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COMPACTNESS FOR EMBEDDED

PSEUDOHOLOMORPHIC CURVES IN 3–MANIFOLDS

CHRIS WENDL

Abstract. We prove a compactness theorem for holomorphic curves
in 4–dimensional symplectizations that have embedded projections to
the underlying 3–manifold. It strengthens the cylindrical case of the
SFT compactness theorem [BEH+03] by using intersection theory to
show that degenerations of such sequences never give rise to multi-
ple covers or nodes, so transversality is easily achieved. This has ap-
plication to the theory of stable finite energy foliations introduced in
[HWZ03], and also suggests a new approach to defining SFT-type in-
variants for contact 3–manifolds, or more generally, 3–manifolds with
stable Hamiltonian structures.
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1. Introduction and main results

Compactness arguments play a fundamental role in the application of
pseudoholomorphic curves to problems in symplectic and contact geome-
try: in the closed case we have Gromov’s compactness theorem, and more
generally the compactness theorems of Symplectic Field Theory [BEH+03]
for punctured holomorphic curves in noncompact symplectic cobordisms.
As a rule, the singularities of the compactified moduli space have positive
virtual codimension, which translates into algebraic invariants if transver-
sality is achieved. In general however, even if the moduli space of smooth
curves is regular, multiple covers can appear in the compactification and
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2 CHRIS WENDL

make transversality impossible without abstract perturbations, thus pre-
senting a large technical complication.

The motivating idea of this paper is that by restricting to a certain
geometrically natural class of holomorphic curves in low dimensional set-
tings, one can use topological constraints to prevent the aforementioned
analytical difficulties from arising—in fact the compactified moduli space
turns out to have a miraculously nice structure. Examples of this phenom-
enon have been seen previously in the compactness arguments of [HWZ03]
and [Wenb], both of which deal with stable finite energy foliations on con-
tact 3–manifolds. Roughly speaking, a finite energy foliation on a contact
manifold (M, ξ) is an R–invariant collection of pseudoholomorphic curves
in R × M which project to a foliation of M outside some set of closed
Reeb orbits. The foliation is called stable if it deforms smoothly under
sufficiently small perturbations of the data on M ; in particular, this re-
quires that every leaf be parametrized by an embedded holomorphic curve
of index 1 or 2. As is shown in [Wena], the class of holomorphic curves we
consider here consists (in the positive index case) of precisely those curves
which can be used to form finite energy foliations.

To illustrate the need for a compactness theorem, consider for a moment
the following question: can a stable finite energy foliation be deformed
smoothly under generic homotopies of the contact form or complex struc-
ture? Figure 1 shows that the answer in general is no. Here we see a
homotopy of the contact form which moves two of the Reeb orbits that
bound leaves of the foliation, and the families of leaves deform smoothly
up until the isolated parameter value τ = 1/2. At this value a non-generic
index 0 leaf appears, producing a discontinuous change in the structure of
the foliation. The remarkable fact is that, at least in this example, the
foliation survives this discontinuous change: the leaves of the unstable fo-
liation at parameter τ = 1/2 can be glued to produce a stable foliation
for τ = 1/2 + ǫ. To prove that this is what should happen in general, one
needs two fundamental ingredients:

• Compactness : to show that the set of parameter values for which a
foliation exists is closed

• Fredholm/gluing theory : to show that that set is also open

The second ingredient only works if the linearized Cauchy-Riemann opera-
tor achieves transversality: taking the homotopy to be sufficiently generic
guarantees this, but only for somewhere injective holomorphic curves. In
this regard, the standard compactness theory falls short, as it may in gen-
eral allow all manner of multiply covered curves to appear. The result of
this paper is to strengthen the standard compactness theory accordingly
for the relevant class of holomorphic curves; this is a necessary step toward
carrying out the homotopy argument described above.
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Figure 1. Four steps in the deformation of a stable fi-
nite energy foliation under a generic homotopy of contact
forms {λτ}τ∈[0,1]. Each picture is a cross section, consisting
mainly of Reeb orbits that point through the page, index 1
holomorphic curves (which appear isolated) and index 2 holo-
morphic curves (which appear in 1–parameter families). The
τ = 1/2 picture also contains a non-generic index 0 holomor-
phic curve.
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Along similar lines, M. Hutchings [Hut02] has proved a strong version
of SFT-type compactness for a class of embedded index 1 and 2 curves
in 4–dimensional symplectizations, a result which forms the analytical ba-
sis of Periodic Floer Homology and Embedded Contact Homology. The
result proved here is different in several respects. The condition on our
set of curves is seemingly stricter than that of Hutchings (though techni-
cally, neither implies the other), and the result is correspondingly stronger:
where Hutchings’ limits allow certain types of multiple covers (over trivial
cylinders), ours do not. In a different sense, the setup for our main re-
sult is more general because it uses no genericity assumptions and is valid
for arbitrary (also negative) Fredholm indices. The restriction on multi-
ple covers in the limit arises from topological considerations, independent
of analysis; in particular we make crucial use of the recently developed
intersection theory for punctured holomorphic curves, due to R. Siefring
[Sieb].

Hutchings’ results suggest another possible application for our compact-
ness theory: it may be possible to define specifically low-dimensional sym-
plectic or contact invariants (as in Gromov-Witten or Symplectic Field
Theory [EGH00]) by counting this restricted class of holomorphic curves.
If such a theory exists, it has an immediate technical advantage over general
SFT, in that it seemingly can be defined without any need for restrictive
topological assumptions (e.g. semipositivity) or abstract perturbations.

The present work is part of a larger program involving compactness for a
special class of embedded holomorphic curves in 4–dimensional symplectic
cobordisms. We focus here on the special case where the target space is
the R–invariant symplectization of a 3–manifold M . The relevant class
of holomorphic curves is then distinguished by the property of being not
only embedded in R × M but also having embedded projections to M .
We’ll give the required definitions and state simple versions of the main
theorems in §1.1; these are implied by some slightly more technical results
which we state and prove in §7, after developing the necessary machinery.
We will also give some more details in §1.2 on the general program into
which this work fits, and state some partial results for nontrivial symplectic
cobordisms.

Acknowledgements. This work benefited greatly from lengthy discus-
sions with Michael Hutchings and Richard Siefring, and I’d also like to
thank Denis Auroux and Cliff Taubes for some helpful suggestions. Part
of the work was conducted during a visit to the FIM at ETH Zürich, and I
thank Dietmar Salamon and the FIM for their hospitality. Thanks also to
the referee for attentive reading and several suggestions that have improved
the exposition.

1.1. Setup and main results. The following structure was introduced
in [BEH+03] as a general setting in which one has compactness results for
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punctured holomorphic curves. Let M be a closed, oriented 3–manifold.
We define a stable Hamiltonian structure onM to be a tuple H = (ξ,X, ω, J),
where1

• ξ is a smooth cooriented 2–plane distribution on M
• ω is a smooth closed 2–form on M which restricts to a symplectic

structure on the vector bundle ξ → M
• X is a smooth vector field which is transverse to ξ, satisfies ω(X, ·) ≡

0, and whose flow preserves ξ
• J is a smooth complex structure on the bundle ξ →M , compatible

with ω in the sense that ω(·, J ·) defines a bundle metric

It follows from these definitions that the flow of X also preserves the sym-
plectic structure defined by ω on ξ, and the special 1–form λ associated to
ξ and X by the conditions

λ(X) ≡ 1, kerλ ≡ ξ,

satisfies dλ(X, ·) ≡ 0.
An important example of a stable Hamiltonian structure arises when λ

is a contact form on M : then dλ defines a symplectic structure on the
contact structure ξ := ker λ, so if Xλ is the corresponding Reeb vector
field and J is any complex structure on ξ compatible with dλ, we obtain a
stable Hamiltonian structure in the form (ξ,Xλ, dλ, J). A few non-contact
examples may be found in [BEH+03], some of which have also appeared in
applications, e.g. in [EKP06] and [Wenb].

We shall denote periodic orbits of X by γ = (x, T ), where T > 0 and
x : R → M satisfies ẋ = X(x) and x(T ) = x(0). If x, x′ : R → M differ
only by x(t) = x′(t+ c) for some c ∈ R, we regard these as the same orbit
γ = (x, T ) = (x′, T ). We say that γ has covering number k ∈ N if T = kτ ,
where τ > 0 is the minimal period, i.e. the smallest number τ > 0 such
that x(τ) = x(0). An orbit with covering number 1 is called simply covered.
The k–fold cover of γ = (x, T ) will be denoted by

γk = (x, kT ).

We shall occasionally abuse notation and regard γ as a subset of M ; it
should always be remembered that the orbit itself is specified by both this
subset and the period.

The open 4–manifold R×M is called the symplectization ofM , and it has
a natural R–invariant almost complex structure J̃ associated to any stable
Hamiltonian structure H = (ξ,X, ω, J). This is defined by J̃∂a = X and
J̃v = Jv for v ∈ ξ, where a denotes the coordinate on the R–factor and ∂a

1The tuple (ξ, X, ω), not including J , is equivalent to a framed stable Hamiltonian

structure in the definition given by [Siea]. A similar definition appears in [EKP06] with
the additional requirement that ω be exact. The inclusion of J in the data is not so
natural geometrically, but convenient for our purposes.
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is the unit vector in the R–direction. We then consider pseudoholomorphic
(or J̃–holomorphic) curves

ũ = (a, u) : (Σ̇, j) → (R ×M, J̃),

where Σ̇ = Σ \ Γ, (Σ, j) is a closed Riemann surface, Γ ⊂ Σ is a finite set
of punctures, and by definition ũ satisfies the nonlinear Cauchy-Riemann
equation T ũ ◦ j = J̃ ◦ T ũ. It is convenient to think of (Σ̇, j) as a Riemann
surface with cylindrical ends, and we will sometimes refer to neighborhoods
of the punctures as ends of Σ̇.

