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NON-EXACT SYMPLECTIC COBORDISMS BETWEEN CONTACT3-MANIFOLDSCHRIS WENDLAbstra
t. We show that the pre-order de�ned on the 
ategory of 
onta
t manifolds byarbitrary symple
ti
 
obordisms is 
onsiderably less rigid than its 
ounterparts for exa
t orStein 
obordisms: in parti
ular, we exhibit large new 
lasses of 
onta
t 3-manifolds whi
h aresymple
ti
ally 
obordant to something overtwisted, or to the tight 3-sphere, or whi
h admitsymple
ti
 
aps 
ontaining symple
ti
ally embedded spheres with vanishing self-interse
tion.These 
onstru
tions imply new and simpli�ed proofs of several re
ent results involving �lla-bility, planarity and non-separating 
onta
t type embeddings. The 
obordisms are built fromsymple
ti
 handles of the form �� D and �� [�1; 1℄�S1, whi
h have symple
ti
 
ores and
an be atta
hed to 
onta
t 3-manifolds along suÆ
iently large neighborhoods of transverselinks and pre-Lagrangian tori. We also sket
h a 
onstru
tion of J-holomorphi
 foliations inthese 
obordisms and formulate a 
onje
ture regarding maps indu
ed on Embedded Conta
tHomology with twisted 
oeÆ
ients. Contents1. Introdu
tion 21.1. Some ba
kground and sample results 31.2. The main theorems on handle atta
hing 72. Further appli
ations, examples and dis
ussion 162.1. The Gromov-Eliashberg theorem using holomorphi
 spheres 162.2. Eliashberg's 
obordisms from T 3 to S3 t : : : t S3 182.3. Gay's 
obordisms for Giroux torsion 182.4. Some new examples with M� 2M+ but M� �M+ 202.5. Open books with redu
ible monodromy 212.6. Etnyre's planarity obstru
tion 222.7. Some remarks on planar torsion 233. The details 243.1. Review of summed open books and planar torsion 243.2. A model for a blown up summed open book 273.3. A model de
oupling 
obordism 303.4. Modi�
ations for the 
apping 
obordism 363.5. Symple
ti
 deformation in a 
ollar neighborhood 373.6. Cohomology 393.7. Proofs of the results from x1.1 443.8. Holomorphi
 
urves 46Referen
es 482010 Mathemati
s Subje
t Classi�
ation. Primary 57R17; Se
ondary 53D35, 57Q20, 53D42.Resear
h supported by an Alexander von Humboldt Foundation fellowship.1

2 CHRIS WENDL1. Introdu
tionMany important notions and results in 
onta
t topology 
an be expressed in terms of sym-ple
ti
 
obordisms. For example, the existen
e of a symple
ti
 
obordism between parti
ular
onta
t manifolds 
an be used to determine whether one of them is symple
ti
ally �llable,assuming the �lling properties of the other are already understood. Moreover, 
obordismsare intimately asso
iated with various notions of surgery, e.g. Weinstein [Wei91℄ de�ned anotion of symple
ti
 handle atta
hment in whi
h handles with Lagrangian 
ores 
an be at-ta
hed along Legendrian spheres in a 
onta
t manifold (M; �), giving a Stein 
obordism (see[CE12℄) to the 
onta
t manifold obtained from (M; �) by Legendrian surgery. In dimensionthree, Eliashberg [Eli04℄, Gay [Gay06℄ and Gay-Stipsi
z [GS12℄ have de�ned various othertypes of surgeries on 
onta
t manifolds that yield symple
ti
 
obordisms whi
h are not Stein.In some 
ases, these 
obordisms have also been shown to indu
e surprisingly well-behavedmorphisms for 
ertain 
onta
t invariants, e.g. in Heegaard Floer homology [Bal℄. The 
obor-dism of [Gay06℄ and its pre
ursor in [Eli96℄ yielded breakthroughs in the study of symple
ti
�llings, resulting in the proof that 
onta
t manifolds with Giroux torsion are not strongly �ll-able. The latter result was re
ently reinterpreted by the author [Wen℄ in the wider 
ontext ofblown up summed open book de
ompositions, leading to an in�nite hierar
hy of more general�lling obstru
tions that 
an be dete
ted via holomorphi
 
urves.The main purpose of the present arti
le is to show that the various seemingly unrelated
onstru
tions of non-Stein 
obordisms mentioned above are all spe
ial 
ases of a mu
h moregeneral phenomenon, whi
h arises naturally in the setting of blown up summed open booksand produ
es non-exa
t symple
ti
 
obordisms in many situations where exa
t or Stein 
obor-disms are forbidden. The overall pattern seems to be that while exa
t and Stein 
obordismsare rigidly 
onstrained by a variety of symple
ti
 obstru
tions (for instan
e in Symple
ti
Field Theory [LW11℄ or Heegaard Floer homology [Kar℄), non-exa
t symple
ti
 
obordismsare quite 
exible: they tend to exist whenever there is no obvious reason why they shouldnot.Our 
onstru
tions are based on a new notion of generalized symple
ti
 handles, whi
hhave symple
ti
 
ores and 
o-
ores and 
an be atta
hed to 
onta
t 3-manifolds along \suf-�
iently wide" neighborhoods of transverse links and pre-Lagrangian tori. The notion of a\suÆ
iently wide" neighborhood here is somewhat subtle, and indi
ates that in 
ontrast toWeinstein handle atta
hment and many other forms of surgery, our surgery is not a truly lo
aloperation|e.g. the surgery along a transverse knot requires a neighborhood of a size that isonly guaranteed to exist in 
ertain situations, notably when the knot is one of several binding
omponents in a supporting open book.We begin by stating in x1.1 the essential de�nitions and explaining some existen
e resultsfor non-exa
t symple
ti
 
obordisms that follow from the handle 
onstru
tion. As easy appli-
ations, these results imply new and substantially simpli�ed proofs of several re
ent theoremsof the author and 
ollaborators on obstru
tions to symple
ti
 �llings, 
onta
t type embed-dings and embeddings of partially planar domains. The main results 
on
erning the handle
onstru
tion itself will be explained in x1.2, together with a simple appli
ation to EmbeddedConta
t Homology and a 
onje
tured generalization. In x2 we dis
uss further appli
ationsand examples, providing a uni�ed framework for reproving several important previous resultsof Eliashberg, Gay, Etnyre and others involving the existen
e of symple
ti
 
obordisms. Thehard work is then undertaken in x3, of whi
h the �rst several se
tions 
onstru
t the symple
ti
handles des
ribed in x1.2, x3.7 
ompletes the proofs of the results stated in the introdu
tion,

http://arxiv.org/abs/1008.2456v3


NON-EXACT SYMPLECTIC COBORDISMS 3and x3.8 dis
usses the 
onstru
tion of a holomorphi
 foliation in the 
obordisms, whi
h we ex-pe
t should have interesting appli
ations in Embedded Conta
t Homology and/or Symple
ti
Field Theory.A
knowledgments. The writing of this arti
le bene�ted substantially from dis
ussions withJohn Etnyre, David Gay, Mi
hael Hut
hings, Klaus Niederkr�uger, Andr�as Stipsi
z, Cli�Taubes and Jeremy Van Horn-Morris. Several of these 
onversations took pla
e at the Mar
h2010 MSRI Workshop Symple
ti
 and Conta
t Topology and Dynami
s: Puzzles and Hori-zons. I would also like to thank Patri
k Massot for suggesting the use of the term \
o-�llable,"as well as Paolo Ghiggini and an anonymous referee, both of whom read the original versionquite 
arefully and made several suggestions for improving the exposition.1.1. Some ba
kground and sample results. In topology, an oriented 
obordism fromone 
losed oriented manifold M� to another M+ is a 
ompa
t oriented manifold W su
hthat �W =M+ t (�M�). If W has dimension 2n and also 
arries a symple
ti
 stru
ture !,then it is natural to 
onsider the 
ase where (W;!) is symple
ti
ally 
onvex at M+ and
on
ave at M�: this means there exists a ve
tor �eld Y near �W whi
h points transverselyoutward at M+ and inward at M�, and is a Liouville ve
tor �eld, i.e. LY ! = !. In this 
asethe 1-form � := �Y ! is a primitive of ! and its restri
tion to ea
h boundary 
omponent M�is a (positive) 
onta
t form, meaning it satis�es � ^ (d�)n�1 > 0. The indu
ed 
onta
tstru
ture onM� is the 
o-oriented1 hyperplane �eld �� := ker (�jTM�), and up to isotopy itdepends only on the symple
ti
 stru
ture near the boundary. We thus 
all (W;!) a (strong)symple
ti
 
obordism from (M�; ��) to (M+; �+), and when su
h a 
obordism exists, wesay that (M�; ��) is (strongly) symple
ti
ally 
obordant to (M+; �+). If � also extendsto a global primitive of !, or equivalently, Y extends to a global Liouville �eld on W , thenwe 
all (W;!) an exa
t symple
ti
 
obordism from (M�; ��) to (M+; �+). Whenever(M�; ��) and (M+; �+) are both 
onne
ted, we shall abbreviate the existen
e of a 
onne
tedsymple
ti
 
obordism from (M�; ��) to (M+; �+) by writing(M�; ��) 2 (M+; �+)for the general 
ase, and (M�; ��) � (M+; �+)for the exa
t 
ase.2When dimW = 4, it is also interesting to 
onsider a mu
h weaker notion: without assumingthat ! is exa
t near �W , we 
all (W;!) a weak symple
ti
 
obordism from (M�; ��) to(M+; �+) if �� are any two positive 
o-oriented (and hen
e also oriented) 
onta
t stru
turessu
h that !j�� > 0. We then say that ! dominates the 
onta
t stru
tures on both boundary
omponents. In order to distinguish strong symple
ti
 
obordisms from this weaker notion,we will sometimes refer to 
onvex/
on
ave boundary 
omponents of strong 
obordisms asstrongly 
onvex/
on
ave.1Though 
onta
t stru
tures need not be 
o-orientable in general, all 
onta
t stru
tures 
onsidered in thispaper will be, and we shall regard the 
o-orientation always as an essential part of the data, though it willusually be suppressed in the notation.2The reason to single out 
onne
ted 
obordisms is that te
hni
ally, every 
losed 
onta
t 3-manifold (M; �) issymple
ti
ally 
obordant to the standard 
onta
t 3-sphere (S3; �0), namely via the disjoint union of a symple
ti

ap for (M; �) with a symple
ti
 �lling of (S3; �0). We will see however that if the 
obordism is required to be
onne
ted, then the question of when (M; �) 2 (S3; �0) be
omes an interesting one, 
f. Theorems 4, 40 and 10.

4 CHRIS WENDLIt is a standard fa
t that strong or exa
t symple
ti
 
obordisms 
an always be glued togetheralong 
onta
tomorphi
 boundary 
omponents, thus the relations 2 and � de�ne preorders onthe 
ategory of 
losed and 
onne
ted 
onta
t manifolds, i.e. they are re
exive and transitive.They are neither symmetri
 nor antisymmetri
, as is 
lear from some simple examples that weshall re
all in a moment. Regarding the empty set as a trivial example of a 
onta
t manifold,we say that (M; �) is weakly/strongly/exa
tly �llable if there exists a weak/strong/exa
tsymple
ti
 
obordism from ; to (M; �). For example, the tight 3-sphere (S3; �0) is exa
tly�llable, as it is the 
onvex boundary of the unit 4-ball with its standard symple
ti
 stru
ture.There are many known examples of 
onta
t 3-manifolds that are not �llable by these variousde�nitions: the original su
h result, that the so-
alled overtwisted 
onta
t manifolds are notweakly �llable, was proved by Gromov [Gro85℄ and Eliashberg [Eli89℄. In 
ontrast, Etnyreand Honda [EH02℄ showed that every 
onta
t 3-manifold admits a symple
ti
 
ap, meaningit is strongly 
obordant to ; (though never exa
tly, due to Stokes' theorem).There is an obvious obstru
tion to the relation (M�; ��) 2 (M+; �+) whenever (M�; ��) isstrongly �llable but (M+; �+) is not, e.g. (M�; ��) 
annot be the tight 3-sphere if (M+; �+)is overtwisted. Put another way, symple
ti
 
obordisms imply �lling obstru
tions, as (M; �)
annot be �llable if it is 
obordant to anything overtwisted. The following question may beviewed as a test 
ase for the existen
e of subtler obstru
tions to symple
ti
 
obordisms.Question 1. Is every 
onta
t 3-manifold (M; �) that is not strongly �llable also symple
ti
ally
obordant to some overtwisted 
onta
t manifold (MOT; �OT)?This question was open when the �rst version of the present arti
le appeared, but it hassin
e been answered in the negative: by an argument of Hut
hings [Hut℄, (M; �) 2 (MOT; �OT)implies that the 
onta
t invariant in the Embedded Conta
t Homology of (M; �) must van-ish, and therefore (using [CGH℄), so does the Ozsv�ath-Szab�o 
onta
t invariant. A negativeexample for Question 1 is therefore furnished by any non�llable 
onta
t manifold with non-vanishing Ozsv�ath-Szab�o invariant; the �rst su
h examples were found by Lis
a and Stipsi
zin [LS04℄.The answer to the 
orresponding question for exa
t 
obordisms is mu
h less subtle: byan argument originally due to Hofer [Hof93℄, (M; �) � (MOT; �OT) implies that every Reebve
tor �eld on (M; �) admits a 
ontra
tible periodi
 orbit, yet there are simple examples of
onta
t manifolds without 
ontra
tible orbits that are known to be non-�llable, e.g. all of thetight 3-tori other than the standard one. More generally, it has re
ently be
ome 
lear thatovertwistedness is only the �rst level in an in�nite hierar
hy of �lling obstru
tions 
alled planark-torsion for integers k � 0, 
f. [Wen℄. A 
onta
t manifold is overtwisted if and only if it hasplanar 0-torsion, and there are many examples whi
h are tight or have no Giroux torsion buthave planar k-torsion for some k 2 N, and are thus not strongly �llable. The aforementionedargument of Hofer then generalizes to de�ne an algebrai
 �lling obstru
tion [LW11℄ that livesin Symple
ti
 Field Theory and sometimes also gives obstru
tions to exa
t 
obordisms fromk-torsion to (k � 1)-torsion. Our �rst main result says that no su
h obstru
tions exist fornon-exa
t 
obordisms, thus giving a large 
lass of 
onta
t 3-manifolds for whi
h the answerto Question 1 is yes.Theorem 1. Every 
losed 
onta
t 3-manifold with planar torsion admits a (non-exa
t) sym-ple
ti
 
obordism to an overtwisted 
onta
t manifold.This of 
ourse yields a new and 
omparatively low-te
h proof of the fa
t, proved �rst in[Wen℄, that planar torsion obstru
ts strong �llings. It also generalizes a result proved by



NON-EXACT SYMPLECTIC COBORDISMS 5David Gay in [Gay06℄, that any 
onta
t manifold with Giroux torsion at least 2 is 
obordantto something overtwisted; as shown in [Wen℄, positive Giroux torsion implies planar 1-torsion(
f. x2.3). By a result of Etnyre and Honda [EH02℄, every 
onne
ted overtwisted 
onta
tmanifold admits a 
onne
ted Stein 
obordism to any other 
onne
ted 
onta
t 3-manifold, andGay [Gay06℄ showed that the word \
onne
ted" 
an be removed from this statement at the
ost of dropping the Stein 
ondition. We thus have the following 
onsequen
e:Corollary 1. Every 
losed 
onne
ted 
onta
t 3-manifold with planar torsion admits a 
on-ne
ted strong symple
ti
 
obordism to every other 
losed 
onta
t 3-manifold.It should be emphasized that due to the obstru
tions mentioned above, Corollary 1 is nottrue for exa
t 
obordisms, not even if the positive boundary is required to be 
onne
ted.In fa
t, there is no known example of an exa
t 
obordism from anything tight to anythingovertwisted, and many examples that are tight but non-�llable (e.g. the 3-tori with positiveGiroux torsion) 
ertainly do not admit su
h 
obordisms.There is also a version of Theorem 1 that implies the more general obstru
tion to weak�llings proved in [NW11℄. Re
all (see De�nitions 3.1 and 3.3) that for a given 
losed 2-form 
 on a 
onta
t 3-manifold (M; �), we say that (M; �) has 
-separating planar torsion ifit 
ontains a planar torsion domain in whi
h a 
ertain set of embedded 2-tori T all satisfyZT 
 = 0:If this is true for all 
losed 2-forms 
, then (M; �) is said to have fully separating planartorsion.Theorem 2. Suppose (M; �) is a 
losed 
onta
t 3-manifold with 
-separating planar torsionfor some 
losed 2-form 
 on M with 
j� > 0. Then there exists a weak symple
ti
 
obordism(W;!) from (M; �) to an overtwisted 
onta
t manifold, with !jTM = 
.Using a Darboux-type normal form near the boundary, weak symple
ti
 
obordisms 
anbe glued together along 
onta
tomorphi
 boundary 
omponents of opposite sign wheneverthe restri
tions of the symple
ti
 forms on the boundaries mat
h (see Lemma 3.14). Thus if(M; �) has 
-separating planar k-torsion and admits a weak �lling (W;!) with [!jTM ℄ = [
℄ 2H2dR(M), then Theorem 2 yields a weak �lling of an overtwisted 
onta
t manifold, and hen
ea 
ontradi
tion due to the well known theorem of Gromov [Gro85℄ and Eliashberg [Eli90℄. Wethus obtain a mu
h simpli�ed proof of the following result, whi
h was proved in [NW11℄ by adire
t holomorphi
 
urve argument and also follows from a 
omputation of the twisted ECH
onta
t invariant in [Wen℄.Corollary ([NW11℄). If (M; �) has 
-separating planar torsion for some 
losed 2-form 
on M , then it does not admit any weak �lling (W;!) with [!jTM ℄ = [
℄ 2 H2dR(M). Inparti
ular, if (M; �) has fully separating planar torsion then it is not weakly �llable.We now state some related results that also apply to �llable 
onta
t manifolds. The afore-mentioned existen
e result of [EH02℄ for symple
ti
 
aps was generalized independently byEliashberg [Eli04℄ and Etnyre [Etn04a℄ to weak 
obordisms: they showed namely that forany (M; �) with a 
losed 2-form 
 that dominates �, there is a symple
ti
 
ap (W;!) with�W = �M and !jTM = 
. Our next result 
on
erns a large 
lass of 
onta
t manifolds forwhi
h this 
ap may be assumed to have a 
ertain very restri
tive property.

