2. For any 
hoi
e of trivialization � along �S,Z(�) = 
�1 (E) + 12��(E; `) + wind��1S(�):Proof. Label the right hand side bZ(�) and observe that it does not dependon � and depends on � only up to homotopy through admissible se
tions.Moreover it is 
lear that Z(�) = bZ(�) if �0S = ;, so it will suÆ
e to provethe doubling formula bZ(�D) = 2 bZ(�). Sin
e the orientations of both EC



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 57and SC are reversed, we have wind�D�1SD(�D) = 2wind��1S(�) for the naturaltrivialization �D indu
ed by �. We 
laim also that
�D1 (ED) = 2
�1 (E) + ��(E; `);whi
h will prove the result. This 
an be redu
ed to the standard additivityof the Maslov index under gluing. Constru
t a new surfa
e �S � S by gluinga disk to ea
h 
omponent of �1S, and glue in trivial bundles along � overthese disks to produ
e a new bundle ( �E; �J) ! �S, su
h that �EjS = E and
�1 ( �E) = 
�1 (E). Now � �S = �0S, and 2
�1 (E) + ��(E; `) is by de�nitionthe absolute Maslov index �( �E; `). (Alternatively, one 
an de�ne the latteras ��( �E; `) where � is any trivialization along � �S that extends globallyover �S.) Now the gluing property for �( �E; `) gives2�( �E; `) = � � �ED� = 2
1 � �ED�sin
e �SD is 
losed. But the latter is also equal to 2
�D1 �ED�, proving the
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