The energy of a punctured pseudoholomorphic curve ũ = (a, u) : (Σ̇, j) →
(R ×M, J̃) is defined by

E(ũ) = Eω(ũ) + Eλ(ũ),

where

(1.1) Eω(ũ) =

∫

Σ̇

u∗ω

is the so-called ω–energy, and

Eλ(ũ) = sup
ϕ∈T

∫

Σ

ũ∗(dϕ ∧ λ),

with T := {ϕ ∈ C∞(R, [0, 1]) | ϕ′ ≥ 0}. An easy computation shows that
both integrands are nonnegative whenever ũ is J̃–holomorphic, and such a
curve is constant if and only if E(ũ) = 0. When ũ is proper, connected, J̃–
holomorphic and satisfies E(ũ) <∞, we call it a finite energy surface. As
shown in [Hof, HWZ96], finite energy surfaces have asymptotically cylin-
drical behavior at the punctures: this means the map ũ : Σ̇ → R ×M
approaches {±∞} × γz at each puncture z ∈ Γ, where γz is a (perhaps
multiply covered) periodic orbit of X. (See Prop. 3.1 for a precise state-
ment.) The sign in this expression partitions Γ into positive and negative
punctures Γ = Γ+ ∪ Γ−.

Definition 1.1. The trivial cylinder over a periodic orbit γ = (x, T ) of
X is the finite energy surface with one positive and one negative puncture
given by

ũ : R × S1 → R ×M : (s, t) 7→ (Ts, x(Tt)).

Let ϕt
X denote the time–t flow of X, and recall that a periodic orbit

γ = (x, T ) of X is called nondegenerate if the linearized time–T return
map dϕT

X(x(0))|ξx(0)
does not have 1 in its spectrum. Choosing a unitary

trivialization Φ of ξ along x, one can associate to any nondegenerate orbit
γ its Conley-Zehnder index µΦ

CZ(γ) ∈ Z. The odd/even parity of µΦ
CZ(γ) is

independent of the choice Φ, and we call the orbit odd or even accordingly.
Dynamically, even orbits are always hyperbolic, elliptic orbits are always
odd, and there can also exist odd hyperbolic orbits, whose double covers are
then even. The following piece of terminology is borrowed from Symplectic
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Figure 2. A sequence of finite energy surfaces of genus 2
converging to a stable holomorphic building with three levels
and arithmetic genus 2. The middle level has a node.

Field Theory [EGH00], where the orbits in question are precisely those
which must be excluded in order to define coherent orientations.

Definition 1.2. A bad orbit of X is an even periodic orbit which is a
double cover of an odd hyperbolic orbit.

A stable Hamiltonian structure H = (ξ,X, ω, J) will be called nonde-
generate if all periodic orbits of X are nondegenerate, and we will say that
a sequence Hk = (ξk, Xk, ωk, Jk) converges to H = (ξ,X, ω, J) if each piece
of the data converges in the C∞–topology on M . We shall be concerned
mainly with the following special class of holomorphic curves.

Definition 1.3. A finite energy surface ũ = (a, u) : Σ̇ → R ×M will be
called nicely embedded if the map u : Σ̇ →M is embedded.

By a compactness result in [BEH+03], sequences of finite energy surfaces
with uniformly bounded genus and energy have subsequences convergent
to stable holomorphic buildings (see Figure 2). We will give precise defi-
nitions in §2; for now, let us simply recall that a holomorphic building ũ
consists of finitely many levels, each of which is a (possibly disconnected)
nodal J̃–holomorphic curve with finite energy, and neighboring levels can
be attached to each other along matching breaking orbits. Every holo-
morphic building ũ defines a graph Gũ whose vertices correspond to the
smooth connected components of ũ, with edges representing each node and
breaking orbit. We say that the building ũ is connected if the graph Gũ is
connected.

Definition 1.4. For a holomorphic building ũ, a breaking orbit will be
called trivial if deletion of the corresponding edge from Gũ divides the
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graph into two components, one of which only has vertices corresponding
to trivial cylinders. Breaking orbits that do not have this property will be
called nontrivial.

Definition 1.5. We say that a holomorphic building is nicely embedded if

(1) It has no nodes.
(2) Each connected component is either a trivial cylinder or is nicely

embedded.
(3) If ṽ1 = (b1, v1) and ṽ2 = (b2, v2) are any two distinct connected

components, then the maps v1 and v2 either are identical or have
no intersections.

(4) Every nontrivial breaking orbit is even, and either simply covered
or both doubly covered and bad.

Theorem 1. Assume Hk = (ξk, Xk, ωk, Jk) is a sequence of stable Hamil-
tonian structures converging to a nondegenerate stable Hamiltonian struc-
ture H = (ξ,X, ω, J), and ũk = (ak, uk) : Σ̇ → R ×M are J̃k–holomorphic
finite energy surfaces which are nicely embedded and converge in the sense
of [BEH+03] to a stable J̃–holomorphic building ũ. Then ũ is nicely em-
bedded.

Note that this statement assumes nothing about the index of the curves
ũk. We will therefore obtain a stronger statement by restricting attention
to generic data and curves of positive index. Suppose ũ : Σ̇ → R × M
is a finite energy surface with nondegenerate asymptotic orbits γz at the
punctures z ∈ Γ, and Φ denotes a choice of unitary trivialization for ξ
along each γz. Then the Conley-Zehnder index of ũ with respect to Φ is
defined to be the sum

(1.2) µΦ(ũ) =
∑

z∈Γ+

µΦ
CZ(γz) −

∑

z∈Γ−

µΦ
CZ(γz).

Note that the parities of the orbits γz partition Γ into sets of even and odd
punctures, which we denote by

Γ = Γ0 ∪ Γ1.

The Fredholm index of ũ is

(1.3) ind(ũ) = −χ(Σ̇) + 2cΦ1 (u∗ξ) + µΦ
CZ(ũ),

where cΦ1 (u∗ξ) denotes the relative first Chern number of the bundle u∗ξ →
Σ̇ with respect to Φ, defined by counting zeros of a generic section that is
constant with respect to Φ near the ends. As shown in [HWZ99], ind(ũ)
is indeed the index of the linearized Cauchy-Riemann operator, and gives
the virtual dimension of the moduli space of finite energy surfaces in a
neighborhood of ũ.

For the following definition, it is useful to observe from (1.3) that ind(ũ)+
Γ0 is always even.
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Definition 1.6. The normal first Chern number cN(ũ) ∈ Z of a finite
energy surface ũ of genus g is defined by the relation

2cN(ũ) = ind(ũ) − 2 + 2g + #Γ0.

The meaning of cN(ũ) is most easily seen by considering an immersed,
closed curve ũ = (a, u) : Σ → R ×M : then 2cN(ũ) = −χ(Σ) + 2c1(u

∗ξ) −
2 + 2g = 2c1(u

∗T (R × M)) − 2χ(Σ) = 2c1(Nũ), where Nũ → Σ is the
normal bundle. More generally, for immersed curves with punctures, cN (ũ)
should be interpreted as the relative first Chern number of Nũ → Σ̇ with
respect to special trivializations at the asymptotic orbits; this notion will
be made precise in §6. The “nicely embedded” condition is relevant to
the normal first Chern number for the following reason: u is injective if
and only if ũ is embedded and there is never any intersection between ũ
and its R–translations ũc := (a + c, u) for c ∈ R. In this case, ũ belongs
to a 1–parameter family of non-intersecting finite energy surfaces, which
can be described via zero free sections of Nũ. This implies morally that
cN(ũ) = 0, a statement which becomes literally true after applying the
appropriate asymptotic constraints (see §5). In fact, one can show that for
generic J (or generic parametrized families Jτ ), the condition cN (ũ) = 0
is necessary so that ũ and all other finite energy surfaces nearby have
embedded projections into M . A more detailed discussion of this may
be found in [Wena]. Note also that a linearized version of positivity of
intersections (see the discussion of windπ(ũ) in §4) implies cN(ũ) ≥ 0 for
any nicely embedded curve—thus cN(ũ) = 0 is a minimality condition.

According to Definition 1.6, the condition cN(ũ) = 0 allows exactly two
cases where ũ can have positive index. We will say that a nicely embedded
curve ũ is stable if either

• ũ has index 2, genus 0 and no even punctures, or
• ũ has index 1, genus 0 and exactly one even puncture.

Theorem 2. In addition to the assumptions of Theorem 1, suppose the
choice of J in H is generic and the curves ũk are stable. Then

(1) If ind(ũ) = 1, ũ is a stable nicely embedded finite energy surface,
hence the moduli space of such curves up to R–translation is com-
pact.

(2) If ind(ũ) = 2, then either ũ is a nicely embedded finite energy sur-
face, or it is a building with exactly two nicely embedded connected
components, both stable with index 1, with projections that do not
intersect each other in M , and connected to each other along a
unique nontrivial breaking orbit.

Figure 3 shows a possible limit of stable index 2 curves. Stranger things
can happen if the genericity assumption is weakened: for example if J
is not generic but belongs to a generic 1–parameter family {Jτ}τ∈R, then
ũ can contain index 0 components (arbitrarily many, in principle) with
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1
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1

Figure 3. A sequence of stable nicely embedded finite en-
ergy surfaces degenerating in accordance with Theorem 2.
The numbers indicate the Fredholm indices of the compo-
nents and parities of the orbits. Note that each of the index 0
curves in the limit is a trivial cylinder, and the odd breaking
orbits are thus trivial. The limit has exactly two nontrivial
components (of index 1) and one nontrivial breaking orbit
(even); the latter is also the unique even orbit for each of the
index 1 components.