6 CHRIS WENDLTheorem 3. Suppose (M; �) is a 
onta
t 3-manifold 
ontaining an 
-separating partiallyplanar domain M0 � M (see De�nition 3.1) for some 
losed 2-form 
 on M with 
j� >0. Then (M; �) admits a symple
ti
 
ap (W;!) su
h that !jTM = 
 and there exists asymple
ti
ally embedded 2-sphere S �W with vanishing self-interse
tion number.As the work of M
Du� [M
D90℄ makes 
lear, symple
ti
 manifolds that 
ontain symple
ti
spheres of square 0 are quite spe
ial, and for instan
e any 
losed symple
ti
 manifold obtainedby gluing the 
ap from Theorem 3 to a �lling of (M; �) must be rational or ruled. An easyadaptation of the main result in [ABW10℄ also provides the following 
onsequen
e, whi
h wasproved using mu
h harder pun
tured holomorphi
 
urve arguments in [Wen,NW11℄:Corollary 2. Suppose (M; �) 
ontains an 
-separating partially planar domain for some
losed 2-form 
 onM . If (W;!) is a 
losed symple
ti
 4-manifold andM admits an embedding� :M ,! W su
h that ��!j� > 0 and [��!℄ = [
℄ 2 H2dR(M), then �(M) separates W .Sin
e planar torsion domains are also partially planar domains, this implies that planartorsion is a
tually an obstru
tion to 
onta
t type embeddings into 
losed symple
ti
 manifolds,not just symple
ti
 �llings.Some examples of 
onta
t manifolds admitting non-separating embeddings arise from spe-
ial types of symple
ti
 �llings: we shall say that (M; �) is (strongly or weakly) 
o-�llableif there is a 
onne
ted (strong or weak) �lling (W;!) whose boundary is the disjoint unionof (M; �) with an arbitrary non-empty 
onta
t manifold. Put another way, (M; �) admitsa 
onne
ted semi-�lling with dis
onne
ted boundary. Given su
h a �lling, one 
an alwaysatta
h a symple
ti
 1-handle to 
onne
t distin
t boundary 
omponents and then 
ap o� theboundary to realize (M; �) as a non-separating 
onta
t hypersurfa
e. Various examples of
onta
t manifolds that are or are not 
o-�llable have been known for many years:� The tight 3-sphere (S3; �0) is not weakly 
o-�llable, by arguments due to Gromov[Gro85℄, Eliashberg [Eli90℄ and M
Du� [M
D91℄. Etnyre [Etn04b℄ extended this resultto all planar 
onta
t manifolds.� M
Du� [M
D91℄ showed that for any Riemann surfa
e � of genus at least 2, the unit
otangent bundle ST �� with its 
anoni
al 
onta
t stru
ture is strongly 
o-�llable.Further examples were found by Geiges [Gei95℄ and Mitsumatsu [Mit95℄.� Giroux [Gir94℄ showed that every tight 
onta
t stru
ture on T 3 is weakly 
o-�llable.However, none of them are strongly 
o-�llable, due to a result of the author [Wen10℄.All of the negative results just mentioned 
an be viewed as spe
ial 
ases of Corollary 2, andso 
an the 
losely related result in [ABW10℄, that partially planar 
onta
t manifolds neveradmit non-separating 
onta
t type embeddings. Observe that any 
onta
t manifold 
obordantto one for whi
h Corollary 2 holds also 
annot be 
o-�llable: in parti
ular this shows thatnot every 
onta
t 3-manifold is 
obordant to (S3; �0). We are thus led to an analogue ofQuestion 1 that also applies to �llable 
onta
t manifolds:Question 2. Does every 
losed and 
onne
ted 
onta
t 3-manifold (M; �) that is not strongly
o-�llable satisfy (M; �) 2 (S3; �0)?To the author's knowledge, this question is open. The answer is again 
learly no for exa
t
obordisms, as a variation on Hofer's argument from [Hof93℄ also shows that (M; �) mustalways admit 
ontra
tible Reeb orbits if (M; �) � (S3; �0). The following result providessome eviden
e for a positive answer in the non-exa
t 
ase, though it is not quite as generalas one might have hoped. (See also Remark 1.1 below for a 
andidate 
ounterexample.)



NON-EXACT SYMPLECTIC COBORDISMS 7Theorem 4. Suppose (M; �) is a 
onne
ted 
onta
t 3-manifold 
ontaining a partially planardomain whi
h either has more than one irredu
ible subdomain or has nonempty binding.Then (M; �) 2 (S3; �0), hen
e (M; �) admits a 
onne
ted strong symple
ti
 
obordism to every
onne
ted strongly �llable 
onta
t 3-manifold.The 
onditions of Theorem 4 hold in parti
ular for all planar 
onta
t manifolds, and infa
t a stronger version 
an be stated sin
e the fully separating 
ondition is always satis�ed.We will show in x2.6 that this implies Etnyre's planarity obstru
tion from [Etn04b℄.Theorem 40. Suppose (M; �) is a 
onne
ted planar 
onta
t 3-manifold. Then there exists a
ompa
t 
onne
ted 4-manifold W with �W = S3 t (�M), with the property that for every
losed 2-form 
 on M with 
j� > 0, W admits a symple
ti
 stru
ture ! su
h that !jTM = 
and (W;!) is a weak symple
ti
 
obordism from (M; �) to (S3; �0).Remark 1.1. Let us des
ribe a 
onta
t manifold that 
ould 
on
eivably furnish a negativeanswer to Question 2. Consider the standard 
onta
t 3-torus (T 3; �1) (the de�nition of �1 isre
alled in (2.1) below), and divide it by the Z2-a
tion indu
ed by the 
onta
t involutionT 3 ! T 3 : (�; �; �) 7! (� + 1=2;��;��):The quotient T 3=Z2 then inherits a 
onta
t stru
ture �, whi
h is supported by a summedopen book with empty binding, one interfa
e torus T := f2� 2 Zg and �bration�([�; �; �℄) = (� for 0 < � < 1=2,�� for 1=2 < � < 1.Sin
e the pages are 
ylinders, (T 3=Z2; �) is a partially planar domain, so Corollary 2 impliesthat it is not strongly 
o-�llable. (Note that (T 3=Z2; �) is Stein �llable, as it 
an be 
on-stru
ted from the Stein �llable torus (T 3; �1) by a sequen
e of 
onta
t (�1)-surgeries alongLegendrian 
urves in the pre-Lagrangian �bers f� = 
onstg.) Theorem 4 however does notapply, as there is only one irredu
ible subdomain and no binding. It is not 
lear whether(T 3=Z2; �) 2 (S3; �0).1.2. The main theorems on handle atta
hing. The 
obordisms of the previous se
tionare 
onstru
ted by repeated appli
ation of two handle atta
hing 
onstru
tions that we shallnow des
ribe. The handles we will work with take the form��� D and � �� [�1; 1℄ � S1;where in ea
h 
ase � is a 
ompa
t oriented surfa
e with boundary, appearing with reversedorientation be
ause we think of it as a \symple
ti
 
ap" for the page of an open book de-
omposition. In the �rst 
ase, we shall atta
h �� � D to the neighborhood of a transverselink, and in the se
ond 
ase, ��� [�1; 1℄ � S1 is atta
hed to the neighborhood of a disjointunion of pre-Lagrangian tori. It is important however to understand that these 
onstru
tionsare not truly lo
al, as the atta
hing requires neighborhoods that are in some sense suÆ
ientlylarge. This 
ondition on the neighborhoods is most easily stated in the language of (possiblyblown up and summed) open books|that is not ne
essarily the only natural setting in whi
hthese operations make sense, but it is the �rst that 
omes to mind.We have derived 
onsiderable inspiration from the symple
ti
 
apping te
hnique introdu
edby Eliashberg in [Eli04℄. The goal of Eliashberg's 
onstru
tion was somewhat di�erent, namelyto embed any weak symple
ti
 �lling into a 
losed symple
ti
 manifold, but it 
an also beused to 
onstru
t symple
ti
 
obordisms between 
onta
t manifolds with supporting open

8 CHRIS WENDLbooks that are related to ea
h other by 
apping o� binding 
omponents. Indeed, Eliashberg's
apping 
onstru
tion works as follows:(1) Given (M; �) with a supporting open book � : M n B ! S1, atta
h 2-handles to[0; 1℄�M at f1g�M along ea
h 
omponent of B via the page framing. This transformsM by a 0-surgery along ea
h binding 
omponent, produ
ing a new 3-manifold M 0with a �bration M 0 ! S1 whose �bers are the 
losed surfa
es obtained by 
appingthe original pages with disks. Any symple
ti
 stru
ture on [0; 1℄ �M dominating �
an then be extended over the handles so that the �bers of M 0 ! S1 are symple
ti
.(2) Cap o� the boundary of the 
obordism above by presenting M 0 as the boundary of aLefs
hetz �bration over the disk with 
losed �bers.The �rst step 
an be generalized by observing that if we 
hoose to atta
h 2-handles alongsome but not all 
omponents of the binding, then the new manifoldM 0 inherits an open bookde
omposition �0 :M 0 n B0 ! S1obtained from � by 
apping o� the 
orresponding boundary 
omponents of the pages (
f. [Bal℄),and we will show that the symple
ti
 stru
ture 
an always be arranged so as to produ
e aweak symple
ti
 
obordism from (M; �) to (M 0; �0), where �0 is supported by �0. Under someadditional topologi
al assumptions one 
an a
tually arrange the weak 
obordism to be strong;this variation on Eliashberg's 
onstru
tion has already been worked out in detail by Gay andStipsi
z [GS12℄. To generalize further, one 
an also imagine repla
ing the usual 2-handleD � D by �� D for any 
ompa
t orientable surfa
e �. We shall 
arry out this generalizationbelow, though the reader may prefer to pretend � = D on �rst reading, and this suÆ
es formost of the appli
ations we will dis
uss.The key to our 
onstru
tion will be to 
ombine the above brand of handle atta
hmentwith a \blown up" version, in whi
h a round handle is atta
hed to (M; �) along a 2-torusthat 
an be thought of as a blown up binding 
ir
le. This is most naturally des
ribed inthe language of blown up summed open books, a generalization of open book de
ompositionsthat was introdu
ed in [Wen℄ and will be reviewed in more detail in x3.1. Rougly speaking,a blown up summed open book on a 
ompa
t 3-manifold M , possibly with boundary, de�nesa �bration � :M n (B [ I)! S1;where the binding B �M n �M is an oriented link and the interfa
e I �M n �M is a set ofdisjoint 2-tori, and the 
onne
ted 
omponents of the �bers, whi
h interse
t �M transversely,are 
alled pages. An ordinary open book is the spe
ial 
ase where I = �M = ;, and ingeneral we allow any or all of B, I and �M to be empty, so there may be 
losed pages. Aswith ordinary open books there is a natural notion of 
onta
t stru
tures being supported by ablown up summed open book, in whi
h 
ase binding 
omponents be
ome positively transverselinks and interfa
e and boundary 
omponents be
ome pre-Lagrangian tori. Su
h a 
onta
tstru
ture exists and is unique up to deformation unless the pages are 
losed.Suppose (M; �) is a 
losed 
onta
t 3-manifold 
ontaining a 
ompa
t 3-dimensional subman-ifold M0 �M , possibly with boundary, whi
h 
arries a blown up summed open book � thatsupports �jM0 and has nonempty binding. Pi
k a set of binding 
omponentsB0 = 
1 [ : : : [ 
N � B;ea
h of whi
h 
omes with a natural framing determined by the pages adja
ent to 
, 
alledthe page framing. For ea
h 
j � B0, we identify a tubular neighborhood N (
j) �M of 
j



NON-EXACT SYMPLECTIC COBORDISMS 9with the oriented solid torus S1 � D via this framing so that 
j = S1 � f0g with the 
orre
torientation and the �bration � takes the form�(�; �; �) = �on N (
j)n
j , where (�; �) denote polar 
oordinates on the disk, normalized so that � 2 S1 =R=Z. Assign to �N (
j) its natural orientation as the boundary of N (
j) and denote byf�j ; �jg � H1(�N (
j))the distinguished positively oriented homology basis for whi
h �j is a meridian and �j is thelongitude determined by the page framing. Denote N (B0) = N (
1) [ : : : [N (
N ).Now pi
k a 
ompa
t, 
onne
ted and oriented surfa
e � with N boundary 
omponents�� = �1� [ : : : [ �N�and 
hoose an orientation preserving di�eomorphism of ea
h �j� to S1, thus de�ning a
oordinate s 2 S1 for �j�. Using this, we de�ne new 
ompa
t oriented manifoldsM 0 = (M n N (B0)) [ (��� S1);M 00 = (M0 n N (B0)) [ (��� S1)by gluing in �� S1 via orientation reversing di�eomorphisms ��j � S1 ! �N (
j) that takethe form (s; t) 7! (s; 1; t)in the 
hosen 
oordinates. On the level of homology, the map ��� S1 ! �N (B0) identi�es[�j�� f�g℄ with �j and [fzg � S1℄ for z 2 �j� with �j .Remark 1.2. In the spe
ial 
ase � = D , the operation just de�ned is simply a Dehn surgeryalong a binding 
omponent 
 � B with framing 0 relative to the page framing.The �bration � : M n (B [ I) ! S1 extends smoothly over � � S1 as the proje
tion tothe se
ond fa
tor, thus M 00 inherits from � a natural blown up summed open book �0, withbinding B nB0, interfa
e I and pages that are obtained from the pages of � by atta
hing ��,gluing �j� to the boundary 
omponent adja
ent to 
j. We say that �0 is obtained from � by�-
apping surgery along B0. If �0 does not have 
losed pages, then it supports a 
onta
tstru
ture �0 on M 00 whi
h 
an be assumed to mat
h � outside the region of surgery, and thusextends to M 0.The �-
apping surgery 
an also be de�ned by atta
hing a generalized version of a 4-dimensional 2-handle: de�ne H� = ��� D ;with boundary �H� = ���H� [ �+H� := �(��� D ) [ (��� S1):The above identi�
ations of the neighborhoods N (
j) with S1 � D yield an identi�
ation ofN (B0) with ��H� = ��� D , whi
h we use to atta
h H� to the trivial 
obordism [0; 1℄�Mby gluing ��H� to N (B0) � f1g �M , de�ning(1.1) W = ([0; 1℄ �M) [N (B0) H�;whi
h after smoothing the 
orners has boundary�W =M 0 t (�M):

10 CHRIS WENDLWe will refer to the oriented submanifoldsK� := ([0; 1℄ �B0) [B0 (��� f0g) �Wand K0� := fpg � D �Wfor an arbitrary interior point p 2 � as the 
ore and 
o-
ore respe
tively. Note that �K� =�B0 �M , �K0� �M 0 and K� �K0� = 1, where � denotes the algebrai
 
ount of interse
tions.The following generalizes results in [Eli04℄ and [GS12℄.Theorem 5. Suppose ! is a symple
ti
 form on [0; 1℄ �M with !j� > 0, and let W denotethe handle 
obordism de�ned in (1.1), after smoothing 
orners. Then after a symple
ti
deformation of ! away from f0g �M , ! 
an be extended symple
ti
ally over W so that it ispositive on K�, K0� and the pages of �0. Moreover, if the latter pages are not 
losed, then! also dominates a supported 
onta
t stru
ture �0 on M 0, thus de�ning a weak symple
ti

obordism from (M; �) to (M 0; �0).We will refer to the 
obordism (W;!) of Theorem 5 hen
eforward as a �-
apping 
obor-dism. In general it is a weak 
obordism, but under 
ertain 
onditions that depend only onthe topology of the setup, it 
an also be made strong. Re
all the standard fa
t, observedoriginally by Eliashberg [Eli91, Proposition 3.1℄ (see also [Eli04, Prop. 4.1℄), that whenever(W;!) has a boundary 
omponent M on whi
h ! dominates a positive 
onta
t stru
ture �and is exa
t, ! 
an be deformed in a 
ollar neighborhood to make M strongly 
onvex, with �as the indu
ed 
onta
t stru
ture. In x3.6 we will use routine Mayer-Vietoris arguments to
hara
terize the situations in whi
h this tri
k 
an be applied to the above 
onstru
tion.Theorem 50. The symple
ti
 
obordism (W;!) 
onstru
ted by Theorem 5 
an be arranged sothat the following holds. Choose a real 1-
y
le h in M n N (B0) su
h that [h℄ 2 H1(M ;R) isPoin
ar�e dual to the restri
tion of ! to f0g �M . Then there is a number 
 > 0 su
h thatPD([!℄) = [0; 1℄ � [h℄ + 
 [K0�℄ 2 H2(W;�W ;R);where PD : H2dR(W ) ! H2(W;�W ;R) denotes the Poin
ar�e-Lefs
hetz duality isomorphism.In parti
ular, if f0g �M � (W;!) is (strongly) 
on
ave then the following 
onditions areequivalent:(i) ! is exa
t.(ii) [K0�℄ = 0 2 H2(W;�W ;R).(iii) [
1℄ + : : :+ [
N ℄ is not torsion in H1(M).Further, assuming that f0g �M is 
on
ave, the following 
onditions are also equivalent:(i) (W;!) 
an be arranged to be a strong symple
ti
 
obordism from (M; �) to (M 0; �0).(ii) [�K0�℄ = 0 2 H1(M 0;R).(iii) �1+ : : :+�N is not torsion in H1(M nB0), where �j denote the longitudes on �N (
j)determined by the page framing.It should be emphasized that the above theorem assumes � is 
onne
ted. The 
ase where� is dis
onne
ted is equivalent to performing multiple surgery operations in su

ession, butthe statement of Theorem 50 would then be
ome more 
ompli
ated.Remark 1.3. For the 
ase � = D , if 
 � B denotes the binding 
omponent where 0-surgery isperformed, then Theorem 50 means that ! will be exa
t on W if and only if 
 is not torsion inH1(M), and (W;!) 
an be made into a strong 
obordism if and only if 
 has no nullhomologous
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over whose page framing mat
hes its Seifert framing. An equivalent 
ondition is assumed in[GS12℄, whi
h only 
onstru
ts strong 
obordisms.Remark 1.4. Though ! in the above 
onstru
tion is sometimes an exa
t symple
ti
 form,(W;!) is never an exa
t 
obordism, i.e. it does not admit a global primitive that restri
tsto suitable 
onta
t forms on both boundary 
omponents. This follows immediately from theobservation that the 
ore K� � W is a symple
ti
 submanifold whose oriented boundary isa negatively transverse link in (M; �), hen
e if ! = d� and �jTM de�nes a 
onta
t form on(M; �) with the proper 
o-orientation, then0 < ZK� ! = Z�K� � < 0;a 
ontradi
tion. A similar remark applies to the round handle 
obordism 
onsidered in The-orems 6 and 60 below. The non-exa
tness of (W;!) is important be
ause there are examplesin whi
h it is known that no exa
t 
obordism from (M; �) to (M 0; �0) exists (see x2.4).To des
ribe the blown up version of these results, we 
ontinue with the same setup as aboveand 
hoose a set of interfa
e tori, I0 = T1 [ : : : [ TN � I;together with an orientation for ea
h Tj � I0. There is then a distinguished positively orientedhomology basis f�j; �jg � H1(Tj);where �j is represented by some oriented boundary 
omponent of a page adja
ent to Tj , and�j is represented by a 
losed leaf of the 
hara
teristi
 foliation de�ned on Tj by �. Choosetubular neighborhoods N (Tj) � M of Tj and identify them with S1 � [�1; 1℄ � S1 to de�nepositively oriented 
oordinates (�; �; �) in whi
h �j = [S1�f�g℄ and �j = [f�g�S1℄. We maythen assume that for every �0 2 S1 the loop f(�0; 0)g � S1 is Legendrian, and the �bration �takes the form �(�; �; �) = (� for � > 0;�� for � < 0:Denote the two oriented boundary 
omponents of N (Tj) by�N (Tj) = �+N (Tj) t ��N (Tj);where we de�ne the oriented tori ��N (Tj) = �(S1�f�1g�S1) with 
orresponding homologybases f��j ; ��j g � H1(��N (Tj)) su
h that��j := �j 2 H1(N (Tj)) and ��j := ��j 2 H1(N (Tj)):Denote the union of all the neighborhoodsN (Tj) by N (I0). Then writing two identi
al 
opiesof � as �� and 
hoosing a positively oriented 
oordinate s 2 S1 for ea
h boundary 
omponent�j��, we 
onstru
t new 
ompa
t oriented manifoldsM 0 = (M n N (I0)) [ (��+ � S1) [ (��� � S1);M 00 = (M0 n N (I0)) [ (��+ � S1) [ (��� � S1)from M and M0 respe
tively by gluing along orientation reversing di�eomorphisms �j�� �S1 ! ��N (Tj) that take the form (s; t) 7! (s;�1;�t)

12 CHRIS WENDLin the 
hosen 
oordinates. Thus in homology, [�j���f�g℄ 2 H1(�j���S1) is identi�ed with��j and [f�g � S1℄ 2 H1(�j�� � S1) with ��j .On
e again the �bration � : M n (B [ I)! S1 extends smoothly over the glued in region(�+ t ��)� S1 as the proje
tion to S1, so M 00 inherits from � a natural blown up summedopen book �0, with interfa
e I n I0, binding B and �bers that are obtained from the �bersof � by atta
hing �(�+ t ��) along the boundary 
omponents adja
ent to I0. We say that�0 is obtained by �-de
oupling surgery along I0.Remark 1.5. The 
hoi
e of the term de
oupling is easiest to justify in the spe
ial 
ase � = D :then the surgery 
uts openM along T and glues in two solid tori that 
ap o� the 
orrespondingboundary 
omponents of the pages.Even ifM is 
onne
ted,M 0 may in general be dis
onne
ted, and there is a (possibly empty)
omponent M 0
at �M 0;de�ned as the union of all the 
losed pages of �0. Denote M 0
onvex :=M 0 nM 0
at, so thatM 0 =M 0
onvex tM 0
at:On M 0
onvex there is a 
onta
t stru
ture �0 whi
h mat
hes � away from the region of surgeryand is supported by �0 in M 0
onvex \M 00.The above surgery 
orresponds topologi
ally to the atta
hment of a round handle: denotethe annulus by A = [�1; 1℄ � S1and de�ne bH� = ��� A ;with boundary � bH� = ��� bH� [ �+ bH� := � (��� A ) [ (��� �A ) ;where we identify the two 
onne
ted 
omponents of �+ bH� = ���f�1; 1g�S1 with����S1via the orientation preserving maps(1.2) � �� � S1 ! ��� f�1g � S1 : (p; �) 7! (p;�1;��):Using the identi�
ations of the neighborhoods N (Tj) with S1� [�1; 1℄�S1 
hosen above, we
an identify �� bH� = ��� A = NGj=1 �j�� [�1; 1℄ � S1with N (I0) and use this to atta
h bH� to [0; 1℄ �M by gluing �� bH� to N (I0) � f1g �M ,de�ning an oriented 
obordism(1.3) W = ([0; 1℄ �M) [N (I0) bH�with boundary �W = M 0 t (�M). Use the 
oordinates (�; �; �) 2 S1 � [�1; 1℄ � S1 on ea
hN (Tj) � N (I0) to de�ne an oriented link bB0 as the union of all the loopsS1 � f(0; 0)g � Tj � I0:Then the 
ore and 
o-
ore respe
tively 
an be de�ned as oriented submanifolds bybK� := ([0; 1℄ � bB0) [ bB0 (��� f(0; 0)g) �W



NON-EXACT SYMPLECTIC COBORDISMS 13and bK0� := fpg � A �Wfor an arbitrary interior point p 2 �. We have � bK� = � bB0 �M , � bK0� �M 0 and bK�� bK0� = 1.Theorem 6. Suppose ! is a symple
ti
 form on [0; 1℄ �M whi
h satis�es !j� > 0 and(1.4) NXj=1 ZTj ! = 0;and W denotes the round handle 
obordism of (1.3). Then after a symple
ti
 deformationaway from f0g �M , ! 
an be extended symple
ti
ally over W so that it is positive on bK�,bK0� and the pages of �0, and ! dominates a supported 
onta
t stru
ture �0 on M 0
onvex. Inparti
ular, after 
apping M 0
at by atta
hing a Lefs
hetz �bration over the disk as in [Eli04℄,this de�nes a weak symple
ti
 
obordism from (M; �) to (M 0
onvex; �0).We will refer to (W;!) in this 
onstru
tion from now on as a �-de
oupling 
obordism.Remark 1.6. The homologi
al 
ondition (1.4) is 
learly not removable sin
e the 2-
y
lesPNj=1[��N (Tj)℄ both be
ome nullhomologous in M 0. Note that here the 
hosen orienta-tions of the tori Tj play a role, i.e. they 
annot in general be 
hosen arbitrarily unless ! isexa
t. No su
h issue arose in Theorem 5 be
ause ! is always exa
t on a neighborhood of abinding 
ir
le. This is the reason why the \
-separating" 
ondition is needed for many of theresults in x1.1, and there are easy examples to show that those theorems are not true withoutit (
f. Remark 2.3).For the analogue of Theorem 50 in this 
ontext, we shall restri
t for simpli
ity to the 
asewhere RTj ! vanishes for every Tj � I0. Note that in this 
ase, the Poin
ar�e dual of !jTM 
anbe represented by a real 1-
y
le in M n N (I0).Theorem 60. If RTj ! = 0 for ea
h T1; : : : ; TN � I0, then the symple
ti
 
obordism (W;!)
onstru
ted by Theorem 6 
an be arranged so that the following holds. Choose a real 1-
y
leh in M n N (I0) with [h℄ 2 H1(M ;R) Poin
ar�e dual to the restri
tion of ! to f0g �M . Thenthere is a number 
 > 0 withPD([!℄) = [0; 1℄ � [h℄ + 
 [bK0�℄ 2 H2(W;�W ;R):In parti
ular, if f0g �M � (W;!) is (strongly) 
on
ave then the following 
onditions areequivalent:(i) ! is exa
t.(ii) [bK0�℄ = 0 2 H2(W;�W ;R).(iii) There are no integers k;m1; : : : ;mN 2 Z with k > 0 and PNj=1mj = 0 su
h that thehomology 
lass k(�1 + : : :+ �N ) + NXj=1mj�j 2 H1(I0)is trivial in H1(M).Further, if f0g �M is 
on
ave and M 0
at = ;, the following 
onditions are also equivalent:(i) (W;!) 
an be arranged to be a strong symple
ti
 
obordism from (M; �) to (M 0; �0).(ii) [� bK0�℄ = 0 2 H1(M 0;R).

14 CHRIS WENDL(iii) There are no integers k�;m�1 ; : : : ;m�N 2 Z with k�+k+ > 0 andPjm+j =Pjm�j = 0su
h thatk+ NXj=1 �+j + k� NXj=1 ��j + NXj=1m+j �+j + NXj=1m�j ��j = 0 2 H1(M n I0):Finally, if M 0
at and M 0
onvex are both nonempty, assume the labels are 
hosen so that �+ �S1 �M 0
onvex and �� � S1 �M 0
at, and 
onsider the weak 
obordism(W;!) = (W;!) [M 0
at (X;!X)from (M; �) to (M 0
onvex; �0) obtained by 
apping o� M 0
at with a symple
ti
 Lefs
hetz �brationX ! D as in [Eli04℄. The following 
onditions are then equivalent:(i) (W;!) 
an be arranged to be a strong symple
ti
 
obordism from (M; �) to (M 0
onvex; �0).(ii) [� bK0� \M 0
onvex℄ = 0 2 H1(M 0
onvex;R).(iii) There are no integers k;m1; : : : ;mN 2 Z with k > 0 and Pjmj = 0 su
h that thehomology 
lass k NXj=1 �+j + NXj=1mj�+jis trivial in H1(M n I0).We now dis
uss some appli
ations of the 
apping and de
oupling 
obordisms to EmbeddedConta
t Homology (
f. [Hut10℄). Re
all that for a 
losed 
onta
t 3-manifold (M; �) andhomology 
lass h 2 H1(M), ECH�(M; �;h) is the homology of a 
hain 
omplex generated bysets of Reeb orbits with multipli
ities whose homology 
lasses add up to h, with a di�erential
ounting embedded index 1 holomorphi
 
urves with positive and negative 
ylindri
al endsin the symple
tization R �M . Similarly, 
ounting embedded index 2 holomorphi
 
urvesthrough a generi
 point in M yields the so-
alled U -map,U : ECH�(M; �;h)! ECH��2(M; �;h):The ECH 
onta
t invariant 
(M; �) 2 ECH�(M; �; 0)is the homology 
lass represented by the \empty orbit set". It is equivalent via an isomor-phism of Taubes [Tau10℄ to a 
orresponding invariant in Seiberg-Witten theory, and also tothe Ozsv�ath-Szab�o 
onta
t invariant [OS05℄ by re
ent work of Colin-Ghiggini-Honda [CGH℄and independently Kutluhan-Lee-Taubes [KLT℄. Like those invariants, its vanishing gives anobstru
tion to strong symple
ti
 �llings, and a version with twisted 
oeÆ
ients also obstru
tsweak �llings.Remark 1.7. Te
hni
ally the de�nitions of ECH�(M; �;h) and 
(M; �) depend not just on � butalso on a 
hoi
e of 
onta
t form and almost 
omplex stru
ture. However, Taubes' isomorphismto Seiberg-Witten Floer homology implies that they are a
tually independent of these 
hoi
es,thus we are safe in writing ECH�(M; �;h) without expli
itly mentioning the extra data.



NON-EXACT SYMPLECTIC COBORDISMS 15An argument due to Eliashberg3 shows that 
(M; �) = 0 whenever (M; �) is overtwisted,and a mu
h more general 
omputation in [Wen℄ established the same result whenever (M; �)has planar k-torsion for any k � 0. The latter result 
an now be re
overed as a 
onsequen
e ofTheorem 1, using a result re
ently announ
ed by Hut
hings [Hut℄ that (M�; ��) 2 (M+; �+)and 
(M+; �+) = 0 imply 
(M�; ��) = 0. This is highly non-obvious sin
e the 
obordismswe 
onstru
t are never exa
t (see Remark 1.4), and non-exa
t 
obordisms do not in generalgive rise to well-behaved maps on ECH in its standard form. The situation be
omes slightlysimpler however under stri
ter assumptions, e.g. Hut
hings and Taubes have explained in[HT℄ how to 
onstru
t su
h maps for the 
ase h = 0 whenever (W;!) is a strong 
obordismwith an exa
t symple
ti
 form, sometimes 
alled a \weakly exa
t" 
obordism:Proposition 1.8 ([HT℄). Suppose (W;!) is a strong symple
ti
 
obordism from (M�; ��) to(M+; �+) su
h that ! is exa
t. Then there is a U -equivariant mapECH�(M+; �+; 0)! ECH�(M�; ��; 0)that takes 
(M+; �+) to 
(M�; ��).Remark 1.9. For the example of a 2-handle 
obordism 
onstru
ted from an ordinary openbook de
omposition, the analogue of Proposition 1.8 in Heegaard Floer homology has beenestablished by John Baldwin [Bal℄.Let us now dis
uss a 
onje
tural generalization of Proposition 1.8 whi
h 
ould remove all
onditions on !. Re
all that for any 
losed 2-form 
 onM , one 
an de�ne ECH with twisted
oeÆ
ients in the group ring Z[H2(M)= ker 
℄, whi
h we shall abbreviate byECH(M; �;h;
) := ECH�M; �;h;Z[H2(M)= ker 
℄�:Here the di�erential keeps tra
k of the homology 
lasses in H2(M)= ker 
 of the holomorphi

urves being 
ounted, see [HS06℄. The U -map 
an again be de�ned as a degree �2 map onECH(M; �;h;
), and the twisted 
onta
t invariant 
(M; �; 
) is again the homology 
lassin ECH(M; �; 0;
) generated by the empty orbit set. The vanishing results in [Wen℄ give
onvin
ing eviden
e that a more general version of the map in Proposition 1.8 should exist,in parti
ular with the following 
onsequen
e:Conje
ture 1. Suppose (W;!) is a �-
apping or �-de
oupling 
obordism from (M�; ��) to(M+; �+), and write 
� = !jTM�. Then:(1) If 
(M+; �+; 
+) vanishes, then so does 
(M�; ��; 
�).(2) If 
(M+; �+; 
+) is in the image of the map Uk on ECH(M+; �+; 0;
+) for somek 2 N, then 
(M�; ��; 
�) is in the image of Uk on ECH(M�; ��; 0;
�).The �rst part of the 
onje
ture would redu
e both the untwisted and twisted vanishingresults in [Wen℄ to the fa
t, proved essentially by Eliashberg in the appendix of [Yau06℄,that the fully twisted 
onta
t invariant vanishes for every overtwisted 
onta
t manifold. These
ond part is related to another result proved in [Wen℄, namely the twisted ECH version ofthe planarity obstru
tion of Oszv�ath-Stipsi
z-Szab�o [OSS05℄ in Heegaard Floer homology: if(M; �) is planar, then 
(M; �; 
) is in the image of Uk for all k and all 
. If the 
onje
tureholds, then this fa
t follows from Theorem 40 and the 
omputation of ECH(S3; �0).3In the appendix of [Yau06℄, Eliashberg sket
hes an argument to show that every overtwisted 
onta
tmanifold has trivial 
onta
t homology, and this argument also implies the vanishing of the ECH 
onta
tinvariant.

16 CHRIS WENDLThe obvious way to try to prove Conje
ture 1 would be by 
onstru
ting a U -equivariantmap ECH(M+; �+; 0;
+)! ECH(M�; ��; 0;
�)whi
h takes 
(M+; �+; 
+) to 
(M�; ��; 
�). Due to the non-exa
tness of ! and a resultingla
k of energy bounds, it seems unlikely that su
h a map would exist in general, but a moreprobable s
enario is to obtain a mapECH(M+; �+; 0;�!)! ECH(M�; ��; 0;�!);where �! is a Novikov 
ompletion of Z[H2(W )= ker!℄, and we take advantage of the naturalin
lusions H2(M�)= ker 
� ,! H2(W )= ker!to de�ne the ECH of (M�; ��) with 
oeÆ
ients in �!. In 
ases where M+ has 
onne
ted
omponents with 
losed leaves, one would expe
t this map to involve also the Periodi
 FloerHomology (
f. [HS05℄) of the resulting mapping tori. De�ning su
h a map would require aslightly more 
areful 
onstru
tion of the weak 
obordism (W;!), su
h that both boundary
omponents inherit stable Hamiltonian stru
tures whi
h 
an be used to atta
h 
ylindri
alends and de�ne reasonable moduli spa
es of �nite energy pun
tured holomorphi
 
urves.This 
an always be done due to a 
onstru
tion in [NW11℄, whi
h shows that suitable stableHamiltonian stru
tures exist for any desired 
ohomology 
lass on the boundary. It is probablyalso useful to observe that for an intelligent 
hoi
e of data, the holomorphi
 
urves in (W;!)with no positive ends 
an be enumerated pre
isely: we will show in Proposition 3.20 that allof them arise from the symple
ti
 
ore of the handle.2. Further appli
ations, examples and dis
ussionWe shall now give some 
on
rete examples of 
apping and de
oupling 
obordisms andsurvey a few more appli
ations, in
luding new proofs of several known results and one or twonew ones.2.1. The Gromov-Eliashberg theorem using holomorphi
 spheres. In [Wen,NW11℄,holomorphi
 
urve arguments were used to show that planar torsion is a �lling obstru
tion, butTheorems 1 and 2 make these proofs mu
h easier by using essentially \soft" methods to redu
ethem to the well-known result of Gromov-Eliashberg that overtwisted 
onta
t manifolds arenot weakly �llable. This does not of 
ourse make everything elementary, as the Gromov-Eliashberg theorem still requires some te
hnology|the original proof used a \Bishop family"of holomorphi
 disks with totally real boundary, and these days one 
an instead use pun
turedholomorphi
 
urves, Seiberg-Witten theory or Heegaard Floer homology if preferred. Whilethis te
hnologi
al overhead is probably not removable, we 
an use a de
oupling 
obordism tosimplify the level of te
hnology a tiny bit: namely we 
an redu
e it to the following standardfa
t whose proof requires only 
losed holomorphi
 spheres, e.g. the methods used in [M
D90℄.Lemma 2.1. If (W;!) is a 
onne
ted weak �lling of a nonempty 
onta
t manifold (M; �),then it 
ontains no embedded symple
ti
 sphere with vanishing self-interse
tion.This lemma follows essentially from M
Du�'s results [M
D90℄, but by today's standardsit is also easy to prove on its own: if one 
hooses a 
ompatible almost 
omplex stru
tureto make the boundary J-
onvex and the embedded symple
ti
 sphere J-holomorphi
, thenvanishing self-interse
tion implies that the latter lives in a smooth 2-dimensional moduli spa
e
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oupling
obordism. The left shows the e�e
t on the pages when a round handle D �A is atta
hed to a planar 0-torsion domain. The right shows the resulting
obordism and 
onsequent weak �lling whi
h furnishes a 
ontradi
tion toLemma 2.1.of holomorphi
 spheres that foliateW (ex
ept at �nitely many nodal singularities). This for
essome leaf of the foliation to hit the boundary tangentially, thus 
ontradi
ting J -
onvexity.Corollary ([Gro85,Eli90℄). Every weakly �llable 
onta
t manifold is tight.Proof. A s
hemati
 diagram of the proof is shown in Figure 1. Suppose (W;!) is a weak �llingof (M; �) and the latter is overtwisted. Then (M; �) 
ontains a planar 0-torsion domain4 M0,whose planar pie
e MP0 is a solid torus with disk-like pages, atta
hed along an interfa
e torusT = �MP0 to another subdomain whose pages are not disks. Sin
e [T ℄ = 0 2 H2(M), RT ! = 0and we 
an atta
h a D -de
oupling 
obordism along T , produ
ing a larger symple
ti
 manifold(W 0; !) whose boundary has two 
onne
ted 
omponents�W 0 =M 0
at tM 0
onvex;of whi
h the latter 
arries a 
onta
t stru
ture �0 dominated by !. The 
omponent M 0
athas 
losed sphere-like pages, and is thus the trivial symple
ti
 �bration S1 � S2 ! S1.After 
apping M 0
at by a symple
ti
 �bration D � S2 ! D , we then obtain a weak �llingof (M 0
onvex; �0) 
ontaining a symple
ti
 sphere with vanishing self-interse
tion, 
ontradi
tingLemma 2.1. �Remark 2.2. A related argument appears in [Gay06℄, using the fa
t that overtwisted 
onta
tmanifolds always have Giroux torsion; see also x2.3 below.4The fa
t that overtwistedness implies planar 0-torsion relies on Eliashberg's 
lassi�
ation of overtwisted
onta
t stru
tures [Eli89℄, quite a large result in itself. The original \Bishop disk" argument of Gromov andEliashberg had the advantage of not requiring this.
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PSfrag repla
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T�T+M�M+M 0�ZZ 0GT(M; �) � 1���+�overtwisted Figure 2. The torus (T 3; �2) 
an be 
onstru
ted out of four irredu
iblesubdomains 
ontaining 
ylindri
al pages with trivial monodromy. Atta
hingone D -de
oupling 
obordism yields an overtwisted S1 � S2, and one 
an thenatta
h a se
ond one to obtain a disjoint union of two 
opies of the tight S1�S2.2.2. Eliashberg's 
obordisms from T 3 to S3 t : : : t S3. Let T 3 = S1 � S1 � S1 with
oordinates (�; �; �) and de�ne for n 2 N the 
onta
t stru
ture(2.1) �n = ker [
os(2�n�) d� + sin(2�n�) d�℄ :These 
onta
t stru
tures are all tight, but Eliashberg showed in [Eli96℄ that they are notstrongly �llable for n � 2, whi
h follows from the fa
t that disjoint unions of multiple 
opiesof (S3; �0) are not �llable, together with the following:Theorem ([Eli96℄). For any n 2 N, (T 3; �n) is symple
ti
ally 
obordant to the disjoint unionof n 
opies of the tight 3-sphere.Proof. The torus (T 3; �n) admits a supporting summed open book de
omposition with 2nirredu
ible subdomains Mj ea
h having 
ylindri
al pages and trivial monodromy, atta
hedto ea
h other along 2n interfa
e tori I = Sj Tj su
h that Tj = Mj \ Mj+1 for j = Z2n.Atta
hing round handles D � A along every se
ond interfa
e torus T0; T2; : : : ; T2n�2 yields aweak symple
ti
 
obordism to the disjoint union of n 
opies of the tight S1 � S2 (Figure 2).The latter is also supported by an open book with 
ylindri
al pages and trivial monodromy,so we 
an atta
h a 2-handle D � D along one binding 
omponent to 
reate a weak 
obordismto the tight S3. The resulting weak 
obordism from T 3 to S3 t : : : t S3 
an be deformed toa strong 
obordism sin
e the symple
ti
 form is ne
essarily exa
t near S3 t : : : t S3. �Remark 2.3. Note that (T 3; �n) is always weakly �llable [Gir94℄, and indeed, the above 
obor-dism 
annot be atta
hed to any weak �lling (W;!) of (T 3; �n) for whi
h RTj ! 6= 0. This showsthat the homologi
al 
ondition in Theorem 6 
annot be removed.2.3. Gay's 
obordisms for Giroux torsion. Re
all that a 
onta
t manifold (M; �) is saidto have Giroux torsion GT(M; �) = n 2 N if n is the largest integer for whi
h (M; �) admitsa 
onta
t embedding of ([0; 1℄� T 2; �n), where �n is given by (2.1); we write GT(M; �) = 0 ifthere are no su
h embeddings and GT(M; �) =1 if they exist for arbitrarily large n. Every
onta
t manifold with positive Giroux torsion also has planar 1-torsion (see [Wen℄), thus asa spe
ial 
ase of Theorem 1, every (M; �) with GT(M; �) � 1 is symple
ti
ally 
obordantto something overtwisted; this was proved by David Gay in [Gay06℄ for GT(M; �) � 2. A
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Figure 3. Atta
hing a D -de
oupling 
obordism to (M; �) with Giroux tor-sion at least 1 yields an overtwisted 
onta
t manifold (M 0; �0). Atta
hing onemore yields the disjoint union of a 
onta
t manifold with a trivial symple
ti
S2-�bration over S1.
on
rete pi
ture of this 
obordism5 is shown in Figure 3: namely, if GT(M; �) � 1, then M
ontains a domain [0; 1℄ � T 2 �= M0 � M on whi
h � is supported by a blown up summedopen book with three irredu
ible subdomainsM0 =M� [T� Z [T+ M+atta
hed to ea
h other in a 
hain along two interfa
e tori T� = Z \M�. As is explained in[Wen℄, M0 is literally the 
losure of some open neighborhood of the standard Giroux torsiondomain ([0; 1℄�T 2; �1) inM , and the middle segment Z 
an be identi�ed with [1=4; 3=4℄�T 2in ([0; 1℄ � T 2; �1): in parti
ular it has 
ylindri
al pages with trivial monodromy. LikewiseM+ and M� have 
ylindri
al pages but nontrivial monodromy in general|this detail willplay no role in the following. Atta
hing a round handle D � A along T� produ
es a weaksymple
ti
 
obordism to a new 
onta
t manifoldM 0, 
ontaining the dis
onne
ted domainM 00shown in Figure 3: in parti
ular M� and Z are ea
h transformed into subdomains M 0� andZ 0 with disk-like pages. Now Z 0 [M+ � M 0 
ontains an overtwisted disk; indeed, it is aplanar 0-torsion domain. Observe that this 
onstru
tion 
an also be used to show that (M; �)is not weakly �llable if the torsion domain separates M , as then RT� ! = 0 for any symple
ti
form ! arising from a weak �lling.Gay's proof in [Gay06℄ that Giroux torsion obstru
ts strong �lling did not dire
tly use theabove 
obordism, but proved instead that (M; �) with GT(M; �) � 1 admits a symple
ti

obordism to some non-empty 
onta
t manifold su
h that the 
obordism itself 
ontains asymple
ti
 sphere with vanishing self-interse
tion|Gay's argument then used gauge theory5Both the 
obordism in Figure 3 and the one that is 
onstru
ted expli
itly in [Gay06℄ for the 
ase GT(M; �) �2 are weak 
obordisms, not strong in general. As David Gay has pointed out to me, these 
an always be turnedinto strong 
obordisms by atta
hing additional 2-handles to make the positive boundary an overtwisted rationalhomology sphere (see the proof of Theorem 1 in x3.7).