#Γ0 = 2, and there may be distinct nicely embedded components with
identical images (Figure 4).

1.2. Discussion. The class of stable nicely embedded finite energy sur-
faces that we’ve defined above is of great interest in the theory of sta-
ble finite energy foliations introduced by Hofer, Wysocki and Zehnder in
[HWZ03]. As shown in [Wena], these are precisely the curves whose mod-
uli spaces form local foliations in both R ×M and M . Thus Theorem 1,
when combined with some intersection theory and standard gluing anal-
ysis, can be seen as a tool for proving stability of holomorphic foliations
under R–invariant homotopies.

Likewise, Theorem 2 guarantees a particularly nice structure for the
moduli space of leaves in a fixed foliation. This provides the first half of
the proof of an informal conjecture suggested in [Wen05], that to every sta-
ble finite energy foliation F one can associate various SFT-type algebraic
structures, in particular a Contact Homology algebra HC∗(F). In fact the
result suggests more than this, since it does not assume the existence of
any foliation: one might hope to encode this compactification of the space
of nicely embedded index 2 curves algebraically as in SFT, thus defining
new invariants that count nicely embedded index 1 curves. In this case the
transversality problem is already solved for generic J , so one would not
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2

11 1 1

0

0 0

11

Figure 4. Convergence of stable nicely embedded index 2
curves in the absence of genericity: the limit can now have
more than two nontrivial components, because nontrivial in-
dex 0 curves may appear. If the two odd orbits on the left
are identical, it can also occur that the two components of
the top level in the limit are identical curves, an outcome
that is forbidden in the generic case.

need any abstract perturbations or restrictive assumptions on the target
space.

To carry these ideas further, one needs a corresponding compactness
theorem for punctured holomorphic curves u : Σ̇ → W in nontrivial sym-
plectic cobordisms (W,ω) with compatible J . In this case the “nicely
embedded” condition makes no sense, but one can formulate an appropri-
ate generalization using the intersection theory of punctured holomorphic
curves defined in [Sieb] (a conceptual summary without proofs may also
be found in [Wenc]). In this theory, the standard adjunction formula for
closed holomorphic curves has a generalization of the form

i(u, u) = 2δ(u) + cN(u) + cov∞(u).

Here i(u, u) and δ(u) are generalizations of the homological self intersection
number and singularity number respectively: they are homotopy invariant
integers that count intersections and singularities in addition to some non-
negative “asymptotic terms” (which vanish under generic perturbations).
The normal first Chern number cN(u) is again the integer given by Defi-
nition 1.6, and cov∞(u) is a nonnegative integer that depends only on the
asymptotic orbits of u: it is zero if and only if all the relevant extremal
eigenfunctions are simply covered (cf. §3). Generically, one can now char-
acterize moduli spaces of nicely embedded curves in symplectizations by
the condition i(ũ, ũ) = 0, and this is a sensible condition to apply to cer-
tain curves in symplectic cobordisms as well. Of particular interest is the
space of somewhere injective index 2 curves u : Σ̇ → W with i(u, u) = 0:
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these are automatically embedded and satisfy cN (u) = cov∞(u) = 0. By
a result in [Wena] in fact, such a curve is always regular and comes in
a smooth 2–dimensional family of nonintersecting curves, which foliate a
neighborhood of u(Σ̇) in W .

We can now state two partial results that we conjecture to be special
cases of a more general theorem. Assume for both that (W,J) is an asymp-
totically cylindrical almost complex manifold as in [BEH+03].

Theorem. Suppose W is closed and uk : Σ → W is a sequence of closed,
somewhere injective J–holomorphic curves with ind(uk) = 2 and i(uk, uk) =
0, converging to a nodal curve u. Then u is either a smooth embedded curve
or a nodal curve consisting of two embedded index 0 components that inter-
sect each other once transversely. These fit together with all smooth curves
close to u as a singular foliation of some neighborhood of the image of u,
with the nodal point as an isolated singularity.

Remark. We will not prove this here, but hope to include it in a future
paper as a special case of a much harder theorem for symplectic cobordisms.
The closed case is comparatively simple and requires no substantially new
technology, only the adjunction formula and some covering relations for
i(u, u) and cN(u). It can also easily be generalized to apply to any 2–
dimensional moduli space of curves that are embedded outside a set of
marked points z1, . . . , zN satisfying fixed point constraints u(zj) = pj ∈W ;
one must then assume that i(u, u) has the smallest value allowed by the
constraints. The local structure of such moduli spaces is studied in [Wena],
showing that locally they form singular foliations in W . In this way one
can also accomodate immersed curves if the images of the self intersections
are fixed.

Theorem ([Wenc]). Suppose J is generic and uk : Σ̇ → W is a sequence of
embedded, punctured finite energy J–holomorphic curves with ind(uk) = 2
and i(uk, uk) = 0, and they converge to a smooth multiple cover u = v ◦ ϕ.
Then v is an embedded index 0 curve with i(v, v) = −1 and u is immersed.
Moreover, the moduli space of curves close to u is a smooth orbifold, all
other curves close to u are embedded, and they fit together with v as a
foliation on some neighborhood of the image of v.

In both cases, as with Theorems 1 and 2, the upshot is that the de-
generation in the limit is nice enough so that transversality can still be
achieved—this is true even in the second case, despite the appearance of
a multiple cover in the limit. (The latter can happen only in symplectic
cobordisms that are both noncompact and nontrivial). The reason one
obtains smoothness in this case has to do with the transversality results of
Hofer, Lizan and Sikorav [HLS97], which are generalized in [Wenc]: specif-
ically in dimension 4, one can sometimes use topological constraints to
prove transversality for all J (not just generic choices). This does not
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depend on u being somewhere injective, though it is important that u is
immersed, and in fact the proof of the latter fact is also based partly on
such transversality arguments; see [Wenc] for details.

2. Holomorphic buildings in symplectizations

In this and the next few sections, we assemble some definitions and
known results on punctured holomorphic curves and holomorphic build-
ings, fixing terminology and notation that will be used throughout.

Let D denote the open unit disk in C, and write Ḋ = D\{0}. We define
the circle compactification of Ḋ as follows. Using the biholomorphic map

ϕ : (0,∞) × S1 → D \ {0} : (s, t) 7→ e−2π(s+it)

to identify Ḋ with the half-cylinder, define D := Ḋ∪({∞}×S1) ∼= (0,∞]×
S1. This is a topological surface with boundary, and has natural smooth
structures over the interior intD = Ḋ as well as the boundary ∂D = δ0 :=
{∞} × S1.

We use this to define a circle compactification Σ for Σ̇ = Σ \ Γ, where
(Σ, j) is any Riemann surface with isolated punctures Γ ⊂ Σ. For each
z ∈ Γ, choose coordinates to identify a neighborhood of z biholomorphically
with D, identify the punctured neighborhood as above with a half-cylinder
and then add a circle at infinity δz ∼= {∞} × S1 by replacing the half-
cylinder with (0,∞] × S1. The result is an oriented topological surface
with boundary,

Σ = Σ̇ ∪

(
⋃

z∈Γ

δz

)

,

where the subsets int Σ = Σ̇ and ∂Σ =
⋃

z∈Γ δz inherit natural smooth
structures that are independent of the choices of holomorphic coordinates.
The interior also has a conformal structure, and the complex structure on
TzΣ for z ∈ Γ defines a special class of diffeomorphisms ϕ : S1 → δz, which
are all related to each other by a constant shift, i.e. ϕ1(t) = ϕ2(t+ const).
For any two punctures z1, z2 ∈ Γ, an orientation reversing diffeomorphism
ψ : δz1 → δz2 will be called orthogonal if it can be written as ψ(t) = −t
with respect to some choice of special diffeomorphisms δzi

∼= S1. Observe
that Σ is compact if Σ is closed.

A closed nodal Riemann surface with marked points consists of the data

S = (S, j,Γ,∆),

where (S, j) is a closed (but not necessarily connected) Riemann surface,
and Γ,∆ ⊂ S are disjoint finite subsets with the following additional struc-
ture:

• Γ is ordered,
• elements of ∆ are grouped into pairs z1, z1, . . . , zn, zn.
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We call ∆ the double points of S, and Γ the marked points. Let Ṡ =
S \ (Γ ∪ ∆), with circle compactification S. For a pair {z, z} ⊂ ∆, a
decoration at {z, z} is an orientation reversing orthogonal diffeomorphism
ψ : δz → δz, and a decoration ψ of S is a choice of decorations at all pairs
{z, z} ⊂ ∆; we can regard this as a diffeomorphism on a certain subset of
∂S. We call S := (S, j,Γ,∆, ψ) a decorated nodal Riemann surface.

Given S with decoration ψ, define

S = S/{z ∼ ψ(z)}.

This is an oriented topological surface with boundary, with a conformal
structure that degenerates at ∂S =

⋃
z∈Γ δz and also at a certain set of

disjoint circles Θ∆ ⊂ S, one for each double point pair {z, z} ⊂ ∆. There

is a natural inclusion of Ṡ into S as the subset

Ṡ = intS \ Θ∆.

We say that the nodal surface S is connected if S is connected, and define
its arithmetic genus to be the genus of S. Neither of these definitions
depends on the choice of decoration.

Let M be a closed 3–manifold with stable Hamiltonian structure H =
(ξ,X, ω, J) and associated almost complex structure J̃ . If S = (S, j,Γ,∆) is
a closed nodal Riemann surface with marked points, a nodal J̃–holomorphic
curve

ũ : S → R ×M

is a proper finite energy pseudoholomorphic map ũ = (a, u) : (S \ Γ, j) →
(R × M, J̃) such that for each pair {z, z} ⊂ ∆, ũ(z) = ũ(z). In this
context each pair {z, z} ⊂ ∆ is called a nodal pair, or simply a node of
ũ. The marked points Γ are called punctures of ũ, and the asymptotic
behavior of a : S \ Γ → R determines the sign of each, defining a partition
Γ = Γ+ ∪ Γ−. Observe that for any decoration ψ of S, ũ : S \ Γ → M has
a natural continuous extension

(ā, ū) : S → [−∞,∞] ×M,

which is constant on each connected component of Θ∆ and maps ∂S to
{±∞} ×M ; in particular the restriction of ū to each δz ⊂ ∂S for z ∈ Γ±

defines a positively/negatively oriented parametrization of a periodic orbit
γz of X.

Consider next a collection of nodal J̃–holomorphic curves

ũm = (am, um) : Sm = (Sm, jm,Γm,∆m) → R ×M

for m = 1, . . . , n. Denote ∂±Sm =
⋃

z∈Γ±
m
δz, and suppose there are orien-

tation reversing orthogonal diffeomorphisms

ϕm : ∂+Sm → ∂−Sm+1
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for each m = 1, . . . , n− 1. Then the collection

ũ = (ũ1, . . . , ũn;ϕ1, . . . , ϕn−1)

is called a J̃–holomorphic building of height n if for each m = 1, . . . , n− 1,

ūm|∂+Sm
= ūm+1 ◦ ϕm.

The nodal curves ũm are called levels of ũ. For each m = 1, . . . , n − 1
and z ∈ Γ+

m, there is a unique z ∈ Γ−
m+1 such that ϕm(δz) = δz. We then

call the pair {z, z} a breaking pair, and denote by γ(z,z) the breaking orbit
parametrized by ūm|δz

and ūm+1|δz
. Let ∆C denote the set of all punctures

in Γ1 ∪ . . . ∪ Γn that belong to breaking pairs.
Define the partially decorated nodal Riemann surface S = (S, j,Γ,∆, ϕ),

where (S, j) is the disjoint union of (S1, j1), . . . , (Sn, jn), Γ = Γ+ ∪ Γ− :=
Γ+

n ∪Γ−
1 , ∆ is the union of the breaking pairs in ∆C with the nodal pairs in

∆N := ∆1 ∪ . . .∪∆n, and ϕ is the collection of decorations at the breaking
pairs {z, z} defined by ϕm : ∂+Sm → ∂−Sm+1. We will call S the domain
of ũ, and indicate this via the shorthand notation

ũ : S → R ×M.

Choosing arbitrary decorations ψm for each Sm, these together with ϕ
define a decoration ψ for S, and S is now the surface obtained from S1 ∪
. . . ∪ Sn by gluing boundaries together via ϕ. There is then a continuous
map

ū : S →M

such that ū|
Sm

= ūm. The orbits γz parametrized by ū|δz
for z ∈ Γ± are

called asymptotic orbits of ũ.

Remark 2.1. Technically, what we’ve defined should be called holomorphic
buildings with zero marked points, since all the marked points of S are
being viewed as punctures of ũ. One can also define holomorphic buildings
with marked points, though we will not need them here; see [BEH+03] for
details.

The relationship of a building ũ with its domain S gives rise to a slightly
more general notion which we will find useful.

Definition 2.2. Suppose S = (S, j,Γ,∆, ψ) is a nodal Riemann surface
with ∆ partitioned into two sets ∆C ∪ ∆N, each organized in pairs, called
breaking pairs and nodal pairs respectively, and ψ denotes a choice of dec-
oration at each of the breaking pairs. A generalized J̃–holomorphic build-
ing ũ : S → R × M is then a proper finite energy J̃–holomorphic map
ũ = (a, u) : S \ (Γ ∪ ∆C) → R ×M such that

(1) For each nodal pair {z, z} ⊂ ∆N, ũ(z) = ũ(z).
(2) Completing ψ to a decoration of S by choosing arbitrary decorations

at the nodal pairs, u : S \ (Γ ∪ ∆) extends to a continuous map
ū : S → M .
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Considering orientations, we see that each breaking pair {z, z} ⊂ ∆C

includes one positive and one negative puncture of ũ.
Just as with nodal Riemann surfaces, we say that the generalized build-

ing ũ : S → R×M is connected if S is connected, and its arithmetic genus
is defined as the genus of S. A connected component of ũ is the finite en-
ergy surface obtained by restricting the map ũ : S \ (Γ∪∆C) → R×M to
any connected component of its domain. The sets Γ± ⊂ S are the positive
and negative punctures of ũ. In general, each connected component may
have some punctures that do not belong to Γ but are included among the
breaking pairs ∆C: we call these breaking punctures.

Every holomorphic building is also a generalized holomorphic building in
an obvious way. The main difference is that the components of generalized
buildings cannot in general be assigned levels, and every component may
have positive and negative punctures which are not breaking punctures;
holomorphic buildings have these only at the top and bottom levels.

Definition 2.3. A generalized building ũ : S → R ×M is stable if each
connected component Ṡi ⊂ S \ (Γ ∪ ∆) on which ũ is constant satisfies
χ(Ṡi) < 0.

Notation. For any generalized holomorphic building ũ and puncture z ∈
Γ, we will always denote by

γz := ū(δz)

the asymptotic orbit at z, and for breaking pairs {z, z} ⊂ ∆C denote the
breaking orbit ū(δz) = ū(δz) by

γ(z,z) = γz = γz.

Unless stated otherwise, the domain S will be assumed to consist of the
data (S, j,Γ,∆, ϕ) as defined above. When multiple domains are under
discussion, we’ll often use S′ to denote a second domain (S ′, j′,Γ′,∆′, ϕ′),
or similarly St = (St, jt,Γt,∆t, ϕt) and so forth.

Definition 2.4. Given a generalized holomorphic building ũ : S → R×M ,
an augmentation of ũ at a puncture z ∈ Γ± is the generalized building
ũ′ : S′ → R ×M , defined as follows:

(1) (S ′, j′) is the disjoint union of (S, j) with a sphere (ST , jT ) :=
(S2, i). Denote by p−, p+ ∈ S ′ the points 0 and ∞ respectively
in ST .

(2) Γ′ = (Γ ∪ {p±}) \ {z}.
(3) ∆′

C is ∆C with the addition of one extra pair {z, p∓}.
(4) ∆′

N = ∆N.
(5) ũ′|S\(Γ∪∆C) = ũ and ũ′|ST \{p+,p−} is a trivial cylinder over γz. A

decoration is then chosen at ∆′
C \ ∆C so that ũ′ is a generalized

holomorphic building.
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An augmentation at a breaking pair {z, z} ⊂ ∆C is defined in the same
manner with the following changes:

(1) Γ′ = Γ.
(2) ∆′

C is ∆C with two additional pairs, {z, p−} and {p+, z}.
(3) ũ′|ST \{p+,p−} is a trivial cylinder over γ(z,z).

In general, an augmentation of ũ is any generalized building obtained from
ũ by a finite sequence of these two operations.

Augmentation is essentially the operation of shifting levels of ũ by in-
serting trivial cylinders. One should think of ũ′ as being homotopic to ũ,
generalizing the fact that a finite energy surface ṽ = (b, v) is homotopic to
any of its R–translations ṽc = (b + c, v) for c ∈ R; an augmentation is in
some sense a sequence of infinite R–translations.

Just as one can insert trivial cylinders in a generalized building, one can
also “collapse” them.

Definition 2.5. Suppose ũ : S → R × M is a generalized holomorphic
building such that at least one connected component is not a trivial cylin-
der. The core of ũ is then the unique generalized building ũK : SK → R×M
such that ũ is an augmentation of ũK and no connected component of ũK

is a trivial cylinder.

Definition 2.6. Given a generalized building ũ : S → R×M , a subbuilding
ũ′ : S′ → R ×M of ũ is a generalized building such that

(1) S ′ is an open and closed subset of S, on which j′ = j.
(2) Γ′ is the union of Γ∩S ′ with all z ∈ S ′ for which {z, z′} is a breaking

pair in ∆C with z′ 6∈ S ′.
(3) ∆′

C is the set of all breaking pairs {z, z} in ∆C for which both z
and z are in S ′, and ψ′ is the restriction of ψ.

(4) ∆′
N is the set of all nodal pairs {z, z} in ∆N for which both z and

z are in S ′.
(5) ũ′ = ũ|S′\(Γ′∪∆′

C)

We refer to [BEH+03] for the detailed definition of what it means for a
sequence of finite energy surfaces to converge to a holomorphic building.
We will only need to use the following fact, immediate from the definition:

Proposition 2.7. If ũk = (ak, uk) : (Σ̇k, jk) → (R×M, J̃k) is a sequence of
finite energy surfaces converging to a J̃–holomorphic building ũ : S → R×
M , then for sufficiently large k there exist homeomorphisms ϕk : S → Σk,
restricting to smooth maps S \ (∂S ∪ Θ∆) → Σ̇k, such that

(1) uk ◦ ϕk → u in C∞
loc(S \ (∂S ∪ Θ∆),M),

(2) ūk ◦ ϕk → ū in C0(S,M).