20 CHRIS WENDLto derive a 
ontradi
tion if (M; �) has a �lling, but one 
an just as well use Lemma 2.1 above.A 
lose relative of Gay's 
obordism 
onstru
tion is easily obtained from the above pi
ture:atta
hing round handles D � A along both T� and T+, the top of the 
obordism 
ontains a
onne
ted 
omponent with 
losed sphere-like pages (the top pi
ture in Figure 3), whi
h 
an be
apped by D �S2 to produ
e a 
obordism that 
ontains symple
ti
 spheres of self-interse
tionnumber 0.2.4. Some new examples with M� 2M+ but M� �M+. Gromov's theorem [Gro85℄ onthe non-existen
e of exa
t Lagrangians in R2n provides perhaps the original example of a pairof 
onta
t manifolds that are strongly but not exa
tly 
obordant: indeed, viewing (T 3; �1) asthe boundary of a Weinstein neighborhood of any Lagrangian torus in the standard strong�lling of the tight 3-sphere (S3; �0), we obtain(T 3; �1) 2 (S3; �0) but (T 3; �1) � (S3; �0):The nonexisten
e of the exa
t 
obordism here 
an also be proved by the argument of Hofer[Hof93℄ mentioned in the introdu
tion, whi
h implies that if (M; �) admits a Reeb ve
tor�eld with no 
ontra
tible periodi
 orbit, then (M; �) � (M 0; �0) whenever either (M 0; �0) isovertwisted or M 0 �= S3. Together with Theorem 1, this implies that for any (MOT; �OT)overtwisted and n � 2,(T 3; �n) 2 (MOT; �OT) but (T 3; �n) � (MOT; �OT):A subtler obstru
tion to exa
t 
obordisms is de�ned in joint work of the author with JankoLats
hev [LW11℄ via Symple
ti
 Field Theory, leading to the following example. For anyinteger k � 1, suppose � is a 
losed, 
onne
ted and oriented surfa
e of genus g � k, and� � � is a multi
urve 
onsisting of k disjoint embedded loops whi
h divide � into exa
tlytwo 
onne
ted 
omponents � = �+ [� ��;su
h that �+ has genus 0 and �� has genus g � k + 1 > 0. By a 
onstru
tion due to Lutz[Lut77℄, the produ
t Mk;g := S1 � �then admits a unique (up to isotopy) S1-invariant 
onta
t stru
ture �k;g su
h that the 
onvexsurfa
es f�g � � have dividing set �. The 
onta
t manifold (Mk;g; �k;g) then has planar(k� 1)-torsion, as the two subsets S1��� 
an be regarded as the irredu
ible subdomains ofa supporting summed open book with pages f�g���, so we view S1��+ as the planar pie
eand S1 � �� as the padding (see De�nition 3.3). In parti
ular, (Mk;g; �k;g) is overtwisted ifand only if k = 1, and for k � 2 it has a Reeb ve
tor �eld with no 
ontra
tible periodi
 orbits.It turns out in fa
t that ea
h in
rement of k 
ontains an obstru
tion to exa
t �llings that isinvisible in the non-exa
t 
ase.Theorem 7. If k > ` � 1 then for any g � k and g0 � `,(Mk;g; �k;g) 2 (M`;g0 ; �`;g0) but (Mk;g; �k;g) � (M`;g0 ; �`;g0)Proof. The nonexisten
e of the exa
t 
obordism is a result of [LW11℄. The existen
e ofthe non-exa
t 
obordism follows immediately from Corollary 1, but in 
ertain 
ases one 
an
onstru
t it mu
h more expli
itly as in Figure 4. In parti
ular, (Mk;g; �k;g) is supported by asummed open book 
onsisting of the two irredu
ible subdomains S1��� with pages f�g���atta
hed along k interfa
e tori. Atta
hing D � A along one of the interfa
e tori gives a weakD -de
oupling 
obordism to (Mk�1;g�1; �k�1;g�1). Theorem 60 then implies that this 
an be
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it 
obordism from (M3;3; �3;3) to (M2;2; �2;2) as in theproof of Theorem 7 
an be realized as a D -de
oupling 
obordism.deformed to a strong 
obordism, as the restri
tion of the symple
ti
 form to Mk�1;g�1 isPoin
ar�e dual to a multiple of the boundary of the 
o-
ore; the latter 
onsists of two loops ofthe form S1 � f�g with opposite orientations and is thus nullhomologous. �2.5. Open books with redu
ible monodromy. Any 
ompa
t, 
onne
ted and orientedsurfa
e � with boundary, together with a di�eomorphism ' : � ! � �xing the boundary,determines a 
onta
t 3-manifold (M'; �'), namely the one supported by the open book de-
omposition with page � and monodromy '. Re
all that the mapping 
lass of the monodromymap ' is said to be redu
ible if it has a representative that preserves some multi
urve � � �su
h that no 
omponent of � n� is a disk or an annulus. Consider the simple 
ase in whi
h 'preserves ea
h individual 
onne
ted 
omponent 
 � � and also preserves its orientation (notethat this is always true for some iterate of '). In this 
ase we may assume after a suitableisotopy that ' is the identity on a neighborhood of �� [ �, so that for some open annularneighborhood 
 � N (
) � � of ea
h 
urve 
 � �, M' 
ontains a thi
kened torus regionS1 �N (
) �M'on whi
h the open book de
omposition is the proje
tion to the �rst fa
tor. Let N (�) � �denote the union of all the neighborhoodsN (
) and de�ne the possibly dis
onne
ted 
ompa
tsurfa
e �� = � n N (�)with boundary; then ' restri
ts to this surfa
e as an orientation preserving di�eomorphism'� : �� ! �� that preserves ea
h 
onne
ted 
omponent and equals the identity near ���.Denote the 
onne
ted 
omponents of �� by�� = �1� t : : : t �N�and the 
orresponding restri
tions of '� by'j� : �j� ! �j�for j = 1; : : : ; N . Sin
e ea
h �j� ne
essarily has nonempty boundary, ea
h gives rise to a
onne
ted 
onta
t manifold (M'j� ; �'j�).Theorem 8. Given a redu
ible monodromy map ' : � ! � as des
ribed above, there existsa weak symple
ti
 
obordism (W;!) from(M'1� ; �'1�) t : : : t (M'N� ; �'N� ) to (M'; �');
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h is (strongly) 
on
ave at the negative boundary and su
h that the restri
tion of ! to thepositive boundary is Poin
ar�e dual to a positive multiple ofX
��[S1 � fp
g℄ 2 H1(M';R);where the summation is over the 
onne
ted 
omponents of � and p
 � N (
) denotes anarbitrarily 
hosen point.Moreover, given any 
losed 2-form 
 on M'1� t : : : tM'N� that dominates the respe
tive
onta
t stru
tures, one 
an also 
onstru
t a weak 
obordism between the 
onta
t manifoldsabove su
h that ! mat
hes 
 at the negative boundary.Proof. The 
obordism is a sta
k of A -
apping 
obordisms, 
onstru
ted by atta
hing handlesof the form [�1; 1℄�S1�D via Theorem 5 along all pairs of binding 
ir
les inM'1�t : : :tM'N�that 
orrespond to the same 
urve in �. The 
o-
ore of ea
h of these handles is a disk withboundary of the form S1 � f�g � S1 � N (
) � M', thus the 
ohomology 
lass of ! at thepositive boundary follows immediately from Theorem 50. �Corollary 3. If the 
onta
t manifolds (M'j� ; �'j�) for j = 1; : : : ; N are all weakly �llable,then so is (M'; �').Remark 2.4. John Baldwin [Bal℄ has observed that topologi
ally, the 
obordism of Theo-rem 8 
an also be obtained by performing boundary 
onne
ted sums on the pages and thenusing D -
apping 
obordisms to remove extra boundary 
omponents; in [Bal℄ this is used todedu
e a relation between the Ozsv�ath-Szab�o 
onta
t invariants of (M'; �') and the pie
es(M'1� ; �'1�); : : : ; (M'N� ; �'N� ). Additionally, Jeremy Van Horn-Morris and John Etnyre havepointed out to me that if one also assumes every 
omponent of �n� to interse
t ��, then one
an repla
e the weak 
obordism of Theorem 8 with a Stein 
obordism. This does not appearto be possible if any 
omponent of � n � has its full boundary in �.2.6. Etnyre's planarity obstru
tion. Let us say that a 
onne
ted 
onta
t 3-manifold(M; �) is maximally 
obordant to S3 if there exists a 
ompa
t 
onne
ted 4-manifold Wwith �W = S3 t (�M) su
h that for every 
losed 2-form 
 on M with 
j� > 0, there is asymple
ti
 form ! onW with !jTM = 
 de�ning a weak symple
ti
 
obordism from (M; �) to(S3; �0). Theorem 40 says that every planar 
onta
t manifold is maximally 
obordant to S3.It turns out that this suÆ
es to give an alternative proof of the planarity obstru
tion in[Etn04b, Theorem 4.1℄.Theorem 9. Suppose (M; �) is maximally 
obordant to S3. Then every 
onne
ted weak semi-�lling of (M; �) has 
onne
ted boundary and negative-de�nite interse
tion form.Proof. Let W1 be the 
ompa
t 4-manifold with �W1 = S3t(�M) guaranteed by the assump-tion, and suppose (W0; !) is a weak �lling of (M; �) t (M 0; �0), where (M 0; �0) is some other
onta
t manifold, possibly empty. If W =W0[MW1 is de�ned by gluing these two along M ,then by assumption ! 
an be extended over W1 so that (W;!) be
omes a weak �lling of(S3; �0) t (M 0; �0), implying that M 0 must be empty sin
e (S3; �0) is not weakly 
o-�llable.Now ! is exa
t near �W = S3, so without loss of generality we may assume (W;!) is a strong�lling of (S3; �0).We 
laim that the map indu
ed on homology H2(W0;Q) ! H2(W ;Q) by the in
lusion� : W0 ,! W is inje
tive. Indeed, if A 2 H2(W0;Q) satis�es RA ! 6= 0, then obviously R��A !



NON-EXACT SYMPLECTIC COBORDISMS 23is also nonzero and thus ��A 6= 0 2 H2(W ;Q). If RA ! = 0 but A 2 H2(W0;Q) is nontrivial,we 
an pi
k any 
losed 2-form � on W0 with RA � 6= 0 and repla
e ! by ! + �� for any� > 0 suÆ
iently small so that (W0; ! + ��) remains a weak �lling of (M; �). Then ! + ��also extends over W1, so that the above argument goes through again to prove that ��A isnontrivial.Finally, we use the fa
t that the strong �llings of (S3; �0) have been 
lassi�ed: by a resultof Gromov [Gro85℄ and Eliashberg [Eli90℄, W is ne
essarily di�eomorphi
 to a symple
ti
blow-up of the 4-ball, i.e. W �= B4#C P 2# : : :#C P 2 :Sin
e the latter has a negative-de�nite interse
tion form and �� : H2(W0;Q) ! H2(W ;Q) isinje
tive, the result follows. �Our proof of Theorem 40 
ombined with Conje
ture 1 would also reprove the algebrai
planarity obstru
tion established in [Wen℄, whi
h is the twisted ECH version of a HeegaardFloer theoreti
 result by due to Oszv�ath, Stipsi
z and Szab�o [OSS05℄. Note that the 
onditionof being maximally 
obordant to S3 does not require (M; �) to be �llable. It is also not 
learwhether there 
an exist non-planar 
onta
t manifolds that also satisfy this 
ondition; theauthor is unaware of any known invariants that would be able to dete
t this distin
tion.Question 3. Is there a non-planar 
onta
t 3-manifold whi
h is maximally 
obordant to S3?Note that if the assumption of Theorem 9 is relaxed to (M; �) 2 (S3; �0), then the resultbe
omes false: a 
ounterexample is furnished by the standard 3-torus (T 3; �1), whi
h admitsa 
obordism to (S3; �0) by Theorem 4 but also is strongly �lled by T �T 2, whose interse
tionform is inde�nite. Assuming a strong �lling (W0; !) of (M; �), the proof above fails pre
iselyat the point where the in
lusionW0 ,!W is required to indu
e an inje
tive mapH2(W0;Q) !H2(W ;Q). However, it still follows by the same argument that H2(W0;Q) 
annot 
ontainany 
lass with stri
tly positive square, hen
e we obtain the following weaker result withmore general assumptions|it applies in parti
ular to all the 
onta
t manifolds 
overed byTheorem 4.Theorem 10. Suppose (M; �) is a 
losed 
onne
ted 
onta
t 3-manifold with (M; �) 2 (S3; �0).Then every strong semi-�lling (W;!) of (M; �) has 
onne
ted boundary and b+2 (W ) = 0.2.7. Some remarks on planar torsion. The �lling obstru
tion known as planar torsionwas introdu
ed in [Wen℄ with mainly holomorphi
 
urves as motivation, as it provides themost general setting known so far in whi
h the existen
e and uniqueness of 
ertain embeddedholomorphi
 
urves leads to a vanishing result for the ECH 
onta
t invariant. In light ofour 
obordism 
onstru
tion, however, one 
an now provide an alternative motivation for thede�nition in purely symple
ti
 topologi
al terms. The �rst step is to understand what kindsof blown up summed open books automati
ally support overtwisted 
onta
t stru
tures: usingEliashberg's 
lassi�
ation theorem [Eli89℄ and Giroux's 
riterion (
f. [Gei08℄), this naturallyleads to the notion of planar 0-torsion. Then a more general blown up summed open bookde�nes a planar k-torsion domain for some k � 1 if and only if it 
an be transformed intoa planar 0-torsion domain by a sequen
e of D -
apping and D -de
oupling surgeries; this isthe essen
e of Proposition 3.4 proved below. From this perspe
tive, the de�nition of planartorsion and the 
ru
ial role played by blown up summed open books seem 
ompletely natural.More generally, the partially planar domains are pre
isely the blown up summed open booksfor whi
h a sequen
e of D -
apping and D -de
oupling 
obordisms 
an be used to 
onstru
t a

24 CHRIS WENDLsymple
ti
 
ap that 
ontains a symple
ti
 sphere with square 0. As far as the author is aware,almost all existing uniqueness or 
lassi�
ation results for symple
ti
 �llings (e.g. [Wen10,Lis08,OO05℄) apply to 
onta
t manifolds that admit 
aps of this type. However, it does not alwayssuÆ
e to 
onstru
t an appropriate 
ap and then apply M
Du�'s results [M
D90℄: e.g. the
lassi�
ation of strong �llings of planar 
onta
t manifolds in terms of Lefs
hetz �brations[Wen10, LVW℄ truly relies on pun
tured holomorphi
 
urves, as there is no obvious way toprodu
e a Lefs
hetz �bration with bounded �bers out of a family of holomorphi
 spheres ina 
ap.Finally, we remark that while Theorems 1 and 2 substantially simplify the proof that planartorsion is a �lling obstru
tion, they do not reprodu
e all of the results in [Wen℄: in parti
ularthe te
hnology of Embedded Conta
t Homology is not yet far enough along to dedu
e thevanishing of the 
onta
t invariant from a non-exa
t 
obordism. Moreover, a proof using
apping and de
oupling 
obordisms simpli�es the te
hnology needed but does not remove it,as a simpli�ed version of the very same te
hnology is required to prove the Gromov-Eliashbergtheorem (
f. x2.1). From the author's own perspe
tive, the idea for 
onstru
ting symple
ti

obordisms out of these types of handles would never have emerged without a holomorphi

urve pi
ture in the ba
kground (
f. Figure 7), and as we will dis
uss in x3.8, after one has
onstru
ted the symple
ti
 stru
ture, it is pra
ti
ally no extra e�ort to add a foliation byembedded J -holomorphi
 
urves whi
h reprodu
es the J -holomorphi
 blown up open booksof [Wen℄ on both boundary 
omponents. The moral is that whether one prefers to provenon-�llability results by dire
t holomorphi
 
urve arguments or by 
onstru
ting 
obordismsto redu
e them to previously known results, it is essentially the same thing: neither proofwould be possible without the other. 3. The detailsThe plan for proving the main results is as follows. We begin in x3.1 by reviewing the fun-damental de�nitions involving blown up summed open books and planar torsion, 
ulminatingwith the (more or less obvious) observation that one 
an always use 
apping or de
ouplingsurgery to de
rease the order of a planar torsion domain. In x3.2, we introdu
e a useful 
on-
rete model for a blown up summed open book and its supported 
onta
t stru
ture. This isapplied in x3.3 to write down a model of a weak �-de
oupling 
obordism, and minor modi�
a-tions explained in x3.4 yield a similar model for the �-
apping 
obordism. This 
ompletes the
obordism 
onstru
tion for the 
ase where the negative boundary is strongly 
on
ave (or moregenerally when the given symple
ti
 form ! in Theorem 5 or 6 is exa
t), see Remark 3.12. Forthe general 
ase, we need to show additionally that any given symple
ti
 form on [0; 1℄ �Msatisfying the ne
essary 
ohomologi
al 
ondition 
an be deformed so as to atta
h smoothlyto the model 
obordisms we've 
onstru
ted; this is shown in x3.5, thus 
ompleting the proofsof Theorems 5 and 6. We prove Theorems 50 and 60 in x3.6, answering the essentially 
oho-mologi
al question of when the weak 
obordism 
an be made strong, and when its symple
ti
form is exa
t. With these ingredients all in pla
e, the proofs of the main results from x1.1are 
ompleted in x3.7. Finally, x3.8 gives a brief dis
ussion of the existen
e and uniquenessof holomorphi
 
urves in the 
obordisms we've 
onstru
ted.3.1. Review of summed open books and planar torsion. The following notions wereintrodu
ed in [Wen℄, and we refer to that paper for more pre
ise de�nitions and furtherdis
ussion.
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ompa
t oriented 3-manifold, possibly with boundary, the latter 
onsistingof a union of 2-tori. A blown up summed open book � on M 
an be des
ribed via thefollowing data.(1) An oriented link B �M n �M , 
alled the binding.(2) A disjoint union of 2-tori I �M n �M , 
alled the interfa
e.(3) For ea
h interfa
e torus T � I a distinguished basis (�; �) of H1(T ), where � is de�nedonly up to sign.(4) For ea
h boundary torus T � �M a distinguished basis (�; �) of H1(T ).(5) A �bration � :M n (B [ I)! S1whose restri
tion to �M is a submersion.The distinguished homology 
lasses �; � 2 H1(T ) asso
iated to ea
h torus T � I [ �M are
alled longitudes and meridians respe
tively, and the oriented 
onne
ted 
omponents ofthe �bers ��1(
onst) are 
alled pages. We assume moreover that the �bration � 
an beexpressed in the following normal forms near the 
omponents of B [ I [ �M . As in anordinary open book de
omposition, ea
h binding 
ir
le 
 � B has a neighborhood admitting
oordinates (�; �; �) 2 S1 � D , where (�; �) are polar 
oordinates on the disk (normalized sothat � 2 S1 = R=Z), su
h that 
 = f� = 0g and(3.1) �(�; �; �) = �:Near an interfa
e torus T � I, we 
an �nd a neighborhood with 
oordinates (�; �; �) 2S1 � [�1; 1℄ � S1 su
h that T = f� = 0g = S1 � f0g � S1 with (�; �) mat
hing the naturalbasis of H1(S1 � f0g � S1), and(3.2) �(�; �; �) = (� for � > 0,�� for � < 0.A neighborhood of a boundary torus T � �M similarly admits 
oordinates (�; �; �) 2 S1 �[0; 1℄ � S1 with T = S1 � f0g � S1 and(3.3) �(�; �; �) = �:Observe that unlike the normal form (3.1), the map (3.3) is well de�ned at � = 0, sin
e thereare no polar 
oordinates and hen
e no 
oordinate singularity. The above 
onditions implythat the 
losure of ea
h page is a smoothly immersed surfa
e, whose boundary 
omponentsare ea
h embedded submanifolds of B, I or �M , and in the last two 
ases homologous tothe distinguished longitude �. The \generi
" page has an embedded 
losure, but in isolated
ases there may be pairs of boundary 
omponents that are identi
al as oriented 1-dimensionalsubmanifolds in I.In general, any or all of B, I and �M may be empty, and M may also be dis
onne
ted.If B [ I [ �M = ; we have simply a �bration � : M ! S1 whose �bers are 
losed orientedsurfa
es. If I [ �M = ; but B 6= ; and M is 
onne
ted, we have an ordinary open book.We say that � is irredu
ible if the �bers ��1(
onst) are 
onne
ted, i.e. there is only oneS1-parametrized family of pages. More generally, any blown up summed open book 
an bepresented uniquely as a union of irredu
ible subdomainsM =M1 [ : : : [MN ;whi
h ea
h inherit irredu
ible blown up summed open books and are atta
hed together alongboundary tori (whi
h be
ome interfa
e tori in M).