The proof of Theorem 1 will rely heavily on our ability to control the
normal first Chern number for components of a holomorphic building. Pos-
itivity of intersections guarantees that this number is nonnegative for any
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finite energy surface that is not preserved by the R–action. The hardest
part of the proof therefore involves the so-called trivial curves, for which
this number can be negative.

Definition 2.8. A finite energy surface ũ : Σ̇ → R ×M will be called a
trivial curve if Eω(ũ) = 0, and nontrivial if Eω(ũ) > 0.

Examining the integrand in (1.1), one finds that a finite energy surface
ũ = (a, u) : Σ̇ → R × M is trivial if and only if the image of du(z)

is everywhere tangent to X, which means u(Σ̇) is contained in a single
periodic orbit γ. If ũ is not constant, then this implies one can always
write ũ = ṽ ◦ ϕ where ϕ : Σ̇ → R × S1 is a holomorphic branched cover
and ṽ is the trivial cylinder over γ.

Definition 2.9. A holomorphic building or generalized holomorphic build-
ing will be called trivial if it is connected, has no nodes, and all its con-
nected components are trivial curves. Additionally, such a building will be
called cylindrical if it has arithmetic genus zero and exactly two punctures.

Observe that every nonconstant trivial curve has at least one positive
and one negative puncture, and the same statement therefore holds for
trivial (generalized) buildings. It follows that in general, a trivial building
ũ : S → R ×M has χ(S) ≤ 0, with equality if and only if ũ is cylindrical.

Proposition 2.10. A nonconstant trivial building is cylindrical if and only
if it is an augmentation of a trivial cylinder.

Proof. Observe first that the statement is true for any building ũ with only
one level (i.e. a finite energy surface), for then ũ covers a trivial cylinder ṽ
by a holomorphic map ϕ : R × S1 → R × S1 of degree k ∈ N, and every
such map is of the form ϕ(s, t) = (ks, kt) up to constant shifts in s and t.

For a more general trivial building ũ : S → R ×M with two punctures
and χ(S) = 0, we only need observe that under these assumptions, no
connected component of ũ can have nontrivial genus or more than two
punctures. �

3. Asymptotic eigenfunctions

Let γ = (x, T ) be a periodic orbit of X, and writing S1 := R/Z, define
the parametrization

x : S1 →M : t 7→ x(Tt).

We can then view the normal bundle to γ as the induced bundle x∗ξ → S1.
Choosing any symmetric connection ∇ on M , we define the asymptotic
operator

Aγ : Γ(x∗ξ) → Γ(x∗ξ) : v 7→ −J(∇tv − T∇vX).

One can check that this expression doesn’t depend on the choice ∇ and
gives a well defined section of x∗ξ. Morally, Aγ is the Hessian of a cer-
tain action functional on C∞(S1,M), whose critical points are the closed
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characteristics of X. As an unbounded operator on L2(x∗ξ) with domain
H1(x∗ξ), Aγ is self adjoint, with spectrum σ(Aγ) consisting of isolated real
eigenvalues of multiplicity at most two. We shall sometimes refer to the
eigenfunctions of Aγ as asymptotic eigenfunctions. Recall that the orbit γ
is degenerate if and only if 0 ∈ σ(Aγ).

Operators of this form are fundamental in the asymptotic analysis of
punctured holomorphic curves, as demonstrated by the following result
proved in [HWZ96,Mor03,Siea]. Denote

R+ = [0,∞), R− = (−∞, 0], Z± = R± × S1,

and assign to Z± the standard complex structure i ∂
∂s

= ∂
∂t

in terms of
the coordinates (s, t) ∈ Z±. We will use the term asymptotically constant
reparametrization to mean a smooth embedding ϕ : Z± → Z± for which
there are constants s0 ∈ R and t0 ∈ S1 such that ϕ(s−s0, t−t0)−(s, t) → 0
with all derivatives as s→ ±∞.

Proposition 3.1. Suppose ũ = (a, u) : Z± → R± ×M is a proper finite
energy half-cylinder asymptotic to a nondegenerate orbit γ = (x, T ). Then
there is an asymptotically constant reparametrization ϕ : Z± → Z± such
that for |s| sufficiently large, ũ ◦ ϕ : Z± → R ×M is either (Ts, x(Tt))
or satisfies the following asymptotic formula: there exists an eigenfunction
e ∈ Γ(x∗ξ) of Aγ with negative/positive eigenvalue λ such that

ũ ◦ ϕ(s, t) = exp(Ts,x(Tt))

[
eλs · (e(t) + r(s, t))

]
,

where exp is defined with respect to any R–invariant connection on R×M
and r(s, t) ∈ ξx(Tt) satisfies r(s, t) → 0 with all derivatives as s→ ±∞.

Since nontrivial eigenfunctions e ∈ Γ(x∗ξ) are never zero, this implies
in particular that u(s, t) is either contained in γ or never intersects γ for
sufficiently large |s|. Similar formulas are proved in [Siea] for the relative
asymptotic behavior of distinct holomorphic half-cylinders approaching the
same orbit; this is fundamental to the intersection theoretic results that
we will review in §4.

Prop. 3.1 obviously applies to finite energy surfaces ũ : Σ̇ → R ×M by
identifying a punctured disk-like neighborhood of each puncture z ∈ Γ±

biholomorphically with Z±.

Definition 3.2. For ũ : Z± → R± × M as in Prop. 3.1, if ũ satisfies
the asymptotic formula with a nontrivial eigenfunction e and eigenvalue
λ, we call |λ| > 0 the transversal convergence rate of ũ and say that e
controls the asymptotic approach of ũ to γ. Otherwise, if ũ is simply a
reparametrization of (Ts, x(Tt)) near infinity, we define the transversal
convergence rate to be +∞. Similar wording will be used also for more
general punctured holomorphic curves ũ : Σ̇ → R ×M approaching orbits
γz at z ∈ Γ.
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It will be important to understand the eigenfunctions of Aγ in greater
detail. For k ∈ N, define a parametrization of γk by

xk : S1 →M : t 7→ x(kT t).

Choose a unitary trivialization Φ of x∗ξ, and use Φ also to denote the
natural trivialization induced on x∗

kξ. Every nowhere zero section v ∈
Γ(x∗ξ) now has a well defined winding number

windΦ(v) ∈ Z.

By a result in [HWZ95], the winding number of a nontrivial eigenfunc-
tion e of Aγ depends only on its eigenvalue λ, thus we can sensibly write
windΦ(e) = windΦ(λ). In fact, the result in question proves:

Proposition 3.3. windΦ : σ(A) → Z is a monotone increasing function,
and for each k ∈ Z, there are precisely two eigenvalues λ ∈ σ(Aγ) counted

with multiplicity such that windΦ(λ) = k.

Assuming γ to be nondegenerate, we now define the integers

αΦ
−(γ) = max{windΦ(λ) | λ ∈ σ(Aγ), λ < 0},

αΦ
+(γ) = min{windΦ(λ) | λ ∈ σ(Aγ), λ > 0},

p(γ) = αΦ
+(γ) − αΦ

−(γ),

(3.1)

noting that the parity p(γ) ∈ {0, 1} doesn’t depend on Φ. Another result
in [HWZ95] then gives the following formula for the Conley-Zehnder index:

(3.2) µΦ
CZ(γ) = 2αΦ

−(γ) + p(γ) = 2αΦ
+(γ) − p(γ).

Definition 3.4. We will say that a nontrivial eigenfunction e of Aγ is a

positive/negative extremal eigenfunction of γ if windΦ(e) = αΦ
±(γ).

If e ∈ Γ(x∗ξ) satisfies Aγe = λe, we define the k–fold cover ek ∈ Γ(x∗
kξ)

by ek(t) = e(kt) and find Aγkek = kλek. In general, an eigenfunction f of
Aγ is called a k–fold cover if there is an orbit ζ and eigenfunction e of Aζ

such that ζk = γ and ek = f . We say that f is simply covered if it is not
a k–fold cover for any k > 1.

Lemma 3.5. A nontrivial eigenfunction f of Aγk is a k–fold cover if and

only if windΦ(f) ∈ kZ.

Proof. Clearly if f = ek then windΦ(f) = kwindΦ(e) ∈ kZ. To see the
converse, note that by Prop. 3.3 there is a two-dimensional space of eigen-
functions e of Aγ having any given integer value of windΦ(e). This gives
rise to a two-dimensional space of k–fold covers ek with winding kwindΦ(e).
Since this attains all winding numbers in kZ, every eigenfunction of Aγk

that is not a k–fold cover has winding in Z \ kZ. �
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Proposition 3.6. Let γ be a simply covered periodic orbit, Φ a unitary
trivialization of ξ along γ and k ∈ N. Then a nontrivial eigenfunction e of
Aγk is simply covered if and only if k and windΦ(e) are relatively prime.

Proof. From the lemma, we see that e is an n–fold cover if and only if n
divides both k and windΦ(e). So e is simply covered if and only if this is
not true for any n ∈ {2, . . . , k}. �

4. Intersection theory

If ũ = (a, u) : Σ̇ → R×M is a finite energy surface and π : TM → ξ is the
fiberwise linear projection along X, then the composition π ◦Tu : T Σ̇ → ξ
defines a section

πTu : Σ̇ → HomC(T Σ̇, u∗ξ).

It is shown in [HWZ95] that πTu satisfies the similarity principle, thus it is
either trivial or has only isolated positive zeros; the latter is the case unless
Eω(ũ) = 0. Assuming Eω(ũ) > 0 and ũ also has nondegenerate asymptotic
orbits, the asymptotic formula of Prop. 3.1 implies that πTu has no zeros
outside some compact subset, and its winding near infinity is controlled by
eigenfunctions of asymptotic operators. We can thus define the integer

windπ(ũ) ≥ 0

as the algebraic count of zeros of πTu. It follows from the nonlinear
Cauchy-Riemann equation that windπ(ũ) = 0 if and only if u : Σ̇ → M is
immersed and transverse to X.

Recalling the formula for cN(ũ) from Definition 1.6, a result in [HWZ95]
shows that all finite energy surfaces ũ with Eω(ũ) > 0 satisfy windπ(ũ) ≤
cN(ũ). Actually one can state this in a slightly stronger form as an equal-
ity. For z ∈ Γ±, let ez be an asymptotic eigenfunction that controls the
approach of ũ to γz, choose a unitary trivialization Φ of ξ along γz and
define the asymptotic defect of ũ at z to be the nonnegative integer

defz
∞(ũ) =

∣∣αΦ
∓(γz) − windΦ(ez)

∣∣ .
This is zero if and only if the asymptotic approach to γz is controlled by an
extremal eigenfunction. The total asymptotic defect of ũ is then defined
as

def∞(ũ) =
∑

z∈Γ

defz
∞(ũ).

Now the argument in [HWZ95] implies:

Proposition 4.1. For any finite energy surface ũ with Eω(ũ) > 0 and
nondegenerate asymptotic orbits,

windπ(ũ) + def∞(ũ) = cN(ũ),

and both terms on the left hand side are nonnegative.
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Next we collect some important results from the intersection theory of
finite energy surfaces, due to R. Siefring. In the following, we assume all
periodic orbits of X are nondegenerate and write punctured holomorphic
disks as half-cylinders Z± → R± ×M . These statements, proved in [Sieb],
are all based on the construction of homotopy invariant “asymptotic in-
tersection numbers”, which are well defined due to the relative asymptotic
formulas proved in [Siea].

Proposition 4.2. Suppose ũ = (a, u) : Z± → R± × M is a proper fi-
nite energy half-cylinder such that u : Z± → M is embedded. Then any
asymptotic eigenfunction controlling ũ at infinity is simply covered.

Proposition 4.3. Suppose ũ = (a, u) : Z± → R± ×M and ṽ = (b, v) :
Z± → R± × M are proper finite energy half-cylinders asymptotic to γm

and γn respectively for some simply covered orbit γ and m,n ∈ N. Assume
also that u and v are both embedded and do not intersect each other. Then
m = n, and the asymptotic eigenfunctions controlling ũ and ṽ at infinity
have the same winding number.

Proposition 4.4. Suppose ũ+ : (a+, u+) : Z+ → R+ × M and ũ− :
(a−, u−) : Z− → R− × M are proper finite energy half-cylinders asymp-
totic to γk+ and γk− respectively for some simply covered periodic orbit
γ and k± ∈ N. Assume also u+ and u− are both embedded and do not
intersect each other. Then both have asymptotic defect zero, and either

(1) γ is even and k+ = k− = 1, or
(2) γ is odd hyperbolic and k+ = k− = 2, hence γk+ = γk− is bad.

5. Constraints at the asymptotic orbits

Given a periodic orbit γ, a positive/negative asymptotic constraint for
γ is a real number c ≥ 0 such that ∓c 6∈ σ(Aγ). We will say that a
proper finite energy half-cylinder ũ : Z± → R± ×M asymptotic to γ is
compatible with this constraint if its transversal convergence rate (recall
Definition 3.2) is strictly greater than c. Similarly, for a generalized holo-
morphic building ũ : S → R ×M with punctures Γ = Γ+ ∪ Γ−, denote by
c = {cz}z∈Γ an association of a positive/negative asymptotic constraint cz
to each asymptotic orbit γz for z ∈ Γ±, and say that ũ is compatible with c

if for every z ∈ Γ, the corresponding end has transversal convergence rate
strictly greater than cz. Observe that the space of holomorphic buildings
compatible with a given set of asymptotic constraints is a closed subset of
the space of all holomorphic buildings.

Let γ be a nondegenerate orbit and fix a unitary trivialization Φ of ξ
along γ. Then if c is a positive asymptotic constraint for γ, define the
positive constrained Conley-Zehnder index by

(5.1) µΦ
CZ(γ; c) = µΦ

CZ(γ) − # (σ(Aγ) ∩ (−c, 0)) ,
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where eigenvalues are counted with multiplicity. Similarly, for c a nega-
tive asymptotic constraint, define the negative constrained Conley-Zehnder
index

(5.2) µΦ
CZ(γ;−c) = µΦ

CZ(γ) + # (σ(Aγ) ∩ (0, c)) ,

and if ũ : S → R×M is a holomorphic building compatible with constraints
c, choose unitary trivializations Φ for ξ along all asymptotic orbits γz and
define the total constrained Conley-Zehnder index

µΦ
CZ(ũ; c) =

∑

z∈Γ+

µΦ
CZ(γz; cz) −

∑

z∈Γ−

µΦ
CZ(γz;−cz).

The even/odd parity of the constrained indices µΦ
CZ(γz;±cz) for z ∈ Γ±

defines a constrained parity for each puncture, thus defining a new partition

Γ = Γ0(c) ∪ Γ1(c).

Now define the constrained Fredholm index

(5.3) ind(ũ; c) = −χ(S) + 2cΦ1 (ū∗ξ) + µCZ(ũ; c).

As shown in [Wena] (based on arguments in [HWZ99]), if ũ is a finite
energy surface, ind(ũ; c) is the virtual dimension of the moduli space of
finite energy surfaces near ũ that are compatible with c.

The relation between Conley-Zehnder indices and winding numbers has
a straightforward generalization to the constrained case. Given an orbit γ
and c ∈ R with −c 6∈ σ(Aγ), define

αΦ
−(γ; c) = max{windΦ(λ) | λ ∈ σ(Aγ), λ < −c},

αΦ
+(γ; c) = min{windΦ(λ) | λ ∈ σ(Aγ), λ > −c},

p(γ; c) = αΦ
+(γ; c) − αΦ

−(γ; c).

(5.4)

Then combining (3.2) with (5.1) and (5.2), we have

(5.5) µΦ
CZ(γ; c) = 2αΦ

−(γ; c) + p(γ; c) = 2αΦ
+(γ; c) − p(γ; c).

A nontrivial eigenfunction e of Aγ will now be called a positive/negative

extremal eigenfunction with respect to the constraint |c| if windΦ(e) =
αΦ
±(γ; c).

Now if ũ : Σ̇ → R ×M is a finite energy surface compatible with c and
Eω(ũ) > 0, define the constrained asymptotic defect at z ∈ Γ± by

defz
∞(ũ; cz) =

∣∣αΦ
∓(γz;±cz) − windΦ(ez)

∣∣ ,
where ez is an eigenfunction controlling the asymptotic approach of ũ to γz.
The total constrained asymptotic defect is then

def∞(ũ; c) :=
∑

z∈Γ

defz
∞(ũ; cz).

This sum is nonnegative, and is zero if and only if ũ is controlled by ex-
tremal eigenfunctions with respect to the constraints at every puncture.
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If ũ is a generalized building compatible with constraints c, then every
subbuilding ũ0 is compatible with a natural set of induced constraints ĉ

defined as follows. For each puncture z of ũ0 that is also a puncture of
ũ, set ĉz = cz, and for all other punctures of ũ0 (i.e. those which are only
breaking punctures of ũ), set ĉz = 0. The following relation is easily verified
using (5.3).

Proposition 5.1. If ũ : S → R ×M is a generalized holomorphic build-
ing compatible with constraints c and it has connected components ũi with
induced constraints ci, then

ind(ũ; c) =
∑

i

ind(ũi; ci) + #∆N.

Suppose now that ũ′ is an augmentation of ũ: there is then a canonical
bijection between the sets of punctures for each, so a set of asymptotic
constraints c on either induces one on the other, which we’ll also denote by
c. However if ũ′ is compatible with c, it is not necessarily true that ũ is as
well. Indeed, it may happen that for a given puncture z ∈ Γ, the component
of ũ′ containing z is a trivial cylinder, and is therefore compatible with
arbitrarily strict asymptotic constraints, which is not necessarily true for ũ.
On the other hand, if ũ′ arises as the limit of a sequence ũk of finite energy
surfaces compatible with c, then in a neighborhood of z ∈ Γ, convergence
to ũ′ and convergence to ũ are equivalent notions. It follows that both ũ
and ũ′ are in this case compatible with c: this is true in particular if ũ is
the core of ũ′.

6. The normal first Chern number

Suppose ũ : S → R×M is a generalized holomorphic building compatible
with asymptotic constraints c = {cz}z∈Γ, and the asymptotic orbits γz are
all nondegenerate. Fix a unitary trivialization Φ for ξ along each γz.

Definition 6.1. Define the constrained normal first Chern number of ũ
with respect to c as the integer

cN (ũ; c) = cΦ1 (ū∗ξ) − χ(S) +
∑

z∈Γ+

αΦ
−(γz; cz) −

∑

z∈Γ−

αΦ
+(γz;−cz).

One can easily check that this doesn’t depend on Φ, and a simple com-
putation using (5.5) and (5.3) shows that

(6.1) 2cN(ũ; c) = ind(ũ; c) − 2 + 2g + #Γ0(c),

where g is the arithmetic genus of ũ. The new formula is therefore consis-
tent with Definition 1.6.

The following result is immediate from the definition.

Proposition 6.2. If ũ′ is an augmentation of ũ then cN (ũ′; c) = cN(ũ; c).