26 CHRIS WENDLThe notion of a 
onta
t stru
ture supported by an open book generalizes in a natural way:we say that a 
onta
t stru
ture � on M is supported by � if it is the kernel of a Girouxform, a 
onta
t form whose Reeb ve
tor �eld is everywhere positively transverse to the pagesand positively tangent to their boundaries, and whi
h indu
es a 
hara
teristi
 foliation onI [ �M with 
losed leaves parallel to the distinguished meridians. A Giroux form exists andis unique up to homotopy through Giroux forms on any 
onne
ted manifold with a blownup summed open book, ex
ept in the 
ase where the pages are 
losed, i.e. B [ I [ �M = ;.The binding is then a positively transverse link, and the interfa
e and boundary are disjointunions of pre-Lagrangian tori.De�nition 3.1. An irredu
ible blown up summed open book is 
alled planar if its pageshave genus zero. An arbitrary blown up summed open book is then 
alled partially planarif its interior 
ontains a planar irredu
ible subdomain, whi
h we 
all a planar pie
e. Apartially planar domain is a 
onta
t 3-manifold (M; �), possibly with boundary, togetherwith a supporting blown up summed open book that is partially planar. For a given 
losed2-form 
 on M , and a partially planar domain (M; �) with planar pie
e MP � M , we saythat (M; �) is 
-separating if RT 
 = 0 for all interfa
e tori T of M that lie in MP , andfully separating if this is true for all 
.De�nition 3.2. A blown up summed open book is 
alled symmetri
 if it has empty bound-ary, all its pages are di�eomorphi
 and it 
ontains exa
tly two irredu
ible subdomainsM =M+ [M�;ea
h of whi
h has empty binding and interfa
e.The simplest example of a symmetri
 summed open book is the one whose pages are disks:this supports the tight 
onta
t stru
ture on S1 � S2 (
f. Figure 2, right).De�nition 3.3. For any integer k � 0, an 
-separating partially planar domain (M; �) withplanar pie
e MP � M is 
alled an 
-separating planar k-torsion domain if it satis�esthe following 
onditions:� (M; �) is not symmetri
.� �MP 6= ;.� The pages in MP have k + 1 boundary 
omponents.The (ne
essarily nonempty) subdomain M nMP is then 
alled the padding.We say that a 
onta
t manifold (M; �) with 
losed 2-form 
 has 
-separating planark-torsion if it 
ontains an 
-separating planar k-torsion domain. If this is true for all 
losed2-forms 
 on M , then we say (M; �) has fully separating planar k-torsion.It was shown in [Wen℄ that a 
onta
t manifold is overtwisted if and only if it has planar0-torsion, whi
h is always fully separating sin
e the interfa
e then interse
ts the planar pie
eonly at its boundary, a single nullhomologous torus. The proofs of Theorems 1 and 2 thusrest on the following easy 
onsequen
e of the pre
eeding de�nitions.Proposition 3.4. If M is a planar k-torsion domain for some k � 1, then it 
ontains abinding 
ir
le 
 or interfa
e torus T in its planar pie
e su
h that the following is true. LetM 0 denote the manifold with 
orresponding blown up summed open book obtained from M byD -
apping surgery along 
 or D -de
oupling surgery along T respetively. Then some 
onne
ted
omponent of M 0 is a planar `-torsion domain for some ` 2 fk � 2; k � 1g.
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ontains a planar pie
e MP with nonempty boundary, and if T0 ��MP denotes a boundary 
omponent, then the pages in MP have exa
tly one boundary
omponent adja
ent to T0. The pages in MP have k +1 boundary 
omponents, and withoutloss of generality we may assume no other irredu
ible subdomain in the interior of M hasplanar pages with fewer boundary 
omponents than this. Sin
e k � 1, these pages have atleast one boundary 
omponent adja
ent to some binding 
ir
le 
 or interfa
e torus T distin
tfrom T0. Performing D -
apping sugery to remove 
 or D -de
oupling surgery to remove Tprodu
es a new manifold M1 
ontaining a planar irredu
ible subdomain MP1 whose pageshave ` boundary 
omponents where ` is either k or k � 1; the latter 
an only result froma de
oupling surgery along T � MP n �MP . Thus M1 is a planar (` � 1)-torsion domainunless it is symmetri
. The latter would mean �M1 = ;, hen
e also �M = ;, and M1 nMP1is also irredu
ible and has planar pages with ` boundary 
omponents. This 
annot arise from
apping surgery along a binding 
ir
le or de
oupling surgery along a torus in the interior ofMP , as we assumed all planar pages in the interior of M outside of MP to have at leastk + 1 � ` + 1 boundary 
omponents. The only remaining possibility would be de
ouplingsurgery along T � �MP , but then symmetry of M1 would imply that M must also have beensymmetri
, hen
e a 
ontradi
tion. �3.2. A model for a blown up summed open book. Assume (M0; �) is a 
ompa
t 
onta
t3-manifold, possibly with boundary, supported by a blown up summed open book � withbinding B, interfa
e I and �bration� :M0 n (B [ I)! S1:We assume that ea
h 
onne
ted 
omponent of M0 
ontains at least one 
omponent of B [I [ �M0, so that � will support a 
onta
t stru
ture everywhere. It will be useful to identifythis with the following generalization of the notion of an abstra
t open book (
f. [Etn06℄).The 
losure of a �ber ��1(
onst) �M0 is the image of some 
ompa
t oriented surfa
e S withboundary under an immersion � : S #M0;whi
h is an embedding on the interior. The monodromy of the �bration then determines (upto isotopy) a di�eomorphism  : S ! S whi
h preserves 
onne
ted 
omponents and is theidentity in a neighborhood of the boundary, and we de�ne the mapping torusS = (S � R)= �with (z; t+ 1) � ( (z); t) for all t 2 R, z 2 S. Denote by� : S ! R=Z = S1the natural �bration.Let us label the 
onne
ted 
omponents of �S by�S = �1S [ : : : [ �nS;and for ea
h i = 1; : : : ; n 
hoose an open 
ollar neighborhood U i � S of �iS on whi
h  is theidentity. Denote the union of all these neighborhoods by U � S. Now for ea
h i = 1; : : : ; n,
hoose positively oriented 
oordinates(�; �) : U i ! S1 � [r; 1)

28 CHRIS WENDLfor some r 2 (0; 1). These neighborhoods give rise to 
orresponding 
ollar neighborhoods of�S , U i = U i � S1 � S ;whi
h 
an be identi�ed with S1 � [r; 1) � S1 via the 
oordinates (�; �; �). The index setI := f1; : : : ; ng 
omes with an obvious partitionI = IB [ II [ I� ;where IB = fi 2 I j �(�iS) � Bg;II = fi 2 I j �(�iS) � Ig;I� = fi 2 I j �(�iS) � �M0g:There is also a free Z2-a
tion on II de�ned via an involution� : II ! IIsu
h that j = �(i) if and only if �(�iS) and �(�jS) lie in the same 
onne
ted 
omponent of I.Now de�ne for ea
h i 2 I the domainNi = 8><>:S1 � D if i 2 IB ,S1 � [�1; 1℄ � S1 if i 2 II ,S1 � [0; 1℄ � S1 if i 2 I� ,and denote by (�; �; �) the natural 
oordinates on Ni, where for i 2 IB we view (�; �) as polar
oordinates on the disk with the angle normalized to take values in S1 = R=Z. Denote thesubsets f� = 0g byBabs = Gi2IB S1 � f0g � Gi2IBNi; Iabs = Gi2II S1 � f0g � S1 � Gi2IINi:The 
hosen 
oordinates on the neighborhoods U i then determine a gluing map� :[i2I U i !Gi2INiwhi
h takes U i to Ni, and we use this to de�ne a new 
ompa
t and oriented manifold, possiblywith boundary, Mabs0 = S [�  Gi2INi!, �;where the equivalen
e relation identi�es (�; �; �) 2 Ni for i 2 II with (�;��;��) 2 N�(i).This naturally 
ontains Babs and Iabs as submanifolds, and the �bration � : S ! S1 
anbe extended over Mabs0 n (Babs [ Iabs) so that it mat
hes the 
anoni
al �-
oordinate on Niwherever � > 0. Now M0 
an be identi�ed with Mabs0 via a di�eomorphism that maps B toBabs and I to Iabs, and transforms the �bration � :M0 n (B [ I)! S1 to �.A supported 
onta
t stru
ture on Mabs0 
an be de�ned as follows. First, de�ne a smooth1-form of the form �0 = (d� on S ,fi(�) d� + gi(�) d� on Ni, i 2 I,where fi; gi : [0; 1℄! R are smooth fun
tions 
hosen to have the following properties:



NON-EXACT SYMPLECTIC COBORDISMS 29(1) As � moves from 0 to 1, � 7! (fi(�); gi(�)) 2 R2 n f0g de�nes a path through the �rstquadrant from (1; 0) to (0; 1).(2) �0 is 
onta
t on f0 � � < rg � Ni.(3) fi(�) = 0 for � 2 [r; 1℄.(4) gi(�) = 1 for � 2 [r0; 1℄, for some positive number r0 < r.(5) g0i(�) > 0 for � 2 (0; r0).Remark 3.5. The 
onta
t 
ondition is satis�ed if and only if fig0i � f 0igi 6= 0, ex
ept at Babs,where the 
oordinate singularity 
hanges the 
ondition to g00i (0) 6= 0. One 
onsequen
e is thatf 0i(�) < 0 for � 2 [r0; r), hen
e fi(r0) > 0. The assumption that �0 is a smooth 1-form imposessome additional 
onditions, namely for i 2 IB, (�; �) 7! fi(�) and (�; �) 7! gi(�)=�2 mustde�ne smooth fun
tions at the origin in R2 (in polar 
oordinates), and for i 2 II , fi and gi
an be extended smoothly over [�1; 1℄ su
h thatfi(�) = f�(i)(��); gi(�) = �g�(i)(��):In parti
ular this implies (fi(�); gi(�)) = (0;�1) for � 2 [�1;�r℄. We will assume these
onditions are always satis�ed without further 
omment.The 
o-oriented distribution �0 := ker�0is a 
onfoliation on Mabs0 , whi
h is integrable on the mapping torus S and outside of this isa positive 
onta
t stru
ture. To perturb it to a global 
onta
t stru
ture, 
hoose a 1-form �on S whi
h satis�es d� > 0 and takes the form(3.4) � = (2� �) d�on U i. By a simple interpolation tri
k (
f. [Etn06℄), � 
an be used to 
onstru
t a 1-form � on S that satis�es d� j�0 > 0 and � = (2� �) d� on U i :Choosing � > 0 suÆ
iently small, we 
an bring ker(d�+ �� ) suÆ
iently C0-
lose to �0 on S so that d� jker(d�+�� ) > 0. Then a 
onta
t form that equals �0 near �Mabs0 
an be de�nedby(3.5) �� = 8><>:d�+ � � on S ,fi;�(�) d� + d� on f� 2 [r0; r℄g � Ni,�0 on f� � r0g � Ni,where the fa
t that fi(r0) > 0 allows us for � > 0 suÆ
iently small to 
hoose smooth fun
tionsfi;� : [0; 1℄! R satisfying� fi;�(�) = fi(�) for � 2 [0; r0℄,� f 0i;� < 0 for � 2 [r0; r℄, and� fi;�(�) = �(2� �) for � 2 [r; 1℄.Note that for i 2 II , fi;� also extends naturally over [�1; 1℄ with fi;�(�) = f�(i);�(��). All
onta
t forms that one 
an 
onstru
t in this way are homotopi
 to ea
h other through familiesof 
onta
t forms, so the resulting 
onta
t stru
ture�� := ker��is uniquely determined up to isotopy. Moreover, it is easy to 
he
k that the Reeb ve
tor�eld determined by �� is everywhere positively transverse to the pages: in parti
ular, �� is a

30 CHRIS WENDLGiroux form for the blown up summed open book we've 
onstru
ted on Mabs0 , thus (Mabs0 ; ��)is 
onta
tomorphi
 to (M0; �).3.3. A model de
oupling 
obordism. Assume now that the manifoldM0 from the previ-ous se
tion is embedded into a 
losed 
onta
t 3-manifold (M; �) su
h that � is an extension ofthe 
onta
t stru
ture that was given onM0. Without loss of generality, we 
an identify (M0; �)with the abstra
t model (Mabs0 ; ��), and assume in parti
ular that �0 and �� are 1-forms onMwhi
h restri
t on M0 to the models 
onstru
ted above, and on a neighborhood of M nM0de�ne mat
hing 
onta
t forms whose kernel is �.Our goal in this se
tion is to 
onstru
t a weak symple
ti
 
obordism that realizes a �-de
oupling surgery along some set of oriented interfa
e toriI0 = T1 [ : : : [ TN � I:The 
hosen orientation of ea
h Tj splits a tubular neighborhood N (Tj) � M of Tj naturallyinto positive and negative parts N (Tj) = N�(Tj) [N+(Tj)whose interse
tion is Tj . To simplify notation in the following, let us assume these neighbor-hoods are 
hosen and the page boundary 
omponents �S = �1S [ : : : [ �nS are ordered sothat for ea
h j = 1; : : : ; N ,N (Tj) = Nj = S1 � [�1; 1℄ � S1 and N+(Tj) = S1 � [0; 1℄ � S1:We will �x on N (Tj) the standard 
oordinates (�; �; �) of Nj, and assume all the fun
tions
hosen to de�ne �0 and �� are the same for all of these neighborhoods, so we 
an writef = fj; g = gj ; f� = fj;�for j = 1; : : : ; N .For Theorems 5 and 6, the 
obordism we 
onstru
t will need to be atta
hed to a trivial
obordism of the form ([0; 1℄ �M;!), whi
h will be impossible if our model symple
ti
 formdoes not mat
h ! at least 
ohomologi
ally at f1g�M . In order to realize the right 
ohomology
lass in the model, we 
hoose a 
losed 2-form 
0 on M representing an arbitrary 
ohomology
lass for whi
h the 
ondition (1.4) is satis�ed. Sin
e we only 
are about 
0 up to 
ohomology,we are free to add an exa
t 2-form and thus assume 
0 satis�es
0 = 
j d� ^ d� on N (Tj)for ea
h j = 1; : : : ; N , where 
j 2 R are 
onstants satisfying(3.6) NXj=1 
j = 0:Sin
e �0 ^ d�� > 0 everywhere on M , we 
an de�ne an exa
t symple
ti
 form on the trivial
obordism [0; 1℄ �M as follows: �x any smooth, stri
tly in
reasing fun
tion ' : [0; 1℄ ! Rwith '(0) = 0 and j'(t)j uniformly small, and set(3.7) !0 = d ('(t)�0 + ��) :If k'kL1 is suÆ
iently small then !0 is symple
ti
 and restri
ts positively to both � and thepages of �, everywhere on [0; 1℄ �M . Now if C > 0 is a suÆ
iently large 
onstant, then the2-form(3.8) !C := C!0 +
0



NON-EXACT SYMPLECTIC COBORDISMS 31also has these properties. In the following we shall always assume C is arbitrarily largewhenever 
onvenient. Note that for the 
ase of Theorems 5 and 6 where the given ! on[0; 1℄ �M is exa
t, we may assume without loss of generality that 
0 � 0, see Remark 3.12.To 
onstru
t a 
obordism 
orresponding to the round handle atta
hment, we shall �rst\dig a hole" in the trivial 
obordism [0; 1℄ �M near ea
h of the tori f1g � Tj . In order to�nd ni
e 
oordinates near the boundary of the hole, it will be useful to 
onsider the ve
tor�eld X� on [0; 1℄ �N (Tj) de�ned by the 
ondition!0(X�; �) = �d�:Lemma 3.6. The ve
tor �eld X� is lo
ally Hamiltonian with respe
t to !C and takes the form(3.9) X� = A(t; �) �t +B(t; �) ��for some smooth fun
tions A;B : [0; 1℄ � [1; 1℄! R with the following properties:(1) For �� 2 [r; 1℄, A(t; �) = 0 and B(t; �) = �1� .(2) For �� 2 [r0; r℄, A(t; �) = 0 and �B(t; �) > 0.(3) For � 2 (�r0; r0), A(t; �) < 0.Proof. By a dire
t 
omputation, X� takes the form (3.9) with A and B satisfying the linearsystem ��'0(t)f(�) � ['(t)f 0(�) + f 0�(�)℄'0(t)g(�) ['(t) + 1℄ g0(�) ��A(t; �)B(t; �)� = �10� :The determinant �(t; �) of this matrix is always negative sin
e the 
onta
t 
ondition requiresf(�)g0(�) � f 0(�)g(�) > 0 for j�j < r, and for �� 2 [r; 1℄ we have g(�) = �1, �f 0(�) � 0 and�f 0�(�) < 0. The general solution for A and B 
an thus be written as�A(t; �)B(t; �)� = 1�(t; �) �['(t) + 1℄ g0(�)�'0(t)g(�) � :The stated 
onditions on A(t; �) and B(t; �) then follow immediately from the 
onditionswe've pla
ed on f , g, f� and '.In light of (3.9), X� is in the kernel of d� ^ d�, and we 
on
lude easily that it is lo
allyHamiltonian sin
e LX�!C = d�X� (C!0 + 
j d� ^ d�) = d (�C d�) = 0: �Due to the lemma, we 
an 
hoose a smoothly embedded 
urve[�1; 1℄! [1=2; 1℄ � [�1; 1℄ : � 7! (t(�); �(�))that is everywhere transverse to the ve
tor �eld (3.9) and also satis�es (t(0); �(0)) = (1=2; 0)and (t(�); �(�)) = (��;�1)near � = �1 (see Figure 5). Writing the annulus as A = [�1; 1℄ � S1, use the 
urve just
hosen to de�ne an embedding	 : S1 � A ,! [0; 1℄ �N (Tj) : (�; �; �) 7! (t(�); �; �(�); �);whi
h tra
es out a smooth hypersurfa
e HTj � [0; 1℄�N (Tj) that meets f1g�M transverselyat the pair of tori f1g � �N (Tj). Denote byUTj � [0; 1℄ �M
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at(M 0
onvex; �0)MP0� � �T(W 0; !)D � S2S1 � S2(W;!)T1T2T3T0M0M1M2M3(T3; �2)(S1 � S2; �OT)(S1 � S2; �0) t (S1 � S2; �0)T�T+M�M+M 0�ZZ 0GT(M; �) � 1���+�overtwistedFigure 5. The path (t(�); �(�)) transverse to the ve
tor �eld of (3.9).the interior of the 
omponent of ([0; 1℄�M)nHTj that 
ontains f1g�Tj (see Figure 6). Observethat by 
onstru
tion, UTj lies entirely within [1=2; 1℄ � N (Tj), and the lo
ally Hamiltonianve
tor �eld X� points transversely outward at �UT = HTj . Thus for suÆ
iently small Æ > 0,we 
an use the 
ow 'tX� of X� to parametrize a neighborhood of HTj in UT by an embeddinge	 : (1� Æ; 1℄ � S1 � A ,! [0; 1℄ �M(�; �; �; �) 7! '��1X� (	(�; �; �)):Lemma 3.7. We have(3.10) e	�!0 = �d (� d�) + d�;where � is an S1-invariant 1-form on S1 � A that satis�es� = � ['(��) + 1℄ d� near f� = �1g = �(S1 � A );and d� ^ d� > 0 everywhere.Proof. In [0; 1℄ �N (T ) we 
an write !0 = d�, where� := '(t)�0 + �� � � d�:Then de�ning � := 	�� on S1�A , we have d� = 	�!0 and 
an write � expli
itly near � = �1by plugging in t = �� , � = �1, f(�) = 0, g(�) = �1 and f�(�) = �(2� �) = �, hen
e� = 	� ('(t)�0 + �� � � d�) = '(��)(�d�) + � d� � d�� � d�= � ['(��) + 1℄ d�as desired. Sin
e � is invariant under the S1-a
tion by translation of �, � is also S1-invariant.The 
laim d� ^ d� > 0 is a 
onsequen
e of the fa
t that HTj is transverse to the ve
tor �eldX�, whi
h is !0-dual to �d�: indeed, ignoring 
ombinatorial fa
tors we �ndd� ^ d�(��; �� ; ��) = �	�(�X�!0) ^	�!0(��; �� ; ��)/ �!0 ^ !0(X�;	���;	��� ;	���) 6= 0:It follows that d�^d� is positive sin
e this is obviously true near � = �1. The formula (3.10)now follows from the fa
t that �d� = �X�!0 and X� has a symple
ti
 
ow. �
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onvenient in the followingsin
e the handle bH� = ��� A also 
omes with a reversed orientation.Sin
e e	 a
ts trivially on the 
oordinates � and �, the lemma also yields a formula for thepullba
k of !C , namely(3.11) e	�!C = C [�d (� d�) + d�℄ + 
j d� ^ d�:For ea
h j = 1; : : : ; N , denote by Wj � [0; 1℄�N (Tj) the image of the map e	 as 
onstru
tedabove (Figure 6): Wj thus inherits negatively oriented 
oordinates (�; �; �; �) 2 (1 � Æ; 1℄ �S1 � [�1; 1℄� S1 in whi
h !C has the form given in (3.11).We are now ready to write down a smooth model of the round handle atta
hment. As inx1, assume � is a 
ompa
t, 
onne
ted and oriented surfa
e with N boundary 
omponents�� = �1� [ : : : [ �N�:Near ea
h 
omponent �j�, identify a 
ollar neighborhood Vj � � with (1 � Æ; 1℄ � S1 anddenote the resulting oriented 
oordinates by (�; �). Then denote the union of all the subsetsUTj by UI0 and de�ne the 
obordismW = (([0; 1℄ �M) n UI0) [ (��� A )by removing UI0 from [0; 1℄�M and repla
ing it by the handle ��� A , gluing Vj � A to Wjvia the natural identi�
ation of the 
oordinates (�; �; �; �). This yields a smooth 4-manifoldwith two boundary 
omponents �W =M 0 t (�M);where we identify M with f0g �M and writeM 0 = ((f1g �M) n N (I0)) [ (��+ � S1) [ (��� � S1);using the identi�
ation � � �A = (�+ � S1) t (�� � S1) de�ned in (1.2). The orientedsurfa
es �(�+ t��)�f�g now glue together smoothly with the �bers ��1(�) in M n N (I0)to form the pages of the natural blown up summed open book �0 on M 0 obtained from � by�-de
oupling surgery along I0. It remains to de�ne a suitable symple
ti
 form on �� A thatmat
hes (3.11) near ��� A and is positive on these pages.Lemma 3.9. There exists a symple
ti
 form on ���A that mat
hes (3.10) near ���A andis positive on the oriented surfa
es fpg� A for any p 2 � n (V1 [ : : :[VN ) and ���f(�; �)g

34 CHRIS WENDLfor any (�; �) 2 A , and makes T (� � f�g) and T (f�g � A ) into symple
ti
ally orthogonalsymple
ti
 subspa
es everywhere along �� �A .Proof. We will use a standard deformation tri
k to simplify (3.10) on ea
h of the regionsVj � A so that it 
an be extended as a split symple
ti
 form. Choose a 1-form �0 on A withd�0 > 0 and lift it in the obvious way to S1 � A . Sin
eZf�g��A � = 2 ['(1) + 1℄ > 0and � has no d�-term near S1��A , we 
an also arrange for �0 to mat
h � on a neighborhoodof S1� �A . Next 
hoose a smooth 
uto� fun
tion ~� : (1� Æ; 1℄! [0; 1℄ that satis�es ~�(�) = 0near � = 1�Æ and ~�(�) = 1 near � = 1, and use this to de�ne a smooth fun
tion � : �! [0; 1℄whi
h satis�es �(�; �) = ~�(�) on Vj, � � 0 on � n (V1 [ : : : [ VN ):We observe that the expression �� + (1� �) �0now gives a well-de�ned 1-form on �� A by lifting �0 from A to � � A and � from S1 � Ato (1� Æ; 1℄ � S1 � A = Vj � A in the obvious ways.Choose also a smooth fun
tion  : (1� Æ; 1℄! [1;1) satisfying  0 > 0 and  0(�) = 1 near� = 1, and a 1-form � on � su
h that� =  (�) d� in Vj, d� > 0 everywhere.A suitable symple
ti
 form on �� A 
an then be de�ned by(3.12) !00 = �d�+ d��� + (1� �) �0�:By 
onstru
tion, !00 mat
hes (3.10) near ���A , while near ���A and outside of the regionsVj � A it takes the split form �d�+ d�0;whi
h is symple
ti
 and makes ea
h of T (��f�g) and T (f�g � A ) into symple
ti
 subspa
eswhi
h are symple
ti
ally orthogonal to ea
h other. To test whether !00 is symple
ti
 on Vj�A ,we 
ompute 12!00 ^ !00 =  0 d� ^ d� ^ [� d� + (1� �) d�0℄+ ��0 d� ^ (� � �0) ^ [� d� + (1� �) d�0℄ :The �rst term is always nonzero sin
e d� ^ d� and d� ^ d�0 are both positive. The wholeexpression is therefore nonzero whenever either �0(�) = 0 or  0(�) is suÆ
iently large, andwe are free to 
hoose  so that it in
reases fast in the region where � is not 
onstant. This
hoi
e also ensures !00(��; ��) > 0 everywhere on Vj � A . �To �nd a symple
ti
 extension of (3.11) over � � A , 
hoose now a 
losed 1-form � on �whi
h takes the form � = 
j d�near ea
h boundary 
omponent �j�; this is possible due to the homologi
al 
ondition (3.6).Then if !00 denotes the extension of e	�!0 given by Lemma 3.9, we extend (3.11) as!0C := C!00 + d� ^ �:
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iently large, Lemma 3.9 implies that this form is also symple
ti
 andrestri
ts positively to the surfa
es ���f(�; �)g and fpg� A if p 2 � lies outside a neighbor-hood of the boundary. This implies that it is positive on the pages of �0, as well as on the
ore bK� = ([0; 1=2℄ � bB0) [ (��� f(0; 0)g) �W and 
o-
ore bK0� = fpg � A �W (
f. x1.2).To summarize: we have 
onstru
ted a smooth 
obordism W with symple
ti
 form !0C thatmat
hes !C nearM = f0g�M and is positive on the 
ore and 
o-
ore and on the pages of theindu
ed blown up summed open book at the other boundary 
omponent M 0. An appropriate
onfoliation 1-form �00 
an now be de�ned on M 0 by(3.13) �00 = (�0 on M n N (I0);d� on �� � S1;where we use � to denote the natural S1-
oordinate on ���S1. The distribution �00 := ker �00is then tangent to the pages on the glued in region, hen
e !0C j�00 > 0. It follows that on any
onne
ted 
omponent of M 0 that does not 
ontain 
losed pages, �00 has a perturbation to a
onta
t stru
ture �0 that is supported by �0 and dominated by !0C .Remark 3.10. It will be useful later to observe that RbK� !0C is not only positive but 
an beassumed to be arbitrarily large. In fa
t it must in general be large due to the deformationtri
k used in the proof of Lemma 3.9.Remark 3.11. If the 
onstants 
j all vanish, i.e. 
0 = 0 on N (I0), then one 
an 
hoose the1-form � in the above 
onstru
tion to be identi
ally zero. This has the useful 
onsequen
ethat for any � 2 [�1; 1℄ and any 
losed embedded loop ` � � outside a neighborhood of ��,the torus ` � f�g � S1 � � � A is Lagrangian. More generally, if ` � � is any properlyembedded 
ompa
t 1-dimensional submanifold transverse to ��, thenZ`�f�g�S1 !0C = 0:Indeed, with � = 0 it is equivalent to show that the integral of !00 vanishes, and using (3.12)we �nd Z`�f�g�S1 !00 = Z�`�f�g�S1 �sin
e � vanishes on the S1-fa
tor in �` � f�g � S1. Sin
e � is S1-invariant on S1 � A , thisintegral doesn't depend on the position of any point in �` � �� but only on the algebrai

ount of these points, whi
h is zero, thusZ�`�f�g�S1 � = #(�`)Zf(�;�)g�S1 � = 0:Remark 3.12. The reader who is only interested in strong 
obordisms, or more generallythe 
ase where the negative boundary of the 
obordism is (strongly) 
on
ave, may assumethroughout this se
tion that 
0 � 0. In this 
ase, the symple
ti
 form we have de�ned on Wis exa
t near M � �W and has a primitive there whi
h restri
ts to a 
onstant multiple ofthe 
onta
t form ��, so this boundary 
omponent is 
on
ave. The 
ontents of this and thenext se
tion therefore suÆ
e to 
omplete the proofs of Theorems 6 and 5 respe
tively if thegiven ! on [0; 1℄�M is exa
t: indeed, by [Eli91, Proposition 3.1℄, ! 
an then be deformed tomake it (strongly) 
onvex at the positive boundary, so after a further deformation to mat
hthe 
onta
t forms, the Liouville 
ow 
an be used to atta
h it smoothly to our model as long
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onstant C > 0 is 
hosen suÆ
iently large. The 
ase where ! is not exa
t requires theadditional deformation argument of x3.5 below.3.4. Modi�
ations for the 
apping 
obordism. The above 
onstru
tion works essentiallythe same way for the handle ��D , so we will be 
ontent to brie
y summarize the di�eren
es.Here we pi
k binding 
omponents B0 = 
1 [ : : : [ 
N � Band denote the 
orresponding solid torus neighborhoods by N (
j) = S1� D with 
oordinates(�; �; �), viewing (�; �) as polar 
oordinates, and denote the union of these neighborhoodsby N (B0). The model symple
ti
 form !C on the trivial 
obordism [0; 1℄�M is again de�nedvia (3.7) and (3.8), with the di�eren
e that sin
e every 
losed 2-form on N (
j) is exa
t, we
an assume (after adding an exa
t 2-form) that 
0 vanishes on all of these neighborhoods.The role of HTj is now played by a hypersurfa
eH
j � [0; 1℄ �N (
j)parametrized by an embedding 	 : S1 � D ! [0; 1℄ �M;thus de�ning a similar set of 
oordinates (�; �; �) 2 S1 � D on H
j , where (�; �) are nowpolar 
oordinates on D . We 
an again arrange H
j to be transverse to the ve
tor �eld X�,de�ned exa
tly as before, and then use its 
ow to parametrize a neighborhood of H
j in theregion U
j that it bounds via a mape	 : (1� Æ; 1℄ � S1 � D ,! [0; 1℄ �N (
j) : (�; �; �; �) 7! '��1X� (	(�; �; �))for whi
h e	�!0 again takes the form �d(� d�)+d� for some 1-form � on S1� D that satis�es� = ['(�) + 1℄ d�near S1 � �D and d� ^ d� > 0 everywhere. Denote the image of e	 
orresponding to ea
h 
jby Wj , with negatively oriented 
oordinates (�; �; �; �) 2 (1 � Æ; 1℄ � S1 � D . Writing theunion of the regions U
j as UB0 , the smooth 
obordism is then de�ned byW = (([0; 1℄ �M) n UB0) [ (��� D );where �� D is glued in by identifying Vj � D with Wj so that the 
oordinates mat
h. Thishas boundary �W =M 0 t (�M), where M = f0g �M andM 0 = ((f1g �M) n N (B0)) [ (��� S1);hen
e the glued in region ��S1 
arries the 
oordinates (�; �; �) near its boundary. Choosinga 1-form �0 on D that mat
hes � near �D and satis�es d�0 > 0, the interpolation tri
k (3.12)
an again be used to deform !0 in a 
ollar neighborhood of �� � D so that it admits asymple
ti
 extension over the rest of �� D in the form !00 = �d�+ d�0. The resulting form!0C = C!00 +
0 is symple
ti
 everywhere on W and is also positive on the pages of �0 at M 0if C is suÆ
iently large, as well as on the 
ore(3.14) K� = ([0; 1=2℄ �B0) [ (��� f0g) �Wand the 
o-
ore K0� = fpg � D �W
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hoi
e of p 2 �. The 
onfoliation 1-form extends smoothly over � � S1as �00 = d�, so that !0C is also positive on �00 := ker �00 and thus dominates any 
onta
t formobtained as a small perturbation.3.5. Symple
ti
 deformation in a 
ollar neighborhood. To apply the 
onstru
tions ofthe previous se
tions in proving Theorems 5 and 6 when the given symple
ti
 form ! on[0; 1℄ � M dominating � is non-exa
t, we must show that ! 
an be deformed away fromf0g �M to reprodu
e the model(3.15) !C = C d ('(t)�0 + �) + 
0;where � := �� and �0 are 1-forms as des
ribed at the beginning of x3.3, ' : [0; 1℄ ! R is asmooth fun
tion with '0 > 0, '(0) = 0 and k'kL1 small, 
0 is some 
losed 2-form on Min the appropriate 
ohomology 
lass, and C > 0 is a 
onstant that we 
an assume to beas large as ne
essary. The following appli
ation of a standard Moser deformation argument(
f. [NW11, Lemma 2.3℄) will be useful.Lemma 3.13. Suppose (W;!) is a symple
ti
 4-manifold, M is a 
losed oriented 3-manifoldwith an embedding � :M ,!W and � is a 1-form on M that satis�es �^��! > 0. Then forsuÆ
iently small � > 0, � extends to an embeddinge� : (��; �)�M ,!Wsu
h that e�(0; �) = � and e��! = d(t�) + ��!.Observe that ifM �W is an oriented hypersurfa
e in a symple
ti
 4-manifold (W;!) witha positive 
onta
t stru
ture �, then ! dominates � if and only if it satis�es� ^ !jTM > 0for every 
onta
t form � on (M; �). Using the obvious variants of Lemma 3.13 when thehypersurfa
e is a positive or negative boundary 
omponent of W , we obtain the followinguseful 
onsequen
e:Lemma 3.14. Suppose (M; �) is a 
losed 
onta
t 3-manifold and ((�1; 0℄ � M;!�) and([0; 1) � M;!+) are two symple
ti
 manifolds su
h that the restri
tions of !� and !+ tof0g�M de�ne the same 2-form 
 on M , with 
j� > 0. Then for any small � > 0, (�1; 1)�Madmits a symple
ti
 form whi
h mat
hes !+ on [�; 1) �M and !� on (�1;��℄�M .Proposition 3.15. Suppose (M; �) is any 
losed 
onta
t 3-manifold with 
onta
t form �, �0is a 1-form on M satisfying �0 ^ d� > 0, ! is a symple
ti
 form on [0; 1℄ �M with !j� > 0,and 
0 is a 
losed 2-form on M with [
0℄ = [!jTM ℄ 2 H2dR(M). Then for any Æ 2 (0; 1) andsuÆ
iently large C > 0, there exists a symple
ti
 form !0 on [0; 1℄ �M that mat
hes ! on aneighborhood of f0g �M and takes the form (3.15) on [Æ; 1℄ �M .Proof. By Lemma 3.13 we 
an assume without loss of generality that ! has the form! = d(t�) + 
;near f0g �M , where 
 is the 
losed 2-form on M de�ned as the restri
tion of ! to f0g �M .The proof now pro
eeds in two steps, of whi
h the �rst is to put the symple
ti
 stru
ture!C of (3.15) into a slightly simpler form via a 
oordinate 
hange near f0g �M . De�ne the1-form �0 = '(t)�0 + �

38 CHRIS WENDLon [0; 1℄ �M and write !0 := d�0, so !C = C!0 +
0. Let V denote the ve
tor �eld that is!C-dual to C�0, i.e. !C(V; �) = C�0. For C suÆ
iently large, V is then a small perturbationof the ve
tor �eld that is !0-dual to �0, whi
h is a Liouville (with respe
t to !0) ve
tor �eldpositively transverse to f0g �M sin
e �0jf0g�M = � is 
onta
t. Hen
e we may assume V isalso positively transverse to f0g �M and use its 
ow 'tV to de�ne an embedding : [0; �) �M ,! [0; 1℄ �M : (t;m) 7! 'tV (m)for � > 0 suÆ
iently small. If X� denotes the Reeb ve
tor �eld determined by �, alongf0g �M we then have ��t( �!C) = C�and  �!C jT (f0g�M) = C d�+
0:Hen
e  �!C mat
hes the symple
ti
 form d(t C�) + C d� + 
0 pointwise at f0g �M , andanother Moser deformation argument thus allows us to isotop the embedding  so that  �!Ctakes this form on some neighborhood of f0g �M . Equivalently, this means !C admits adeformation to a new symple
ti
 form !0C whi
h takes the form(3.16) !0C = d(tC�) + C d�+
0on an arbitrarily small neighborhood of f0g�M and mat
hes the original !C outside a slightlylarger neighborhood.For step two, we show that the given ! 
an be deformed outside a small neighborhood off0g �M to a new symple
ti
 form !0 that mat
hes (3.16) outside a slightly larger neighbor-hood. Indeed, 
hoose a 
onstant C 0 > 0 large enough so that(C 0 d�+
0)j� > 0;and sin
e 
 and 
0 are 
ohomologous by assumption, 
hoose a 1-form � on M su
h thatC 0 d�+
0 � 
 = d�. For some Æ > 0 small, 
hoose a 
uto� fun
tion �(t) that equals 0 neart = 0 and 1 near t = Æ, and de�ne!0 = d (f(t)�) + 
 + d (�(t) �) ;with f : [0; Æ℄ ! [0;1) a smooth fun
tion satisfying� f(t) = t near t = 0,� f 0 > 0,� f(Æ) + C 0 = C(Æ + 1).If f is 
hosen to in
rease suÆ
iently fast, then !0 is symple
ti
, and this 
an always be arrangedif C > 0 is made suÆ
iently large. This depends in parti
ular on the fa
t that the 2-forms
 and C d� + 
0 are both positive on �. The restri
tions of !0 and !0C to the hypersurfa
efÆg �M now mat
h, thus the two 
an be glued together smoothly by Lemma 3.14. �Combining Proposition 3.15 with the 
obordism 
onstru
tions of x3.3 and x3.4 
ompletesthe proofs of Theorems 5 and 6.