We also have an immediate generalization of Prop. 4.1:
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Proposition 6.3. If ũ is a finite energy surface compatible with c and
Eω(ũ) > 0, then

windπ(ũ) + def∞(ũ; c) = cN(ũ; c),

and both terms on the left hand side are nonnegative.

Proposition 6.4. Suppose ũ : S → R ×M is a generalized holomorphic
building compatible with asymptotic constraints c, and ũi : Ṡi → R×M are
the connected components of ũ, with induced constraints ci for i = 1, . . . , N .
Then

cN(ũ; c) =

N∑

i=1

cN(ũi; ci) +
∑

{z,z}⊂∆C

p(γ(z,z)) + #∆N.

Proof. We must check that cN behaves appropriately under certain nat-
ural operations on generalized holomorphic buildings. The simplest such
operation is the disjoint union of two buildings ũ : S → R × M and
ũ′ : S′ → R × M with constraints c and c′ respectively: this defines a
building ũ ⊔ ũ′ : S ⊔ S′ → R ×M , compatible with the obvious union of
constraints c ⊔ c′. Clearly then,

cN(ũ ⊔ ũ′; c ⊔ c′) = cN (ũ; c) + cN(ũ′; c′).

Next, if ũ : S → R×M is a building with two points z, z′ ∈ S \ (Γ ∪∆)
such that ũ(z) = ũ(z′), we can add a node to ũ and define ⊙(z,z′)ũ :
⊙(z,z′)S → R×M by adding {z, z′} to the set of nodal pairs. This decreases

the Euler characteristic of S by 2, thus

cN (⊙(z,z′)ũ; c) = cN (ũ; c) + 2.

Similarly, if there are punctures z ∈ Γ+ and z ∈ Γ− for which γz = γz

and cz = cz = 0, then we can change ũ by “gluing” these punctures, which
means adding {z, z} to the set of breaking pairs and choosing an appro-
priate decoration so that the result is a generalized holomorphic building
⊞(z,z)ũ : ⊞(z,z)S → R ×M . By losing two unconstrained punctures, this
operation subtracts αΦ

−(γz) − αΦ
+(γz) = −p(γ(z,z)) from cN (ũ; c), hence

cN(⊞(z,z)ũ; c) = cN(ũ; c) + p(γ(z,z)).

Composing these operations as often as necessary gives the stated result.
�

7. Proofs of the main results

We will now state and prove stronger, more technical versions of Theo-
rems 1 and 2. Assume Hk = (ξk, Xk, ωk, Jk) is a sequence of stable Hamil-
tonian structures converging to H = (ξ,X, ω, J), where the latter is nonde-

generate, and ũ : S → R×M is a J̃–holomorphic building compatible with
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asymptotic constraints c = {cz}z∈Γ. Since the orbits γz are nondegenerate,
for sufficiently large k there are unique periodic orbits γz,k of Xk such that

γz,k → γz,

in the sense that these orbits have parametrizations S1 →M that converge
in the C∞–topology. We may also assume that for each z ∈ Γ±, ∓cz 6∈
σ(Aγz,k

).

Theorem 3. Assume ũk are nicely embedded J̃k–holomorphic finite energy
surfaces converging to the J̃–holomorphic building ũ, such that the ũk are
also compatible with c and cN(ũk; c) = 0. Then ũ is nicely embedded, its
core ũK is compatible with c, and for every connected component ṽi of ũK

with induced constraints ci, cN(ṽi; ci) = 0.

Remark 7.1. If ũk → ũ under the assumptions of Theorem 1, then one
can assume after taking a subsequence that all the ũk are compatible with
some choice of asymptotic constraints c such that cN(ũk; c) = windπ(ũk)+
def∞(ũk; c) = 0. This is why Theorem 3 implies Theorem 1. Similarly,
Theorem 2 is a special case of the next statement.

Theorem 4. In addition to the assumptions of Theorem 3, suppose J is
generic. Then ind(ũ; c) is either 1 or 2. If it is 1, then ũ is a finite energy
surface, hence the moduli space of such curves with constraint c is compact.
If ind(ũ; c) = 2 and ũ is not a finite energy surface, then it has exactly two
nontrivial connected components ṽi = (bi, vi), both with ind(ṽi; ci) = 1,
such that v1 and v2 have no intersections in M and they are connected to
each other by a unique nontrivial breaking orbit.

We begin now with some preparations for the proof of Theorem 3. By
Prop. 2.7, we can assume without loss of generality that the curves ũk have
a fixed domain Σ̇ = Σ \Γ with varying complex structures jk, and there is
a fixed homeomorphism

ψ : S → Σ

such that uk◦ψ → u in C∞
loc(S\(∂S∪Θ∆),M) and ūk ◦ψ → ū in C0(S,M).

The punctures Γ± of ũk and ũ are also identified via ψ, so we shall use the
same notation for both: the asymptotic orbit of ũk at z ∈ Γ is then γz,k

for sufficiently large k.

Lemma 7.2. The building ũ has at least one nontrivial component.

Proof. If ũ : S → R ×M is a trivial building, then ū : S → M represents
the trivial homology class [ū] = 0 ∈ H2(M). Perturbing ũ to ũk with
asymptotic orbits γz,k for sufficiently large k, we also have [ūk] = 0 ∈
H2(M), thus Eωk

(ũk) =
∫
Σ̇
u∗kωk = 〈[ωk], [ūk]〉 = 0. This is a contradiction,

since ũk is assumed to be nicely embedded, and thus nontrivial. �

Lemma 7.3. For each k, uk(Σ̇) ⊂ M is disjoint from each of the orbits
γz,k ⊂M for z ∈ Γ.
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Proof. Since uk is embedded, it follows from the nonlinear Cauchy-Riemann
equation that it is also transverse to Xk, thus any intersection with γz,k

is transverse and implies transverse intersections of uk with its image in a
neighborhood of z. �

Lemma 7.4. For every z ∈ Γ±, the extremal negative/positive eigenfunc-
tions of γz with respect to cz are simply covered. Moreover if z and ζ are
distinct punctures with the same sign and γz and γζ cover the same simply
covered orbit, then γz = γζ.

Proof. Since def∞(ũk; c) ≤ cN(ũk; c) = 0, ũk is controlled by extremal
eigenfunctions with respect to c at each puncture, and these must then
be simply covered by Prop. 4.2. Similarly Prop. 4.3 implies that distinct
positive/negative ends of ũk approaching covers of the same orbit must
approach with the same covering number. Both statements hold also in
the limit due to the nondegeneracy of the orbits γz. �

Lemma 7.5. Suppose z+ ∈ Γ+ and z− ∈ Γ−, such that γz+ and γz−

cover the same simply covered orbit. Then γz+ = γz− and it is either a
simply covered even orbit or a doubly covered bad orbit with simply covered
extremal eigenfunctions. Moreover, we can reset cz+ = cz− = 0 without
changing ind(ũ; c) or cN(ũ; c).

Proof. For γz±,k, the first part of the statement follows from Prop. 4.4
since uk is embedded, and the second part results from the fact that γz±,k

is therefore even and ũk is controlled by extremal eigenfunctions (in the
unconstrained sense) at both of these punctures, so Aγz±

can have no
eigenvalues between cz± and 0. The same result is true for γz± due to
nondegeneracy. �

Lemma 7.6. For every connected component ṽi = (bi, vi) : Ṡi → R ×M

of ũ, either ṽi is a trivial curve or vi : Ṡi → M is injective. Moreover for
any two such components ṽ1 and ṽ2 that are not trivial, v1(Ṡ1) and v2(Ṡ2)
are either disjoint or identical, the latter if and only if ṽ1 can be obtained
from ṽ2 by R–translation (up to parametrization).

Proof. Suppose ṽi = (bi, vi) : Ṡi → R ×M is a nontrivial connected com-
ponent of ũ, so Eω(ṽi) > 0 and consequently the section

πTvi : Ṡi → HomC(T Ṡi, v
∗
i ξ)

has only finitely many zeros, all positive. We claim first that ṽi is some-
where injective. If not, then there exists a somewhere injective finite en-
ergy surface w̃i = (βi, wi) : Ṡ ′

i → R×M and a holomorphic branched cover
ϕi : Ṡi → Ṡ ′

i of degree k ≥ 2 such that ṽi = w̃i ◦ ϕi. We can therefore find
an embedded loop α′ : S1 → Ṡ ′

i which does not lift to Ṡi, and by small per-
turbations of α′, we may assume it misses all punctures and zeros of πTwi.
Now choose an embedded loop α : S1 → Ṡi which projects to an n–fold
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cover of α′ for some n ≥ 2, and denote C = α(S1) ⊂ Ṡi, C
′ = α′(S1) ⊂ Ṡ ′

i.
Choose also an open neighborhood U ′ of C ′ and a corresponding neighbor-
hood U of C such that ϕi(U) = U ′. The restriction ϕi|U : U → U ′ is an
n–fold covering map, and we may assume without loss of generality that
vi|U : U →M and wi|U ′ : U ′ →M are both transverse to X. From this we
can derive a contradiction. Indeed, any map v′ : U → M that’s C∞–close
to vi|U can be written on some neighborhood of C as

v′(z) = ϕ
f(z)
X (vi(z))

where ϕt
X denotes the flow of X and f is a smooth real valued function

defined on some neighborhood of C. Choosing any nontrivial deck trans-
formation g : U → U for the covering map ϕi|U , there is necessarily a point
z ∈ C at which f(z) = f ◦ g(z), and thus v′(z) = v′(g(z)). By Prop. 2.7,
this is true in particular for a suitable restriction of uk for k sufficiently
large, contradicting the assumption that uk is embedded. We conclude
that ṽi is somewhere injective.