NON-EXACT SYMPLECTIC COBORDISMS 393.6. Cohomology. We now prove Theorems 50 and 60 by 
hara
terizing the situations inwhi
h ! 
an be made exa
t on W or on M 0
onvex.Assume �rst that (W;!) is a �-
apping 
obordism ([0; 1℄ �M) [H�, with H� = ��� Datta
hed along a neighborhood N (B0) of B0 = 
1 [ : : : [ 
N . Write �W =M 0 t (�M) and
 := !jTM ; 
0 := !jTM 0 :Due to x3.5, we may assume without loss of generality that 
 has the form(3.17) 
 = C d�+
0where C > 0 is arbitrarily large, � is the usual 
onta
t form onM and 
0 vanishes on N (B0).By Remark 3.10, we 
an also assume in the following that RK� ! is arbitrarily large.The de
omposition of W into [0; 1℄ �M and H�, whi
h interse
t at N (B0) � f1g �M ,gives rise to the Mayer-Vietoris sequen
e,: : :! H2(N (B0))! H2(M)�H2(H�)! H2(W )! H1(N (B0))! H1(M)�H1(H�)! : : :in whi
h H2(N (B0)) = H2(H�) = 0, H1(H�) = H1(�) and H1(N (B0)) = H1(B0) = ZN.Thus there is an isomorphismH2(W ) �= im �H2(M)!H2(W )�� ker �H1(N (B0))! H1(M)�H1(H�)�;(3.18)in whi
h the �rst summand is an isomorphi
 
opy of H2(M). Denote by �M : N (B0) ,! Mand �� : N (B0) ,! H� the natural in
lusions. Then ��� ([
j ℄) = [�j�℄ 2 H1(�) = H1(H�),so sin
e � is 
onne
ted, ker ��� is isomorphi
 to Z and is generated by [
1℄ + : : : + [
N ℄. Itfollows that the se
ond summand in (3.18) 
onsists of all integer multiples of [
1℄ + : : :+ [
N ℄whi
h are also in ker �M� , i.e. it is isomorphi
 to Z if [
1℄ + : : : + [
N ℄ is torsion in H1(M),and is otherwise trivial. In the former 
ase, let k0 2 N be the smallest number for whi
hk0([
1℄ + : : :+ [
N ℄) = 0 2 H1(M), and 
onstru
t a 
y
le Ak0 2 H2(W ) in the form(3.19) Ak0 = CM + k0[K�℄;where CM is any 2-
hain in f0g�M with �CM = k0([
1℄+ : : :+[
N ℄) and K� �W is the 
ore(3.14). The isomorphism (3.18) implies that everything in H2(W ) is an element of H2(M)plus an integer multiple of (3.19).Let h denote a real 1-
y
le in M n N (B0) su
h that [h℄ = PD([
℄) 2 H1(M ;R); note thatthis is always possible sin
e 
 is ne
essarily exa
t on N (B0). The produ
t [0; 1℄ � h thenrepresents a relative homology 
lass in H2(W;�W ;R).Proposition 3.16. There is a number 
 > 0 su
h that PD([!℄) = [0; 1℄ � [h℄ + 
[K0�℄ 2H2(W;�W ;R).Proof. It suÆ
es to show that for every A 2 H2(W ), the evaluation of ! on A mat
hes theinterse
tion produ
t(3.20) ZA ! = A � �[0; 1℄ � [h℄ + 
[K0�℄� :For any A 2 im(H2(M)! H2(W )) this is immediately 
lear sin
eZA ! = ZA
 = A � [h℄;

40 CHRIS WENDLwhere the latter is the interse
tion produ
t in M , and A does not interse
t anything in thehandle. By (3.18), either the image of H2(M)! H2(W ) is the entirety of H2(W ) or there isone more generator Ak0 = CM + k0[K�℄. For the latter we haveZAk0 ! = ZCM 
+ k0 ZK� !and Ak0 � �[0; 1℄ � [h℄ + 
[K0�℄� = CM � [h℄ + k0
;so (3.20) is satis�ed if and only if
 = ZK� ! + 1k0 �ZCM 
� CM � [h℄� :This is positive without loss of generality sin
e RK� ! was assumed to be arbitrarily large. �The above argument also shows that if f0g �M � (W;!) is 
on
ave, then ! 
an never beexa
t if [
1℄ + : : : + [
N ℄ 2 H1(M) is torsion, even without assuming RK� ! to be arbitrarilylarge. Indeed, in this 
ase we have 
 = d� for a 
onta
t form � on (M; �), and [h℄ = 0, hen
eZAk0 ! = ZCM d�+ k0 ZK� ! = k0 NXj=1 Z
j �+ k0 ZK� ! > 0;and 
 = ZK� ! + NXj=1 Z
j � > 0:On the other hand if [
1℄+: : :+[
N ℄ 2 H1(M) is not torsion, thenH2(M) generates everythingin H2(W ), so RA ! always vanishes sin
e 
 is exa
t. This proves the �rst half of Theorem 50.We also 
on
lude from the above that if f0g �M � (W;!) is 
on
ave, then there is a
onstant 
 > 0 su
h that PD([
0℄) = 
[�K0�℄ 2 H1(M 0;R);so the se
ond half of the theorem is proved by showing that [�K0�℄ = 0 2 H1(M 0;R) if and onlyif the stated homologi
al 
ondition on 
1; : : : ; 
N is satis�ed. Writing M 0 = (M n N (B0)) [(��� S1), we obtain the Mayer-Vietoris sequen
e: : :! H2(M 0)! H1(�N (B0))! H1(M n B0)�H1(�� S1)! : : : ;where H1(�N (B0)) �= Z2N, with ea
h 
omponent �N (
j) 
arrying the two distinguishedgenerators �j; �j de�ned in x1. Denote the in
lusions �M : �N (B0) ! M n B0 and �� :�N (B0)! ��S1. Then ��� �j = [�j��f�g℄ 2 H1(��S1) and ��� �j = [f�g�S1℄ 2 H1(��S1),so ker ��� 
onsists of all 
lasses of the formk NXj=1 �j + NXj=1mj�jwith k;m1; : : : ;mN 2 Z and Pjmj = 0. Now, [�K0�℄ is represented by the 
y
le f�g � S1 ��� S1 �M 0, and it vanishes in H1(M 0;R) if and only ifA � [f�g � S1℄ = 0



NON-EXACT SYMPLECTIC COBORDISMS 41for every A 2 H2(M 0). This is true if and only if the image of the mapH2(M 0)! H1(�N (B0))in the above sequen
e 
ontains only 
y
les of the form Pjmj�j. In light of the abovedes
ription of ker ��� , this is true if and only ifk(�1 + : : :+ �N ) 62 ker �M�for all k 6= 0. This 
ompletes the proof of Theorem 50.The proof of Theorem 60 pro
eeds similarly: AssumeW = ([0; 1℄�M)[ bH� is a �-de
oupling
obordism, with bH� = ��� A atta
hed along a neighborhood N (I0) of I0 = T1 [ : : : [ TN ,write �W = M 0 t (�M), 
 := !jTM and 
0 := !jTM 0 . We again assume that RbK� ! isarbitrarily large, and that 
 takes the form of (3.17), and we also impose the extra 
onditionZTj 
 = 0 for every 
omponent Tj � I0.In this 
ase we 
an �nd a real 1-
y
le h in M n N (I0) that represents PD([
℄) 2 H1(M ;R).Without 
hanging the 
ohomology 
lass or the symple
ti
 properties of !, we 
an then alsoassume that 
0 is supported in a tubular neighborhood of the 
y
le h.Re
all from x1 that ea
h oriented torus Tj � I0 
omes with a distinguished homology basisf�j ; �jg � H1(Tj), where �j is a boundary 
omponent of a page and �j is represented bya Legendrian loop in Tj. This also gives rise to bases f��j ; ��j g of H1(��N (Tj)), where theorientation of ��j is reversed 
ompared with �j. For W = ([0; 1℄ �M) [ bH� we have theMayer-Vietoris sequen
e: : :! H2(M)�H2( bH�)! H2(W )! H1(N (I0))! H1(M)�H1( bH�)! : : :and resulting isomorphismH2(W ) �= im �H2(M)�H2( bH�)!H2(W )�� ker �H1(N (I0))! H1(M)�H1( bH�)�:(3.21)Denote the generator ofH1(A ) = Z by [S1℄, whi
h 
an also naturally be regarded as a primitive
lass in H1( bH�) = H1(�) � H1(A ). Then writing the in
lusions as �M : N (I0) ,! M and�� : N (I0) ,! bH�, we have ��� (�j) = [�j� � f�g℄ and ��� (�j) = [S1℄, hen
e ker ��� 
onsists ofall 
lasses of the form k NXj=1 �j + NXj=1mj�jfor k;m1; : : : ;mN 2 Z with Pjmj = 0. For any � 2 H1(I0) of this form whi
h is alsonullhomologous in M , we 
an form a 
y
le A� 2 H2(W ) as follows. First 
hoose a 2-
hainCM in f0g �M with �CM = �. Choose also a 1-
hain ` in � with boundary in �� su
h thatthe 2-
hain `� f�g � S1 in bH� has boundary�(`� f�g � S1) = � NXj=1mj�j;whi
h is always possible sin
e Pjmj = 0. We 
an represent ` by a properly immersedsubmanifold in � so that by Remark 3.11, R`�f�g�S1 ! = 0. Now extend `� f�g � S1 to a 2-
hain inW with boundary in f0g�M by atta
hing trivial 
ylinders over the appropriate 
overs

42 CHRIS WENDLof Legendrian representatives of �j . Sin
e these 
ylinders are Lagrangian, this 
onstru
tionyields an immersed submanifold L` �W whi
h satis�es(3.22) ZL` ! = 0and �L` � I0 � f0g �M , with [�L`℄ = �Pjmj�j 2 H1(I0). We de�ne A� 2 H2(W ) by(3.23) A� = CM + [L`℄ + k[bK�℄:Proposition 3.17. There is a number 
 > 0 su
h that PD([!℄) = [0; 1℄ � [h℄ + 
[bK0�℄ 2H2(W;�W ;R).Proof. The goal is again to prove(3.24) ZA ! = A � �[0; 1℄ � [h℄ + 
[bK0�℄�for every A 2 H2(W ), and it is again immediate if A 2 im(H2(M)! H2(W )). It is also 
learfor A 2 im(H2( bH�) ! H2(W )), as H2( bH�) is generated by 
lasses of the form `0 � [S1℄ for`0 2 H1(�), hen
e both sides of (3.24) vanish (see Remark 3.11).The rest of H2(W ) is generated by 
lasses of the form A� de�ned in (3.23), for whi
hZA� ! = ZCM 
+ k ZbK� !in light of (3.22). Similarly, L` does not interse
t either [0; 1℄ � h or bK0�, thusA
 � �[0; 1℄ � [h℄ + 
[bK0�℄� = CM � [h℄ + k
;and (3.24) is thus satis�ed if and only if
 = ZbK� ! + 1k �ZCM 
� CM � [h℄� ;whi
h is positive if RbK� ! is made suÆ
iently large. To see that this formula for 
 doesn'tdepend on any 
hoi
es, observe that if 
 is exa
t, then h = 0 and 
 = C d�, soZCM 
� CM � [h℄ = C Z�CM �is proportional to k, as the integral of � vanishes on all the meridians �j. When 
 is notexa
t but equals C d�+
0 with 
0 supported in a tubular neighborhood of h, we 
an �nd areal homology 
lass B 2 H2(M ;R) with B � [h℄ = CM � [h℄ and thus de�ne a real 2-
hainC 0M := CM �Bwith �C 0M = �CM and C 0M � [h℄ = 0. Then up to relative homology, C 0M 
an be representedby a real linear 
ombination of immersed surfa
es that have no geometri
 interse
tion with h,hen
e RC0M 
0 = 0. Now sin
e RB 
 = B � [h℄,ZCM 
� CM � [h℄ = ZC0M 
 = C ZC0M d� = C Z�CM �;and this is again proportional to k. �
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on
ave, then writing h = 0 and 
 = d� givesZA� ! = Z� �+ k ZbK� !for any 
y
le � = k(�1+: : :+�N )+Pjmj�j 2 H1(I0) withPjmj = 0 that is nullhomologousin M . Sin
e R� � is also positively proportional to k, this proves that ! is exa
t if and onlyif there is no su
h nullhomologous 
y
le � with k > 0. Moreover, PD([
0℄) = 
[� bK0�℄ 2H1(M 0;R) for some 
 > 0, so it remains to 
hara
terize the situations where this homology
lass vanishes. WriteM 0 = (M nN (I0))[(��+�S1)[(����S1) and 
onsider the resultingMayer-Vietoris sequen
e: : :! H2(M 0)! H1(�N (I0))! H1(M n I0)�H1((�+ t ��)� S1)! : : : ;where H1(�N (I0)) is freely generated by the 4N 
y
les ��j ; ��j . Denote the in
lusions �M :�N (I0)!M n I0 and �� : �N (I0)! (�+ t ��)� S1, where the latter maps ��N (Tj) into�� � S1. Then ��� ��j = [�j�� f�g℄ 2 H1(�� � S1) and ��� ��j = [f�g � S1℄ 2 H1(�� � S1),thus ker ��� 
onsists of all 
lasses of the form(3.25) k+ NXj=1 �+j + k� NXj=1 ��j + NXj=1m+j �+j + NXj=1m�j ��j ;with k�;m�1 ; : : : ;m�N 2 Z satisfyingPjm+j =Pjm�j = 0. The 
o-
ore bK0� has two boundary
omponents, one generating ea
h of the 
y
les f�g�S1 � ���S1 �M 0, whi
h we will denoteby [S1℄� 2 H1(M 0). Thus [� bK0�℄ vanishes in H1(M 0;R) if and only ifA � ([S1℄+ + [S1℄�) = 0for every A 2 H2(M 0). This is true if and only if the image of the map H2(M 0)! H1(�N (I0))in the above sequen
e 
ontains only 
y
les of the form (3.25) with k++k� = 0, meaning that
y
les of this form with k+ + k� 6= 0 are never trivial in H1(M n I0).We've now 
hara
terized the 
ases in whi
h 
0 is globally exa
t on M 0; of 
ourse this neverhappens if M 0
at 6= ; sin
e the latter then 
ontains 
losed pages on whi
h 
0 is positive. Ifboth M 0
onvex and M 0
at are nonempty, then the interesting question is when 
0 will be exa
ton M 0
onvex, whi
h is the 
ase if and only if[� bK0� \M 0
onvex℄ = 0 2 H1(M 0
onvex;R):Assuming the labels are 
hosen so that �+�S1 �M 0
onvex and ���S1 �M 0
at, [� bK0�\M 0
onvex℄is now represented by f�g�S1 � �+�S1, and a repeat of the above argument shows that this
y
le vanishes if and only if H1(�N (I0)) 
ontains no 
y
le of the form (3.25) whi
h vanishesin H1(M nI0) and has k+ 6= 0. We observe however that in this situation, I0 must separateMso that ea
h �+N (Tj) lies in a di�erent 
onne
ted 
omponent of M n I0 from ea
h ��N (Ti),hen
e a 
y
le of the form (3.25) vanishes in H1(M nI0) if and only if both the plus and minusparts vanish. Our 
ondition is thus redu
ed to the nonexisten
e of a 
y
lek NXj=1 �+j + NXj=1mj�+jwith k 6= 0 that vanishes in H1(M n I0).

44 CHRIS WENDL3.7. Proofs of the results from x1.1.Proofs of Theorems 1 and 2. To prove Theorem 2, suppose (M; �) 
ontains an 
-separatingplanar k-torsion domain M0 for some 
losed 2-form 
 with 
j� > 0 and an integer k � 1.Then RT 
 = 0 for every interfa
e torus T in M0 that lies in the planar pie
e, so we are freeto remove any su
h torus by atta
hing a D -de
oupling 
obordism whose symple
ti
 stru
turemat
hes 
 atM . By Proposition 3.4, one 
an �nd a binding 
omponent 
 or interfa
e torus Tsu
h that if (W;!) with �W =M 0 t (�M) denotes the result of atta
hing the 
orrespondingD -
apping or D -de
oupling 
obordism respe
tively, thenM 0 
ontains a planar torsion domainof order either k � 1 or k � 2. Writing 
0 := !jTM 0 , the latter is also 
0-separating sin
enear ea
h of the remaining interfa
e tori, whi
h lie outside the region of surgery, ! is still
ohomologous to the original 
. The pro
ess 
an therefore be repeated until the manifold atthe top has planar 0-torsion, meaning it is overtwisted.Theorem 1 is essentially the spe
ial 
ase of Theorem 2 for whi
h we assume 
 is exa
tto start with, ex
ept that the above argument a
tually gives a weak symple
ti
 
obordism(W;!) from (M; �) to some overtwisted (MOT; �OT), where we 
an assume M � (W;!) is
on
ave and MOT � (W;!) is not ne
essarily 
onvex, but !j�OT > 0. This 
an now beturned into a strong 
obordism by the following tri
k whi
h was suggested to me by DavidGay: �rst, observe that if MOT is a rational homology sphere, then ! is exa
t near MOTand 
an thus be deformed to make MOT 
onvex using the argument of Eliashberg in [Eli91,Proposition 3.1℄. Otherwise, take any knot K � MOT that is nontrivial in H1(MOT;Q),and isotop it if ne
essary so that it is disjoint from some overtwisted disk. Then after aC0-small perturbation to make K Legendrian, one 
an atta
h a symple
ti
 2-handle along Kso that the new positive boundary be
omes an overtwisted 
onta
t manifold (M 0OT; �0OT) withdimH1(M 0OT;Q) = dimH1(MOT;Q) � 1, see Lemma 3.18 below. Repeating this pro
essenough times, the positive boundary eventually be
omes an overtwisted rational homologysphere, so that the weak 
obordism 
an be deformed to a strong one. �The �nal step in the above proof is justi�ed by the following simple homologi
al lemma:Lemma 3.18. Suppose M is a 
losed oriented 3-manifold, K �M is a knot with [K℄ 6= 0 2H1(M ;Q) and M 0 is the result of performing Dehn surgery along K with any framing. ThendimH1(M 0;Q) = dimH1(M ;Q) � 1.Proof. As preparation, suppose K is any knot in a 
losed oriented 3-manifold M , denote aneighborhood of K in M by NK and let (�; �) denote any basis of H1(�NK) su
h that � is ameridian. If � : �NK ,!M nK denotes the in
lusion, we 
laim thatdimH1(M ;Q) = (dimH1(M nK;Q) if ��� = 0 2 H1(M nK;Q);dimH1(M nK;Q) � 1 if ��� 6= 0 2 H1(M nK;Q):This follows from the Mayer-Vietoris sequen
e for M = NK [ (M nK):: : : H2(M ;Q) ! H1(�NK ;Q) �! H1(NK ;Q) �H1(M nK;Q) ! H1(M ;Q) ! H0(�NK ;Q) : : :Sin
e any 1-
y
le in M 
an be disjoined from NK , the map H1(M ;Q) ! H0(�NK ;Q) in thissequen
e is trivial, thus exa
tness impliesH1(M ;Q) �= (H1(NK ;Q) �H1(M nK;Q)). im�:
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e � maps to thegenerator of H1(NK ;Q) = Q . Sin
e � maps to 0 in H1(NK ;Q), im� is thus 1-dimensional ifand only if ��� = 0 2 H1(M nK;Q), and is otherwise 2-dimensional. This proves the 
laim.Now assume [K℄ 6= 0 2 H1(M ;Q), and we are given a framing su
h that � is the preferredlongitude. This implies immediately that ��� 6= 0 2 H1(M n K;Q). Likewise, ��� = 0 2H1(M n K;Q): to see this, note that by the nondegenera
y of the interse
tion form, thereexists a 2-
y
le C in M su
h that [C℄ � [K℄ = 1, hen
e the restri
tion of C to the 
omplementof NK de�nes a 
hain whose boundary is �; alternatively, one 
an also derive this from theexa
t sequen
e above by 
onsidering the image of [C℄ under H2(M ;Q) ! H1(�NK ;Q). Wetherefore have dimH1(M ;Q) = dimH1(M nK;Q) by the 
laim above. If M 0 is now de�nedby gluing another solid torus into M nNK su
h that � be
omes the meridian, then the 
laimis again appli
able and implies dimH1(M 0;Q) = dimH1(M nK;Q) � 1. �Proof of Theorem 3. Suppose (M; �) 
ontains an 
-separating partially planar domainM0 �M with planar pie
e MP0 � M0, where 
 is a 
losed 2-form on M satisfying 
j� > 0. Thenfor every binding 
ir
le or interfa
e torus in MP0 , we 
an atta
h D -
apping or D -de
oupling
obordisms to produ
e a symple
ti
 manifold (W;!) with �W =M 0 t (�M), !jTM = 
 andM 0 =M 0
at tM 0
onvex;where M 0
at 
ontains a 
omponent that is a symple
ti
 S2-�bration over S1, and M 0
onvex
arries a 
onta
t stru
ture �0 with !j�0 > 0. The desired 
ap is then obtained from (W;!)after 
apping M 0
at tM 0
onvex via [Eli04℄ or [Etn04a℄. �Proof of Theorem 4. Note that sin
e H2dR(S3) = 0, any weak 
obordism from (M; �) to(S3; �0) that is 
on
ave at M 
an be deformed to a strong 
obordism, so it suÆ
es to provethat (S3; �0) 
an be obtained from (M; �) by a �nite sequen
e of (generally weak) 
appingand de
oupling 
obordisms.Suppose M0 � M is a partially planar domain. If it is also a planar torsion domain thenthe result already follows from Corollary 1, thus assume not. If M0 has only one irredu
iblesubdomain with nonempty binding, we 
an remove binding 
omponents by D -
apping 
obor-disms and interfa
e tori by D -de
oupling 
obordisms until the planar pie
e has exa
tly onebinding 
omponent left and no interfa
e or boundary, whi
h means it is the tight S3. Thedesired 
obordism 
an then be obtained by 
apping any additional 
omponents that mayremain at the end of this pro
ess.If M0 has more than one irredu
ible subdomain but does not have planar torsion, then itmust be symmetri
 (see De�nition 3.2). This means thatM =M0, the binding and boundaryare empty and the interfa
e tori divideM into exa
tly two irredu
ible subdomains that havedi�eomorphi
 planar pages. Then we 
an remove interfa
e tori by D -de
oupling 
obordismsuntil exa
tly one remains, and the resulting 
onta
t manifold is the tight S1�S2. The latteris 
obordant to S3 by a D -
apping 
obordism that removes one binding 
omponent from thesupporting open book with 
ylindri
al pages and trivial monodromy.Theorem 40 follows essentially by the same argument sin
e every planar open book is also afully twisted partially planar domain. We only need to add that the topologi
al 
onstru
tionof the 
obordism by atta
hing 2-handles along binding 
omponents does not depend on the
hoi
e of 2-form 
 on M , whi
h after the deformation 
arried out in x3.5, always looks thesame on a large tubular neighborhood of the binding. �
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urves. For appli
ations to Embedded Conta
t Homology and Symple
-ti
 Field Theory among other things, it may be quite helpful to observe that the 
obordism(W;!) generally admits not only a symple
ti
 stru
ture but also a foliation by J-holomorphi

urves. We don't plan to pursue this here in full detail, but we shall give a sket
h of the generalpi
ture. For simpli
ity, we 
onsider only the �-de
oupling 
obordism along I0 = T1[ : : :[TNin the 
ase where the negative boundary 
omponent (M; �) is 
on
ave, so we 
an arrange !near f0g �M to have the form(3.26) ! = d ('(t)�0 + �)as in x3.3, where �0 and � are the 
onfoliation 1-form and 
onta
t form respe
tively that were
onstru
ted in x3.2. These have the following 
onvenient properties:� �0 ^ d� > 0� ker d� � ker d�0Together with the obvious fa
t that d� is 
losed, these properties mean that the pair (�0; d�)is a stable Hamiltonian stru
ture, to whi
h we asso
iate the 
o-oriented distribution�0 = ker �0 and positively transverse ve
tor �eld X0 on M su
h that�0(X0) � 1; d�(X0; �) � 0:Similarly, writing 
0 := !jTM 0 and re
alling the 
onfoliation 1-form �00 de�ned onM 0 by (3.13),the pair (�00;
0) forms a stable Hamiltonian stru
ture onM 0, and we de�ne the 
orrespondingdistribution �00 = ker �00 and ve
tor �eld X 00 on M 0 su
h that�00(X 00) � 1; 
0(X 00; �) � 0:In fa
t, on 
omponents of M 0 where the pages are not 
losed, one 
an show with a little moree�ort that �00 admits a perturbation to a 
onta
t form �0 on M 0 su
h that �0 := ker �0 isdominated by 
0, where 
0 = F d�0for some smooth fun
tion F :M 0 ! (0;1) that satis�es dF ^d�0 � 0 and is 
onstant outsidea neighborhood of the boundary of the 
o-
ore, � bK0� �M 0, hen
e X 00 is 
olinear with the Reebve
tor �eld determined by �0. There is now a 
ollar neighborhood (��; 0℄ �M 0 � W of M 0on whi
h ! takes the form d(t�00) + 
0, thus we 
an atta
h positive and negative 
ylindri
alends to de�ne the 
ompletion of (W;!),W1 :=W [ ((�1; 0℄ �M) [ �[0;1)�M 0�and extend ! symple
ti
ally so that it takes the form d('(t)�0) + d� on (�1; 0℄ �M andd( (t)�00)+
0 on [0;1)�M 0 for suitable 
hoi
es of fun
tions ' and  . Equivalently, (W1; !)
an be 
onstru
ted dire
tly from the symple
tization of (M; �) as follows: extend the fun
tion'(t) to R so that (3.26) de�nes a symple
ti
 form on R �M , and extend the \hole" UI0de�ned in x3.3 to a hole in R �M by in
luding the interior of the region (1;1)�N (I0); letU1I0 � R �Mdenote the extended hole. Then (W1; !) 
an be obtained by removing U1I0 from (R �M;d('(t)�0 + �)) and repla
ing it with the 
ompletion of the round handle,bH1� := �� (�1;1)� S1;extending the symple
ti
 form over bH1� by an adaptation of the argument in x3.3.
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omplex stru
ture J on (W1; !) is now admissible if it is !-
ompatible on Wand is 
ompatible with the stable Hamiltonian stru
tures on both 
ylindri
al ends, meaningit is R-invariant, restri
ts to a 
omplex stru
ture on the respe
tive distributions �0 and �00de�ning the 
orre
t orientations, and maps the unit ve
tor �t in the R-dire
tion to the ve
tor�eld X0 or X 00.It was shown in [Wen℄ that for a suitable 
hoi
e of almost 
omplex stru
ture J0 on R �M
ompatible with (�0; d�), the pages of the blown up summed open book � in M0 admit liftsto embedded J0-holomorphi
 
urves in R�M whi
h mat
h the �bers of the mapping torus S outside of the neighborhoods Ni of B [ I [ �M0, have positive 
ylindri
al ends approa
hing
losed orbits of X0 in B [I [�M0 and satisfy a suitable �nite energy 
ondition. We 
an nowde�ne an admissible almost 
omplex stru
ture on (W1; !) whi
h mat
hes J0 outside of U1I0and is !-
ompatible on bH1� . The J0-holomorphi
 
urves in (R�M)nU1I0 
an be extended intobH1� as symple
ti
 surfa
es that are di�eomorphi
 to � and foliate bH1� , thus we 
an extend J0into the handle so that it is !-
ompatible and these surfa
es be
ome J0-holomorphi
. In doingthis, we 
an also make the natural 
ompletion of the 
orebK�;1 := bK� [ bB0 ((�1; 0℄� bB0)J0-holomorphi
, as well as its translations under the S1-a
tion by translating the lo
al �-
oordinates, and the 
ompletion of the 
o-
orebK0�;1 := bK0� [� bK0� ([1;1) � � bK0�):The result is a foliation of W1 (or at least the region outside of R � (M nM0)) by �niteenergy J0-holomorphi
 
urves. We summarize this 
onstru
tion as follows (see Figure 7).Proposition 3.19. One 
an 
hoose an admissible almost 
omplex stru
ture J0 on the 
om-pletion (W1; !) of a �-de
oupling 
obordism (W;!), su
h that there exists a foliation F byembedded J0-holomorphi
 
urves with the following properties:(1) In ea
h 
ylindri
al end, the leaves of F mat
h the holomorphi
 lifts of the pages of �and �0 
onstru
ted in [Wen℄.(2) The 
ompleted 
ore bK�;1 and all its S1-translations are leaves of F .(3) The trivial 
ylinders over periodi
 orbits in B, �M0 and I n I0 are all leaves of F .(4) All other leaves of F have only positive 
ylindri
al ends asymptoti
 to orbits in B [(I n I0)[ �M , and they are homotopi
 in the moduli spa
e to the holomorphi
 lifts ofthe pages of �0 in [1;1) �M 0.(5) The 
ompleted 
o-
ore bK0�;1 is also J0-holomorphi
 and interse
ts the leaves of Ftransversely.In 
onsidering the behavior of holomorphi
 
urve invariants under symple
ti
 
obordisms,a spe
ial role is typi
ally played by 
urves that have no positive ends|su
h 
urves 
an onlyexist in non-exa
t 
obordisms. One useful appli
ation of the foliation 
onstru
ted above isthat we 
an now 
hara
terize all su
h 
urves pre
isely:Proposition 3.20. Suppose u : _� ! W1 is a �nite energy J0-holomorphi
 
urve that is
onne
ted, somewhere inje
tive and has no positive ends. Then u is a leaf of F , spe
i�
allyit is an S1-translation of the 
ore bK�;1.Proof. There are no 
urves without positive ends outside the region of surgery sin
e here thesymple
ti
 form is exa
t, thus we may assume u interse
ts both the handle and its 
omplement.
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 foliation des
ribed by Proposition 3.19 fora �-de
oupling 
obordism, not in
luding the 
ylindri
al ends. The pi
tureshows the t and � 
oordinates near various binding, interfa
e and boundary
omponents, in
luding an interfa
e torus T where a handle � � A has beenatta
hed. The 
ir
les at the ends of leaves in this region represent 
appingby �. The 
ore bK�;1 is shown as the verti
al leaf dire
tly in the 
enter, whi
hemerges from �1 and is 
apped o� in the handle.If u is a leaf of F then it must be an S1-translation of the 
ore, as all other leaves have positiveends. If it is not a leaf of F then it has a positive interse
tion with some leaf v, and withoutloss of generality we may suppose that v has only positive ends. Then v is homotopi
 in themoduli spa
e to a holomorphi
 lift of a page of �0, whi
h we may assume lives in the region[
;1) �M 0 for an arbitrarily large number 
 > 0 and thus 
annot interse
t u. This is a
ontradi
tion, due to positivity of interse
tions. �To apply these 
onstru
tions to ECH, or to Symple
ti
 Field Theory for that matter, onemust perturb �0 and �00 to 
onta
t stru
tures and perturb J0 with them. The J0-holomorphi
leaves of F will not generally behave well under this perturbation: a leaf with only positiveends for instan
e, if it has genus g, will have Fredholm index 2�2g and thus disappears underany generi
 perturbation of the data unless g = 0. Proposition 3.20, however, should stillhold under a suÆ
iently small perturbation, be
ause for any sequen
e Jk of perturbed almost
omplex stru
tures 
onverging to J0, a sequen
e of Jk-holomorphi
 
urves should 
onverge inthe sense of [BEH+03℄ to a J0-holomorphi
 building, and Proposition 3.20 determines whatthis building 
an look like. This is a variation on the uniqueness argument used in [Wen℄to prove vanishing of the ECH 
onta
t invariant: higher genus holomorphi
 
urves do notgeneri
ally exist, but they remain useful for proving that no other 
urves 
an exist either.Referen
es[ABW10℄ P. Albers, B. Bramham, and C. Wendl, On nonseparating 
onta
t hypersurfa
es in symple
ti
 4-manifolds, Algebr. Geom. Topol. 10 (2010), no. 2, 697{737.[Bal℄ J. A. Baldwin, Capping o� open books and the Ozsv�ath-Szab�o 
onta
t invariant. PreprintarXiv:0901.3797, to appear in J. Symple
ti
 Geom.

http://arxiv.org/abs/0901.3797


NON-EXACT SYMPLECTIC COBORDISMS 49[BEH+03℄ F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wyso
ki, and E. Zehnder, Compa
tness results in sym-ple
ti
 �eld theory, Geom. Topol. 7 (2003), 799{888 (ele
troni
).[CE12℄ K. Cieliebak and Y. Eliashberg, From Stein to Weinstein and ba
k: symple
ti
 geometry of aÆne
omplex manifolds, Amer. Math. So
., 2012.[CGH℄ V. Colin, P. Ghiggini, and K. Honda, The equivalen
e of Heegaard Floer homology and embedded
onta
t homology III: from hat to plus. Preprint arXiv:1208.1526.[Eli89℄ Y. Eliashberg, Classi�
ation of overtwisted 
onta
t stru
tures on 3-manifolds, Invent. Math. 98(1989), no. 3, 623{637.[Eli90℄ Y. Eliashberg, Filling by holomorphi
 dis
s and its appli
ations, Geometry of low-dimensional man-ifolds, 2 (Durham, 1989), London Math. So
. Le
ture Note Ser., vol. 151, Cambridge Univ. Press,Cambridge, 1990, pp. 45{67.[Eli91℄ , On symple
ti
 manifolds with some 
onta
t properties, J. Di�erential Geom. 33 (1991),no. 1, 233{238.[Eli96℄ Y. Eliashberg, Unique holomorphi
ally �llable 
onta
t stru
ture on the 3-torus, Internat. Math. Res.Noti
es 2 (1996), 77{82.[Eli04℄ Y. Eliashberg, A few remarks about symple
ti
 �lling, Geom. Topol. 8 (2004), 277{293 (ele
troni
).[Etn04a℄ J. B. Etnyre, On symple
ti
 �llings, Algebr. Geom. Topol. 4 (2004), 73{80 (ele
troni
).[Etn04b℄ , Planar open book de
ompositions and 
onta
t stru
tures, Int. Math. Res. Not. 79 (2004),4255{4267.[Etn06℄ , Le
tures on open book de
ompositions and 
onta
t stru
tures, Floer homology, gauge theory,and low-dimensional topology, Clay Math. Pro
., vol. 5, Amer. Math. So
., Providen
e, RI, 2006,pp. 103{141.[EH02℄ J. B. Etnyre and K. Honda, On symple
ti
 
obordisms, Math. Ann. 323 (2002), no. 1, 31{39.[Gay06℄ D. T. Gay, Four-dimensional symple
ti
 
obordisms 
ontaining three-handles, Geom. Topol. 10(2006), 1749{1759 (ele
troni
).[GS12℄ D. T. Gay and A. I. Stipsi
z, On symple
ti
 
aps, Perspe
tives in analysis, geometry, and topology,Progr. Math., vol. 296, Birkh�auser/Springer, New York, 2012, pp. 199{212.[Gei95℄ H. Geiges, Examples of symple
ti
 4-manifolds with dis
onne
ted boundary of 
onta
t type, Bull.London Math. So
. 27 (1995), no. 3, 278{280.[Gei08℄ , An introdu
tion to 
onta
t topology, Cambridge Studies in Advan
ed Mathemati
s, vol. 109,Cambridge University Press, Cambridge, 2008.[Gir94℄ E. Giroux, Une stru
ture de 
onta
t, m^eme tendue, est plus ou moins tordue, Ann. S
i. �E
ole Norm.Sup. (4) 27 (1994), no. 6, 697{705 (Fren
h, with English summary).[Gro85℄ M. Gromov, Pseudoholomorphi
 
urves in symple
ti
 manifolds, Invent. Math. 82 (1985), no. 2,307{347.[Hof93℄ H. Hofer, Pseudoholomorphi
 
urves in symple
tizations with appli
ations to the Weinstein 
onje
-ture in dimension three, Invent. Math. 114 (1993), no. 3, 515{563.[Hut10℄ M. Hut
hings, Embedded 
onta
t homology and its appli
ations, Pro
eedings of the InternationalCongress of Mathemati
ians. Volume II, Hindustan Book Agen
y, New Delhi, 2010, pp. 1022{1041.[Hut℄ , Embedded 
onta
t homology as a (symple
ti
) �eld theory. In preparation.[HS05℄ M. Hut
hings and M. Sullivan, The periodi
 Floer homology of a Dehn twist, Algebr. Geom. Topol.5 (2005), 301{354.[HS06℄ , Rounding 
orners of polygons and the embedded 
onta
t homology of T 3, Geom. Topol. 10(2006), 169{266.[HT℄ M. Hut
hings and C. H. Taubes, Proof of the Arnold 
hord 
onje
ture in three dimensions II.Preprint arXiv:1111.3324.[Kar℄ C� . Karakurt, Conta
t stru
tures on plumbed 3-manifolds. Preprint arXiv:0910.3965.[KLT℄ C� . Kutluhan, Y.-J. Lee, and C. H. Taubes, HF=HM V: Seiberg-Witten-Floer homology and handleaddition. Preprint arXiv:1204.0115.[LW11℄ J. Lats
hev and C. Wendl, Algebrai
 torsion in 
onta
t manifolds, Geom. Fun
t. Anal. 21 (2011),no. 5, 1144{1195. With an appendix by Mi
hael Hut
hings.[Lis08℄ P. Lis
a, On symple
ti
 �llings of lens spa
es, Trans. Amer. Math. So
. 360 (2008), no. 2, 765{799(ele
troni
).[LS04℄ P. Lis
a and A. I. Stipsi
z, Ozsv�ath-Szab�o invariants and tight 
onta
t three-manifolds. I, Geom.Topol. 8 (2004), 925{945 (ele
troni
).

50 CHRIS WENDL[LVW℄ S. Lisi, J. Van Horn-Morris, and C. Wendl, On Symple
ti
 Fillings of spinal open book de
omposi-tions. In preparation.[Lut77℄ R. Lutz, Stru
tures de 
onta
t sur les �br�es prin
ipaux en 
er
les de dimension trois, Ann. Inst.Fourier (Grenoble) 27 (1977), no. 3, ix, 1{15 (Fren
h, with English summary).[M
D90℄ D. M
Du�, The stru
ture of rational and ruled symple
ti
 4-manifolds, J. Amer. Math. So
. 3(1990), no. 3, 679{712.[M
D91℄ , Symple
ti
 manifolds with 
onta
t type boundaries, Invent. Math. 103 (1991), no. 3, 651{671.[Mit95℄ Y. Mitsumatsu, Anosov 
ows and non-Stein symple
ti
 manifolds, Ann. Inst. Fourier (Grenoble)45 (1995), no. 5, 1407{1421 (English, with English and Fren
h summaries).[NW11℄ K. Niederkr�uger and C. Wendl, Weak symple
ti
 �llings and holomorphi
 
urves, Ann. S
i. �E
oleNorm. Sup. (4) 44 (2011), no. 5, 801{853.[OO05℄ H. Ohta and K. Ono, Simple singularities and symple
ti
 �llings, J. Di�erential Geom. 69 (2005),no. 1, 1{42.[OS05℄ P. Ozsv�ath and Z. Szab�o, Heegaard Floer homology and 
onta
t stru
tures, Duke Math. J. 129(2005), no. 1, 39{61.[OSS05℄ P. Ozsv�ath, A. Stipsi
z, and Z. Szab�o, Planar open books and Floer homology, Int. Math. Res. Not.54 (2005), 3385{3401.[Tau10℄ C. H. Taubes, Embedded 
onta
t homology and Seiberg-Witten Floer 
ohomology V, Geom. Topol.14 (2010), no. 5, 2961{3000.[Wei91℄ A. Weinstein, Conta
t surgery and symple
ti
 handlebodies, Hokkaido Math. J. 20 (1991), no. 2,241{251.[Wen10℄ C. Wendl, Strongly �llable 
onta
t manifolds and J-holomorphi
 foliations, Duke Math. J. 151(2010), no. 3, 337{384.[Wen℄ , A hierar
hy of lo
al symple
ti
 �lling obstru
tions for 
onta
t 3-manifolds. PreprintarXiv:1009.2746, to appear in Duke Math. J.[Yau06℄ M.-L. Yau, Vanishing of the 
onta
t homology of overtwisted 
onta
t 3-manifolds, Bull. Inst. Math.A
ad. Sin. (N.S.) 1 (2006), no. 2, 211{229. With an appendix by Yakov Eliashberg.Department of Mathemati
s, University College London, Gower Street, London WC1E 6BT,United KingdomE-mail address: 
.wendl�u
l.a
.uk

http://arxiv.org/abs/1208.1526
http://arxiv.org/abs/1111.3324
http://arxiv.org/abs/0910.3965
http://arxiv.org/abs/1204.0115
http://arxiv.org/abs/1009.2746

	1. Introduction
	1.1. Some background and sample results
	1.2. The main theorems on handle attaching

	2. Further applications, examples and discussion
	2.1. The Gromov-Eliashberg theorem using holomorphic spheres
	2.2. Eliashberg's cobordisms from T3 to S3 …S3
	2.3. Gay's cobordisms for Giroux torsion
	2.4. Some new examples with M- M+ but M- M+
	2.5. Open books with reducible monodromy
	2.6. Etnyre's planarity obstruction
	2.7. Some remarks on planar torsion

	3. The details
	3.1. Review of summed open books and planar torsion
	3.2. A model for a blown up summed open book
	3.3. A model decoupling cobordism
	3.4. Modifications for the capping cobordism
	3.5. Symplectic deformation in a collar neighborhood
	3.6. Cohomology
	3.7. Proofs of the results from §1.1
	3.8. Holomorphic curves

	References