Now denote R–translations of finite energy surfaces ũ = (a, u) by ũc :=
(a+ c, u) for c ∈ R. Suppose that ṽ1 and ṽ2 are two nontrivial components
and v1(z1) = v2(z2). This gives an intersection ṽ1(z1) = ṽc

2(z2) for some
c ∈ R. If the intersection is isolated then it is positive, and yields an iso-
lated intersection of ũk and ũc′

k for some c′ ∈ R, again contradicting the fact
that uk is embedded. The alternative, since ṽ1 and ṽ2 are both somewhere
injective, is that ṽ1 and ṽc

2 are identical up to parametrization. The same
argument applies to intersections of v1 with itself: since ṽ1 is somewhere
injective, the intersection of ṽ1 with ṽc

1 is then necessarily isolated, other-
wise ṽ1 and ṽc

1 are identical up to parametrization; this is impossible in
light of the asymptotic behavior described in Prop. 3.1. �

We shall call a nonconstant trivial subbuilding of ũ maximal if every
component attached to it by a breaking orbit is nontrivial. Given such a
subbuilding ũt : St → R ×M , we introduce the following notation: write
the punctures of ũt as

Γ̂± = Γ̂±
C ∪ Γ̂±

E ,

where Γ̂E := Γ̂ ∩ Γ and Γ̂C consists of all punctures of ũt that arise from

breaking punctures of ũ. Assume #Γ̂+
C = p, #Γ̂−

C = q, #Γ̂+
E = r and

#Γ̂−
E = s; we have necessarily #Γ̂+ = p + r > 0, #Γ̂− = q + s > 0 and

since ũ is connected and has nontrivial components, #Γ̂C = p + q > 0.
Every asymptotic orbit of ũt covers the same simply covered orbit γ, so

denote the orbit at z ∈ Γ̂ by

γz = γmz

for some multiplicity mz ∈ N. Each z ∈ Γ̂±
C belongs to a breaking pair

{z, ẑ} ⊂ ∆C of ũ, and the component ṽz = (bz , vz) of ũ containing ẑ is
necessarily nontrivial, and negatively/positively asymptotic to γmz at ẑ.
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We know now from Lemma 7.6 that each of the maps vz is injective (thus
embedded near the punctures), and any two of them are either disjoint or
identical. Then by the intersection theoretic results of §4, all the mz for

z ∈ Γ̂C equal a fixed number mC ∈ N, and the asymptotic approach of
each ṽz to γmC

is controlled by eigenfunctions ez with the same winding

windΦ(ez) := wC ∈ Z. Likewise for z ∈ Γ̂±
E , Lemmas 7.4 and 7.5 imply

that all mz equal a fixed multiplicity mE ∈ N, and there is a fixed extremal

winding number wE := αΦ
∓(γmE ; cz). Note that if both Γ̂+

E and Γ̂−
E are

nonempty, then αΦ
+(γmE ; cz) = αΦ

+(γmE) = αΦ
−(γmE) = αΦ

−(γmE ; cz); this
follows from Lemma 7.5.

Lemma 7.7. For the maximal trivial subbuilding ũt described above, mC =
mE and wC = wE.

Proof. There’s nothing to prove if Γ̂E = ∅, so assume r + s > 0. Define

the compact subset Σ
t

= ψ(S
t
) ⊂ Σ and recall that for sufficiently large

k, ūk ◦ ψ|St is C0–close to ūt. Let γk be the unique simply covered orbit
of Xk for sufficiently large k such that γk → γ. Then some cover of γk is

an asymptotic orbit of ũk, thus by Lemma 7.3, we can assume ūk(Σ
t
) lies

in a fixed tubular neighborhood Nγ of γ but without intersecting γk. We
can also arrange that ūk have the following behavior at each component of

∂Σ
t
:

• for z ∈ Γ̂±
C, windΦ(ūk(ψ(δz))) = ±wC,

• for z ∈ Γ̂±
E , windΦ(ūk(ψ(δz))) = ±wE.

The crucial observation is now that ūk(Σ
t
) realizes a homology in H2(Nγ \

γk) ∼= H2(T
2). From this we obtain the relations

pmC + rmE = qmC + smE,

pwC + rwE = qwC + swE,

and consequently
(
mC mE

wC wE

)(
p− q
r − s

)
=

(
0
0

)
.

If p = q and r = s, then both of these are nonzero and Prop. 4.4 implies
that either γ is even and mC = mE = 1 or γ is odd hyperbolic and mC =
mE = 2, with wC = wE = αΦ

+(γmC) = αΦ
−(γmC) in either case. Otherwise

the determinant of the matrix above must vanish, so mCwE = mEwC.
However, by Prop. 4.2, wC and wE are winding numbers of simply covered
eigenfunctions for γmC and γmE respectively, thus Prop. 3.6 implies that
mC and wC are relatively prime, as are mE and wE. This implies mC = mE

and wC = wE �
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Corollary 7.8. If ũt : St → R × M is the maximal trivial subbuilding
above with induced asymptotic constraints ĉ = {ĉz}z∈bΓ, then

cN(ũt; ĉ) +
∑

z∈bΓC

[
p(γz) + def ẑ

∞(ṽz)
]

= −χ(S
t
).

In particular this sum is nonnegative, and is zero if and only if ũt is cylin-
drical.

Proof. By the lemma we have #Γ̂+ = #Γ̂− and can write m := mE = mC

and w := wE = wC = αΦ
∓(γm; cz) for each z ∈ Γ̂±

E . Then, noting that
cΦ1 ((ūt)∗ξ) = 0,

cN(ũt; ĉ) +
∑

z∈bΓC

[
p(γz) + def ẑ

∞(ṽz)
]

= −χ(S
t
) +

∑

z∈bΓ+

αΦ
−(γm; ĉz) −

∑

z∈bΓ−

αΦ
+(γm; ĉz)

+
∑

z∈bΓC

[
αΦ

+(γm) − αΦ
−(γm)

]

+
∑

z∈bΓ+
C

[
w − αΦ

+(γm)
]
+
∑

z∈bΓ−

C

[
αΦ
−(γm) − w

]

= −χ(S
t
) +

∑

z∈bΓ+

w −
∑

z∈bΓ−

w = −χ(S
t
).

�

We shall handle constant components of ũ similarly. Call a connected
subbuilding ũc : Sc → R × M of ũ a constant subbuilding if every con-
nected component of ũc is constant. Further, call it a maximal constant
subbuilding if every constant component of ũ that is attached by a node
to some component of ũc is also in ũc. Note that constant subbuildings
cannot have punctures, thus S

c
is closed. Denote by ∆̂N ⊂ Sc the set of

points z ∈ Sc that belong to nodal pairs {z, z′} ⊂ ∆N of S such that ũ is
not constant near z′; this set is necessarily nonempty since ũ is connected.
Then the stability condition on ũ implies

χ(S
c
\ ∆̂N) < 0.

Thus cN(ũc) + 2#∆̂N = −χ(S
c
) + #∆̂N + #∆̂N = −χ(S

c
\ ∆̂N) + #∆̂N >

#∆̂N > 0. We’ve proved:

Lemma 7.9. For any maximal constant subbuilding ũc of ũ with nodes ∆̂N

connecting it to nonconstant components of ũ,

cN(ũc) + 2#∆̂N > 0.

All the ingredients are now in place.
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Proof of Theorem 3. By the above results, ũ consists of the following pieces:

(1) Maximal constant subbuildings ũc such that cN(ũc) + 2#∆̂N > 0.
(2) Maximal trivial subbuildings ũt with induced asymptotic constraints

ct, for which the sum of cN(ũt; ct) +
∑

z∈bΓC
p(γz) with the asymp-

totic defects of all neighboring nontrivial ends is nonnegative, and
zero if and only if ũt is cylindrical.

(3) Nontrivial connected components ṽ = (b, v) with v injective.

Note that each nontrivial component ṽ is compatible with induced asymp-
totic constraints ĉ and satisfies cN(ṽ; ĉ) − def∞(ṽ; ĉ) = windπ(ṽ) ≥ 0.

Since cN(ũ; c) = 0, we conclude from Prop. 6.4 that ũ contains no con-
stant subbuildings or nodes, every trivial subbuilding is cylindrical and
every nontrivial component ṽ has windπ(ṽ) = 0. Such components ṽ are
therefore nicely embedded. A slightly stronger statement results from the
observation that the core ũK is also compatible with c and only contains
nicely embedded components. Thus each of these components ṽ satisfies
cN(ṽ; ĉ) = 0, where ĉ are now the constraints induced on ṽ as a subbuilding
of ũK. �

Proof of Theorem 4. For a given set of asymptotic constraints c, the R–
invariance of J̃ together with a standard transversality argument (cf. [Wena])
imply that for generic ω–compatible choices of J , all nontrivial somewhere
injective finite energy surfaces w̃ compatible with c satisfy ind(w̃; c) ≥ 1.
Moreover, cN(u; c) = 0 implies ind(u; c) ≤ 2 due to (6.1), thus this index
can only be 1 or 2. Likewise each connected component of ũK has con-
strained index at least 1, and by Prop. 5.1, these add up to ind(ũ; c). We
conclude there is exactly one component if ind(ũ; c) = 1, and at most two
if ind(ũ; c) = 2. In the latter case, both nontrivial components ṽi have
ind(ṽi; ci) = 1, so by (6.1), each has a unique puncture whose constrained
parity is even: this is therefore the unique breaking puncture. Since the
ends of ṽ1 and ṽ2 approaching this breaking orbit have opposite signs, ṽ1

and ṽ2 cannot be the same up to R–translation, thus their projections toM
are disjoint. �
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